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                         Classifications of Number Theory 

  1. Introduction 

Number theory (or) arithmetic is a branch of pure mathematics devoted primarily to the study 
of the integers, more specifically the properties of positive integers. Number theorists study 
prime numbers as well as the properties of objects made out of integers (e.g., rational numbers) 
or defined as generalizations of the integers (e.g., algebraic integers). 

The positive integers are man’s first mathematical creation. The first scientific approach to study 
of integers, i.e., the true origin of the theory of numbers, is attributed to the Greeks. Around 
600BC, Pythagoras and his disciples made through study of integers. Euclid, Diaphanous, 
Fermat, Euler, Gauss, Goldbach, Dirichlet and Ramanujan were among the main contributors of 
the theory of the numbers. 

Integers can be considered either in themselves or as solutions to equations (Diophantine 
geometry). Questions in number theory are often best understood through the study of analytical 
objects (e.g., the Riemann zeta function) that encode properties of the integers, primes or other 
number-theoretic objects in some fashion (analytic number theory). One may also study real 
numbers in relation to rational numbers, e.g., as approximated by the latter (Diophantine 
approximation). 

The older term for number theory is arithmetic. By the early twentieth century, it had been 
superseded by "number theory". (The word "arithmetic" is used by the general public to mean 
"elementary calculations"; it has also acquired other meanings in mathematical logic, as in Peano 
arithmetic, and computer science, as in floating point arithmetic.) The use of the term arithmetic 
for number theory regained some ground in the second half of the 20th century, arguably in part 
due to French influence. In particular, arithmetical is preferred as an adjective to number-
theoretic. 

About the positive integers(natural numbers) kronecker once  remarked “God created the natural 
numbers and all the rest is the work of man”. Number theory is an art enjoyable and pleasing to 
everybody. In this project we shall discuss some classifications of number theory. They are  

1. Elementary number theory 
2. Algebraic number theory 
3. Analytic number theory 
4. Geometric number theory 
5. Computational number theory 

 
 
 
 
What is Number Theory? 
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Number theory is the study of the set of positive numbers: 
1, 2, 3, 4, 5, 6 . . . 
 
We will especially want to study the relationship between different sorts of 
Numbers. 
 
 Since ancient times, people have separated the whole numbers 
Into variety of different types. Here are some familiar and not-so-familiar 
Examples: 
 
Odd 1, 3, 5, 7, 9, 11. . . 
 
Even 2, 4, 6, 8, 10. . . 
 
Square 1, 4, 9, 16, 25, 36 . . . 
 
Cube 1, 8, 27, 64, 125 . . . 
 
Prime 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31 . . . 
 
Composite 4, 6, 8, 9, 10, 12, 14, 15, 16 . . . 
 
1 (modulo 4) 1, 5, 9, 13, 17, 21, 25 . . . 
 
Triangular 1, 3, 6, 10, 15, 21,…. 
 
Perfect 6, 28, 496 . . . 
 
Many of these types of numbers are undoubtedly already known to us. 
 
 A number is called triangular if that number of pebbles can be arranged in a triangle, with one 
pebble at the top, two pebbles in the next row, and so on. A number is perfect if the sum of all of 
its divisors, other than itself, adds back up to the original number. 
Some Typical Number Theoretic Questions: 
The main goal of number theory is to discover interesting and unexpected 
Relationships between different sorts of numbers and to prove that these relationship 
are true. 
 In this section we will describe a few typical number theoretic problems, some of which we will 
eventually solve, some of which have known solutions too difficult for us to include, and some 
which remain unsolved to this day. 
 
 
 
(a) Sums of Squares I 
Can the sum of two squares be a square? The answer is clearly “YES”; 
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For example: 3, 4,5 and 5,12,13 are Pythagorean triple is a set of three integers x, y and z such 
that (a Pythagorean  𝑥2 + 𝑦2 = 𝑧2) 
 
(b) Sums of Higher Powers 
Can the sum of two cubes be a cube? Can the sum of two fourth powers 
be a fourth power? In general, can the sum of two nth powers be an nth 
Powers? The answer is “NO”. The famous problem, called Fermat’s Last 
Theorem, was first posted by Pierre de Fermat in the 17th century, but was 
not completely solved until 1994 by Andrew Wiles. Wiles’ proof used sophisticated 
mathematical techniques which we will not be able to describe in detail. 
 
Fermat’s  Last Theorem 

Fermat stated in the margin of his copy of Diophantus Arithmetician : 

“It is impossible to write a cube as a sum of two cubes, a fourth power as a sum of two fourth 
powers and in general any powers beyond the second as a sum of two similar powers,for this I 
have discovered a wonderful proof but the margin is too small to contain it “.  

This theorem can be stated as 

The Diaphantive equation  

                             𝑥𝑛 + 𝑦𝑛 = 𝑍𝑛         

has no integral solution for n>2 other than the trivial solution in which x or y is zero. 

 This theorem is know as Fermat’s last theorem remainded a challenge for mathematical 
community for a long time. In  June 1993 a mathematician Andrew Wales of Princton University 
claimed to prove this theorem .The Whole mathematics world is excited today because this 
theorem defind the best minds of several generations of mathematicians.It is one of the important 
theorems.For the recognition of its importance,a German mathematician estabilished a prize of 
100000 DM in 1908 for offering a correct published proof. 

 

 

 

 

 

History of Fermat Last Theorem 

 1.1640, Fermat himself proved the case  n=4 
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2.1770, Euler proved the case n=3;(Gauss also gave a proof) 

 

3.1825,Dirichlet,Legender,proved FLT for n=5 

 

4.1832,Dirichlet treated successfully the case n=14 

 

5.1839,lame prove the case n=7 

 

6.1847,Kummer proved FLT in the case, when the exponent is a regular prime .But it is not 
known even today, wheather there are infinitely many sophie  Germain primes or regular primes. 

 

7.1983,Falting gave a proof of mordell’s conjecture . 

 

8.1986,Frey-Ribet –scrre :shimuray –Taniyama-weil conjecture implies FLT. 

 

9.1994,Andrew wiles :proof of S-T-W conjector for semi stable elliptic curve. 

 

 

 

 

 

 

2. History 
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                Fig 2 

The positive integers are undoubtedly man’s first mathematical creation. It is hardly possible to 
imagine human beings without the ability to count, at least within a limited range .Historical 
record shows that as early as 5700BC the ancient Sumerians kept a calendar, so they must have 
developed some form of arithmetic. 

    By 2500BC the Sumerians had developed a number system using 60 as a base. This was 
passed on to the Babylonians, who became highly skilled calculators. Babylonians clay tablets 
containing elaborate mathematical tables have been found, dating back to 2000BC. 

    When ancient civilization reached a level which proved leisure time to ponder about things, 
some people began to speculate about the nature and mysticism or numerology and even today 
numbers such as 3,7,11 and 13 are considered as omens of good or bad luck. 

   Numbers were used   for keeping records and for commercial transactions for over 5000 years 
before anyone thought of studying numbers themselves in a systematic way. The first scientific 
approach to the study of integers, that is, the true origin of the theory Of numbers, is generally 
attributed to the Greeks. Around 600 BC Pythagoras and his disciples made rather thorough 
studies of integers. The Pythagoreans also linked numbers with geometry .They introduced the 
idea of polygonal numbers: Triangular numbers, square numbers, pentagonal numbers, etc .The 
reason for this geometrical Nomenclature is clear when the numbers are represented by dots    
arranged in the form of triangles, Squares, pentagons , etc., as shown in Figure 

 

 

 

 

 

Triangular: 
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        1            3                6                         10                           15                 21        28 . . . 

                                                     Fig 2.1  

 

                                                       Fig 2.3 

Another link with geometry came from the famous theorem of Pythagoras which states that in 
any right triangle the square of the length of the hypotenuse is the sum of the lengths of the two 
legs (see figure 1.2). The Pythagoreans were interested in right triangles whose sides are 
integers, as in figure1.3. Such triangles are now called Pythagorean triangles. The corresponding 
triple of numbers(x, y, z) representing the lengths of the sides is called a Pythagorean triple.    
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           Fig 2.4 

A Babylonian tablet has found, dating from about 1700BC, which contains an extensive of 

Pythagorean triples, some of the numbers being quite large. The Pythagorean triples, some of the 

numbers being quite large. The Pythagoreans were the first to give a method for determining 

infinitely many triples. In modern notation it can be described as follows  

Let n be any odd number greater them 1, and let    

x = n,       y= 1
2

(𝑛2-1),      z = 1
2
(𝑛2 +1).  

The resulting triple (x ,y ,z) will always be a Pythagorean triple with z=y+1. Here are some 

examples: 

x       3     5      7      9      11      13        15        17          19    

 

y      4     12     24    40     60      84       112      144        180 

 

z      5     13     25    41     61       85       113     145         181 

There are other Pythagorean triples besides these; 

 

 

 

 

For example: 

x   8  12  16  20 
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y  15  35  63  99 

 

z   17  37  65  101 

In these examples we have z=y+2.plato (430-349bc) found a method for determining all the 

triples; in modern notation they are given by the formulas 

              x=4n,       y=4𝑛2 − 1,       z=4𝑛2+1                

Around 300BC an important event occurred in the history of mathematics. The appearance of 

Euclid’s elements, a collection of 13 books, transformed mathematics from numerology into a 

deductive science. Euclid was the first to present mathematical facts along with rigorous proofs 

of these facts. 

 

       Fig 2.5                                                Fig 2.6 

There of the thirteen books were devoted to the theory of numbers (books vii ,ix ,and x).in book 

ix Euclid proved that there are infinitely many primes. His proof is still taught in the classroom 

today. In book x he gave a method for obtaining all Pythagorean triples although he gave no 

proof that his method did, indeed, give them all. The method can be summarized by the formulas 

   x=t(𝑎2 − 𝑏2),   y=2tab,     z=t(𝑎2 + 𝑏2), 

Where t ,a, and b ,are arbitrary positive integers such that  a>b, a and b have no prime factors in  

common, and one of a or b is odd, the other even. 

Euclid also made an important contribution to another problem posed by the Pythagoreans-that 

of finding all perfect numbers. The number 6 was called a perfect number because 6=1+2+3, the 

sum of all its proper divisors (that is, the sum of all divisors less than 6).Another example of a 

perfect number is 28 because 28=1+2+4+7+14 and 1,2,4,7 and 14 are the divisors of 28 less than 
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28.The Greeks referred to the proper divisors of a number as its “ part”. They are called 6 and 28 

perfect numbers because in each case the number is equal to the sum of all its parts. 

In Book IX , Euclid found all even perfect numbers. He proved that an even number is perfect if 

it has the form 

             2𝑝−1(2𝑝 − 1),   where both p and 2𝑝-1 are   primes. 

Two thousand years later, Euler proved the converse of Euclid’s theorem. That is, every even 

perfect number must be of Euclid’s type .For example, for 6 and 28 we have  

6=22−1(22 − 1) =2.3    and   28= 23−1(23 − 1) = 4.7. 

The first five even perfect numbers are  

6,28,496,8128 and 33,550,336 

Perfect numbers are very rare indeed .At the present time (1983) only 29 perfect numbers are 

known. They Correspond to the following values of p in Euclid’s formula: 

2,3,5,7,13,17,19,31,61,89,107,127,521,607,1279,2203,2281,3217,4253,4432,9689,9941,11,213,1

9,937,21,701,23,209,44,497,86,243,132,049 

Numbers are of the for 2𝑝 − 1 ,where p is a prime, are now called Mersenne numbers and are 

denoted by 𝑀𝑝 in honor of  Mersenne .who studied them in 1644.It is known that  𝑀𝑝  is prime 

for the 29 primes listed above and composite for all values of p<44,497.For the following 

primes. 

P= 137,139,149,199,227,257 

Although 𝑀𝑝 is composite, no prime factor of 𝑀𝑝 is known. No odd perfect numbers are known; 

it is not even known if any exist .But if any do exist they must be very large; in fact greater than 

1050. 

We turn now to a brief description of the history of the theory of numbers since Euclid’s time. 

After Euclid in 300 BC no significant advances were made in number theory until about AD 250 

when Another Greek mathematician, Diophantus of Alexendria, published 13 books, six of 
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which have been preserved. This was the first Greek work to make systematic use of Algebraic 

symbols. Although his algebraic notation seems awkward by present day standards, diophantus 

was able to solve certain algebraic equations involving two or three unknowns. Many office 

problems originated from number theory and it was natural for him to seek integer solutions of 

equations. Equations to be solved with integer values of the unknowns are now called 

Diophantine equations. And the study of such equations is known as Diophantine analysis. 

The equation 𝑥2 + 𝑦2 = 𝑧2 for Pythagorean triples is an example of  a Diophantine equation. 

After Diophantus, not much progress was made in the theory of numbers until the 17th century, 

although there is some evidence that the subject begin to flourish in the far east-especially in 

India-In the period between AD 500 and AD1200. 

In the 17th century the subject was revived in western Europe, largely through the efforts of the 

remarkable French mathematician, Pierre de Fermat (1601-1665), who is generally 

acknowledged to be the father of the modern number theory. Fermat derived much of his 

inspiration from the works of Diophantus. He was the first to discover really deep properties of 

the integers. For example, Fermat proved the following surprising theorems.  

Every integer is either a triangular number or a sum of 2 or 3tringular numbers ;every integer is 

either a square or a sum of 2, 3 or 4 squares ; Every integer is either pentagonal number or the 

sum of 2, 3, 4 or 5 pentagonal numbers, and so on. 

Fermat also discovered that every prime number of the form 4n+1 such as 5, 13, 17, 29, 37, 41, 

etc., is  a sum of two squares. For example, 

5=12+22, 13 = 22+32, 17 = 11+42, 29 = 22+52, 37 = 12+62,  41 = 42+52 

Shortly after Fermat’s time, the names of Euler (1707-1783), Lagrange(1736-1813), 

Legendre(1752-1833), Gauss(1777-1855), and Dirichlet(1805-1859) became prominent in the 

further development of the subject.  

The first text book in number theory was published by Legendre in 1798. Three years later Gauss 

published Disquisitions arithmetic, a book which transforms the subject into a systematic and 

beautiful science. Although he made a wealth of contributions to other branches of mathematics, 

as well as to other sciences, Gauss himself considered his book on number theory to be his 
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greatest work. We conclude this introduction with a brief mention of some outstanding unsolved 

problems concerning prime numbers. 

1. (Goldbach’s problem) is there an even number > 2 which Is not the sum of two primes? 

2. Is there an even number > 2 which is not the difference of two primes? 

3. Are there infinitely many twin primes? 

4. Are there any infinitely many Mersenne primes, that is, primes of the form 2𝑝 − 1 Where 

P is prime? 

5. Are there any infinitely many composite mersenne numbers? 

6. Are there any infinitely many Fermat primes, that is, primes of the form 22𝑛+1? 

7. Are there any infinitely many composite Fermat numbers? 

8. Are there any infinitely many primes of the form 𝑥2 + 1,where x is an integer? (it is 

known that there are infinitely many of the form 𝑥2+𝑦2, and of the form 𝑥2+𝑦2 + 1,and 

of the form  𝑥2 + 𝑦2+𝑧2 + 1). 

9. Are there any infinitely many primes of the firm 𝑥2 + 𝑘,(k given)? 

10. Does there always exist at least one prime between 𝑛2and (𝑛 + 1)2  For every integer 

n≥ 1? 

11. Does there always exist at least one prime between 𝑛2and 𝑛2 + 𝑛 for every integer n>1? 

12. Are there any infinitely many primes whose digits (in base 10) are all ones?(here are two 

examples(11 and 11, 111, 111, 111, 111, 111, 111, 111). 

The professional mathematician is attracted to number theory because of the way all the 

weapons of modern mathematics can be brought to bear on its problems. As a matter of fact, 

many important branches of mathematics had their origin in number theory. For example, the 

early attempts to prove the prime number theorem stimulated the development of the theory 

of the functions of a complex variable, especially the theory of entire functions.  

Attempts to prove that the Diophantine equation 𝑥2 + 𝑦2 = 𝑧2  has no nontrivial solution if 

n≥ 3 (Fermat’s conjecture) led to the development of Algebraic number theory, one of the 

most active areas of modern mathematical research. The conjecture itself seems unimportant 

compared to the vast amount of valuable mathematics that was created by those working on 

it (A. Wiles announced a proof of Fermat’s conjecture in 1994).               
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 3.Elementary Number Theory 

Elementary number theory   involves divisibility among integers , the division "algorithm", the 
Euclidean algorithm (and thus the existence of greatest common divisors), elementary properties 
of primes (the unique factorization theorem, the infinitude of primes), congruence’s (and the 
structure of the sets  Z/n Z  as commutative rings), including   Fermat's little theorem and Euler's 
theorem extending it. "elementary" number theory usually includes classic and elegant results 
such as Quadratic Reciprocity; counting results using the Möbius Inversion Formula (and other 
multiplicative number-theoretic functions); and even the Prime Number Theorem, asserting the 
approximate density of primes among the integers, which has difficult but "elementary" proofs. 
Other topics in elementary number theory - The solutions of sets of linear congruence equations,   
The Chinese Remainder Theorem (or) solutions of single binary quadratic equations ,Pell's 
equations and continued fractions, or the generation of Fibonacci numbers or Pythagorean triples 
- turn out in retrospect to be harbingers of sophisticated tools and themes in other areas. 

For example, many questions in number theory may be posed as Diophantine equations 
equations to be solved in integers without much preparation. Catalan's conjecture  are 8 and 9 the 
only consecutive powers? (asks for the solution to  x a- y b=1  in integers), the Four Squares 
Theorem ( every natural number is the sum of four integer squares ) simply asserts that  x² + y² + 
z² + w² = n   is solvable for all n. But the attempt to solve these equations requires rather 
powerful tools from elsewhere in mathematics to shed light on the  structure of the problem. 
Even the possibility of analyzing Diophantine equations , Hilbert's tenth problem , suggests the 
use of mathematical logic, Matijasevic's negative solution of that problem guarantees number 
theorists will never find a complete solution to their analyses! Naturally there is significant 
overlap, and a single question from elementary number theory often requires tools from many 
branches of number theory. 

The branch of number theory that investigates properties of the integers by elementary methods. 
These methods include the use of divisibility properties, various forms of the axiom of induction 
and combinatorial arguments. Sometimes the notion of elementary methods is extended by 
bringing in the simplest elements of mathematical analysis. Traditionally, proofs are deemed to 
be non-elementary if they involve complex numbers. Usually, one refers to elementary number 
theory the problems that arise in branches of number theory such as the theory of divisibility, of 
congruences, of arithmetic functions, of indefinite equations, of partitions, of additive 
representations, of the approximation by rational numbers, and of continued fractions. Quite 
often, the solution of such problems leads to the need to go beyond the framework of elementary 
methods. 

 Many results obtained previously by P. Fermat, L. Euler, J.L. Lagrange, and others, and also the 
Chinese remainder theorem, can be stated and proved simply in the language of the theory of 
congruences. One of the most interesting results of this theory is the quadratic reciprocity law.  

3.1  Fermat 
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Pierre de Fermat (1601–1665) never published his writings in particular, his work on number 
theory is contained almost entirely in letters to mathematicians and in private marginal notes, He 
wrote down nearly number of  proofs in number theory .He did make repeated use of 
mathematical induction, introducing the method of infinite descent.One of Fermat's first interests 
was perfect numbers (which appear in Euclid, Elements IX) and amicable numbers, this led him 
to work on integer divisors, which were from the beginning among the subjects of the 
correspondence (1636 onwards) that put him in touch with the mathematical community of the 
day. He had already studied Bachet's edition of Diophantus carefully; by 1643, his interests had 
shifted largely to Diophantine problems and sums of squares (also treated by Diophantus).  

He wrote about his own famous conjecture “ I have a truly wonderful proof but the margin is too 
small to contain it. “ 

 

3.1.1  Fermat's achievements in arithmetic  

• Fermat's little theorem (1640), stating that, if a is not divisible by a prime p, then 
𝑎𝑝−1 =� 1(𝑚𝑜𝑑 𝑝) 

• If a and b are co prime, then 𝑎2 + 𝑏2 is not divisible by any prime congruent to −1 
modulo 4, and Every prime congruent to 1 modulo 4 can be written in the form 𝑎2 + 𝑏2. 
These two statements also date from 1640, in 1659, Fermat stated to Huygens that he had 
proven the latter statement by the method of descent. Fermat and Frenicle also did some 
work (some of it erroneous or non-rigorous) on other quadratic forms. 

• Fermat posed the problem of solving 𝑥2 − 𝑁𝑦2 = 1  as a challenge to English 
mathematicians (1657). The problem was solved in a few months by Wallis and 
Brouncker. Fermat considered their solution valid, but pointed out they had provided an 
algorithm without a proof (as had Jayadeva and Bhaskara, though Fermat would never 
know this.) He states that a proof can be found by descent. 
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• Fermat developed methods for (doing what in our terms amounts to) finding points on 
curves of genus 0 and 1. As in Diophantus, there are many special procedures and what 
amounts to a tangent construction, but no use of a secant construction. 

• Fermat states and proves (by descent) in the appendix to Observations on Diophantus 
(Obs. XLV) that  𝑥4 + 𝑦4 = 𝑧4  has no non-trivial solutions in the integers. Fermat also 
mentioned to his correspondents that  has no non-trivial solutions, and that this 
could be proven by descent.  

• Fermat's claim ("Fermat's last theorem") to have shown there are no solutions  to 
𝑥𝑛 + 𝑦𝑛 = 𝑧𝑛 for all  (a fact completely beyond his methods) appears only in his 
annotations on the margin of his copy of Diophantus, he never claimed this to others and 
thus would have had no need to retract it if he found any mistake in his supposed proof. 

3.1.2  The Quest to Solve the World’s Most Notorious  Mathematical Problem  

In 1963 a 10-year old boy borrowed a book from his local library in Cambridge, England. The 
boy was Andrew Wiles, a schoolchild with a passion for mathematics, and the book that had 
caught his eye was ‘The Last Problem’ by the mathematician Eric Temple Bell. The book 
recounted the history of Fermat’s Last Theorem, the most famous problem in mathematics, 
which had baffled the greatest minds on the planet for over three centuries. 

There can be no problem in the field of physics, chemistry or biology that has so vehemently 
resisted attack for so many years. Indeed E.T. Bell predicted that civilization would come to an 
end as a result of nuclear war before Fermat’s Last Theorem would ever be resolved. 
Nonetheless young Wiles was undaunted. He promised himself that he would devote the rest of 
his life to addressing the ancient challenge. 

 

Pierre De Fermat 
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The 17th century mathematician Pierre de Fermat created the Last Theorem while studying 
Arithmetica, an ancient Greek text written in about AD 250 by Diophantus of Alexandria. This 
was a manual on number theory, the purest form of mathematics, concerned with the study of 
whole numbers, the relationships between them, and the patterns they form. 

The page of Arithmetica which inspired Fermat to create the Last Theorem discussed various 
aspects of Pythagoras’ Theorem, which states that: 

In a right-angled triangle the square of the hypotenuse is equal to the sum of the squares on the 
other two sides. 

Soon after his death in 1906, the Wolfskehl Prize was announced, generating an enormous 
amount of publicity and introducing the problem to the general public 

Fermat's little theorem is the basis for the Fermat primality test and is one of the fundamental 
results of elementary number theory. The theorem is named after Pierre de Fermat, who stated it 
in 1640. It is called the "little theorem" to distinguish it from Fermat's last theorem 

 

 

 

 

3.1.3  Fermat’s little Theorem 

Statement:  Let p be prime, and suppose , then  𝑎𝑝−1 ≡ 1(𝑚𝑜𝑑 𝑝). 

Proof:  Consider the integers  a ,2a,………….(p -1)a 

 Reduce  mod p  to the standard system of residues {1,…….p-1}, 

(then apply Wilson's theorem.) 

There are   p - 1 numbers in the  set {a ,2a,………….(p-1) a} 

Show that they're distinct   mod p. 

Suppose that 1≤ 𝑗 ,𝑘 ≤ 𝑝 − 1, and  

𝑎𝑗 ≡ 𝑎𝑘(𝑚𝑜𝑑 𝑝), 

𝑝\ ⃥𝑎𝑗 − 𝑎𝑘 ≡ 𝑎(𝑗 − 𝑘), 
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so 𝑝\𝑎 (or). 𝑝 \ 𝑗 − 𝑘 

Since the first case is ruled out by assumption ,𝑝\𝑗 − 𝑘.  

But since 1≤ j, k ≤ p-1, this is only possible if  j=k. 

Thus, {a ,2a,………(p-1)a } are  p-1 distinct numbers  mod p. 

If   reduce  mod p,  get the numbers in {1,……..,p-1}. 

Hence,  a.2a……….(p-1) a≡ 1.2………..(p-1) (mod p)  

 (𝑝 − 1)!𝑎𝑝−1 ≡ (𝑝 − 1)! (𝑚𝑜𝑑 𝑝) 

On the other hand, another application of Wilson's theorem shows that 

a.2a…….. (𝑝 − 1)𝑎 ≡ 𝑎𝑝−1(𝑝 − 1)! ≡ −𝑎𝑝−1(𝑚𝑜𝑑 𝑝) 

So −𝑎𝑝−1 ≡ −1(𝑚𝑜𝑑 𝑝), 

• (or) 𝑎𝑝−1 ≡ 1(𝑚𝑜𝑑 𝑝).  

3.1.4     Converse of Fermat’s little theorem 

The converse of Fermat's little theorem is not generally true, as it fails for Carmichael numbers. 
However, a slightly stronger form of the theorem is true, and is known as Lehmer's theorem. 

The theorem is as follows 

If there exists  an   a  such that 

𝑎𝑝−1 ≡ 1(𝑚𝑜𝑑 𝑝)    an for all prime q dividing  p − 1 

𝑎(𝑝−1)/𝑞 ≠ 1(𝑚𝑜𝑑 𝑝)    𝑡hen p is prime. 

This theorem forms the basis for the Lucas–Lehmer test, an important primality test 

3.2 Different Proofs of Fermat's little theorem 

Fermat's little theorem states that       𝑎𝑝 ≡ 𝑎(𝑚𝑜𝑑 𝑝) 

for every prime number p and  every  integer a 
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Simplifications 

Some of the proofs of Fermat's little theorem given below depend on two simplifications. 

The first is that we may assume that a is in the range 0 ≤ a ≤ p − 1. This is a simple consequence 
of the laws of modular arithmetic; we are simply saying that we may first reduce a modulo p. 

Secondly, it suffices to prove that 

𝑎𝑝−1 ≡ 1(𝑚𝑜𝑑 𝑝)             (1) 

for a in the range 1 ≤ a ≤ p − 1. Indeed, if  (1)  holds for such a, multiplying both sides by a 
yields  the original form of the theorem, 

𝑎𝑝 ≡ 𝑎(𝑚𝑜𝑑 𝑝)  

On the other hand, if a equals zero, the theorem holds trivially. 

 

 

3.2.1  Proof by counting necklaces 

This is perhaps the simplest known proof, requiring the least mathematical background. It is an 
attractive example of a combinatorial proof (a proof that involves counting a collection of objects 
in two different ways). 

The proof given here is an adaptation of Golomb's proof. 

To keep things simple, let us assume that a is a positive integer. Consider all the possible strings 
of p symbols, using an alphabet with a different symbols. The total number of such strings is a p, 
since there are a possibilities for each of p positions (see rule of product). 

 

For example, if p = 5 and a = 2, then we can use an alphabet with two symbols (say A and B), 
and there are 25 = 32 strings of length five: 

AAAAA , AAAAB , AAABA , AAABB , AABAA,  AABAB,  AABBA,  AABBB, 
ABAAA,  ABAAB,  ABABA,  ABABB,  ABBAA,  ABBAB,   ABBBA,  ABBBB, 
BAAAA,  BAAAB,  BAABA,  BAABB,  BABAA,  BABAB,  BABBA,  BABBB, 
BBAAA,  BBAAB,  BBABA,  BBABB,   BBBAA,  BBBAB,  BBBBA,  BBBBB. 
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We will argue below that if we remove the strings consisting of a single symbol from the list (in 
our example, AAAAA and BBBBB), the remaining a p − a strings can be arranged into groups, 
each group containing exactly p strings. It follows that a p − a is divisible by p. 

Necklaces 

 
            
                 Fig 3.2.1 
Necklace representing seven different strings (ABCBAAC, BCBAACA, CBAACAB, 
BAACABC, AACABCB, ACABCBA, CABCBAA) 

 
           
                 Fig 3.2.2 
Necklace representing only one string (AAAAAAA) 

Let us think of each such string as representing a necklace. 

That is, we connect the two ends of the string together, and regard two strings as the same 
necklace if we can rotate one string to obtain the second string; 

in this case we will say that the two strings are friends. In our example, the following strings are 
all friends: 

AAAAB, AAABA, AABAA, ABAAA, BAAAA.            

Similarly, each line of the following list corresponds to a single necklace. 

AAABB, AABBA, ABBAA, BBAAA, BAAAB, 
AABAB, ABABA, BABAA, ABAAB, BAABA, 
AABBB, ABBBA, BBBAA, BBAAB, BAABB, 

A 

A 

A A 

B 
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ABABB, BABBA, ABBAB, BBABA, BABAB, 
ABBBB, BBBBA, BBBAB, BBABB, BABBB, 
AAAAA, 
BBBBB. 

Notice that in the above list, some necklaces are represented by five different strings, and some 
only by a single string, so the list shows very clearly why 32 − 2 is divisible by 5. 

One can use the following rule to work out how many friends a given string S has 

If S is built up of several copies of the string T, and T cannot itself be broken strings down 
further into repeating strings, then the number of friends of S(including S itself) is equal to the 
length of T 

 

 

For example: 

suppose we start with the string S = "ABBABBABBABB", which is built up of several copies of 
the shorter string T = "ABB". If we rotate it one symbol at a time, we obtain the following three 
strings: 

ABBABBABBABB, 
BBABBABBABBA, 
BABBABBABBAB. 

There aren't any others, because ABB is exactly three symbols long, and cannot be broken down 
into further repeating strings. 

Using the above rule, we can complete the proof of Fermat's little theorem quite easily, as 
follows. Our starting pool of ap strings may be split into two categories 

• Some strings contain p identical symbols. There are exactly a of these, one for each 
symbol in the alphabet. (In our running example, these are the strings AAAAA and 
BBBBB.) 

• The rest of the strings use at least two distinct symbols from the alphabet. If we try to 
break up such a string S into repeating copies of a string T, we find that because p is 
prime, the only possibility is that T is already the whole string S. Therefore, the above 
rule tells us that S has exactly p friends (including S itself). 

The second category contains a p − a strings, and they may be arranged into groups of p strings, 
one group for each necklace. Therefore a p − a must be divisible by p, as promised. 

3.2.2  Proof using group theory 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 4, Issue 6, June-2013                                                                    2291 
ISSN 2229-5518 
 

IJSER © 2013 
http://www.ijser.org  

This proof requires the most basic elements of group theory. 

The idea is to recognize that the set G = {1, 2,  .…, p − 1}, with the operation of multiplication 
(taken modulo p), forms a group. The only group axiom that requires some effort to verify is that 
each element of G is invertible. Taking this on faith for the moment, let us assume that a is in the 
range 1 ≤ a ≤ p − 1, that is, a is an element of G. Let k be the order of a, so that k is the smallest 
positive integer such that 

𝑎𝑘 ≡ 1(𝑚𝑜𝑑 𝑝)  

By Lagrange's theorem, k divides the order of G, which is p − 1, so p − 1 = km for some positive 
integer m. Then 

𝑎𝑝−1 ≡ 𝑎𝑘𝑚 ≡ (𝑎𝑘)𝑚 ≡ 1𝑚 ≡ 1(𝑚𝑜𝑑 𝑝)  

 

3.2.3   Proof using the binomial theorem 

This proof uses induction to prove the theorem for all integers a ≥ 0. 

The base step, that 0 p ≡ 0 (mod p), is true for modular arithmetic because it is true for integers. 
Next, we must show that if the theorem is true for a = k, then it is also true for a = k+1. For this 
inductive step,  we need the following lemma. 

Lemma: For any prime p, 

(𝑥 + 𝑦)𝑝 ≡ 𝑥𝑝 + 𝑦𝑝(𝑚𝑜𝑑 𝑝)  

An alternative way of viewing this lemma is that it states that 

(𝑥 + 𝑦)𝑝 = 𝑥𝑝 + 𝑥𝑝  

for any x and y in the finite field GF(p). 

Postponing the proof of the lemma for now, we proceed with the induction. 

Proof: 

Assume kp ≡ k (mod p), and consider (k+1)p. By the lemma we have 

(𝑘 + 1)𝑝 ≡ 𝑘𝑝 + 1𝑝 (𝑚𝑜𝑑 𝑝)  

Using the induction hypothesis, we have that kp ≡ k (mod p); and, trivially, 1p = 1. Thus 

(𝑘 + 1)𝑝 ≡ 𝑘 + 1 (𝑚𝑜𝑑 𝑝)  
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which is the statement of the theorem for a = k+1.  

In order to prove the lemma, we must introduce the binomial theorem, which states that for any 
positive integer n, 

(𝑥 + 𝑦)𝑛 = ∑ �𝑛𝑖 �𝑥
𝑛−𝑖𝑦𝑖𝑛

𝑖=0   

where the coefficients are the binomial coefficients, 

�𝑛𝑖 � = 𝑛!
𝑖!(𝑛−𝑖)!

  
                       described in terms of the factorial function, n! = 1×2×3×⋯×n. 

 Proof of lemma. The binomial coefficients are all integers and when 0 < i < p, neither of the 
terms in the denominator includes a factor of p, leaving the coefficient itself to possess a prime 
factor of p which must exist in the numerator, implying that 

�𝑝𝑖 � ≡ 0(𝑚𝑜𝑑 𝑝)      ,0 < 𝑖 < 𝑝.  

Modulo p, this eliminates all but the first and last terms of the sum on the left-hand side of the 
binomial theorem for prime p.  

The primality of p is essential to the lemma, otherwise, we have examples like 

�4
2� = 6,  

which is not divisible by 4. 

3.2.4  Proof using dynamical systems 

This proof uses some basic concepts from dynamical systems. 

We start by considering a family of functions, Tn(x), where n ≥ 2 is an integer, mapping the 
interval [0, 1] to itself by the formula 

𝑇𝑛(𝑥) = { {𝑛𝑥}       0 ≤ 𝑥 < 1
        1                    𝑥 = 1, 

Lemma 1. 

For any n ≥ 2, the function Tn(x) has exactly n fixed points. 

Proof. 
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There are three fixed points in the illustration above, and the same sort geometrical argument 
applies for any n ≥ 2. 

Lemma 2. 

For any positive integers n and m, and any 0 ≤ x ≤ 1, 

𝑇𝑚�𝑇𝑛(𝑥)� = 𝑇𝑚𝑛(𝑥)  

In other words, Tmn(x) is the composition of Tn(x) and Tm(x). 

Proof. The proof of this lemma is not difficult, but we need to be slightly careful with the 
endpoint x = 1. For this point the lemma is clearly true since 

𝑇𝑚�𝑇𝑛(1)� = 𝑇𝑚(1) = 1− 𝑇𝑚𝑛(1)  

So let us assume that 0 ≤ x < 1. In this case, 

𝑇𝑛(𝑥) = {𝑛𝑥} < 1.  

so Tm(Tn(x)) is given by 

𝑇𝑚�𝑇𝑛(𝑥)� = {𝑚{𝑛𝑥}}  

Therefore, what we really need to show is that 

{m{nx}}={mnx} 

To do this we observe that {nx} = nx − k, where k is the integer part of nx; then 

{m{nx}}={mnx-mk}={mnx}  

since mk is an integer. 

Now let us properly begin the proof of Fermat's little theorem, by studying the function Ta 
p(x). 

We will assume that a is positive. From Lemma 1, we know that it has a p fixed points. By 
Lemma 2 we know that 

 

so any fixed point of Ta(x) is automatically a fixed point of Ta 
p(x). 

We are interested in the fixed points of Ta 
p(x) that are not fixed points of Ta(x). Let us call the set 

of such points S. There are a p − a points in S, because by Lemma 1 again, Ta(x) has exactly a 
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fixed points. The following diagram illustrates the situation for a = 3 and p = 2. The black circles 
are the points of S, of which there are 32 − 3 = 6. 

 
                      Fig 3.2.4 ( c ) 

The main idea of the proof is now to split the set S up into its orbits under Ta. What this means is 
that we pick a point x0 in S, and repeatedly apply Ta(x) to it, to obtain the sequence of points 

𝑥𝑜 ,𝑇𝑎(𝑥𝑜),𝑇𝑎�𝑇𝑎(𝑥0)�,𝑇𝑎 �𝑇𝑎�𝑇𝑎(𝑥𝑜)�� , … … … ….  

This sequence is called the orbit of x0 under Ta. By Lemma 2, this sequence can be rewritten as 

𝑥0.𝑇𝑎(𝑥𝑜),𝑇𝑎2(𝑥0),𝑇𝑎3(𝑥0), … … ..  

Since we are assuming that x0 is a fixed point of Ta 
p(x), after p steps we hit Ta 

p(x0) = x0, and 
from that point onwards the sequence repeats itself. 

However, the sequence cannot begin repeating itself any earlier than that. If it did, the length of 
the repeating section would have to be a divisor of p, so it would have to be 1 (since p is prime). 
But this contradicts our assumption that x0 is not a fixed point of Ta. 

In other words, the orbit contains exactly p distinct points. This holds for every orbit of S. 
Therefore, the set S, which contains a p − a points, can be broken up into orbits, each containing 
p points, so a p − a is divisible by p. 

3.2.5  Proof using the Multinomial expansion 

The proof is a very simple application of the Multinomial formula which is brought here for the 
sake of simplicity. 

(𝑥1 + 𝑥2 + ⋯+ 𝑥𝑚)𝑛 = � �
𝑛

𝑘1,𝑘2, … . . , 𝑘𝑚
�

𝑘1,𝑘2,……,𝑘𝑚

(𝑥1
𝑘1𝑥2

𝑘2 … … … . 𝑥𝑚
𝑘𝑚 
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The summation is taken over all sequences of nonnegative integer indices k1 through km such the 
sum of all ki is n. 

Thus if we express a as a sum of 1s (ones), we obtain 

𝑎𝑝 = � �
𝑝

𝑘1,𝑘2, … … …𝑘𝑎
�

𝑘1,𝑘2,…….𝑘𝑎

 

Clearly, if p is prime, and if kj not equal to p for any j, we have 

�
𝑝

 𝑘1,𝑘2, … . . 𝑘𝑎  � ≡ 0(𝑚𝑜𝑑 𝑝)  
 

and 

�
𝑝

 𝑘1,𝑘2, … . . 𝑘𝑎  � ≡ 1(𝑚𝑜𝑑 𝑝)  
 
 

if kj equal to p for some j 

Since there are exactly a elements such that the theorem follows. 

3.2.6  Wilson's Theorem and Fermat's Theorem 

• Wilson's theorem says that p is prime if and only if (𝑝 − 1)! ≡ 1(𝑚𝑜𝑑 𝑝). 

• Fermat's theorem says that if p is prime and , then 𝑎𝑝−1 ≡ 1(𝑚𝑜𝑑 𝑝). 
• Wilson's theorem and Fermat's theorem can be used to reduce large numbers with respect 

to a give modulus and to solve congruences. They are also used to prove other results in 
number theory --- for example, those used in cryptographic applications. 

3.3 Chinese Remainder Theorem 

The Chinese remainder theorem is a result about congruences in number theory and its 
generalizations in abstract algebra. In its basic form, the Chinese remainder theorem will 
determine a number n that when divided by some given divisors leaves given remainders. 

The original form of the theorem, contained in a third-century AD book The Mathematical 
Classic of Sun Zi by Chinese mathematician Sun Tzu and later generalized with a complete 
solution called Da yan shuin a 1247 book by Qin Jiushao, the Shushu Jiuzhang Mathematical 

Treatise in Nine Sections) is a statement about simultaneous congruences 

Statement : 
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Suppose n1, n2, …, nk are positive integers which are pair wise co prime. Then, for any given 
sequence of integers a1,a2, …, ak, there exists an integer x solving the following system of 
simultaneous congruence’s. 

𝑥 ≡ 𝑎1(𝑚𝑜𝑑 𝑛1)  
𝑥 ≡ 𝑎2(𝑚𝑜𝑑 𝑛2)  
   . 
   . 
   . 
𝑥 ≡ 𝑎𝑘(𝑚𝑜𝑑 𝑛𝑘)  
 

, all solutions x of this system are congruent modulo the product, N = n1n2…nk. 

Hence for all , if and only if . 

3.4  Leonhard Euler 

 

 

The interest of Leonhard Euler (1707–1783) in number theory was first spurred in 1729, when a 
friend of his, the amateur Goldbach pointed him towards some of Fermat's work on the subject. 
This has been called the "rebirth" of modern number theory, after Fermat's relative lack of 
success in getting his contemporaries' attention for the subject. 

Euler's work on number theory includes the following 

• Proofs for Fermat's statements. This includes Fermat's little theorem (generalised by 
Euler to non-prime moduli); the fact that if and only if , initial work 
towards a proof that every integer is the sum of four squares (the first complete proof is 
by Lagrange (1770), soon improved by Euler himself), the lack of non-zero integer 
solutions to  (implying the case n=4 of Fermat's last theorem, the case n=3 of 
which Euler also proved by a related method). 
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• Pell's equation, first misnamed by Euler. He wrote on the link between continued 
fractions and Pell's equation. 

• First steps towards analytic number theory. In his work of sums of four squares, 
partitions, pentagonal numbers, and the distribution of prime numbers, Euler pioneered 
the use of what can be seen as analysis (in particular, infinite series) in number theory. 
Since he lived before the development of complex analysis, most of his work is restricted 
to the formal manipulation of power series. He did, however, do some very notable 
(though not fully rigorous) early work on what would later be called the Riemann zeta 
function. 

• Quadratic forms : Following Fermat's lead, Euler did further research on the question of 
which primes can be expressed in the form , some of it prefiguring quadratic 
reciprocity. 

• Diophantine equations. Euler worked on some Diophantine equations of genus 0 and 1. 
In particular, he studied Diophantus's work; he tried to systematise it, but the time was 
not yet ripe for such an endeavour  algebraic geometry was still in its infancy.  

3.4  Diophantine Equation 

In mathematics, a Diophantine equation is an indeterminate polynomial equation that allows 
the variables to take integer values only. Diophantine problems have fewer equations than 
unknown variables and involve finding integers that work correctly for all equations. In more 
technical language, they define an algebraic curve, algebraic surface, or more general object, and 
ask about the lattice points on it. 

The word Diophantine refers to the Hellenistic mathematician of the 3rd century, Diophantus of 
Alexandria, who made a study of such equations and was one of the first mathematicians to 
introduce symbolism into algebra. The mathematical study of Diophantine problems Diophantus 
initiated is now called "Diophantine analysis". A linear Diophantine equation is an equation 
between two sums of monomials of degree zero or one. 

While individual equations present a kind of puzzle and have been considered throughout 
history, the formulation of general theories of Diophantine equations (beyond the theory of 
quadratic forms) was an achievement of the twentieth century. 

 

 
3.4.1 Examples of Diophantine Equations 

In the following Diophantine equations, x, y, and z are the unknowns, the other letters being 
given are constants. 

        ax + by = 1 This is a linear Diophantine equation (see the section "Linear Diophantine 
equations" below). 
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𝑥𝑛 + 𝑦𝑛 = 𝑧𝑛 
For n = 2 there are infinitely many solutions ( x, y ,z): the Pythagorean 
triples. For larger integer values of n, Fermat's Last Theorem states there 
are no positive integer solutions (x, y, z). 

    𝑥2 − 𝑁𝑦2 = ±1 
   (Pell's equation) which is named after the English mathematician John     
Pell. It was studied by Brahmagupta in the 7th century, as well as by Fermat 
in the 17th century. 

 

 The Erdős–Straus conjecture states that, for every positive integer n ≥ 2,                
there exists a solution in x, y, and z, all as positive integers. Although not 

3.5 Quadratic reciprocity law 

The relation 

�𝑝
𝑞
� �𝑞

𝑝
� = (−1)

𝑝−1
2 .  (𝑞−1)/2  

connecting the Legendre symbols  

�𝑝
𝑞
�  and  �𝑞

𝑝
� 

 
for different odd prime numbers and . There are two additions to this quadratic reciprocity 
law, namely: 

�−1
𝑝
� = (−1)(𝑝−1)/2  

And   �2
𝑝
� = (−1)(𝑝2−1)/8 

 

C.F. Gauss gave the first complete proof of the quadratic reciprocity law, which for this reason is 
also called the Gauss reciprocity law. 

It immediately follows from this law that for a given square-free number , the primes for 
which is a quadratic residue modulo ly in certain arithmetic progressions with common 
difference or . The number of these progressions is or , 

where is the Euler function. The quadratic reciprocity law makes it possible to establish 
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factorization laws in quadratic extensions of the field of rational numbers, since 

thfactorization into prime factors in of a prime number that does not divide depends 
on whether or not is reducible modulo . 
 
 
 
4. Algebraic number theory 

 
Algebraic number theory is a major branch of number theory which studies algebraic structures 
related to algebraic integers. This is generally accomplished by considering a ring of algebraic 
integers O in an algebraic number field K/Q, and studying their algebraic properties such as 
factorization, the behaviour of ideals, and field extensions. In this setting, the familiar features of 
the integers such as unique factorization need not hold. The virtue of the primary machinery and 
L-functions is that it allows one to deal with new phenomena and yet partially recover the 
behaviour of the usual integers. 
 
A number α is called an algebraic number if it is a root of the algebraic equaction 
f(x)=𝑎0xn+𝑎1xn−1+….+𝑎𝑛=0 where ai are integers.The number α is called an algebraic number 
of degree n if f(x)is an irreducible polynomial of degree n. if 𝑎0=1 then α is called an algebraic 
integer.In algebraic number theory the algebraic integers or algebraic integral ring are 
studied.Natural numbers are algebraic integers of degree 1. 
 
The non-algebraic numbers are called transcendental numbers.The ideal class group of O is a 
measure of how much unique factorization of elements fails; in particular, the ideal class group is 
trivial if, and only if, O is a unique factorization domain. 
 
4.1 Factoring prime ideals in extensions   
  
Unique factorization can be partially recovered for O in that it has the property of unique 
factorization of ideals into prime ideals (i.e. it is a Dedekind domain). This makes the study of 
the prime ideals in O particularly important. This is another area where things change from Z to 
O: the prime numbers, which generate prime ideals of Z (in fact, every single prime ideal of Z is 
of the form (p):=pZ for some prime number p,) may no longer generate prime ideals in O. For 
example, in the ring of Gaussian integers, the ideal 2Z[i] is no longer a prime ideal; in fact 
            2Z[i]= ((1 + 𝑖)𝑍[𝑖])2. 
On the other hand, the ideal 3Z[i] is a prime ideal. The complete answer for the Gaussian 
integers is obtained by using a theorem of Fermat's, with the result being that for an odd prime 
number p 

pZ[i] is a prime ideal if p=3(mod 4) 
pZ[i] is not a prime ideal if p=1(mod 4). 

Generalizing this simple result to more general rings of integers is a basic problem in algebraic 
number theory. Class field theory accomplishes this goal when K is an abelian extension of 
Q(i.e.a Galois extension with abelian Galois group). 
  

IJSER

http://www.ijser.org/
http://en.wikipedia.org/wiki/Number_theory
http://en.wikipedia.org/wiki/Algebraic_structure
http://en.wikipedia.org/wiki/Algebraic_integer
http://en.wikipedia.org/wiki/Ring_(mathematics)
http://en.wikipedia.org/wiki/Algebraic_number_field
http://en.wikipedia.org/wiki/Factorization
http://en.wikipedia.org/wiki/Ideal_(ring_theory)
http://en.wikipedia.org/wiki/Field_(mathematics)
http://en.wikipedia.org/wiki/Integer
http://en.wikipedia.org/wiki/Unique_factorization
http://en.wikipedia.org/wiki/L-function
http://en.wikipedia.org/wiki/Ideal_class_group
http://en.wikipedia.org/wiki/Trivial_group
http://en.wikipedia.org/wiki/Unique_factorization_domain
http://en.wikipedia.org/wiki/Prime_ideal
http://en.wikipedia.org/wiki/Dedekind_domain
http://en.wikipedia.org/wiki/Principal_ideal
http://en.wikipedia.org/wiki/Fermat%27s_theorem_on_sums_of_two_squares
http://en.wikipedia.org/wiki/Class_field_theory


International Journal of Scientific & Engineering Research, Volume 4, Issue 6, June-2013                                                                    2300 
ISSN 2229-5518 
 

IJSER © 2013 
http://www.ijser.org  

4.2 Primes and places  

An important generalization of the notion of prime ideal in O is obtained by passing from the so-
called ideal-theoretic approach to the so-called valuation-theoretic approach. The relation 
between the two approaches arises as follows. In addition to the usual absolute value function  
|·| : Q → R, there are absolute value functions |·|p : Q → R defined for each prime number p in Z, 
called p-adic absolute values. Ostrowski's theorem states that these are all possible absolute 
value functions on Q (up to equivalence). This suggests that the usual absolute value could be 
considered as another prime. 
          
Aprime of an algebraic number field K (also called a place) is an equivalence class of absolute 
values on K. The primes in K are of two sorts: P-adic absolute values like |·|p, one for each prime 
ideal Pof O, and absolute values like |·| obtained by considering K as a subset of the complex 
numbers in various possible ways and using the absolute value |·| : C → R. A prime of the first 
kind is called a finite prime (or finite place) and one of the second kind is called an infinite prime 
(or infinite place). Thus, the set of primes of Q is generally denoted { 2, 3, 5, 7, ..., ∞ }, and the 
usual absolute value on Q is often denoted |·|∞ in this context. 
 
number of real (respectively, complex) primes is often denoted r1 (respectively, r2). Then, the 
total number of embeddings K → C is r1+2r2 (which, in fact, equals the degree of the extension 
K/Q). 
 
4.3 Local fields 
 
Completing a number field K at a place w gives a complete field. If the valuation is 
Archimedean, one gets R or C, if it is non-Archimedean and lies over a prime p of the rational, 
one gets a finite extension Kw / Qp: a complete, discrete valued field with finite residue field. 
 
This process simplifies the arithmetic of the field and allows the local study of problems. For 
example the Kronecker–Weber theorem can be deduced easily from the analogous local 
statement. The philosophy behind the study of local fields is largely motivated by geometric 
methods. In algebraic geometry, it is common to study varieties locally at a point by localizing to 
a maximal ideal. Global information can then be recovered by gluing together local data. This 
spirit is adopted in algebraic number theory. Given a prime in the ring of algebraic integers in a  
 
 
4.4 Major results 
 
4.4.1 Finiteness of the class group 
 
One of the classical results in algebraic number theory is that the ideal class group of an 
algebraic number field K is finite. The order of the class group is called the class number, and is 
often denoted by the letter . 

 
4.4.2 Dirichlet's unit theorem 
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 Dirichlet's unit theorem provides a description of the structure of the multiplicative group of 
units O× of the ring of integers O. Specifically, it states that O× is isomorphic to G × Zr, where G 
is the finite cyclic group consisting of all the roots of unity in O, and r = r1 + r2 − 1 (where r1 
(respectively, r2) denotes the number of real embeddings (respectively, pairs of conjugate non-
real embeddings) of K). In other words, O× is a finitely generated abelian group of rank 
r1 + r2 − 1 whose torsion consists of the roots of unity in O. 
 

4.5 Algebraic number field 

In mathematics, an algebraic number field (or simply number field) F is a finite (and hence 
algebraic) field extension of the field of rational numbers Q. Thus F is a field that contains Q and 
has finite dimension when considered as a vector space over Q. 

• The study of algebraic number fields, and, more generally, of algebraic extensions of the 
field of rational numbers, is the central topic of algebraic number theory. 

4.5.1 Definition  

The notion of algebraic number field relies on the concept of a field. Fields consists of a set of 
elements together with two operations, namely addition, and multiplication, and some 
distributivity assumptions. A prominent example of a field is the field of rational numbers, 
commonly denoted Q, together with its usual operations of addition etc. 

An algebraic number field (or simply number field) is a finite degree field extension of the field 
of rational numbers. Here its dimension as a vector space over Q is simply called its degree. 

 

 

 

 

Examples 

1) Cyclotomic field 

Q(ζn), ζn = exp (2πi / n) 
is a number field obtained from Q by adjoining a primitive nth root of unity ζn. This field 
contains all complex nth roots of unity and its dimension over Q is equal to φ(n), where φ 
is the Euler totient function. 
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2) The real numbers, R, and the complex numbers, C, are fields which have infinite 
dimension as Q-vector spaces, hence, they are not number fields. This follows from the 
uncountability of R and C as sets, whereas every number field is necessarily countable. 

3) The set Q2 of ordered pairs of rational numbers, with the entrywise addition and 
multiplication is a two-dimensional commutative algebra over Q. However, it is not a 
field, since it has zero divisors. 

4) (1, 0) · (0, 1) = (1 · 0, 0 · 1) = (0, 0). 

4.6 Bases for number fields 

4.6.1 Integral basis 

An integral basis for a number field F of degree n is a set B = {𝑏1, …𝑏𝑛} of n algebraic integers 
in F such that every element of the ring of integers OF of F can be written uniquely as a Z-linear 
combination of elements of B; that is, for any x in OF we have x = m1b1 + … + mnbn,where the 
mi are (ordinary) integers.  

It is then also the case that any element of F can be written uniquely as                                      
m1b1 + … + mnbn,where now the mi are rational numbers. The algebraic integers of F are then 
precisely those elements of F where the mi are all integers. 

Working locally and using tools such as the Frobenius map, it is always possible to explicitly 
compute such a basis, and it is now standard for computer algebra systems to have built-in 
programs to do this. 

4.6.2 Power basis 

Let F be a number field of degree n. Among all possible bases of F (seen as a Q-vector space), 
there are particular ones known as power bases, that are bases of the form 

Bx = {1, x, x2, ..., xn−1} 

for some element x ∈ F. By the primitive element theorem, there exists such an x, called a 
primitive element. If x can be chosen in OF and such that Bx is a basis of OF as a free Z-module, 
then Bx is called a power integral basis, and the field F is called a monogenic field. An example 
of a number field that is not monogenic was first given by Dedekind. His example is the field 
obtained by adjoining a root of the polynomial x3 − x2 − 2x − 8.[3] 

Example 

Consider F = Q(x), where x satisfies x3 − 11x2 + x + 1 = 0. Then an integral basis is [1, x, 
1/2(x2 + 1)], and the corresponding integral trace form. 

The "3" in the upper left hand corner of this matrix is the trace of the matrix of the map defined 
by the first basis element (1) in the regular representation of F on F. This basis element induces 
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the identity map on the 3-dimensional vector space, F. The trace of the matrix of the identity map 
on a 3-dimensional vector space is 3. 

The determinant of this is 1304 = 23 163, the field discriminant; in comparison the root 
discriminant, or discriminant of the polynomial, is 5216 = 25 163. 

 

4.7  Galois theory 

 

 
Évariste Galois (1811–1832) 
 
In mathematics, more specifically in abstract algebra, Galois theory, named after Évariste Galois, 
provides a connection between field theory and group theory. Using Galois theory, certain 
problems in field theory can be reduced to group theory, which is in some sense simpler and 
better understood. 

Originally Galois used permutation groups to describe how the various roots of a given 
polynomial equation are related to each other. The modern approach to Galois theory, developed 
by Richard Dedekind, Leopold Kronecker and Emil Artin, among others, involves studying 
automorphisms of field extensions. 

 Galois theory originated in the study of symmetric functions  the coefficients of a monic 
polynomial are (up to sign) the elementary symmetric polynomials in the roots. For instance, (x – 
a)(x – b) = x2 – (a + b)x + a b, where 1, a + b and a b are the elementary polynomials of degree 
0, 1 and 2 in two variables. 

This was first formalized by the 16th century French mathematician François Viète, in Viète's 
formulas, for the case of positive real roots. In the opinion of the 18th century British 
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mathematician Charles Hutton,[2] the expression of coefficients of a polynomial in terms of the 
roots (not only for positive roots) was first understood by the 17th century French mathematician 
Albert Girard; Hutton writes. 

The first person who understood  the general doctrine of the formation of the coefficients of the 
powers from the sum of the roots and their products. He was the first who discovered the rules 
for summing the powers of the roots of any equation. 

First example 

4.7.1 A quadratic equation 

Consider the quadratic equation 

                 𝑥2 - 4x + 1 = 0. 

By using the quadratic formula, we find that the two roots are 

      A = 2 + √3 
      B = 2 - √3. 

Examples of algebraic equations satisfied by A and B include 

       A + B = 4, 

and 

AB = 1. 
 

Obviously, in either of these equations, if we exchange A and B, we obtain another true 
statement. For example, the equation A + B = 4 becomes simply B + A = 4. Furthermore, it is 
true, but far less obvious, that this holds for every possible algebraic equation with rational 
coefficients relating the A and B values above (in any such equation, swapping A and B yields 
another true equation). To prove this requires the theory of symmetric polynomials. 

(One might object that A and B are related by the algebraic equation A – B - 2√3 = 0, which 
does not remain true when A and B are exchanged. However, this equation does not concern us, 
because it does not have rational coefficients; in particular, - 2√3 is not rational).  

We conclude that the Galois group of the polynomial x2 − 4x + 1 consists of two permutations: 
the identity permutation which leaves A and B untouched, and the transposition permutation 
which exchanges A and B. It is a cyclic group of order two, and therefore isomorphic to Z/2Z. 

A similar discussion applies to any quadratic polynomial ax2 + bx + c, where a, b and c are 
rational numbers. 
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• If the polynomial has only one root, for example x2 − 4x + 4 = (x−2)2, then the Galois 
group is trivial; that is, it contains only the identity permutation. 

• If it has two distinct rational roots, for example x2 − 3x + 2 = (x−2)(x−1), the Galois 
group is again trivial. 

•  

Second example 

Consider the polynomial 

𝑥4 − 10𝑥2+1, 
 
which can also be written as  

(𝑥2−5)2 − 24.  

We wish to describe the Galois group of this polynomial, again over the field of rational 
numbers. The polynomial has four roots. 

A =√2 + √3  

B =√2 − √3 

C =−√2 + √3 

D =−√2 − √3. 

There are 24 possible ways to permute these four roots, but not all of these permutations are 
members of the Galois group.  

The members of the Galois group must preserve any algebraic equation with rational coefficients 
involving A, B, C and D. One such equation is 

A + D = 0. 
   

However, since 
 

A +C = 2√3 ≠ 0, 
 

the permutation 
 

(A, B, C, D) → (A, B, D, C) 

is not permitted (because it transforms the valid equation A + D = 0 into the invalid equation 
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    A + C = 0). 

Another equation that the roots satisfy is 

(𝐴 + 𝐵)2 = 8 

This will exclude further permutations, such as (A, B, C, D) → (A, C, B, D). 

Continuing in this way, we find that the only permutations (satisfying both equations 
simultaneously) remaining are 

(A, B, C, D) → (A, B, C, D) 
(A, B, C, D) → (C, D, A, B) 
(A, B, C, D) → (B, A, D, C) 
(A, B, C, D) → (D, C, B, A), 
and the Galois group is isomorphic to the Klein four-group. 

4.7.2 Solvable groups and solution by radicals 

The notion of a solvable group in group theory allows one to determine whether a polynomial is 
solvable in radicals, depending on whether its Galois group has the property of solvability. In 
essence, each field extension L/K corresponds to a factor group in a composition series of the 
Galois group. If a factor group in the composition series is cyclic of order n, and if in the 
corresponding field extension L/K the field K already contains a primitive n-th root of unity, then 
it is a radical extension and the elements of L can then be expressed using the nth root of some 
element of K. 

If all the factor groups in its composition series are cyclic, the Galois group is called solvable, 
and all of the elements of the corresponding field can be found by repeatedly taking roots, 
products, and sums of elements from the base field (usually Q). 

One of the great triumphs of Galois Theory was the proof that for every n > 4, there exist 
polynomials of degree n which are not solvable by radicals—the Abel–Ruffini theorem. This is 
due to the fact that for n > 4 the symmetric group Sn contains a simple, non-cyclic, normal 
subgroup, namely An. 
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                                            Fig  4.7.2 
 
For the polynomial , the lone real root =1.1673... is algebraic, but not 
expressible in terms of radicals. The other four roots are complex numbers. 

 

4.7.3 A non-solvable quintic example 

Van der Waerden cites the polynomial f(x)= 𝑥5 − 𝑥 − 1.By the rational root theorem this has no 
rational zeros. Neither does it have linear factors modulo 2 or 3. 

The Galois group of f(x) modulo 2 is cyclic of order 6, because f(x) factors modulo 2 into 
𝑥2 + 𝑥 + 1 and a cubic polynomial.f(x) has no linear or quadratic factor modulo 3, and hence is 
irreducible modulo 3. Thus its Galois group modulo 3 contains an element of order 5. It is known 
that a Galois group modulo a prime is isomorphic to a subgroup of the Galois group over the 
rationals. A permutation group on 5 objects with elements of orders 6 and 5 must be the 
symmetric group 𝑆5, which is therefore the Galois group of f(x). This is one of the simplest 
examples of a non-solvable quintic polynomial. Serge Lang has said that Emil Artin found this 
example. 

 

 

.4.8  p-adic number 
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                Fig 4.8 
 
 
 
The 3-adic integers, with selected corresponding haracters on their Pontryagin dual group In 
mathematics the p-adic number system for any prime number p extends the ordinary arithmetic 
of the rational numbers in a way different from the extension of the rational number system to 
the real and complex number systems. The extension is achieved by an alternative interpretation 
of the concept of "closeness" or absolute value. 
 
 In particular, p-adic numbers have the interesting property that they are said to be close when 
their difference is divisible by a high power of p – the higher the power the closer they are. This 
property enables p-adic numbers to encode congruence information in a way that turns out to 
have powerful applications in number theory including, for example, in the famous proof of 
Fermat's Last Theorem by Andrew Wiles. p-adic numbers were first described by Kurt Hensel in 
1897, though with hindsight some of Kummer's earlier work can be interpreted as implicitly 
using p-adic numbers. e p-adic numbers were motivated primarily by an attempt to bring the 
ideas and techniques of power series methods into number theory. Their influence now extends 
far beyond this. For example, the field of p-adic analysis essentially provides an alternative form 
of calculus. 

More formally, for a given prime p, the field Qp of p-adic numbers is a completion of the rational 
numbers. The field Qp is also given a topology derived from a metric, which is itself derived 
from an alternative valuation on the rational numbers. This metric space is complete in the sense 
that every Cauchy sequence converges to a point in Qp. This is what allows the development of 
calculus on Qp, and it is the interaction of this analytic and algebraic structure which gives the p-
adic number systems their power and utility. 

The p in p-adic is a variable and may be replaced with a constant (yielding, for instance, "the 2-
adic numbers") or another placeholder variable (for expressions such as "the ℓ-adic numbers"). 

 
p-adic expansions 

4.8.1 P-adic expansions 

When dealing with ordinary real numbers, if we take p to be a fixed prime number, then any 
positive integer can be written as a base p expansion in the form 

 

where the ai are integers in {0,…p-1}. For example, the binary expansion of 35 is 1·25 + 0·24 + 
0·23 + 0·22 + 1·21 + 1·20, often written in the shorthand notation 1000112. 
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The familiar approach to extending this description to the larger domain of the rationals (and, 
ultimately, to the real’s) is to use sums of the form: 

 

A definite meaning is given to these sums based on Cauchy sequences, using the absolute value 
as metric. Thus, for example, 1/3 can be expressed in base 5 as the limit of the sequence 
0.1313131313...5. In this formulation, the integers are precisely those numbers for which ai = 0 
for all i < 0. 

With p-adic numbers, on the other hand, we choose to extend the base p expansions in a different 
way. Because in the p-adic world high positive powers of p are small and high negative powers 
are large, we consider infinite sums of the form: 

 

where k is some (not necessarily positive) integer. With this approach we obtain the p-adic 
expansions of the p-adic numbers. Those p-adic numbers for which ai = 0 for all i < 0 are also 
called the p-adic integers. 

 

 
 
            Fig 4.8.1 
 
Similar picture for p = 3 shows 3 closed balls of radius 1/3, where each consists of 3 balls of 1/9 

The real numbers can be defined as equivalence classes of Cauchy sequences of rational 
numbers; this allows us to, for example, write 1 as 1.000… = 0.999… . The definition of a 
Cauchy sequence relies on the metric chosen, though, so if we choose a different one, we can 

zzz  
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construct numbers other than the real numbers. The usual metric which yields the real numbers is 
called the Euclidean metric. 

4.9  Ideal class group  
In mathematics, the extent to which unique factorization fails in the ring of integers of an 
algebraic number field (or more generally any Dedekind domain) can be described by a certain 
group known as an ideal class group (or class group). If this group is finite (as it is in the case 
of the ring of integers of a number field), then the order of the group is called the class number. 
The multiplicative theory of a Dedekind domain is intimately tied to the structure of its class 
group. For example, the class group of a Dedekind domain is trivial if and only if the ring is a 
unique factorization domain. 
  

 

 

 

 

5.Analyctic Number Theory                    

 Analytic number theory is a branch of number theory that uses methods from mathematical 
analysis to solve problems about the integers .In Analytic number theory we study the analytic 
methods i.e,the mathematical analysis and the method of the theory of functions .First of all 
Euler used the analytic methods to study the number theory ,Dirichlet and Riemann developed 
this branch. 

Analytic number theory can be split up into two major parts, divided more by the type of 
problems they attempt to solve than fundamental differences in technique. Multiplicative number 
theory deals with the distribution of the prime numbers, such as estimating the number of primes 
in an interval, and includes the prime number theorem and Dirichlet's theorem on primes in 
arithmetic progressions. Additive number theory is concerned with the additive structure of the 
integers, such as Goldbach's conjecture that every even number greater than 2 is the sum of two 
primes. One of the main results in additive number theory is the solution to Warning’s problem. 

Developments within analytic number theory are often refinements of earlier techniques, which 
reduce the error terms and widen their applicability. For example, the circle method of Hardy 
and Little wood was conceived as applying to power series near the unit circle in the complex 
plane, it is now thought of in terms of finite exponential sums (that is, on the unit circle, but with 
the power series truncated. 

5.1 Problems and results in analytic number theory 
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      The great theorems and results within analytic number theory tend not to be exact structural 
results about the integers, for which algebraic and geometrical tools are more appropriate. 
Instead, they give approximate bounds and estimates for various number theoretical functions, as 
the following examples illustrate. 

5.1 .1Multiplicative number theory 

             Euclid showed that there are an infinite number of primes but it is very difficult to find 
an efficient method for determining whether or not a number is prime, especially a large number. 
A related but easier problem is to determine the asymptotic distribution of the prime numbers; 
that is, a rough description of how many primes are smaller than a given number. Gauss, 
amongst others, after computing a large list of primes, conjectured that the number of primes less 
than or equal to a large number N is close to the value of the integral 

 

In 1859 Bernhard Riemann used complex analysis and a special meromorphic function now 
known as the Riemann zeta function to derive an analytic expression for the number of primes 
less than or equal to a real number x. Remarkably, the main term in Riemann's formula was 
exactly the above integral, lending substantial weight to Gauss's conjecture. Riemann found that 
the error terms in this expression, and hence the manner in which the primes are distributed, are 
closely related to the complex zeros of the zeta function. Using Riemann's ideas and by getting 
more information on the zeros of the zeta function, Jacques Hadamard and Charles Jean de la 
Vallée-Poussin managed to complete the proof of Gauss's conjecture. In particular, they proved 
that if 

 

then 

 

This remarkable result is what is now known as the Prime Number Theorem. It is a central result 
in analytic number theory. More generally, the same question can be asked about the number of 
primes in any arithmetic progression a + nq for any integer n. In one of the first applications of 
analytic techniques to number theory, Dirichlet proved that any arithmetic progression with a 
and q co prime contains infinitely many primes.               

 

5.1.2  Additive number theory: 
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                 One of the most important problems in additive number theory is Waring's problem, 
which asks whether it is possible, for any k ≥ 2, to write any positive integer as the sum of a 
bounded number of kth powers, 

 

The case for squares, k = 2, was answered by Lagrange in 1770, who proved that every positive 
integer is the sum of at most four squares. The general case was proved by Hilbert in 1909, using 
algebraic techniques which gave no explicit bounds. An important breakthrough was the 
application of analytic tools to the problem by Hardy and Little wood. These techniques are 
known as the circle method, and give explicit upper bounds for the function G(k), the smallest 
number of kth powers needed, such as Vinogradov's bound G(k)≤k(3logk+11). 

 

 

 

 

5.2 Methods of analytic number theory 

5.2.1 Dirichlet series 

One of the most useful tools in multiplicative number theory are Dirichlet series, which are 
functions of a complex variable defined by an infinite series 

 

Depending on the choice of coefficients , this series may converge everywhere, nowhere, or 
on some half plane. In many cases, even where the series does not converge everywhere, the 
holomorphic function it defines may be analytically continued to a meromorphic function on the 
entire complex plane. The utility of functions like this in multiplicative problems can be seen in 
the formal identity 

 

hence the coefficients of the product of two Dirichlet series are the multiplicative convolutions of 
the original coefficients. Furthermore, techniques such as partial summation and Tauberian 
theorems can be used to get information about the coefficients from analytic information about 
the Dirichlet series. Thus a common method for estimating a multiplicative function is to express 
it as a Dirichlet series (or a product of simpler Dirichlet series using convolution identities), 
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examine this series as a complex function and then convert this analytic information back into 
information about the original function. 

 

5.2.2  Riemann Zeta function 

Bernhard Riemann was born in 1826 and died in 1866,he was 39 years old.His theories 
contributed to Riemannian geometry,algebraic geometry, complex manifolds,and mathematical 
physics.He is best known for his work in analysis,for defining the Riemann integral using 
Riemann sums.In the  field of number theory,Riemann only wrote one paper ,establishing the 
importance of the Riemann Zeta function and its relation to prime numbers.   

 

        Fig 5.2.2  

     Riemann zeta function ζ(s) in the complex plane. The color of a point s encodes the value of 
ζ(s): colors close to black denote values close to zero, while hue encodes the value's argument. 
The white spot at s = 1 is the pole of the zeta function; the black spots on the negative real axis 
and on the critical line Re(s) = 1/2 are its zeros. Values with arguments close to zero including 
positive reals on the real half-line are presented in red. 
  The Riemann zeta function or Euler–Riemann zeta function, ζ(s), is a function of a complex 

variable s that analytically continues the sum of the infinite series   which converges 
when the real part of s is greater than 1. More general representations of ζ(s) for all s are given 
below. The Riemann zeta function plays a pivotal role in analytic number theory and has 
applications in physics, probability theory, and applied statistics. 
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This function, as a function of a real argument, was introduced and studied by Leonhard Euler in 
the first half of the eighteenth century without using complex analysis, which was not available 
at that time. Bernhard Riemann in his memoir "On the Number of Primes Less Than a Given 
Magnitude" published in 1859 extended the Euler definition to a complex variable, proved its 
meromorphic continuation and functional equation and established a relation between its zeros 
and the distribution of prime numbers.  

                           The values of the Riemann zeta function at even positive integers were 
computed by Euler. The first of them, ζ(2), provides a solution to the Basel problem. In 1979 
Apéry proved the irrationality of ζ(3). The values at negative integer points, also found by Euler, 
are rational numbers and play an important role in the theory of modular forms. Many 
generalizations of the Riemann zeta function, such as Dirichlet series, Dirichlet L-functions and 
L-functions, are known. 

             The Riemann zeta function ζ(s) is a function of a complex variable s = σ + it (here, s, σ 
and t are traditional notations associated with the study of the ζ-function). The following infinite 
series converges for all complex numbers s with real part greater than 1, and defines ζ(s) in this 
case: 

 

The Riemann zeta function is defined as the analytic continuation of the function defined for σ > 
1 by the sum of the preceding series. 

Leonhard Euler considered the above series in 1740 for positive integer values of s, and later 
Chebyshev extended the definition to real s > 1.  

The above series is a prototypical Dirichlet series that converges absolutely to an analytic 
function for s such that σ > 1 and diverges for all other values of s. Riemann showed that the 
function defined by the series on the half-plane of convergence can be continued analytically to 
all complex values s ≠ 1. For s = 1 the series is the harmonic series which diverges to +∞, and 

 

Thus the Riemann zeta function is a meromorphic function on the whole complex s-plane, which 
is holomorphic everywhere except for a simple pole at s = 1 with residue 1. 
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5.2.3 Specific values 

 
                         fig 5.2.3 

 
Riemann zeta function for real s > 1 

For any positive even number 2n, 

 

where B2n is a Bernoulli number; for negative integers, one has 

 

for n ≥ 1, so in particular ζ vanishes at the negative even integers because Bm = 0 for all odd m 
other than 1. No such simple expression is known for odd positive integers. 

              The values of the zeta function obtained from integral arguments are called zeta 
constants. The following are the most commonly used values of the Riemann zeta function. 
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  (sequence A059750 in OEIS)  

this is employed in calculating of kinetic boundary layer problems of linear kinetic 
equations.[3] 

 
if we approach from numbers larger 1. Then this is the harmonic series. But its principal 
value 
 
exists which is the Euler-Mascheroni constant . 

   
this is employed in calculating the critical temperature for a Bose–Einstein condensate in 
a box with periodic boundary conditions, and for spin wave physics in magnetic systems. 

   
the demonstration of this equality is known as the Basel problem. The reciprocal of this 
sum answers the question: What is the probability that two numbers selected at random 
are relatively prime?[4] 

   
this is called Apéry's constant. 

   
This appears when integrating Planck's law to derive the Stefan–Boltzmann law in 
physics. 

         

 5.2.4 Euler product formula 

    The connection between the zeta function and prime numbers was discovered by Euler, who 
proved the identity 

 

where, by definition, the left hand side is ζ(s) and the infinite product on the right hand side 
extends over all prime numbers p (such expressions are called Euler products): 
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Both sides of the Euler product formula converge for Re(s) > 1. The proof of Euler's identity 
uses only the formula for the geometric series and the fundamental theorem of arithmetic. Since 
the harmonic series, obtained when s = 1, diverges, Euler's formula (which becomes 

) implies that there are infinitely many primes.[5] 

The Euler product formula can be used to calculate the asymptotic probability that s randomly 
selected integers are set-wise co prime. Intuitively, the probability that any single number is 
divisible by a prime (or any integer), p is 1/p. Hence the probability that s numbers are all 
divisible by this prime is 1/ps, and the probability that at least one of them is not is 1 − 1/ps. Now, 
for distinct primes, these divisibility events are mutually independent because the candidate 
divisors are co prime (a number is divisible by co prime divisors n and m if and only if it is 
divisible by nm, an event which occurs with probability 1/(nm).) Thus the asymptotic probability 
that s numbers are co prime is given by a product over all primes, 

 
 

 
Apart from the trivial zeros, the Riemann zeta function doesn't have any zero on the right of σ=1 
and on the left of σ=0 (neither can the zeros lie too close to those lines). Furthermore, the non-
trivial zeros are symmetric about the real axis and the line σ = 1/2 and, according to the Riemann 
Hypothesis, they all lie on the line σ = ½ 
 

Mellin transform 

     The Mellin transform of a function ƒ(x) is defined as 

 

in the region where the integral is defined. There are various expressions for the zeta-function as 
a Mellin transform. If the real part of s is greater than one, we have 

 

where Γ denotes the Gamma function. By modifying the contour Riemann showed that 

 

for all s, where the contour C starts and ends at +∞ and circles the origin once. 
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We can also find expressions which relate to prime numbers and the prime number theorem. If 
π(x) is the prime-counting function, then 

 

for values with Re(s) > 1. 

A similar Mellin transform involves the Riemann prime-counting function J(x), which counts 
prime powers pn with a weight of 1/n, so that 

 

Now we have 

 

These expressions can be used to prove the prime number theorem by means of the inverse 
Mellin transform. Riemann's prime-counting function is easier to work with, and π(x) can be 
recovered from it by Möbius inversion. 

 
 Rising factorial 
 
        Another series development using the rising factorial valid for the entire complex plane is 

 

This can be used recursively to extend the Dirichlet series definition to all complex numbers. 

The Riemann zeta function also appears in a form similar to the Mellin transform in an integral 
over the Gauss–Kuzmin–Wirsing operator acting on xs−1; that context gives rise to a series 
expansion in terms of the falling factorial. 

5.3 Proof of the Euler product formula for the Riemann zeta function 

In number theory ,an Euler product is an expansion of a Dirichlet series into an infinite product 
indexed by prime numbers.The  name arose from the case of the Riemann Zeta function , Where 
such a product representation was proved by Leonhard Euler. 
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The Euler Product formula 

  

The Euler product formula for the Riemann zeta function reads 

         

where the left hand side equals the Riemann zeta function: 

 

and the product on the right hand side extends over all prime numbers p: 
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 Proof of the Euler product formula 
 
        The method of Eratosthenes used to sieve out prime numbers is employed in this proof. 

This sketch of a proof only makes use of simple algebra commonly taught in high school. This 
was originally the method by which Euler discovered the formula. There is a certain sieving 
property that we can use to our advantage: 

 

 

Subtracting the second from the first we remove all elements that have a factor of 2: 

 

Repeating for the next term: 

 

Subtracting again we get: 

 

where all elements having a factor of 3 or 2 (or both) are removed. 

It can be seen that the right side is being sieved. Repeating infinitely we get: 

 

Dividing both sides by everything but the ζ(s) we obtain: 

IJSER

http://www.ijser.org/
http://en.wikipedia.org/wiki/Eratosthenes
http://en.wikipedia.org/wiki/Mathematical_proof
http://en.wikipedia.org/wiki/Leonhard_Euler
http://en.wikipedia.org/wiki/Sieve_of_Eratosthenes


International Journal of Scientific & Engineering Research, Volume 4, Issue 6, June-2013                                                                    2321 
ISSN 2229-5518 
 

IJSER © 2013 
http://www.ijser.org  

 

This can be written more concisely as an infinite product over all primes p: 

 

To make this proof rigorous, we need only observe that when , the sieved right-hand 
side approaches 1, which follows immediately from the convergence of the Dirichlet series for 
ζ(z). 

 The case  

      An interesting result can be found for ζ(1) 

 

 

which can also be written as, 

 

which is, 

 

as,  

thus, 

 

We know that the left-hand side of the equation diverges to infinity, therefore the numerator on 
the right-hand side (the primorial) must also be infinite for divergence. This proves that there are 
infinitely many prime numbers. 
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6. Computational Number Theory 
 

                     "Computational number theory" studies the effectiveness of algorithms for 
computation of number-theoretic quantities. Considerable effort has been expended in primality-
testing and integer factorization routines, for example -- procedures which are in principle trivial, 
but whose naive solution is untenable in large cases. This field also considers integer quantities 
(e.g the class number) whose usual definition is non constructive, and real quantities (e.g. the 
values of zeta functions) which must be computed with very high precision; thus this overlaps 
both computer algebra and numerical analysis.  

  computation has been a driving force in the development of mathematics. To help measure the 
sizes of their fields, the Egyptians invented geometry  To help predict the positions of the 
planets, the Greeks invented trigonometry. Algebra was invented to deal with equations that 
arose when mathematics was used to model the world. The list goes on, and it is not just 
historical. If anything, computation is more important than ever. Much of modern technology 
rests on algorithms that compute quickly: examples range from the wavelets that allow CAT 
scans, to the numerical extrapolation of extremely complex systems in order to predict weather 
and global warming, and to the combinatorial algorithms that lie behind Internet search engines . 
 
                                                    In pure mathematics we also compute, and many of our great 
theorems and conjectures are, at root,  motivated by computational experience. It is said that 
Gauss , who was an excellent computationalist, needed only to work out a concrete example or 
two to discover, and then prove, the underlying theorem. While some branches of pure 
mathematics have perhaps lost contact with their computational origins, the advent  of cheap 
computational power and convenient mathematical software has helped to reverse this trend. 
 
                                      One mathematical area where the new emphasis on computation can be 
clearly felt is number theory, and that is the main topic of this article. A prescient call to arms 
was issued by Gauss as long ago as 1801:  The problem of distinguishing prime numbers from 
composite numbers, and of resolving the latter into their prime factors, is known to be one of the 
most  important and useful in arithmetic. 
 
 It has engaged the  industry and wisdom of ancient and modern geometers to such an extent that 
it would be superfluous to  discuss the problem at length. Nevertheless we must  confess that all 
methods that have been proposed  thus far are either restricted to very special cases or are so 
laborious and difficult that even for numbers  that do not exceed the limits of tables constructed 
by  estimable men, they try the patience of even the practiced calculator. And these methods do 
not apply at  all to larger numbers. . . Further, the dignity of the science itself seems to require 
that every possible means  be explored for  solution of a problem so elegant  and so celebrated. 
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Factorization into primes is a very basic issue in number theory, but essentially all branches of 
number theory have a computational component. And in some areas there is such a robust 
computational literature  that we discuss the algorithms involved as mathematically interesting 
objects in their own right. 
  

6.1 Integer factorization 

In number theory, integer factorization or prime factorization is the decomposition of a 
composite number into smaller non-trivial divisors, which when multiplied together equal the 
original integer. 

When the numbers are very large, no efficient, non-quantum integer factorization algorithm is 
known; an effort concluded in 2009 by several researchers factored a 232-digit number (RSA-
768), utilizing hundreds of machines over a span of 2 years The presumed difficulty of this 
problem is at the heart of widely used algorithms in cryptography such as RSA. Many areas of 
mathematics and computer science have been brought to bear on the problem, including elliptic 
curves, algebraic number theory, and quantum computing. 

Not all numbers of a given length are equally hard to factor. The hardest instances of these 
problems (for currently known techniques) are semi primes, the product of two prime numbers. 
When they are both large, for instance more than 2000 bits long, randomly chosen, and about the 
same size (but not too close, e.g. to avoid efficient factorization by Fermat's factorization 
method), even the fastest prime factorization algorithms on the fastest computers can take 
enough time to make the search impractical; that is, as the number of digits of the primes being 
factored increases, the number of operations required to perform the factorization on any 
computer increases drastically. 

• Many cryptographic protocols are based on the difficulty of factoring large composite 
integers or a related problem, the RSA problem. An algorithm that efficiently factors an 
arbitrary integer would render RSA-based public-key cryptography insecure. 

6.1.1 Prime decomposition 

  

 
 
             Fig  6.1.1 
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This image demonstrates the prime decomposition of 864. A shorthand way of writing the 
resulting prime factors is  

By the fundamental theorem of arithmetic, every positive integer has a unique prime 
factorization. (A special case for 1 is not needed using an appropriate notion of the empty 
product.) However, the fundamental theorem of arithmetic gives no insight into how to obtain an 
integer's prime factorization; it only guarantees its existence. 

Given a general algorithm for integer factorization, one can factor any integer down to its 
constituent prime factors by repeated application of this algorithm. However, this is not the case 
with a special-purpose factorization algorithm, since it may not apply to the smaller factors that 
occur during decomposition, or may execute very slowly on these values. For example, if N is 
the number (2521 − 1) × (2607 − 1), then trial division will quickly factor 10N as 2 × 5 × N, but 
will not quickly factor N into its factors. 

Current state of the art 

The most difficult integers to factor in practice using existing algorithms are those that are 
products of two large primes of similar size, and for this reason these are the integers used in 
cryptographic applications. The largest such semi prime yet factored was RSA-768, a 768-bit 
number with 232 decimal digits, on December 12, 2009 This factorization was a collaboration of 
several research institutions, spanning two years and taking the equivalent of almost 2000 years 
of computing on a single-core 2.2 GHz AMD Opt eron. Like all recent factorization records, this 
factorization was completed with a highly optimized implementation of the general number field 
sieve run on hundreds of machines. 

Difficulty and complexity 

If a large, b-bit number is the product of two primes that are roughly the same size, then no 
algorithm has been published that can factor in polynomial time, i.e., that can factor it in time 
O(bk) for some constant k. There are published algorithms that are faster than O((1+ε)b) for all 
positive ε, i.e., sub-exponential. 

The best published asymptotic running time is for the general number field sieve (GNFS) 
algorithm, which, for a b-bit number n, is: 

 

For an ordinary computer, GNFS is the best published algorithm for large n (more than about 
100 digits). For a quantum computer, however, Peter Shor discovered an algorithm in 1994 that 
solves it in polynomial time. This will have significant implications for cryptography if a large 
quantum computer is ever built. Shor's algorithm takes only O(b3) time and O(b) space on b-bit 
number inputs. In 2001, the first seven-qubit quantum computer became the first to run Shor's 
algorithm. It factored the number 15. 
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When discussing what complexity classes the integer factorization problem falls into, it's 
necessary to distinguish two slightly different versions of the problem: 

• The function problem version: given an integer N, find an integer d with 1 < d < N that 
divides N (or conclude that N is prime). This problem is trivially in FNP and it's not 
known whether it lies in FP or not. This is the version solved by most practical 
implementations. 

• The decision problem version: given an integer N and an integer M with 1 ≤ M ≤ N, does 
N have a factor d with 1 < d < M? This version is useful because most well-studied 
complexity classes are defined as classes of decision problems, not function problems. 
This is a natural decision version of the problem, analogous to those frequently used for 
optimization problems, because it can be combined with binary search to solve the 
function problem version in a logarithmic number of queries. 

It is not known exactly which complexity classes contain the decision version of the integer 
factorization problem. It is known to be in both NP and co-NP. This is because both YES and 
NO answers can be verified in polynomial time given the prime factors (we can verify their 
primality using the AKS primality test, and that their product is N by multiplication).  

The fundamental theorem of arithmetic guarantees that there is only one possible string that will 
be accepted (providing the factors are required to be listed in order), which shows that the 
problem is in both UP and co-UP. It is known to be in BQP because of Shor's algorithm. It is 
suspected to be outside of all three of the complexity classes P, NP-complete, and co-NP-
complete. It is therefore a candidate for the NP-intermediate complexity class. If it could be 
proved that it is in either NP-Complete or co-NP-Complete, that would imply NP = co-NP. That 
would be a very surprising result, and therefore integer factorization is widely suspected to be 
outside both of those classes. Many people have tried to find classical polynomial-time 
algorithms for it and failed, and therefore it is widely suspected to be outside P. 

In contrast, the decision problem "is N a composite number?" (or equivalently: "is N a prime 
number?") appears to be much easier than the problem of actually finding the factors of N. 
Specifically, the former can be solved in polynomial time (in the number n of digits of N) with 
the AKS primality test. In addition, there are a number of probabilistic algorithms that can test 
primality very quickly in practice if one is willing to accept the vanishingly small possibility of 
error. The ease of primality testing is a crucial part of the RSA algorithm, as it is necessary to 
find large prime numbers to start with. 

 

 

 

 

7. Geometric Number Theory 
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"Geometric number theory" incorporates all forms of geometry. The classical Geometry of 
Numbers due to Minkowski begins with statements of Euclidean geometry on lattices (A convex 
body contains a lattice point if its volume is large enough); by extension this becomes the study 
of quadratic forms on lattices, and thus a method of investigating regular packings of spheres, 
say. But one may also investigate algebraic geometry with number theory, that is, one may study 
varieties such as algebraic curves and surfaces and ask if they have rational or integral solutions 
(points with rational or integral coordinates). This topic includes the highly successful theory of 
elliptic curves (where the rational points form a finitely generated group) and finiteness results 
(e.g. Siegel's, Thue's, or Faltings's) which apply to integral or higher-genus situations.  

7.1 Geometry of numbers 

In number theory, the geometry of numbers studies convex bodies and integer 
vectors in n-dimensional space. The geometry of numbers was initiated by Hermann 
Minkowski (1910). 

• The geometry of numbers has a close relationship with other fields of mathematics, 
especially functional analysis and Diophantine approximation, the problem of finding 
rational numbers that approximate an irrational quantity. 

7.1.1 Minkowski’s results 

Suppose that Γ is a lattice in n-dimensional Euclidean space Rn and K is a convex centrally 
symmetric body. Minkowski's theorem, sometimes called Minkowski's first theorem, states that 
if then K contains a nonzero vector in Γ. 

The successive minimum λk is defined to be the inf of the numbers λ such that λK contains k 
linearly independent vectors of Γ. Minkowski's theorem on successive minima, sometimes called 
Minkowski's second theorem, is a strengthening of his first theorem and states that[] 

 

 

Later  research in the geometry of numbers 

In 1930-1960 research on the geometry of numbers was conducted by many number theorists 
(including Louis Mordell, Harold Davenport and Carl Ludwig Siegel). In recent years, Lenstra, 
Brion, and Barvinok have developed combinatorial theories that enumerate the lattice points in 
some convex bodies.  

Influence on functional analysis 
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Minkowski's geometry of numbers had a profound influence on functional analysis. Minkowski 
proved that symmetric convex bodies induce norms in finite-dimensional vector spaces. 
Minkowski's theorem was generalized to topological vector spaces by Kolmogorov, whose 
theorem states that the symmetric convex sets that are closed and bounded generate the topology 
of a Banach space.Researchers continue to study generalizations to star-shaped sets and other 
non-convex sets. 

 

7.2 Three geometric theorems  

 

7.2.1 Morley’s miracle 

In 1899 Frank Morley, a professor at Haverford, discovered the following remarkable theorem. 

The three points of intersection of the adjacent trisectors of the angles of any triangle form an 
equilateral triangle. 

.. 

                    Fig 7.2.1 

 

 

 

 

7.2.2 The Pascal line 

When he was sixteen years old Blaise Pascal discovered the following theorem. 
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If any hexagon (convex or not) is inscribed in a conic section and opposite sides are extended 
until they meet, then the three points of intersection will be collinear. 

The line is now called the Pascal line. 

 

                      Fig 7.2.2 

I’ve made a Geogebra applet illustrating the Pascal line in the case where the conic section is a 
circle. When you try the applet, do not forget to try the non convex configurations! 

In fact, given a hexagon, we could keep the vertices fixed and permute their order to obtain other 
hexagons. A little combinatorics shows that there are 60 different hexagons for each collection of 
six points. Each configuration has its own Pascal line. There is a lot known about these Pascal 
lines and their intersections. 

7.2.3 Steiner-Lehmus theorem 

This last theorem is remarkable, not for what it says, but because of the difficulty of the proof. In 
1840 C. L. Lehmus asked for a purely geometric proof of the following elementary-looking 
theorem. 

Any triangle with two angle bisectors of equal lengths is isosceles. 

For example, suppose we have the triangle shown below with angle bisectors and 
of the same length. Prove that and are the same length. 
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                  Fig 7.2.3 

Steiner gave the first purely geometric proof. Now there are many geometric (and trigonometric) 
proofs, but they are all tricky and are all proofs by contradiction. In 1852 Sylvester asked 
whether there exists a direct proof of this theorem. It appears that this is still an open problem. 
(From what I understand, there have been direct proofs,  
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8. Applications 

• 8.1 Chinese Remainder Theorem 

• In the RSA algorithm calculations are made modulo n, where n is a product of two large 
prime numbers p and q. 1,024-, 2,048- or 4,096-bit integers n are commonly used, 
making calculations in very time-consuming. By the Chinese remainder theorem, 
however, these calculations can be done in the isomorphic ring instead. 
Since p and q are normally of about the same size, that is about , calculations in the 
latter representation are much faster. Note that RSA algorithm implementations using this 
isomorphism are more susceptible to fault injection attacks. 

• The Chinese remainder theorem may also be used to construct an elegant Gödel 
numbering for sequences, which is needed to prove Gödel's incompleteness theorems. 

• The following example shows a connection with the classic polynomial interpolation 
theory. Let r complex points ("interpolation nodes") be given, together with the 
complex data , for all and . The general Hermite interpolation 
problem asks for a polynomial taking the prescribed derivatives in each node 

: 

 
Introducing the polynomials  

 
the problem may be equivalently reformulated as a system of simultaneous 
congruences:  

 
By the Chinese remainder theorem in the principal ideal domain , there is a unique 
such polynomial with degree . A direct construction, in analogy 
with the above proof for the integer number case, can be performed as follows. Define 

the polynomials and . The partial fraction 
decomposition of  gives r polynomials  with degrees such that  

 
so that . Then a solution of the simultaneous congruence system is given by 
the polynomial  
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and the minimal degree solution is this one reduced modulo , that is the unique with 
degree less than n. 

• The Chinese remainder theorem can also be used in secret sharing, which consists of 
distributing a set of shares among a group of people who, all together (but no one alone), 
can recover a certain secret from the given set of shares. Each of the shares is represented 
in a congruence, and the solution of the system of congruence’s using the Chinese 
remainder theorem is the secret to be recovered. Secret Sharing using the Chinese 
Remainder Theorem uses, along with the Chinese remainder theorem, special sequences 
of integers that guarantee the impossibility of recovering the secret from a set of shares 
with less than a certain cardinality. 

• The Good-Thomas fast Fourier transform algorithm exploits a re-indexing of the data 
based on the Chinese remainder theorem. The Prime-factor FFT algorithm contains an 
implementation. 

• Dedekind's theorem on the linear independence of characters states (in one of its most 
general forms) that if M is a monoid and k is an integral domain, then any finite family 

of distinct monoid homomorphism’s (where the monoid structure on k is 
given by multiplication) is linearly independent; i.e., every family of elements 

satisfying must be equal to the family . 

Proof using the Chinese Remainder Theorem: First, assume that k is a field (otherwise, 
replace the integral domain k by its quotient field, and nothing will change). We can 
linearly extend the monoid homeomorphisms to k-algebra homomorphism’s 

, where is the monoid ring of M over k. Then, the condition 
yields by linearity. Now, we notice that if are two 

elements of the index set I, then the two k-linear maps and are 
not proportional to each other (because if they were, then and would also be 
proportional to each other, and thus equal to each other since (since 
and are monoid homomorphism), contradicting the assumption that they be distinct). 
Hence, their kernels and are distinct. Now, is a maximal ideal of 
for every (since is a field), and the ideals and 
are co prime whenever (since they are distinct and maximal). The Chinese 
Remainder Theorem (for general rings) thus yields that the map  

 
given by  

for all  
is an isomorphism, where . Consequently, the map  
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given by  
for all  

is surjective. Under the isomorphism , this map corresponds 
to the map  

 
given by  

for every  
Now, yields for every vector in the image of the map 

. Since is surjective, this means that for every vector . 
Consequently, , QED. 
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8.2 Lagrange’s theorem 

Theorem: For any prime all the coefficients of the polynomial  

f(x)=(x-1)(x-2)….(x-p+1)- +1 are divisible by p. 

Proof: Let g(x) =(x-1)(x-2)….(x-p+1).the  roots of g are the numbers 

1, 2,…p-1,hence they satisfy the congruence . 

g(x) (modp) 

By the Euler Fermat Theorem, these numbers also satisfy the congruence h(x)  

h(x) = -1 

The difference f(x)=g(x)-h(x) has degree p-2 but the congruence f(x)  has p-1 
solutions, 1,2,…..p-1.therefore,each coefficient of f(x) is divisible by p. 

 

Wolstenholme’s Theorem 

For any prime p  we have  

Proof  The sum in question is the sum of the products of the numbers 1,2,…p-1 taken p-2 at 
atime .This sum is also equal to the coefficient of –x in the polynomial g(x)=(x-1)(x-2)….(x-
p+1). 

In fact, g(x)  can be written in the form g(x)= - + -….+ - x+(p-1)!. 

Where the coefficient  is the kth elementary symmetric function of the roots, that is, the sum of 
the products of the numbers 1, 2….p-1, taken k at a time. Each of the numbers …  is 
divisible by p.we wish to show that   is divisible by . 

The product for g(x) shows that g(p)=(p-1)! So 

(p-1)!= - +….+ - (p-1)!. 

Canceling (p-1)! And reducing the equation mod  we find, since p 5,p 0(mod ) 

And hence 0(mod ),as required. 
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8.3 Reciprocity law 

                                      Determine whether 219 is a quadratic residue or nonresidue mod 383 
solution .We evaluate the legender symbol(219/383) by using the multiplicative property,the 
reciprocity law, periodicity, and the special values(-1/p) and (2/p) calculated earlier 

Since 219=3.73 the multiplicative property implies 

(219/383)=(3/383)(73/383) 

Using the reciprocity law and periodicity we have 

(3/383)=(383/3)(−1)
(383−1)(3−1)

4  

          =-(-1/3)=-(−1)
(3−1)
2 =1 

 (73/383)=(383/73)(1)
(383−1)(73−1)

4  

   =(18/73)=(2/73)(9/73) 

=(−1)
((73)2−1)

8  

=1 

Hence (219/383)=1 so 219 is a quadratic residue mod 383 
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8.4  Cryptography 

                                     Cryptography is derived from Greek word “cryptology” – “hidden secret” 
and graphein-writing. It is about constructing and analyzing protocols that overcome the 
influence of adversaries and which are related to various aspects in information security such as 
data integrity, authentication and non-repudiation. 

 

 

                    Fig 8.4 

Symmetric-key cryptography, where the same key is used both for encryption and decryption 
 

                 
 
                               Fig  8.4.1 
 
 
German Lorenz cipher machine, used in World War II to encrypt very-high-level general staff 
messages 

Cryptography (or cryptology; from Greek κρυπτός, "hidden, secret"; and, graphein, "writing", 
"study", respectively) is the practice and study of techniques for secure communication in the 
presence of third parties (called adversaries). More generally, it is about constructing and 
analyzing protocols that overcome the influence of adversaries and which are related to various 
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aspects in information security such as data confidentiality, data integrity, authentication, and 
non-repudiation. Modern cryptography intersects the disciplines of mathematics, computer 
science, and electrical engineering. Applications of cryptography include ATM cards, computer 
passwords, and electronic commerce. 

Modern cryptography is heavily based on mathematical theory and computer science practice; 
cryptographic algorithms are designed around computational hardness assumptions, making such 
algorithms hard to break in practice by any adversary. It is theoretically possible to break such a 
system but it is infeasible to do so by any known practical means. These schemes are therefore 
termed computationally secure; theoretical advances (e.g., improvements in integer factorization 
algorithms) and faster computing technology require these solutions to be continually adapted. 
There exist information-theoretically secure schemes that provably cannot be broken even with 
unlimited computing power—an example is the one-time pad—but these schemes are more 
difficult to implement than the best theoretically breakable but computationally secure 
mechanisms. 

8.4.1 Cryptography and cryptanalysis 

Before the modern era, cryptography was concerned solely with message confidentiality (i.e., 
encryption)—conversion of messages from a comprehensible form into an incomprehensible one 
and back again at the other end, rendering it unreadable by interceptors or eavesdroppers without 
secret knowledge (namely the key needed for decryption of that message). Encryption was used 
to (attempt to) ensure secrecy in communications, such as those of spies, military leaders, and 
diplomats. In recent decades, the field has expanded beyond confidentiality concerns to include 
techniques for message integrity checking, sender/receiver identity authentication, digital 
signatures, interactive proofs and secure computation, among others. 

8.4.2 Classic cryptography 

 
                      Fig 8.4.2 
Reconstructed ancient Greek scytale (rhymes with "Italy"), an early cipher device 

The earliest forms of secret writing required little more than local pen and paper analogs, as most 
people could not read. More literacy, or literate opponents, required actual cryptography. The 
main classical cipher types are transposition ciphers, which rearrange the order of letters in a 
message (e.g., 'hello world' becomes 'ehlol owrdl' in a trivially simple rearrangement scheme), 
and substitution ciphers, which systematically replace letters or groups of letters with other 
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letters or groups of letters (e.g., 'fly at once' becomes 'gmz bu podf' by replacing each letter with 
the one following it in the Latin alphabet). Simple versions of either have never offered much 
confidentiality from enterprising opponents. An early substitution cipher was the Caesar cipher, 
in which each letter in the plaintext was replaced by a letter some fixed number of positions 
further down the alphabet. Suetonius reports that Julius Caesar used it with a shift of three to 
communicate with his generals. Atbash is an example of an early Hebrew cipher. The earliest 
known use of cryptography is some carved ciphertext on stone in Egypt (ca 1900 BCE), but this 
may have been done for the amusement of literate observers rather than as a way of concealing 
information. Cryptography is recommended in the Kama Sutra (ca 400 BCE) as a way for lovers 
to communicate without inconvenient discovery.  

The Greeks of Classical times are said to have known of ciphers (e.g., the scytale transposition 
cipher claimed to have been used by the Spartan military). Steganography (i.e., hiding even the 
existence of a message so as to keep it confidential) was also first developed in ancient times. An 
early example, from Herodotus, concealed a message—a tattoo on a slave's shaved head—under 
the regrown hair Another Greek method was developed by Polybius (now called the "Polybius 
Square"). More modern examples of steganography include the use of invisible ink, microdots, 
and digital watermarks to conceal information. 

 
 
                  Fig 8.4.2 ( a ) 
 
16th-century book-shaped French cipher machine, with arms of Henri II of France 

 
 
                     Fig 8.4.2( b ) 
 
Enciphered letter from Gabriel de Luetz d'Aramon, French Ambassador to the Ottoman Empire, 
after 1546, with partial decipherment 
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Essentially all ciphers remained vulnerable to cryptanalysis using the frequency analysis 
technique until the development of the polyalphabetic cipher, most clearly by Leon Battista 
Alberti around the year 1467, though there is some indication that it was already known to Al-
Kindi. Alberti's innovation was to use different ciphers (i.e., substitution alphabets) for various 
parts of a message (perhaps for each successive plaintext letter at the limit). He also invented 
what was probably the first automatic cipher device, a wheel which implemented a partial 
realization of his invention. In the polyalphabetic Vigenère cipher, encryption uses a key word, 
which controls letter substitution depending on which letter of the key word is used. In the mid-
19th century Charles Babbage showed that the Vigenère cipher was vulnerable to Kasiski 
examination, but this was first published about ten years later by Friedrich Kasiski.  

Although frequency analysis is a powerful and general technique against many ciphers, 
encryption has still often been effective in practice, as many a would-be cryptanalyst was 
unaware of the technique. Breaking a message without using frequency analysis essentially 
required knowledge of the cipher used and perhaps of the key involved, thus making espionage, 
bribery, burglary, defection, etc., more attractive approaches to the cryptanalytically uninformed.  

     8.4.3 Computer era  

                          Just as the development of digital computers and electronics helped in 
cryptanalysis, it made possible much more complex ciphers. Furthermore, computers allowed for 
the encryption of any kind of data representable in any binary format, unlike classical ciphers 
which only encrypted written language texts; this was new and significant. Computer use has 
thus supplanted linguistic cryptography, both for cipher design and cryptanalysis. Many 
computer ciphers can be characterized by their operation on binary bit sequences (sometimes in 
groups or blocks), unlike classical and mechanical schemes, which generally manipulate 
traditional characters (i.e., letters and digits) directly. However, computers have also assisted 
cryptanalysis, which has compensated to some extent for increased cipher complexity. 
Nonetheless, good modern ciphers have stayed ahead of cryptanalysis; it is typically the case that 
use of a quality cipher is very efficient (i.e., fast and requiring few resources, such as memory or 
CPU capability), while breaking it requires an effort many orders of magnitude larger, and vastly 
larger than that required for any classical cipher, making cryptanalysis so inefficient and 
impractical as to be effectively impossible. 

 
 
              Fig 8.4.3 
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Credit card with smart-card capabilities. The 3-by-5-mm chip embedded in the card is shown, 
enlarged. Smart cards combine low cost and portability with the power to compute cryptographic 
algorithms. 

cryptographic problems and quantum physics (see quantum cryptography and quantum 
computer). 

 

8.5  Modern cryptography 

  8.5.1 Symmetric-key cryptography 

Symmetric-key cryptography refers to encryption methods in which both the sender and receiver 
share the same key (or, less commonly, in which their keys are different, but related in an easily 
computable way). This was the only kind of encryption publicly known until June 1976.  

 
  
                   Fig 8.5.1 
One round (out of 8.5) of the patented IDEA cipher, used in some versions of PGP for high-
speed encryption of, for instance, e-mail 

Symmetric key ciphers are implemented as either block ciphers or stream ciphers. A block cipher 
enciphers input in blocks of plaintext as opposed to individual characters, the input form used by 
a stream cipher. 

The Data Encryption Standard (DES) and the Advanced Encryption Standard (AES) are block 
cipher designs which have been designated cryptography standards by the US government 
(though DES's designation was finally withdrawn after the AES was adopted). Despite its 
deprecation as an official standard, DES (especially its still-approved and much more secure 
triple-DES variant) remains quite popular; it is used across a wide range of applications, from 
ATM encryptionto e-mail privacyand secure remote access. Many other block ciphers have been 
designed and released, with considerable variation in quality. Many have been thoroughly 
broken, such as FEAL.  
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Stream ciphers, in contrast to the 'block' type, create an arbitrarily long stream of key material, 
which is combined with the plaintext bit-by-bit or character-by-character, somewhat like the one-
time pad. In a stream cipher, the output stream is created based on a hidden internal state which 
changes as the cipher operates. That internal state is initially set up using the secret key material. 
RC4 is a widely used stream cipher; see Category:Stream ciphers.[4] Block ciphers can be used as 
stream ciphers; see Block cipher modes of operation. 

Message authentication codes (MACs) are much like cryptographic hash functions, except that a 
secret key can be used to authenticate the hash value upon receipt. 

8.5.2  Public-key cryptography 

 

Symmetric-key cryptosystems use the same key for encryption and decryption of a message, 
though a message or group of messages may have a different key than others. A significant 
disadvantage of symmetric ciphers is the key management necessary to use them securely. Each 
distinct pair of communicating parties must, ideally, share a different key, and perhaps each 
ciphertext exchanged as well. The number of keys required increases as the square of the number 
of network members, which very quickly requires complex key management schemes to keep 
them all straight and secret. The difficulty of securely establishing a secret key between two 
communicating parties, when a secure channel does not already exist between them, also 
presents a chicken-and-egg problem which is a considerable practical obstacle for cryptography 
users in the real worlWhitfield Diffie and Martin Hellman, authors of the first published paper on 
public-key cryptography. 
         
                  

 

 

 

 

 

                 *** THANK YOU *** 
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