
International Journal of Scientific & Engineering Research Volume 9, Issue 4, April-2018 1442
ISSN 2229-5518

IJSER © 2018
http://www.ijser.org

Code Clone Detection System using
hybrid technique along with optimal

intelligence techniques

Mehak Shahzadi, Kainat, Saira Munir

University of Central Punjab Lahore, Pakistan 2002

Abstract: A lot of search about code clones, detection systems, techniques and tools are available world widely.
Code clones are the duplicate code of source codes which are formed by copying and pasting code fragments of
different programs into new programs to avoid writing and wasting time. It also reuses of codes with some
modifications in original source codes. So. Due to the copy paste, reuse and minor modifications in original source
codes causes many defects into the software. code clones are verified as a main source of defects, which means they
cause problems into the implementation and maintenance of software. Due to this reason most of research based on
the detecting and removing these code clone’s fragments in source code. In this research paper we introduce code
clone detection system which uses hybrid approaches along uses optimal and intelligence technique. A hybrid
technique which is combination of metric based and text-based detection technique of code clone gives a better
result of accuracy, recall and precision whereas optimal and intelligence technique based on metric approach. We
implement the metric-based approach extract the code properties i.e. LOC, function Overloading, function
repetition, total number of functions, Global and local Variable with the help of PDG and AST tree techniques.
These two different techniques give us better result in precision, recall and accuracy with back propagation neural
network for 30 instance number from 90% to 98.8%.

--

1. INTRODUCTION
Code clone are defined as a computer
programmed term that is a syntactically or
systematically similar in original code of any
software or program [1]. Code clones are
basically duplication of source codes. It is also a
reuse of existing code with some modification or
some portion of whole code. [2] Code clones are
now considered as a main source of defects in
software. Which make complexity to handle,
implement and maintenance of software [3]. So,
a lot research based on detection of code clone
in programs and proposed different approaches,
techniques and tools for detection of code clone
and give better accuracy, recall and precision
results. The term ‘code clone’ does not have
generic or precise definition for code clones
because each researcher defines cloning as their
own [2]. As a canonical example of code
cloning, we often take the example of copy and
paste activity but cloning is not a result of copy

and paste alone. Code clones may be invoked in
software programming as idioms of language or
libraries, common library API‟s or framework
usage, or even on common examples based on
implementations. Likewise, all copy-and-paste
activities need not be considered as code
cloning. Copying and pasting of trivial code
sections like block statement or for loops are not
considered as code clone [4]. There is no doubt
that, code cloning is a “bad smell” kind of [5]
software design approach. So, there is an
insistence of code clone detection approaches
for precise and effective information of clones in
system software [8]. The main issue in code
clone is associated only with their similar
code that is indirectly rather than directly
which creates it problematic to identify
them. Although, modifies like updates or
covers that are often meant to affect every clone
in the same path, are normally not functional to
all of them consistent. The code quality declines

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 9, Issue 4, April-2018 1443
ISSN 2229-5518

IJSER © 2018
http://www.ijser.org

and modification become more expensive and
error-prone [3].

2. RELATED WORK

Manpreet Kaur et al. [1] proposed a code clone
detection technique for efficient detection of
type I, type II and type III clones. They
segmented source code into a number of
functions for clone detection purpose. Their
proposed tool is built in MS.Net framework
version 4.0 by using visual studio 2010.

Potential clones were detected by calculating a
number of effective lines; the number of loops
used, the number of function calls, etc.

Gitika et al. [2] presented an approach
to detect potential clones from software.
Potential clones are those parts of the code
which are the candidates for a clone but are not
necessarily being cloned. This approach
can be used to reduce complications with other
approaches and is quite simple to use.

The proposed clone code detection approach
gave results on method level metrics extracted
from source code. Source Monitor is the name of
the tool which was used to calculate the required
method level metrics. After calculating the
required metrics, the potential clones were
detected. The authors had used a chat server
system developed in java language to detect
potential clones. This code clone detection
approach was applied only to a part of the
software system in which potential clones had
been detected rather than applying on the whole
system. Amandeep Kaur et al. [6] devised an
algorithm which is used to identify duplicate
code piece.

The proposed algorithm is based on metrics,
which are being used to determine the
complexity of a program related to the number
of operands and operators in the program.

 The objective was to merge the metric based
and text-based techniques to design and analyses
a new hybrid approach.

In textual comparison, a line by line code
comparison is used in post-processing rather
than by taking token or word.

Visual Basic 6.0 programming language was
used in user interface design for detecting code
clone in an application. The software metrics
which are used to compute and analyses were
the number of operands, number of operators,
the number of source lines of code etc.
The proposed algorithm gave a light-weight
technique to detect functional clones by
computing metrics values and then combining
with simple textual analysis technique. With the
employment of metrics in the proposed
approach, a signified reduction was observed
with the existing one. A higher amount of recall
was obtained as a result of string matching and
textual comparison.

K. Raheja et al. [1] had used the concept of
hybrid clone detection approach. The proposed
approach used an algorithm for detecting
duplicity in the software.

Current techniques based on abstract syntax
trees (AST) were considerably less efficient but
could find syntactic clones. The research
described how suffix trees could be used to
detect clones in abstract syntax trees.

Metrics based techniques are complex because
they only require comparison of some numerical
data, i.e. metrics values of program units to find
code clones. But these techniques may give false
positives and even the clones with extra
modification could be found by numerous
detection techniques and tools. The survey of a
systematic approach and analyzed in single type
3 clones and their dissimilar. The main focus,
however on the difference in code metrics,
variable and hided them only type substitution.

Komondoor et al. (2001) [6] author investigates
the duplicate code from a software system with
slicing technique. Duplicate modules in a
software system are a normal thing. But it
increases the software maintenance cost and
efforts for stable a software system in production
mode. The proposed approach detects all the

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 9, Issue 4, April-2018 1444
ISSN 2229-5518

IJSER © 2018
http://www.ijser.org

similar clones and converted into a single
module. That single module called for all the
places to reduce duplicated code from the
modules. This approach working with some
graphs technique which helps to represent clone
from a software system with the help of similar
sub-graphs.

Jasmandeep Kaur implemented metric based
technique used with the help of swarm and
artificial intelligence techniques that described
them from copy and paste code clones in a path
that helps clone detection research.
He implemented these approaches or technique
in JAVA, C++, and MATLAB for coding
challenges (2017) [3].

Jai Bhagwan, Kumari Pramila, design hybrid
technique for code clone detection using text-
based and metric based approaches to give better
results of accuracy, recall and precision.
(2016)[8].

3. EXPLAINATION

A. Terminology associated with Code
Cloning.

1) Code Fragment (CF). A code fragment is a
sequence of code lines of any granularity, for
example, the
sequence of statements, begin-end block or
function definition etc. [4].
2) Code Clone (CC). A code fragment (CF1) is a
clone of another code fragment (CF2), if f (CF1)
= f(CF2), where f is a predefined function of
similarity [1].

Fig 1. A Code Clone Example [1]

3) Clone Pair (CP). A pair of identical code
fragments [1].
4) Clone Set (CS). A set of identical fragments
[2].

5) Clone Relation (CR). A clone relation is an
equivalence relation defined on code portions.
This pair of clone portion is called clone pair. A
clone class is a maximal set of code portions in
which an equivalence clone relation exists
between any pair of code portions [6].

B. Classification of Code Clones.
Broadly, code clones can be categorized into
two categories i.e. the clones that are identical
syntactically and the other types of clones are
related semantically [1][7]. Each of these
categories is described below:

1) Syntactically Similar Clones:

These are the structurally or textually similar
code fragments having minor modification
(white space removal, adding more comments,
adding one or more sequence of code to the
copied code fragments etc.) Type-I, Type -II and
Type-III clones fall under this category [7].
i. Type-I (Exact clones) - Textually identical
code segments except for variations in layout,
whitespace, and comments [2][6].
ii. Type-II (renamed/parameterized) - Textually
identical code segments except for variations in
literals, identifiers, whitespace, types, layout and
comments [1][6].
iii. Type-III (near-miss clones) - Copied
segments with further modifications such as
added, changed or removed statements, in
addition to variations in literals, identifiers,
types, whitespace, layout, and comments [3][4].

2) Semantically Similar Clone:

 These are code fragments that are similar in
computation but have syntactic variation. These
are also known as Type-IV code clones [4].

C. Clone Detection Approaches.
Clone detection has been an active area of
research since 1990‟s. A number of clone
detection approaches have been proposed in the
literature. The clone detection approaches can be
classified into four main categories: textual,
lexical, syntactic and semantic [4]. Each of these
approaches with their related research is
described below: -

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 9, Issue 4, April-2018 1445
ISSN 2229-5518

IJSER © 2018
http://www.ijser.org

1) Textual Approaches: Textual approaches are
text-based approaches that are using a little or no
transformation on the source code before its
actual comparison. In most cases, the detection
processes directly employ source code in their
detection method [7] [4].
Limitations of text-based Approaches [1][4]:
i. A line-by-line method cannot handle identifier
renaming.
ii. Code segments having line breaks are not
recognized as clones.
iii. Adding or removing brackets can create a
problem during comparing two code portions
when one of the two portions has brackets and
the second portion does not have brackets.
iv. The text-based approaches cannot be used in
source code transformation, so it needs some
normalization to improve recall without
reducing precision rate.

2) Lexical Approaches:
Lexical approaches are token-based approaches
that transform source code into a sequence of
"tokens" with the usage of a lexical analyzer.
The transformed token sequence is then run
for duplicated subsequences of tokens and the
comparable original code is returned as clones.
Lexical approaches are robust over minor code
changes like renaming, formatting, and spacing
than text-based approaches. The approach can
detect Type-I and Type-II clones and, Type-III
clones can be further detected by concatenating
Type-1 and Type-2 clones [4].

Limitations of Lexical Approaches:

i. Token-based approaches rely upon the order
of program lines. Whenever the order of
statements is modified in copied code, copied
code can’t be detected [7][6].
ii. Code clones with added or removed tokens
along with the swapped lines can’t be detected
using these techniques as the clone detection
technique is more focused on tokens [6].
iii. Token-based approaches cost more in terms
of space and time complexity than textual
approaches since a source line comprises of
several tokens [7].

3) Syntactic Approaches: A parser is used to
convert the source programs into a parse tree or
abstract syntax trees (AST) [4] [8], which are
then, processed either by using a tree match or
structural metrics match to find clones.
i. Tree matching approaches –
These are tree-based approaches that detect
clones by detecting similar subtrees. Literal
values, variable names and other tokens in
the source code is abstracted in a tree
representation, for detection of clones [9].
ii. Metrics-based Approaches - Metrics-based
approaches calculates a number of metrics from
code fragments and then compares metrics
vectors directly. Metrics are calculated for
syntactic units such as classes, loops,
Functions and statements [7][1][6].
These metric values can now be used to detect
clones. In most cases, AST [4] or control flow
graphs (CFG) are used to parse the source code,
on which the metrics are then calculated. [6].
Limitations of Syntactic Approaches:
i. Tree-based techniques can’t handle literal
and
identifiers values for clone detection in ASTs.
ii. Tree-based techniques cannot detect
reordered statement clones.
iii. A metric-based technique requires a parser or
a PDG generator for metrics values computation.
iv. Based on matrices alone two code fragments
may not have found to be similar code fragments
even if they have similar metric values.
4) Semantic Approaches: Static program
analysis is used to provide more precise
information in semantics-based clone detection
approaches. In some approaches, a PDG
(program dependency graph) represents a
program. The nodes are representing statements
and expressions, while the edges are
representing control and data dependencies
[9][4][1].
Limitations of Semantic Approaches:
i. PDG-based approaches are not scalable for
large systems [4].
ii. A PDG generator is required in PDG-based
approaches. Graph matching that is used in
PDG-based techniques is expensive [4].
5) Hybrid Approaches: Hybrid approaches are
the combination of any two earlier discussed
approaches [7][6][4]. For example, syntactic
approaches can be merged with the semantic

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 9, Issue 4, April-2018 1446
ISSN 2229-5518

IJSER © 2018
http://www.ijser.org

approach to achieve their combined goals [10]
[11].

6) Classification of code clone:
Code clones are classified on the basis of tri-
aspects which are used for expansion re-
engineering and detection. They have re-iterated
on the major prominent kind of clone, which
prevents at the quality of time interval re-
engineering. Following are the various code
clones based on tri-aspects i.e.
a) Similarities b/w binary code parts.
b) Object code location in program.
c) Re-factor chances with the simulated code

[12][3].
The similarity-based fragments are the majority
of binary kind’s i.e.
i) Binary code part could be verified on

the basis of the same code of their
execute program data [13]

ii) It could be same in their functionalities
without being texture verification.
However, texture similarity based
clones are of four kinds as type-1, type-
2, type-3, and type-4. An instance
section the methods which are similar
except the name and the techniques
which are verified for the kinds of
performance parameters integrated with
larger similarity code clones. The type-
4 code clone is based on the same
functionalities, same output but
different logics designed. The
classification define the quality of
methods of content has been copied
same and also what kind of syntax tree
elements have been changed. [3]

Con-QAT is a steady, free, open-source dash-
board tool-kit also used in industry. It is normal
aim simulation tool for several kinds of code
measurement and analysis study.
ConQAT gives various specific code clone
detection configurations for several
programming languages, adding JAVA, C/C++,
and COBOL. It has divide detection methods for
Type-1 or Type-2 clones and Type-3 clones.
They employed the previous method. Con-QAT
has been described in various analyses in clone
detection adding the study, they construct on
[14].

 Deckard uses an effective method for verifying
same sub trees, and applies it to tree re-
presentations of source code. It normally
generates a parse-tree constructor to construct
parse-trees required by its method. By a same
parameter, it is possible to control whether only
Type-1, Type-2 clones and Type-3 clones are
detected. Deckard is a suitable tool described in-
other analyses in adding the study, we construct
on [15].

4. PROPOSED METHOD

We proposed a technique with the combination
of hybrid technique along with optimal and
intelligence technique in software engineering.
We first of all use the hybrid technique uses
metric approach with text-based approach to
detect the code clone fragments and portions on
JAVA, C++ and C codes to get the better results
of accuracy, recall and precision [8]. After
applying hybrid technique we implement metric
approach using swarm and artificial techniques
of re-engineering. To get more generalized
results of defect free program source code from
code clones because it is not possible to get
100% defect free codes. First of all we select the
JAVA, C++ code files which already detected
by hybrid technique. Then we implement the
feature approach on these files and then
algorithm of optimizing the file code. Then
apply the classification approach which is most
appropriate for detection. Weather similarity
based, object code location in program and
refactoring. Then match with file code weather
all code clone types detect and remove [3].

5. CONCLUSION & FUTURE
WORK

In this research paper we proposed a hybrid
technique along with optimal intelligence
technique to detect code clone in JAVA,
C++ and MATLAB to get more generalized
results of the accuracy, recall and precision
in source codes because code clones caused
defected software program which makes
problems in maintaining software. It’s

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 9, Issue 4, April-2018 1447
ISSN 2229-5518

IJSER © 2018
http://www.ijser.org

highly expensive to maintain the software
defects.
Future research can be based on the
implementation of this proposed method and
on uses of different hybrid technique along
optimal intelligence techniques.

6. REFERENCES

1. K. Raheja and R. K. Tekchandani, “An

efficient code clone detection model on
Java byte code using hybrid approach”,
Confluence 2013: The Next Generation
Information Technology Summit (4th
International Conference), 2013, pp. 16–
21.

2. Geetika and Rajkumar Tekchandani,
“Detection of potential clones from
software using metrics”, International
Journal of Advanced Research in
Computer Science and Software
Engineering, vol. 4, no. 4, Apr. 2014.

3. Jasmandeep Kaur Design “Code Clone
Detection System uses Optimal and
Intelligence Technique based on
Software Engineering” International
Journal of Advanced Research in
Computer Science Volume 8, No. 5,
May-June 2017.

4. C. K. Roy, J. R. Cordy, and R. Koschke,
“Comparison and Evaluation of Code
Clone Detection Techniques and Tools:
A Qualitative Approach”, Science of
Computer Programming, vol. 74, no. 7,
pp. 470–495, May 2009.

5. C. Kapser and M. W. Godfrey,
“„Cloning Considered Harmful‟
Considered Harmful,” in 13th Working
Conference on Reverse Engineering,
2006. WCRE ‟06, pp. 19–28

6. A. Kaur and B. Singh, “Study on Metric
Based Approach for Detecting Software
Code Clones”, International Journal of
Advanced Research in Computer
Science and Software Engineering, vol.
4, no. 1, Jan. 2014.

7. Manpreet Kaur and Madan Lal, “Code
Clone Detection Using Function Based
Similarities and Metrics”, International

Journal of Emerging Research in
Management & Technology, vol. 4, no.
7, pp. 156–159, Jul. 2015.

8. Jai Bhagwan, Kumari Pramila”Design
and Analysis of a Hybrid Technique for
Code Clone Detection” International
Journal of Advanced Research in
Computer and Communication
Engineering ISO 3297:9(2007) Certified
Vol. 5, Issue 11, November 2016.

9. M. Matsushita, Jens Krinke, M.
Harman, and David Binkley, “KClone:
A Proposed Approach to Fast Precise
Code Clone Detection,” in Int.
Workshop Detect. Softw. Clones, pp.
12–16, 2009.

10. R. Koschke, R. Falke, and P. Frenzel,
“Clone Detection Using Abstract Syntax
Suffix Trees,” in 13th Working
Conference on Reverse Engineering,
2006. WCRE ‟06, pp. 253–262.

11. E. Kodhai, S. Kanmani, A. Kamatchi, R.
Radhika, and B. VijayaSaranya,
“Detection of Type-1 and Type-2 Code
Clones Using Textual Analysis and
Metrics”, International Conference on
Recent Trends in Information,
Telecommunication and Computing
(ITC), 2010, pp. 241–243.

12. Göde, N., and Koschke, R., (2009),
"Incremental clone detection."In
Software Maintenance and
Reengineering, 2009.CSMR'09. 13th
European Conference on, pp. 219 228.
IEEE.

13. Zhenmin, L., Lu, S., Myagmar, S., and
Zhou, Y., (2006), "CP-Miner: Finding
copy-paste and related bugs in
largescale software code." IEEE
Transactions on software Engineering
32, no. 3, pp. 176-192.

14. Koschke, Rainer, RaimarFalke, and
Pierre Frenzel. Clone detection using
abstract syntax suffix trees. In Reverse
Engineering, 2006.WCRE'06. 13th
Working Conference on, pp. 253-262.
IEEE, 2006.

15. Kim, M., Sazawal, V., Notkin, D., and
Murphy, M., (2005), "An empirical
study of code clone genealogies." In

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 9, Issue 4, April-2018 1448
ISSN 2229-5518

IJSER © 2018
http://www.ijser.org

ACM SIGSOFT Software Engineering
Notes, vol. 30, no. 5, pp. 187-196.ACM

IJSER

http://www.ijser.org/

