
International Journal of Scientific & Engineering Research, Volume 6, Issue 7, July-2015 998
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

 Block Level Data Deduplication for Faster
Cloud Backup

Vikram V. Badge, Mrs. Rushali A. Deshmukh

Abstract— Easy access of information and data on the internet enable the users download and store lots of data in their system. Most of
storage space is occupied by the duplicate data that have been downloaded or gathered from other resources and stored in the system thus
increasing the requirement of the storage space. While taking the backup to the cloud same redundant data is uploaded to the cloud storage.
With increase in the amount of such redundant data proper utilization of the storage resources and bandwidth is not possible. Once the data is
uploaded at the cloud the user’s are not sure how secure their data is. In this paper block level deduplication approach is applied to reduce the
data redundancy. In order to maintain the secrecy of the data SHA-256 a cryptographic hash algorithm is implemented. Also compression is
performed on the data so that proper bandwidth utilization is possible.

Keywords— Data deduplication; Data compression; Indexing; cloud; SHA-256; Collision resistant.

——————————  ——————————

1. INTRODUCTION

Major IT resources are utilized by IT organizations in

order to provide the customers with different types of services
and backup facility. The easy access of information from the
Internet and other resources the redundant data is increasing.
The user downloads the similar type of data many times, thus
the redundant data is occupying more disk space. The backup
of such duplicate data is taken on the cloud to get an instant
access when ever required. Thus different challenges arise in
cloud backup services [2]. One of the challenge is large backup
window, due to the low network bandwidth between user and
service provider constraining the data transmission. Also
increasing number of data chunks increases the number of
fingerprint to be stored which results in hash collision.

The redundancy of the data at the cloud storage is
increasing. Thus exploiting the duplicate data can help in
saving the backup space. It also helps in reducing the time
required for backups in most cases [5]. File level deduplication
and block level deduplication [14].

To reduce the duplicate data, deduplication is performed on
the data of which backup is taken. The data deduplication is

categorized in to two types: In file level deduplication
duplicate files are eliminated, it is also referred as Single
instance storage. This type of deduplication is not very
efficient. In Block level deduplication files are separated in to
small blocks of data called chunks, these chunks are identified
by their fingerprint [1][7]. The fingerprint is the cryptographic
hash of the chunk data. The data deduplication replaces the
duplicate chunks with their fingerprints after chunk fingerprint
index lookup and only transfers or stores the unique chunks
for the purpose of communication or storage efficiency. The
block level deduplication approach discussed in the paper
reduces the duplicate data at the client side and the cloud side.
The chunks of data are formed at the client side and
fingerprints of this data chunks are generated by using the
hashing techniques. These fingerprints of the chunks are
compared with the fingerprints of chunks present at the client
side. By this the similar data present during uploading process
can be excluded. Data deduplication not only reduces the
storage space requirement and but also reduces the duplicate
data to be transferred over the network [9].

This paper is composed further as: Section II discuss about
related work on the data deduplication and the data
compression. Section III problem statement is discussed.
Section IV describes system architecture, Mathematical model
and Algorithm of the data deduplication system. Section V
shows the evaluation of the system. Section VI discussion is
performed on the system. Section VII discusses the Conclusion
and the future scope of the system.

2. RELATED WORK
In [8] Cumulus system the file system backups could be

efficiently implemented over the Internet. This system was

————————————————
• Vikram V. Badge is currently pursuing masters degree program in

Computer Engineering from JSPM’s Rajarshi Shahu college of
Engineering, Savitribai Phule Pune University, Pune, India, His area of
research is Data mining. E-mail: badgevikram@gmail.com

• Prof. Rushali A. Deshmukh pursuing PhD , completed M.E. & B.E. in
Computer Science & Engineering. Her key research include NLP, Cloud
computing, Data mining. She is currently working as Assistant Professor
in JSPM’s Rajarshi Shahu college of Engineering, Phule Pune University,
Pune, India , Department of Post Graduate Computer engineering with the
total Experience of about 15 years. E-mail: radesh19@gmail.com

IJSER

http://www.ijser.org/
mailto:badgevikram@gmail.com

International Journal of Scientific & Engineering Research, Volume 6, Issue 7, July-2015 999
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

specifically designed under a thin cloud, assuming that the
remote datacenter storing the backups does not provide any
special backup services. In [2] a hybrid source deduplication
scheme is designed, it combines file level and chunk level
deduplication scheme based on file semantics to reduce lookup
overhead by reducing metadata. In paper [1] Application
aware Local and Global source deduplication system is
introduced, this system combines local source deduplication
and global source deduplication. The Duplicate chunks are
identified by comparing the fingerprint at the local and global
source. The data chunks in different size are sent over the
network, thus the chunk size occupy more bandwidth. In [4]
the existence of duplicate files is determined from the
metadata. The files are clustered into bins depending on their
size. They are then segmented, deduplicated, compressed and
stored. Binning restricts the number of segments and their sizes
so that it is optimum for each file size. When the user requests
a file, compressed segments of the file are sent over the
network along with the file-to-segment mapping. SHA-1 hash
algorithm is more collision resistant than MD5 hash algorithm
[1]. In [14] SHA-256 algorithm is implemented has the less
probability of hash collision as compared to SHA-1.

The traditional backup solutions require a rotational
schedule of full and incremental backup, which move a
significant amount of redundant data every week [10]. Most
organizations also create a second copy of this information to
be shipped to a secondary site for disaster recovery purposes.
Thus aggregating, the costs of traditional backup in terms of
bandwidth, storage infrastructure, and time increases the cost
of IT organizations for information management. Backing up of
redundant files and data increases the backup window size,
this results in over utilization of network resources and require
too much additional storage capacity to hold unnecessary
backup data.

Internet bandwidth is the main challenge for backup
services, as Internet bandwidth is significantly lower than a
local area network. Thus cloud backup and restoration is much
slower and costs more than a traditional on-site backup [6].

The cryptographic hash algorithm used in above described
paper use MD5, SHA-1 cryptographic hash function. In MD5
the hash collision occurs [13], also in SHA-1 attacks are possible
and thus the secrecy of the data cannot be maintained.

 Thus the paper focus on maintaining the secrecy of the
data, good balance between cloud storage capacity and
deduplication time saving i.e. for storing the personal
documents into the cloud the redundant files should not be
copied and the space and time should not be wasted.

3. PROBLEM STATEMENT
The backing up of redundant files and data increases the

backup window size this results in over utilization of Network
resources and require too much additional storage capacity to
hold unnecessary backup data. Also the security issue arises
when the storage resources are controlled by third party.

Thus the problem that focused here is maintaining proper
backup window size and maintaining the secrecy of the data to
be stored. So the backup process may be performed securely
and efficiently over the network.

4. IMPLEMENTATION DETAILS

A. System Architecture
The system is comprises of two parts client side and cloud

side. The client components perform data deduplication at the
local level. The client machine generates the fingerprint index
of the data chunks. When client uploads the data to the cloud,
the compressed chunks of the data are sent to the cloud
storage. At the cloud side the fingerprints of the received index
are stored in the Global index. The Figure.1.Data Deduplication
Architecture depicts the components in the systems. The
components of the system are described as follow:

 File Size Filter
 Large number of tiny files present in the client machines or
even in the system of any normal user. These tiny files are of
very small size say less than 10 KB. To reduce the metadata
overhead the system first filter out such tiny files in the file size
filter before performing the deduplication process. These tiny
files are directly sent to data deduplicator and hashing unit.
The non tiny files are further sent to the Data chunking.

Data Chunking Unit
The data chunking unit splits the large file in small data

chunks. The non tiny files received by the data chunking from
the file size filter are split in to smaller data chunks. The
maximum chunk size we have considered here is of 256kb. To
maintain the fix size of chunks static chunking has been
performed on the large files.

Figure.1.Data Deduplication Architecture

Data Deduplication and SHA-256 hashing unit
After performing data chunking process in data chunking

unit. The data deduplication and SHA-256 hashing unit
deduplicates the data and generates fingerprint of the data.
Here SHA-256 hashing is performed on the data chunks to
generate the fingerprint. As SHA-256 hash function is the

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 7, July-2015 1000
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

collision-resistant hash function. The message digest size of
fingerprint produce by SHA-256 is 256 bit [12],[14]. This SHA-
256 generated fingerprint is employed to detect duplicate
chunks in the index. To achieve data deduplication efficiency
duplicate fingerprints are first detected in the local index. If
fingerprint matches with the new fingerprint then the data is
considered as the duplicate data and it is not uploaded to the
cloud. If the fingerprint does not match with the existing
fingerprint in the local index then it is considered as the new
fingerprint. Further chunks of non-tiny files are sent to
compression unit and tiny files are directly uploaded to the
cloud storage after deduplicating them. Thus only the unique
data chunks and the fingerprints are sent to cloud storage.

Chunk Compression unit
The Chunk Compression unit implements DEFLATE
compression algorithm [11] to compress the chunks of larger
files. The deduplicated chunks of data are compressed and
uploaded to the cloud storage. Compressing the chunks
reduces the size of the data to be sent. Thus the bandwidth
occupied by the compressed chunks is less as compared to
uncompressed chunks to be transferred over the WAN. So the
bandwidth space utilization is reduces by transferring
compressed chunks over the network.

Index generator
According to the file information the incoming file chunks

are directed to the chunk index each entry to the index contains
fingerprint (fp) of the chunk, length of the chunk (len) and the
container id (cid). The fingerprint works as the key element to
identify the similar data chunks in the index. The SQL index is
used to store the details of the data chunks and to identify
similar data chunks by their fingerprints. As the SQL index can
perform faster traversing through the index, the fingerprints
can be found more efficiently in the index. Also large number
of fingerprints can be stored persistently in SQL index. Thus
the computational overhead of matching of fingerprint for
every session is reduced.

The Index is present at the client side and the cloud side.
The index at the client side is the local index containing the
details of the local chunks deduplicated at the client side. The
global index consists of the fingerprints of the chunks at the
cloud side, as well as the fingerprints of the chunks that are
uploaded by the client side. Before uploading the chunk from
the client side fingerprints of the chunks are first compare at
the local side. If the fingerprint is present at local index then the
data chunks and their fingerprints are not transferred to cloud.
Thus the data chunk with similar fingerprint is considered as
the duplicate data chunk and so it is not uploaded to the cloud.
The data chunks whose fingerprints are not found in the global
index chunks are considered as the new chunks and their
fingerprint is stored as the new entry to the global index. This
technique prevents the duplicate data chunks to be transferred
from client side to the cloud side. Thus the bandwidth is
properly utilized by not sending the duplicate chunks.

B. Mathematical Model
Let A be the data deduplication system where data sets are

deduplicated to upload them to the cloud.

 A={Ds, C, Fp, I, Co, U}

Ds represent initial state, where data set are given as input.

Ds = {Ds1, Ds2,, Dsn}

The data chunking process is represented by C. The chunks C
of the data are formed in this process.

C={C1, C2,..., Cn}

Fingerprint generation phase:

SHA-2 hash function from family of cryptographic hash
functions is implemented on the data chunks C.

H:K×C→Fp Here Fp represents the fingerprint. K represents
key. C represents data chunks on which SHA-2 is
implemented. So the set of fingerprint can be represented as.

Fp = {Fp1, Fp2 ,...., Fpn}

The duplicate chunks are identified on the basis of the
fingerprint. The SQL Index is represented as

I= {i1 ,i2,... in}

Co represents the compressed data to be sent over the
network.

Co= {Co1 ,Co2,...Con}

U represents the data uploading phase. Here only unique and
compressed data chunks are sent over the network.

C. Algorithm
In this section the algorithmic description of the whole

system can be done as follows.

Step 1: Different types of existing files are given as the input.

Step 2: Files are classified on the basis of there size.

 If (file_size < 10KB)

 Store file in segment store

 else

 Send file to data chunking

Step 3: Split the files in to the chunks of 1MB each.

Step 4: Apply SHA-256 on 250 KB size chunks of data to
generate 256 bit hash fingerprint, to make the data chunk
secure and improve collision resistance.

Step 5: Identify the duplicate chunks and store the new chunk
fingerprint, chunk size of file extension in the SQL index.

If (existing fingerprint = new fingerprint)

 do not store the fingerprint it is the duplicate data

 else

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 7, July-2015 1001
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

 store it as new fingerprint

Step 6: Compress the 250 KB chunks before uploading them.

5. EVALUATION

A. Data set
The dataset considered for evaluation consist of existing

files in authors Personal Computer. Also the personal laptops
and research desktop were considered for Data set. TABLE 1.
shows that files with different type of extensions used as a data
set.

B. Results

Reduced Chunk Size
After performing chunks of different files. The size of

chunks were compared with the size of compressed chunks.
It was observed that the compressed chunk size consumes less
bandwidth as compared to uncompressed chunks. TABLE I.
Shows the observed chunks size. The max chunk size
considered is 256 kb. Also as per the file content the size of
compressed chunk varies. Thus the compressed chunk size
range from 2 KB to 248 KB. Fig.2. shows the reduction in the
chunks size after performing the compression. Here the effect
of compression on the data chunks can be observed easily from
the graph.

TABLE I. Observed Compressed chunk size

File
Type

Size Uncompressed
chunks size

Compressed
Chunk Size

.mp3 11
MB

 56 KB to 250 KB 17 KB to 248
KB

.txt 2.69
MB

8 KB to 250 KB 2 KB to 3 KB

.pptx 1.30
MB

86 KB to 250 KB 75 KB to 225
KB

.pdf 1.66
MB

203 KB to 250 KB 120 KB to 227
KB

Figure.2.Chunk size comparison

As observed in Figure.2. The compression is more effective
on files in the “.txt” format, as compared to rest of the three file
formats shown in the graph. Similarly “.pptx “ and “.pdf” file
formats require less bandwidth as compared to “.mp3” file
format.

Backup Window
 The backup window size mainly depends on the volume of
the transferred data set and the available network bandwidth.
The Compressed data sent from the chunk compression unit
reduces the volume of data sent on the WAN. It reduces the
total chunk size as 250 KB segments are compressed and sent
further to the cloud storage. The compressed size of 250 KB
chunk is reduced as per the content of the data chunk. Thus the
reduction in backup window size can be observed.

6. DISCUSSION

 By implementing the birthday attack technique hash
collision was possible in case of MD 5 and SHA 1[]. as the
message digest size of SHA 256 is more than SHA1 and MD 5,
SHA 256 is more secure. Thus by implementing the SHA 256
on the data chunks increases the secrecy of the data chunks in
case of third party storage.

By saving the fingerprint in the SQL index allows to
persistently store the fingerprints of the data chunk. Thus it
makes easy to search for the fingerprints of the data chunks
that are already uploaded by the user.

Compressing the data chunk reduces the bandwidth
requirement of the data chunks thus the bandwidth can be
properly utilized. So the data chunks can easily be transmitted
in the low bandwidth network.

7. CONCLUSION AND FUTURE SCOPE

The block level deduplication approach along with data
chunk compression used in this paper reduces the bandwidth
utilization due to its fix size chunks and compression. Thus by
sending the compressed data over the network the bandwidth
can be wisely used for data transfer. By applying the SHA-256
cryptographic hash function the security of the data chunks is
improved and also the hash collision is reduced. The
implementation of deduplication technique at client side and
cloud side reduces the redundant data to large extent. Thus
the availability of data and proper utilization of storage space
can be managed with the Deduplication.

In this paper sending the deduplicated data from client side
may increase the chance of retransmitting the same type of
data that may be present at the cloud side though it s not sent
by the same client / user. Thus sending only the unique data
and implementing faster fingerprint searching techniques are
the important objective for the future scope.

REFERENCES

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 7, July-2015 1002
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

[1] Yinjin Fu, Hong Jiang, Senior Member, IEEE, Nong Xiao,

Member, IEEE, Lei Tian, Fang Liu, and Lei Xu ,
“Application-Aware Local-Global Source Deduplication
for Cloud Backup Services of Personal Storage” , IEEE
Transaction on parallel and distributed systems, vol. 25,
no. 5, May 2014.

[2] Y. Tan, H. Jiang, D. Feng, L. Tian, Z. Yan, and G. Zhou,
‘‘SAM: A Semantic-Aware Multi-Tiered Source De-
Duplication Framework for Cloud Backup,’’ in Proc. 39th
ICPP, 2010, pp. 614-623.

[3] Y. Fu, H. Jiang, N. Xiao, L. Tian, and F. Liu, ‘‘AA-Dedupe:
An Application-Aware Source Deduplication Approach
for Cloud Backup Services in the Personal Computing
Environment,’’ in Proc. 13th IEEE Int’l Conf. CLUSTER
Comput., pp. 112-120, 2011.

[4] Amrita Upadhyay, Pratibha R Balihalli, Shashibhushan
Ivaturi and Shrisha Rao, “Deduplication and
Compression Techniques in Cloud Design”, 978-1-4673-
0750-5/12/$31.00 ©2012 IEEE.

[5] P. Anderson and L. Zhang, “Fast and Secure Laptop
Backups with Encrypted De-duplication,” in Proceedings
of the 24th international conference on Large Installation
System Administration (LISA'10), pp. 29-40, 2010.

[6] P.Neelaveni and M.Vijayalakshmi, “A Survey on
Deduplication in cloud storage”, Asian Journal of
Information Technology 19(6): 320-330,2014.

[7] D. Meister, “Advanced Data Deduplication Techniques
and their Application” , 2013.

[8] M. Vrable, S. Savage, and G. M. Voelker, “ Cumulus: File
system Backup to the Cloud,” in FAST’09, Feb. 2009.

[9] C. Liu, Y. Lu, C. Shi, G. Lu, D. Du, and D.-S. Wang,
‘‘ADMAD: Application-Driven Metadata Aware De-
Deduplication Archival Storage Systems,’’ in Proc. 5th
IEEE Int’l Workshop SNAPI I/Os, pp. 29-35, 2008.

[10] www.EMC.com, “An EMC Perspective on Data De-
Duplication for Backup”.

[11] http://www.zlib.net/feldspar.html

[12] https://www.tbs-certificates.co.uk/FAQ/en/475.html

[13] http://en.wikipedia.org/wiki/SHA-1
[14] Kiatchumpol Suttisirikul, Putchong Uthayopas,“

Accelerrating the cloud backup using GPU based data
deduplication”, 2012 IEEE 18th International conference
on parallel and distributed systems, 2012.

IJSER

http://www.ijser.org/
http://www.emc.com/
http://www.zlib.net/feldspar.html
https://www.tbs-certificates.co.uk/FAQ/en/475.html
http://en.wikipedia.org/wiki/SHA-1

	1. Introduction
	2. Related Work
	3. Problem Statement
	4. Implementation Details
	A. System Architecture
	 File Size Filter
	Data Chunking Unit
	Data Deduplication and SHA-256 hashing unit
	Chunk Compression unit
	Index generator
	B. Mathematical Model
	C. Algorithm

	5. Evaluation
	A. Data set
	B. Results
	Reduced Chunk Size
	Backup Window

	6. Discussion
	7. Conclusion and Future Scope
	References

