Birkhoff and New Orthogonality in Normed Linear Spaces Via 2-HH Norm

Bhuwan Prasad Ojha, Prakash Muni Bajracharya

Abstract

The p-HH norms were introduced by Kikianty and Dragomir on the Cartesian square of normed spaces. P-norms and p-HH norms induces the same topology, so they are equivalent, but geometrically they are different. Besides that, E. Kikianty and S.S. Dragimor introduced HH-P orthogonality and HH-I orthogonality by using 2-HH norm and discussed main properties of these orthogonalities. In this paper, we test the concept of 2-HH norm to Birkhoff and a new orthogonality in normed spaces and discuss some properties of these orthogonalities.

Keywords: Birkhoff orthogonality, Hermite-Hadamard’s inequality, Pythagorean orthogonality, p-HH norm, Logarithmic mean

1 Introduction

An inner-product on X defines a norm on X by \(\|x\|^2 = \langle x, x \rangle \). Every innerproduct spaces are normed spaces, but the converse may not be true. A best example of normed space which is not an inner-product space is \(l^p = \{(x_n), x_n \in \mathbb{R} : \sum |x_n| < \infty \} \) for \(p \neq 2 \).

Definition. The \(p-HH \) norm on \(X^2 = X \times X \) is defined by

\[
\|(x, y)\|_{p-HH} = \left(\int_0^1 \|(1-t)x + ty\|^p \, dt \right)^{\frac{1}{p}}
\]

for any \(x, y \in X^2 \) and \(1 \leq p < \infty \).

The 2-HH norm is defined as follows:

\[
\|(x, y)\|_{2-HH}^2 = \int_0^1 \|(1-t)x + ty\|^2 \, dt = \frac{1}{3} \left(\|x\|^2 + \langle x, y \rangle + \|y\|^2 \right)
\]

The p-HH norms are equivalent to p-norms on \(X^2 \), as they induce the same topology, but geometrically they are different. The p-HH norm is an extension of the generalized logarithmic mean which is connected by the Hermite-Hadamards inequality to p-norm. The definition of the generalized logarithmic mean and Hermite-Hadamards inequality are as follows:
Definition. [12] For any convex function \(f : [a, b] \to \mathbb{R} \), the Hermite-Hadamard’s inequality is defined as
\[
(b - a) f\left(\frac{a + b}{2}\right) \leq \int_a^b f(t) dt \leq (b - a) \left[\frac{f(a) + f(b)}{2} \right].
\]
This inequality has been extended (see [12]) for convex function \(f : [x, y] \to \mathbb{R} \), where \([x, y] = \{ (1 - t)x + ty, t \in [0, 1] \}\). In that case Hermites-Hadamards integral inequality becomes
\[
f\left(\frac{x + y}{2}\right) \leq \int_0^1 f[(1 - t)x + ty] dt \leq \frac{f(x) + f(y)}{2} \tag{1}
\]
Using the convexity of \(f(x) = \|x\|^p \quad (x \in X, p \geq 1) \) and relation (1) we have
\[
\left\|\frac{x + y}{2}\right\|^p \leq \left[\int_0^1 \| (1 - t)x + ty \|^p dt \right]^\frac{1}{p} \leq \frac{1}{2^\frac{p}{2}} (\|x\|^p + \|y\|^p)^\frac{1}{p}.
\]

1.1 HH-P Orthogonality

Definition. [3, 4] A vector \(x \) is said to be orthogonal to \(y \) in the sense of Pythagorean if \(\|x - y\|^2 = \|x\|^2 + \|y\|^2 \).

[8] Let \((X, \|\cdot\|)\) be a normed space. Then \(x \perp_{\text{HH-P}} y \iff \int_0^1 \|(1 - t)x + ty\|^2 dt = \frac{1}{2}(\|x\|^2 + \|y\|^2) \).

1.1.1 Properties of HH-P orthogonality

1. HH-P orthogonality satisfies non-degeneracy, simplification, continuity and symmetry.
2. HH-P orthogonality is existent.
3. HH-P orthogonality is unique.
4. HH-P orthogonality is homogeneous if and only if the space is inner-product space.
5. HH-P orthogonality is additive if the space is an inner-product space.

1.2 HH-I orthogonality

Definition. [5] A vector \(x \) is said to be isosceles orthogonal to \(y \) if \(\|x - y\| = \|x + y\| \).

[8] Let \(x, y \in X \) such that \(\|(1 - t)x + ty\| = \|(1 - t)x - ty\| \) a.e. on \([0, 1]\). Then \(x \) is said to be HH-I orthogonal to \(y \) iff
\[
\int_0^1 \|(1 - t)x + ty\| dt = \int_0^1 \|(1 - t)x - ty\| dt.
\]
1.2.1 Properties of HH-I Orthogonality

1. The HH-I orthogonality satisfies non-degeneracy, simplification, continuity and symmetry properties.

2. HH-I orthogonality is existent.

3. If HH-I orthogonality is homogeneous in a normed space X, then X is an inner-product space.

4. If HH-I orthogonality is additive, then the space is an inner-product space.

5. HH-I orthogonality is neither right additive nor homogeneous.

Definition. [2] In a normed linear space \(X \),

\[x \perp y \iff \sum_{k=1}^{m} a_k \|b_k x + c_k y\|^2 = 0, \]

where \(m \geq 2 \) and \(a_k, b_k, c_k \) are real numbers such that

\[\sum_{k=1}^{m} a_k b_k c_k \neq 0, \quad \sum_{k=1}^{m} a_k b_k^2 = \sum_{k=1}^{m} a_k c_k^2 = 0. \]

1.3 HH-C Orthogonality

[8] Let \((X, \|\|)\) be a normed space and \(t \in [0, 1] \). then \(x \in X \) is said to be HH-C orthogonal to \(y \in X \) if and only if

\[\sum_{j=1}^{m} \alpha_j \int_{0}^{1} \|(1 - t)\beta_j x + t\gamma_j y\|^2 dt = 0 \]

satisfying the conditions

\[\sum_{j=1}^{m} \alpha_j \beta_j \gamma_j \neq 0 \quad \text{and} \quad \sum_{j=1}^{m} \alpha_j \beta_j \gamma_j^2 = 0. \]

HH-P orthogonality is a particular case of HH-C orthogonality

Let us take

\[\sum_{j=1}^{3} \alpha_j \int_{0}^{1} \|(1 - t)\beta_j x + t\gamma_j y\|^2 dt = 0 \]

\[\Rightarrow \alpha_1 \int_{0}^{1} \|(1 - t)\beta_1 x + t\gamma_1 y\|^2 dt + \alpha_2 \int_{0}^{1} \|(1 - t)\beta_2 x + t\gamma_2 y\|^2 dt + \alpha_3 \int_{0}^{1} \|(1 - t)\beta_3 x + t\gamma_3 y\|^2 dt = 0 \]
Taking $\alpha_1 = -1$, $\alpha_2 = \alpha_3 = 1$, $\beta_1 = \beta_2 = 1$, $\beta_3 = 0$, $\gamma_1 = \gamma_3 = 1$ and $\gamma_2 = 0$, we get

$$
- \int_0^1 \|(1 - t)x + ty\|^2 dt + \int_0^1 \|(1 - t)x\|^2 dt + \int_0^1 \|ty\|^2 dt = 0
$$

$$
\Rightarrow - \int_0^1 \|(1 - t)x + ty\|^2 dt + \frac{1}{3}(\|x\|^2 + \|y\|^2) = 0
$$

$$
\therefore \int_0^1 \|(1 - t)x + ty\|^2 dt = \frac{1}{3}(\|x\|^2 + \|y\|^2)
$$

Now

$$
\sum_{k=1}^3 \alpha_j \beta_j \gamma_j = \alpha_1 \beta_1 \gamma_1 + \alpha_2 \beta_2 \gamma_2 + \alpha_3 \beta_3 \gamma_3 = -1, \quad \sum_{j=1}^m \alpha_j \beta_j \gamma_j^2 = \alpha_1 \beta_1^2 + \alpha_2 \beta_2^2 + \alpha_3 \beta_3^2 = 0
$$

and

$$
\sum_{j=1}^m \alpha_j \gamma_j = \alpha_1 \gamma_1 + \alpha_2 \gamma_2 + \alpha_3 \gamma_3 = 0
$$

Which shows that HH-P orthogonality is a particular case of HH-C orthogonality.

HH-I orthogonality is a particular case of HH-C orthogonality

Let us take

$$
\sum_{j=1}^2 \alpha_j \int_0^1 \|(1 - t)\beta_j x + t\gamma_j y\|^2 dt = 0
$$

$$
\Rightarrow \alpha_1 \int_0^1 \|(1 - t)\beta_1 x + t\gamma_1 y\|^2 dt + \alpha_2 \int_0^1 \|(1 - t)\beta_2 x + t\gamma_2 y\|^2 dt = 0
$$

Taking $\alpha_1 = \frac{1}{2}$, $\alpha_2 = -\frac{1}{2}$, $\beta_1 = \beta_2 = 1$, $\gamma_1 = 1$, $\gamma_2 = -1$, we get

$$
\frac{1}{2} \int_0^1 \|(1 - t)x + ty\|^2 dt - \frac{1}{2} \int_0^1 \|(1 - t)x - ty\|^2 dt = 0
$$

$$
\Rightarrow \int_0^1 \|(1 - t)x + ty\|^2 dt = \int_0^1 \|(1 - t)x - ty\|^2 dt
$$

Now

$$
\sum_{k=1}^2 \alpha_j \beta_j \gamma_j = \alpha_1 \beta_1 \gamma_1 + \alpha_2 \beta_2 \gamma_2 = 1, \quad \sum_{k=1}^2 \alpha_j \beta_j^2 = \alpha_1 \beta_1^2 + \alpha_2 \beta_2^2 = 0
$$

and

$$
\sum_{k=1}^2 \alpha_j \gamma_j^2 = \alpha_1 \gamma_1^2 + \alpha_2 \gamma_2^2 = 0
$$

1.3.1 Properties of HH-C orthogonality

1. HH-C orthogonality satisfies non-degeneracy, simplification, and continuity property.

2. HH-C orthogonality is not symmetric.

3. HH-C orthogonality is neither additive nor homogeneous.
2 Main Result

Definition. [11] A vector x is orthogonal to y if

$$\left\| x + \frac{1}{2}y \right\|^2 + \left\| x - \frac{1}{2}y \right\|^2 = \frac{1}{2} \left\| \sqrt{2}x + y \right\|^2 + \left\| x \right\|^2$$

Lemma 2.1. For an abstract Euclidean Space X, orthogonality relation $\left\| x + \frac{1}{2}y \right\|^2 + \left\| x - \frac{1}{2}y \right\|^2 = \frac{1}{2} \left\| \sqrt{2}x + y \right\|^2 + \left\| x \right\|^2$ implies Birkhoff orthogonality if $y = \frac{x}{1-\alpha}$.

Proof. Suppose $x \perp y$. Then by definition,

$$\left\| x + \frac{1}{2}y \right\|^2 + \left\| x - \frac{1}{2}y \right\|^2 = \frac{1}{2} \left\| \sqrt{2}x + y \right\|^2 + \left\| x \right\|^2$$

$$\Rightarrow \left\| x + \frac{1}{2}y \right\|^2 + \left\| x - \frac{1}{2}y \right\|^2 \geq \left\| x \right\|^2$$

$$\Rightarrow \left\| x + \frac{1}{2}y - x + \frac{1}{2}y \right\|^2 \geq \left\| x \right\|^2$$

$$\Rightarrow \left\| y \right\|^2 \geq \left\| x \right\|^2 \ldots \ldots \ldots \ (1)$$

Since $y = \frac{x}{1-\alpha}$ so that $y = x + \alpha y$. Therefore form the relation (1)

$$\left\| x + \alpha y \right\|^2 \geq \left\| x \right\|^2$$

$$\Rightarrow \left\| x + \alpha y \right\| \geq \left\| x \right\|$$

$$\Rightarrow x \perp_B y.$$

But the converse of above lemma may not be true. Consider $X = (\mathbb{R}^2, \left\| . \right\|_1)$, where $\left\| . \right\|_1 = \sum_{k=1}^{2} |x_k|$ for some $x = (x_1, x_2) \in X$. Let $x = (-2, 1), y = (2, 2)$, and $\alpha \in \mathbb{R}$ we have

$$\left\| x + \alpha y \right\|_1 = \left\| (2, 1) + \alpha (2, 2) \right\|_1 = -2 + 2\alpha, 1 + 2\alpha \right\|_1 = | -2 + 2\alpha | + | 1 + 2\alpha | \geq 3 = \left\| x \right\|_1$$

But

$$\left\| x + \frac{1}{2}y \right\|^2 + \left\| x - \frac{1}{2}y \right\|^2 = \left\| (-2, 1) + \frac{1}{2}(2, 2) \right\|^2 + \left\| (-2, 1) - \frac{1}{2}(2, 2) \right\|^2$$

$$= \left\| (-2, 1) + (1, 1) \right\|^2 + \left\| (-2, 1) - (1, 1) \right\|^2$$

$$= 18$$

$$\frac{1}{2} \left\| \sqrt{2}x + y \right\|^2 + \left\| x \right\|^2 = \frac{1}{2} \left\| \sqrt{2}(-2, 1) + (2, 2) \right\|^2 + \left\| (-2, 1) \right\|^2$$

$$= \frac{1}{2} \left\| (-2\sqrt{2} + 2, \sqrt{2} + 2) \right\|^2 + 9$$

$$= \frac{1}{2} (0.828 + 3.4142)^2 + 9$$

$$= 17.99$$

which shows that x is not orthogonal to y in the sense of above orthogonality.
3 Birkhoff Orthogonality Via 2-HH norm

Definition. [6, 9] A vector x is said to be orthogonal to y in the sense of Birkhoff if $\|x\| \leq \|x + \alpha y\|$ for all $\alpha \in \mathbb{R}$.

In the case of $2-HH$ norm,

$$
\int_0^1 \|(1-t)x + \lambda ty\|^2 = \int_0^1 \langle (1-t)x + \lambda ty, (1-t)x + \lambda ty \rangle dt
= \|x\|^2 \int_0^1 (1-t)^2 dt + 2\lambda \langle x, y \rangle \int_0^1 (1-t)dt + \lambda^2 \|y\|^2 \int_0^1 t^2 dt.
$$

If $x \perp$, then

$$
\int_0^1 \|(1-t)x + \lambda ty\|^2 = \|x\|^2 \int_0^1 (1-t)^2 dt + \lambda^2 \|y\|^2 \int_0^1 t^2 dt
= \frac{1}{3}(\|x\|^2 + \|\lambda y\|^2) \quad ... \ (1)
$$

But $\int_0^1 \|x\|^2 dt = \|x\|^2 \int_0^1 (1-t)^2 dt = \frac{1}{3} \|x\|^2. \quad ... \ (2)$

Since $\|\lambda y\|^2$ is a non-negative quantity, so from relation (1) and (2), we conclude that

$$
\int_0^1 \|(1-t)x + \lambda ty\|^2 \geq \int_0^1 \|x\|^2 dt. \quad ... \ (3)
$$

Keeping the above result in our mind, we can conclude that $x \perp_{2-HH} B(y)$ if the relation (3) is satisfied.

4 New Orthogonality Via 2-HH Norm

[11] A vector $x \in X$ is said to be orthogonal to the vector $y \in Y$ if and only if

$$
\left\| x + \frac{1}{2} y \right\|^2 + \left\| x - \frac{1}{2} y \right\|^2 = \frac{1}{2} \left\| \sqrt{2}x + y \right\|^2 + \|x\|^2.
$$

Using the concept of $2-HH$ norm,

$$
\left\| x + \frac{1}{2} y \right\|^2 + \left\| x - \frac{1}{2} y \right\|^2 = \frac{1}{2} \left\| \sqrt{2}x + y \right\|^2 + \|x\|^2 \ a.e \ \text{on} \ [0,1]
$$

and we obtain a definition of new orthogonality by using 2-HH norm is as follows: $x \perp y$ iff

$$
\int_0^1 \left\| (1-t)x + \frac{1}{2} ty \right\|^2 dt + \int_0^1 \left\| (1-t)x - \frac{1}{2} ty \right\|^2 dt = \frac{1}{2} \int_0^1 \left\| \sqrt{2}(1-t)x + ty \right\|^2 dt + \int_0^1 \| (1-t)x \|^2 dt.
$$

..........(1)
To verify the above definition, the left hand side of relation (1)

$$\int_0^1 \left\| (1-t)x + \frac{1}{2}ty \right\|^2 dt + \int_0^1 \left\| (1-t)x - \frac{1}{2}ty \right\|^2 dt = \int_0^1 \langle (1-t)x + \frac{1}{2}ty, (1-t)x + \frac{1}{2}ty \rangle dt$$

$$+ \int_0^1 \langle (1-t)x - \frac{1}{2}ty, (1-t)x - \frac{1}{2}ty \rangle dt$$

$$= \frac{1}{3} \|x\|^2 + \frac{1}{12} \|y\|^2 + \frac{1}{3} \|x\|^2 + \frac{1}{12} \|y\|^2$$

$$= \frac{2}{3} \|x\|^2 + \frac{1}{6} \|y\|^2.$$

Again the right hand side of relation (1)

$$\frac{1}{2} \int_0^1 \left\| \sqrt{2}(1-t)x + ty \right\|^2 dt + \int_0^1 \| (1-t)x \|^2 dt = \frac{1}{2} \int_0^1 \langle \sqrt{2}(1-t)x + ty, \sqrt{2}(1-t)x + ty \rangle dt + \frac{1}{3} \|x\|^2$$

$$= \frac{1}{2} \left(\frac{2}{3} \|x\|^2 + \frac{1}{3} \|y\|^2 \right) + \frac{1}{3} \|x\|^2$$

$$= \frac{2}{3} \|x\|^2 + \frac{1}{6} \|y\|^2.$$

Data Availability

There is no use of any data for the completion of this study.

Conflict of Interest

We authors do no have a conflict of interest for the publication of article.

Acknowledgment

I am thankful to my PhD supervisor Prof. Dr. Prakash Muni Bajryacharya, head of the Central Department of Mathematics and my respected professors for their continuous support and feedback during my study.

References

