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——————————      —————————— 
1. Introduction 

Availability is a measure of system performance which denotes the probability that the 
system is available for use (in operable condition) at any arbitrary instant t. Availability is 
therefore the probability that the system will be operational at the given time t. It 
combines aspects of reliability, maintainability and maintenance support and implies that 
the system is either in active operation or is able to operate if required. Availability 
pertains only to systems which undergo repair and are restored after failure. A high 
availability can be obtained either by increasing the average operational time until the 
next failure, or by improving the maintainability of the system. Gnedenko and Uskakov 
(1995) define different coefficients of availability for one-unit systems. 

Reliability is a quantitative measure to ensure operational efficiency. The reliability of a 
product is the measure of its ability to perform its function when required for a specific 
time in a particular environment. 

The scope of reliability engineering is extremely wide. It helps to obtain reliable 
transportation and telecommunication systems, provide a steady supply of power, and 
ensure successful operations of robotics, and so on. The growth of knowledge in several 
areas of reliability engineering and its applications has become increasingly important 
(Chung (1990)). The common-cause failures have gained considerable attention in the 
field of reliability (Dhillon (1979), Chung (1990), Shooman (1971), Dhillon (1981) etc.)  

Reliability of a system is fairly simple when units fail independently of each other. In the 
presence of common-cause failures, the reliability calculation requires a set of 
simultaneous linear differential equations. Some of the reasons for systems with 
common-cause failures are:  
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(i) Equipment design deficiencies  

(ii) Unforeseen external abnormal environments - dust, humidity, temperature  

(iii) Operations and maintenance errors  

(iv) External catastrophe  

(v) Functional deficiencies  

(vi) Common power source  

A failure is a result of a joint action of many unpredictable, random processes going on 
inside the operating system as well as in the environment in which the system is 
operating (Gertsbakh (1989)). Functioning is therefore seriously impeded or completely 
stopped at a certain moment in time and all failures have a stochastic nature. In some 
cases the time of failure is easily observed, but if units deteriorate continuously 
determination of the moment of failure is not an easy task. Failure of a system is called a 
disappointment or a death and failure results in the system being in the down state. This 
can also be referred to as a breakdown (Finkelstein (1999a)). 

Failure rate is the conditional probability that a device will fail per unit of time. The 
conditional probability is the probability that a device will fail during a certain interval 
given that it survived at the start of the interval (Lawless (1982)).  

In most cases, independence is assumed across the components within the system which 
means that the failure of any component of the system does not affect the failure of 
another one in the system. However, if your system consists of multiple components 
sharing a load then the assumption of independence no longer holds true. If one 
component fails then the component(s) that are still operating will have to assume the 
failed unit's load. Therefore, the reliabilities of the surviving unit(s) will change. 
Calculating the system reliability is no longer an easy proposition. Huang and Xu (2010) 
presented a general closed-form expression for the lifetime reliability of load-sharing k-
out-of-n: G hybrid redundant systems. 

Parallel redundancy is a common method to increase system reliability and mean time to 
failure. Studies of reliability of systems assume independence among component 
lifetimes. In practice, components in a reliability structure are dependent as they may 
share the same load or may be failed with common-cause failures. Bivariate and 
multivariate lifetime distributions play important roles in modeling these dependencies. 
Many bivariate and multivariate exponential distributions have been proposed by 
Balakrishnan and Lai (2009). The bivariate exponential distribution of Marshall and 
Olkin (1967) is suited for modeling common-cause failures. Freund’s model (1961) can 
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be applied to the situation that the failed component increases the stress on the surviving 
component and consequently increases the other component’s tendency of failure. 

Marshall and Olkin (1967) introduced a bivariate exponential distribution by considering 
a reliability model in which two components fail separately or simultaneously upon 
receiving a shock that is governed by a homogeneous Poisson process. They derived the 
bivariate exponential distribution in several ways: the bivariate lack of memory property, 
shock models, a random sum model, and a minima model.  

Freund (1961) proposed a bivariate extension of the exponential distribution by allowing 
the failure rate of the surviving component to be affected after the failure of another 
component. Freund’s bivariate distribution is absolutely continuous and possesses the 
bivariate lack of memory property (Bailey (1964)). Freund’s model is one of the first to 
study bivariate distributions from reliability considerations, and it can be used to model 
load-sharing systems. 

Weibull probability model plays an important role in reliability theory and life testing 
experiments. Mino et al. (2003) discussed the applications of a Marshall–Olkin bivariate 
Weibull distribution in lifespan. Rachev et al. (1995) considered a Marshall–Olkin 
bivariate Weibull distribution as a bivariate limiting distribution of the tumor latency 
time. Marshall and Olkin (1997) introduced a method of adding a parameter into a family 
of distributions, which result in the flexibility of the new distribution. Marshall and Olkin 
(1967) introduced two new distributions: an exponential distribution with two parameters 
and a Weibull distribution with three parameters.  

Markov models are commonly used to perform reliability analysis of engineering systems 
and fault-tolerant systems. They are also used to handle reliability and availability 
analysis of repairable systems. First, we gave notations and several properties of 
stochastic processes. Next, we explore Markov chains focusing on criteria of 
recurrent/transient state, and long-run probabilities. We then discuss basic properties of 
the homogeneous Poison process, which is one of the most important stochastic 
processes. The discussion is then going to the continuous-time Markov chain, including 
the birth, the death, and the birth-death processes. It is not an easy task to solve the state 
equations. A number of solution techniques exist, such as analytical solution (see 
Rausand and Høyland (2004), Laplace-Stieltjes transforms (Pukite (1998)), numerical 
integration, and computer-assisted evaluation (Block and Basu (1974)). 

In this paper, we present analysis for a system consists of two dependent non-identical 
units connected in parallel subject to load sharing. We consider that the failure and repair 
rates of the units follow bivariate Weibull distribution. Markov models are used to 
construct a block diagram and a mathematical model for a system. Availability analysis 
and steady state availability probability for a system are discussed. Reliability and mean 
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time to system failure are introduced. A numerical example is introduced in order to 
show the results.      

2. Marshall-Olkin Bivariate Weibull Distribution 

Suppose 𝑈𝑈0,𝑈𝑈1, and 𝑈𝑈2 are independent Weibull random variables with the same shape 
parameter 𝛼𝛼, and scale parameters 𝜆𝜆0, 𝜆𝜆1, and 𝜆𝜆2, respectively. Now define 𝑋𝑋1 =
𝑚𝑚𝑚𝑚𝑚𝑚{𝑈𝑈0,𝑈𝑈1} and 𝑋𝑋2 = 𝑚𝑚𝑚𝑚𝑚𝑚{𝑈𝑈0,𝑈𝑈2}, then (𝑋𝑋1,𝑋𝑋2) is said to have bivariate Weibull 
distribution with PDF given by 

𝑓𝑓(𝑥𝑥1,𝑥𝑥2) =

⎩
⎨

⎧
𝑓𝑓𝑊𝑊𝑊𝑊(𝑥𝑥1;𝛼𝛼, 𝜆𝜆1)𝑓𝑓𝑊𝑊𝑊𝑊(𝑥𝑥2;𝛼𝛼, 𝜆𝜆0 + 𝜆𝜆2)   𝑖𝑖𝑖𝑖   0 < 𝑥𝑥1 < 𝑥𝑥2 
𝑓𝑓𝑊𝑊𝑊𝑊(𝑥𝑥1;𝛼𝛼, 𝜆𝜆0 + 𝜆𝜆1)𝑓𝑓𝑊𝑊𝑊𝑊(𝑥𝑥2;𝛼𝛼, 𝜆𝜆2)   𝑖𝑖𝑖𝑖   0 < 𝑥𝑥2 < 𝑥𝑥1
𝜆𝜆0

𝜆𝜆0 + 𝜆𝜆1 + 𝜆𝜆2
𝑓𝑓𝑊𝑊𝑊𝑊(𝑥𝑥;𝛼𝛼, 𝜆𝜆0 + 𝜆𝜆1 + 𝜆𝜆2)   𝑖𝑖𝑖𝑖    0 < 𝑥𝑥1 = 𝑥𝑥2 = 𝑥𝑥

,� 

𝑓𝑓𝑊𝑊𝑊𝑊(𝑥𝑥;𝛼𝛼, 𝜆𝜆) = 𝛼𝛼𝜆𝜆𝑥𝑥𝛼𝛼−1𝑒𝑒−𝜆𝜆𝑥𝑥𝛼𝛼  

Marshall and Olkin bivariate Weibull distribution has the following properties: 

• It is also a singular distribution. 
• The marginals are Weibull and hence very flexible. 
• It can have decreasing and unimodal PDFs. 
• It can have increasing or decreasing hazard functions also. 
• It reduces to exponential distribution when the shape parameter 𝛼𝛼 is one. 

3. System Analysis 

The system is considered to be consisted of two components connected in parallel and 
work dependently where the failure of any component affects the failure of the other one. 
In addition, it is assumed that there is a common failure between the two components. 
Life times of the units are assumed to follow bivariate Weibull distribution. Failures are 
assumed to be repairable and the repair times also follow bivariate Weibull distribution. 

3.1 Notations 

All notations for the system are given as follows. 

𝑃𝑃𝑡𝑡[0, 0] is the probability that the system is up at time t. 

𝑃𝑃𝑡𝑡[1, 0] is the probability that the first unit failed and the second unit is up at time t. 

𝑃𝑃𝑡𝑡[0, 1] is the probability that the first unit is up and the second unit failed at time t. 

𝑃𝑃𝑡𝑡[1, 1] is the probability that the system is down at time t. 
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𝜆𝜆1(𝑡𝑡) is the dependent time failure rate from up state to failed state for the first unit. 

𝜆𝜆2(𝑡𝑡) is the dependent time failure rate from up state to failed state for the second unit. 

𝜆𝜆12(𝑡𝑡) is the dependent time common cause failure rate from up state to failed state for 
both units. 

𝜆𝜆1
′ (𝑡𝑡) is the dependent time failure rate from up state to failed state for the first unit after 

failure of the second unit. 

𝜆𝜆2
′ (𝑡𝑡) is the dependent time failure rate from up state to failed state for the second unit 

after failure of the first unit. 

𝜇𝜇1(𝑡𝑡) is the dependent time repair rate of the first unit after failure. 

𝜇𝜇2(𝑡𝑡) is the dependent time repair rate of the second unit after failure. 

𝜇𝜇12(𝑡𝑡) is the dependent time repair rate of the both units after common failure. 

𝜇𝜇1
′ (𝑡𝑡) is the dependent time repair rate for the first unit after it has failed and the second 

unit has failed. 

𝜇𝜇2
′ (𝑡𝑡) is the dependent time repair rate for the second unit after it has failed and the first 

unit has failed. 

3.2 System Availability 

It is obvious that the system will have 4 states divided as follows: (0, 0), (1, 0), (0, 1) are 
the working states and (1, 1) is the failed state. All possible states and transition rates 
between them are shown in Figure 1.Continuous-time Markov model is used to construct 
mathematical model for the system as follows. 

 

 

 

 

 

Fig.1: Block diagram for system of two dependent parallel units  

 𝑑𝑑𝑃𝑃𝑡𝑡[0, 0]
𝑑𝑑𝑑𝑑

= −[𝜆𝜆1(𝑡𝑡) + 𝜆𝜆2(𝑡𝑡) + 𝜆𝜆12(𝑡𝑡)]𝑃𝑃𝑡𝑡[0, 0] + 𝜇𝜇1(𝑡𝑡)𝑃𝑃𝑡𝑡[1, 0] + 

+𝜇𝜇2(𝑡𝑡)𝑃𝑃𝑡𝑡[0, 1] + 𝜇𝜇12(𝑡𝑡)𝑃𝑃𝑡𝑡[1, 1]             (1) 

(𝜇𝜇1
′ + 𝜇𝜇12)(𝑡𝑡) 

(𝜇𝜇2
′ + 𝜇𝜇12)(𝑡𝑡) 

(𝜆𝜆1
′ + 𝜆𝜆12)(𝑡𝑡) 

(𝜆𝜆2
′ + 𝜆𝜆12)(𝑡𝑡) 

𝜇𝜇12(𝑡𝑡) 

𝜇𝜇2(𝑡𝑡) 

𝜇𝜇1(t) 

𝜆𝜆12(𝑡𝑡) 

𝜆𝜆2(𝑡𝑡) 

𝜆𝜆1(𝑡𝑡) 

0, 0 

1, 0 

0, 1 

1, 1 
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 𝑑𝑑𝑃𝑃𝑡𝑡[1, 0]
𝑑𝑑𝑑𝑑

= −[(𝜆𝜆2
′ + 𝜆𝜆12)(𝑡𝑡) + 𝜇𝜇1(𝑡𝑡)]𝑃𝑃𝑡𝑡[1, 0] + 𝜆𝜆1(𝑡𝑡)𝑃𝑃𝑡𝑡[0, 0] + 

+(𝜇𝜇2
′ + 𝜇𝜇12)(𝑡𝑡)𝑃𝑃𝑡𝑡[1, 1]                        (2) 

 𝑑𝑑𝑃𝑃𝑡𝑡[0, 1]
𝑑𝑑𝑑𝑑

= −[(𝜆𝜆1
′ + 𝜆𝜆12)(𝑡𝑡) + 𝜇𝜇2(𝑡𝑡)]𝑃𝑃𝑡𝑡[0, 1] + 𝜆𝜆2(𝑡𝑡)𝑃𝑃𝑡𝑡[0, 0] + 

+(𝜇𝜇1
′ + 𝜇𝜇12)(𝑡𝑡)𝑃𝑃𝑡𝑡[1, 1]                        (3) 

 𝑑𝑑𝑃𝑃𝑡𝑡[1, 1]
𝑑𝑑𝑑𝑑

= −[(𝜇𝜇1
′ + 𝜇𝜇12)(𝑡𝑡) + (𝜇𝜇2

′ + 𝜇𝜇12)(𝑡𝑡) + 𝜇𝜇12(𝑡𝑡)]𝑃𝑃𝑡𝑡[1, 1] + 𝜆𝜆12(𝑡𝑡)𝑃𝑃𝑡𝑡[0, 0] + 

+(𝜆𝜆2
′ + 𝜆𝜆12)(𝑡𝑡)𝑃𝑃𝑡𝑡[1, 0] + (𝜆𝜆1

′ + 𝜆𝜆12)(𝑡𝑡)𝑃𝑃𝑡𝑡[0, 1]    (4) 

The initial conditions for the system are given by 

𝑃𝑃0[0, 0] = 1,𝑃𝑃0[1, 0] = 0,𝑃𝑃0[0, 1] = 0,𝑃𝑃0[1, 1] = 0     

According to Marshall and Olkin bivariate Weibull distribution the dependent time 
transition rates of the model are given by 

𝜆𝜆𝑖𝑖(𝑡𝑡) = 𝛽𝛽𝜆𝜆𝑖𝑖𝑡𝑡𝛽𝛽−1, 𝑖𝑖 = 1, 2, 12,              (𝜆𝜆𝑖𝑖′ + 𝜆𝜆12)(𝑡𝑡) = 𝛽𝛽(𝜆𝜆𝑖𝑖′ + 𝜆𝜆12)𝑡𝑡𝛽𝛽−1, 𝑖𝑖 = 1, 2 

𝜇𝜇𝑖𝑖(𝑡𝑡) = 𝛽𝛽𝜇𝜇𝑖𝑖𝑡𝑡𝛽𝛽−1, 𝑖𝑖 = 1, 2, 12,              (𝜇𝜇𝑖𝑖′ + 𝜇𝜇12)(𝑡𝑡) = 𝛽𝛽(𝜇𝜇𝑖𝑖′ + 𝜇𝜇12)𝑡𝑡𝛽𝛽−1, 𝑖𝑖 = 1, 2 

The set of equations from (1) to (4) forms a system of first order differential equations 
which can be solved under the given initial conditions to obtain the state probabilities and 
the availability function can be calculated from the following sum of the probabilities of 
the working states.  

𝐴𝐴(𝑡𝑡) = 𝑃𝑃𝑡𝑡[0, 0] + 𝑃𝑃𝑡𝑡[1, 0] + 𝑃𝑃𝑡𝑡[0, 1]                                          (5) 

3.3 Steady State Availability 

The limiting or steady state availability  𝐴𝐴∞  or simply 𝐴𝐴 is the expected fraction of time 
that the system operates satisfactorily in the long run (Barlow & Proschan (1965)). It is 
defined as the probability that the system will be in an operational state at time t, when t 
is considered to be infinitely large.  

𝐴𝐴∞ = lim
𝑡𝑡→∞

𝐴𝐴(𝑡𝑡) 

In Markov models, it is possible to go from one state to another one over a large long 
period of time. It can easily be shown that the limit 𝑃𝑃[𝑖𝑖, 𝑗𝑗] = lim𝑡𝑡→∞  𝑃𝑃𝑡𝑡[𝑖𝑖, 𝑗𝑗] always 

exists. One can get the steady state solutions by simply setting all the derivatives  𝑑𝑑𝑃𝑃𝑡𝑡[𝑖𝑖 ,𝑗𝑗 ]
𝑑𝑑𝑑𝑑
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equal zero, and hence the system of differential equations will be reduce to an equivalent 
system of algebraic equations as follows.  

−[𝜆𝜆1 + 𝜆𝜆2 + 𝜆𝜆12]𝑃𝑃[0, 0] + 𝜇𝜇1𝑃𝑃[1, 0] + 𝜇𝜇2𝑃𝑃[0, 1] + 𝜇𝜇12𝑃𝑃[1, 1] = 0                               (6) 

−[𝜆𝜆2
′ + 𝜆𝜆12 + 𝜇𝜇1]𝑃𝑃[1, 0] + 𝜆𝜆1𝑃𝑃[0, 0] + (𝜇𝜇2

′ + 𝜇𝜇12)𝑃𝑃[1, 1] = 0                                        (7) 

−[𝜆𝜆1
′ + 𝜆𝜆12 + 𝜇𝜇2]𝑃𝑃𝑡𝑡[0, 1] + 𝜆𝜆2𝑃𝑃𝑡𝑡[0, 0] + (𝜇𝜇1

′ + 𝜇𝜇12)𝑃𝑃𝑡𝑡[1, 1] = 0                                     (8) 

−[𝜇𝜇1
′ + 𝜇𝜇2

′ + 3𝜇𝜇12]𝑃𝑃[1, 1] + 𝜆𝜆12𝑃𝑃[0, 0] + (𝜆𝜆2
′ + 𝜆𝜆12)𝑃𝑃[1, 0] + (𝜆𝜆1

′ + 𝜆𝜆12)𝑃𝑃[0, 1] = 0(9) 

𝑃𝑃[0, 0] + 𝑃𝑃[1, 0] + 𝑃𝑃[0, 1] + 𝑃𝑃[1, 1] = 1                                                                              (10) 

The previous set of equations is solved to obtain all possible probabilities and the results 
are given as follows 

𝑃𝑃[0, 1] =
𝑃𝑃[0, 0][𝛼𝛼𝛼𝛼𝜆𝜆 + 𝜇𝜇1𝛼𝛼(𝜆𝜆12 + 𝜆𝜆2) + 𝜆𝜆2𝜇𝜇12(𝜌𝜌 + 𝜇𝜇1) + 𝜎𝜎𝜆𝜆2𝜇𝜇1]

𝜎𝜎𝜇𝜇1𝜇𝜇2 + 𝜇𝜇1𝜇𝜇2𝜇𝜇12 + 𝜇𝜇2𝜇𝜇12𝜌𝜌 + 𝜂𝜂𝜂𝜂𝜇𝜇1 + 𝜂𝜂𝜇𝜇1𝜇𝜇12 + 𝜂𝜂𝜂𝜂𝜇𝜇12 + 𝜇𝜇1𝜇𝜇2𝛼𝛼 + 𝜇𝜇2𝛼𝛼𝛼𝛼
        (11) 

 

𝑃𝑃[1, 0] =
𝑃𝑃[0, 0][𝜂𝜂𝜂𝜂𝜂𝜂 + 𝜎𝜎𝜇𝜇2(𝜆𝜆1 + 𝜆𝜆12) + 𝜆𝜆1𝜇𝜇12(𝜇𝜇2 + 𝜂𝜂) + 𝜇𝜇2𝛼𝛼𝜆𝜆1]

𝜎𝜎𝜇𝜇1𝜇𝜇2 + 𝜇𝜇1𝜇𝜇2𝜇𝜇12 + 𝜇𝜇2𝜇𝜇12𝜌𝜌 + 𝜂𝜂𝜂𝜂𝜇𝜇1 + 𝜂𝜂𝜇𝜇1𝜇𝜇12 + 𝜂𝜂𝜂𝜂𝜇𝜇12 + 𝜇𝜇1𝜇𝜇2𝛼𝛼 + 𝜇𝜇2𝛼𝛼𝛼𝛼
         (12) 

 

𝑃𝑃[1, 1] =
𝑃𝑃[0, 0][𝜂𝜂𝜂𝜂𝜂𝜂 + 𝜌𝜌𝜇𝜇2(𝜆𝜆1 + 𝜆𝜆12) + 𝜂𝜂𝜇𝜇1(𝜆𝜆2 + 𝜆𝜆12) + 𝜇𝜇1𝜇𝜇2𝜆𝜆12]

𝜎𝜎𝜇𝜇1𝜇𝜇2 + 𝜇𝜇1𝜇𝜇2𝜇𝜇12 + 𝜇𝜇2𝜇𝜇12𝜌𝜌 + 𝜂𝜂𝜂𝜂𝜇𝜇1 + 𝜂𝜂𝜇𝜇1𝜇𝜇12 + 𝜂𝜂𝜂𝜂𝜇𝜇12 + 𝜇𝜇1𝜇𝜇2𝛼𝛼 + 𝜇𝜇2𝛼𝛼𝛼𝛼
         (13) 

and  

𝑃𝑃[0, 0] = �1 +
𝛼𝛼𝛼𝛼𝜆𝜆 + 𝜇𝜇1𝛼𝛼(𝜆𝜆12 + 𝜆𝜆2) + 𝜆𝜆2𝜇𝜇12(𝜌𝜌 + 𝜇𝜇1) + 𝜎𝜎𝜆𝜆2𝜇𝜇1

𝜎𝜎𝜇𝜇1𝜇𝜇2 + 𝜇𝜇1𝜇𝜇2𝜇𝜇12 + 𝜇𝜇2𝜇𝜇12𝜌𝜌 + 𝜂𝜂𝜂𝜂𝜇𝜇1 + 𝜂𝜂𝜇𝜇1𝜇𝜇12 + 𝜂𝜂𝜂𝜂𝜇𝜇12 + 𝜇𝜇1𝜇𝜇2𝛼𝛼 + 𝜇𝜇2𝛼𝛼𝛼𝛼

+
𝜂𝜂𝜂𝜂𝜂𝜂 + 𝜎𝜎𝜇𝜇2(𝜆𝜆1 + 𝜆𝜆12) + 𝜆𝜆1𝜇𝜇12(𝜇𝜇2 + 𝜂𝜂) + 𝜇𝜇2𝛼𝛼𝜆𝜆1

𝜎𝜎𝜇𝜇1𝜇𝜇2 + 𝜇𝜇1𝜇𝜇2𝜇𝜇12 + 𝜇𝜇2𝜇𝜇12𝜌𝜌 + 𝜂𝜂𝜂𝜂𝜇𝜇1 + 𝜂𝜂𝜇𝜇1𝜇𝜇12 + 𝜂𝜂𝜂𝜂𝜇𝜇12 + 𝜇𝜇1𝜇𝜇2𝛼𝛼 + 𝜇𝜇2𝛼𝛼𝛼𝛼

+
𝜂𝜂𝜂𝜂𝜂𝜂 + 𝜌𝜌𝜇𝜇2(𝜆𝜆1 + 𝜆𝜆12) + 𝜂𝜂𝜇𝜇1(𝜆𝜆2 + 𝜆𝜆12) + 𝜇𝜇1𝜇𝜇2𝜆𝜆12

𝜎𝜎𝜇𝜇1𝜇𝜇2 + 𝜇𝜇1𝜇𝜇2𝜇𝜇12 + 𝜇𝜇2𝜇𝜇12𝜌𝜌 + 𝜂𝜂𝜂𝜂𝜇𝜇1 + 𝜂𝜂𝜇𝜇1𝜇𝜇12 + 𝜂𝜂𝜌𝜌𝜇𝜇12 + 𝜇𝜇1𝜇𝜇2𝛼𝛼 + 𝜇𝜇2𝛼𝛼𝛼𝛼
�
−1

(14) 

where 

𝜆𝜆 = 𝜆𝜆1 + 𝜆𝜆2 + 𝜆𝜆12, 𝜂𝜂 = 𝜆𝜆1
′ + 𝜆𝜆12,𝜌𝜌 = 𝜆𝜆2

′ + 𝜆𝜆12,𝛼𝛼 = 𝜇𝜇1
′ + 𝜇𝜇12,𝜎𝜎 = 𝜇𝜇2

′ + 𝜇𝜇12  

The steady state availability probability for the system can be obtained from the 
following sum. 

𝐴𝐴 = 𝑃𝑃[0, 0] + 𝑃𝑃[1, 0] + 𝑃𝑃[0, 1]                                              (15) 

3.4 Reliability 

In order to find the reliability function of the system, we assume that all failed states are 
absorbing states and hence set any transition from them equal zero. The system will 
reduce to the following model. 
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 𝑑𝑑𝑃𝑃𝑡𝑡[0, 0]
𝑑𝑑𝑑𝑑

= −𝛽𝛽(𝜆𝜆1 + 𝜆𝜆2 + 𝜆𝜆12)𝑡𝑡𝛽𝛽−1𝑃𝑃𝑡𝑡[0, 0]                                                                   (16) 

 𝑑𝑑𝑃𝑃𝑡𝑡[1, 0]
𝑑𝑑𝑑𝑑

= −𝛽𝛽(𝜆𝜆2
′ + 𝜆𝜆12)𝑡𝑡𝛽𝛽−1𝑃𝑃𝑡𝑡[1, 0] + 𝛽𝛽𝜆𝜆1𝑡𝑡𝛽𝛽−1𝑃𝑃𝑡𝑡[0, 0]                                           (17) 

 𝑑𝑑𝑃𝑃𝑡𝑡[0, 1]
𝑑𝑑𝑑𝑑

= −𝛽𝛽(𝜆𝜆1
′ + 𝜆𝜆12)𝑡𝑡𝛽𝛽−1𝑃𝑃𝑡𝑡[0, 1] + 𝛽𝛽𝜆𝜆2𝑡𝑡𝛽𝛽−1𝑃𝑃𝑡𝑡[0, 0]                                          (18) 

and the initial conditions are given by  

𝑃𝑃0[0, 0] = 1,𝑃𝑃0[1, 0] = 0,𝑃𝑃0[0, 1] = 0 

The previous model forms a set of homogeneous first order differential equations which 
can be solved and the results are obtained as follows. 

𝑃𝑃𝑡𝑡[0, 0] = 𝑒𝑒−(𝜆𝜆1+𝜆𝜆2+𝜆𝜆12 )𝑡𝑡𝛽𝛽 ,                                 𝑃𝑃𝑡𝑡[1, 0] =
𝜆𝜆1 �𝑒𝑒−�𝜆𝜆2

′ +𝜆𝜆12�𝑡𝑡𝛽𝛽 − 𝑒𝑒−(𝜆𝜆1+𝜆𝜆2+𝜆𝜆12 )𝑡𝑡𝛽𝛽 �
𝜆𝜆1 + 𝜆𝜆2 − 𝜆𝜆2

′ , 

𝑃𝑃𝑡𝑡[0, 1] =
𝜆𝜆2 �𝑒𝑒−�𝜆𝜆1

′ +𝜆𝜆12�𝑡𝑡𝛽𝛽 − 𝑒𝑒−(𝜆𝜆1+𝜆𝜆2+𝜆𝜆12 )𝑡𝑡𝛽𝛽 �
𝜆𝜆1 + 𝜆𝜆2 − 𝜆𝜆1

′  

The reliability function of the model is the sum of all working states and is obtained as 
follows. 

𝑅𝑅(𝑡𝑡) = 𝑃𝑃𝑡𝑡[0, 0] + 𝑃𝑃𝑡𝑡[1, 0] + 𝑃𝑃𝑡𝑡[0, 1]  

=    𝑒𝑒−�𝜆𝜆1+𝜆𝜆2+𝜆𝜆12�𝑡𝑡𝛽𝛽 +
𝜆𝜆1 �𝑒𝑒

−�𝜆𝜆2
′ +𝜆𝜆12�𝑡𝑡𝛽𝛽 − 𝑒𝑒−�𝜆𝜆1+𝜆𝜆2+𝜆𝜆12�𝑡𝑡𝛽𝛽�

𝜆𝜆1 + 𝜆𝜆2 −𝜆𝜆2
′ +

𝜆𝜆2 �𝑒𝑒
−�𝜆𝜆1

′ +𝜆𝜆12�𝑡𝑡𝛽𝛽 − 𝑒𝑒−(𝜆𝜆1+𝜆𝜆2+𝜆𝜆12)𝑡𝑡𝛽𝛽�

𝜆𝜆1 + 𝜆𝜆2 −𝜆𝜆1
′  

                                    (19) 

3.5 Mean Time to System failure 

Mean time to system failure (MTTF) is a measure of reliability for non-repairable 
systems. It is the mean time expected until the piece of equipment fails and needs to be 
replaced. MTTF is a statistical value and is calculated as the mean over a long period of 
time and a large number of units. Mean time to the system failure can be obtained from 
the following formula. 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = � 𝑅𝑅(𝑡𝑡) 𝑑𝑑𝑑𝑑
∞

0

                                                                  (20) 

Substituting from equation (19) into equation (20) and computing the integral, an 
expression for mean time to system failure is obtained as follows. 
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𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = Γ �
1
𝛽𝛽

+ 1� �
1

(𝜆𝜆1 + 𝜆𝜆2 + 𝜆𝜆12)
1
𝛽𝛽�

+
𝜆𝜆1

𝜆𝜆1 + 𝜆𝜆2 − 𝜆𝜆2
′ �

1

(𝜆𝜆2
′ + 𝜆𝜆12)

1
𝛽𝛽�
−

1

(𝜆𝜆1 + 𝜆𝜆2 + 𝜆𝜆12)
1
𝛽𝛽�
�

+
𝜆𝜆2

𝜆𝜆1 + 𝜆𝜆2 − 𝜆𝜆1
′ �

1

(𝜆𝜆1
′ + 𝜆𝜆12)

1
𝛽𝛽�
−

1

(𝜆𝜆1 + 𝜆𝜆2 + 𝜆𝜆12)
1
𝛽𝛽�
��                                         (21) 

3.6 Special Case 

As a special case of our system, let us suppose that 𝛽𝛽 = 1 and hence the failure and repair 
rates of the system will be constant follow bivariate exponential distribution. The 
modified model with constant rates will be given by the following set of differential 
equations. 

 𝑑𝑑𝑃𝑃𝑡𝑡[0, 0]
𝑑𝑑𝑑𝑑

= −(𝜆𝜆1 + 𝜆𝜆2 + 𝜆𝜆12)𝑃𝑃𝑡𝑡[0, 0] + 𝜇𝜇1𝑃𝑃𝑡𝑡[1, 0] + 𝜇𝜇2𝑃𝑃𝑡𝑡[0, 1] + 𝜇𝜇12𝑃𝑃𝑡𝑡[1, 1]           (22) 

 𝑑𝑑𝑃𝑃𝑡𝑡[1, 0]
𝑑𝑑𝑑𝑑

= −(𝜆𝜆2
′ + 𝜆𝜆12 + 𝜇𝜇1)𝑃𝑃𝑡𝑡[1, 0] + 𝜆𝜆1𝑃𝑃𝑡𝑡[0, 0] + (𝜇𝜇2

′ + 𝜇𝜇12)𝑃𝑃𝑡𝑡[1, 1]                     (23) 

 𝑑𝑑𝑃𝑃𝑡𝑡[0, 1]
𝑑𝑑𝑑𝑑

= −(𝜆𝜆1
′ + 𝜆𝜆12 + 𝜇𝜇2)𝑃𝑃𝑡𝑡[0, 1] + 𝜆𝜆2𝑃𝑃𝑡𝑡[0, 0] + (𝜇𝜇1

′ + 𝜇𝜇12)𝑃𝑃𝑡𝑡[1, 1]                     (24) 

 𝑑𝑑𝑃𝑃𝑡𝑡[1, 1]
𝑑𝑑𝑑𝑑

= −(𝜇𝜇1
′ + 𝜇𝜇2

′ + 3𝜇𝜇12)𝑃𝑃𝑡𝑡[1, 1] + 𝜆𝜆12𝑃𝑃𝑡𝑡[0, 0] + 

+(𝜆𝜆2
′ + 𝜆𝜆12)𝑃𝑃𝑡𝑡[1, 0] + (𝜆𝜆1

′ + 𝜆𝜆12)𝑃𝑃𝑡𝑡[0, 1]    (25) 

The initial conditions for the system are given by 

𝑃𝑃0[0, 0] = 1,𝑃𝑃0[1, 0] = 0,𝑃𝑃0[0, 1] = 0,𝑃𝑃0[1, 1] = 0     

In order to find solutions for the previous model, we take Laplace transformation of the 
set of equations from (22) to (25) and the result model is shown as follows. 

(𝑠𝑠 + 𝜆𝜆1 + 𝜆𝜆2 + 𝜆𝜆12)𝑃𝑃𝑠𝑠[0, 0] − 𝜇𝜇1𝑃𝑃𝑠𝑠[1, 0] − 𝜇𝜇2𝑃𝑃𝑠𝑠[0, 1] − 𝜇𝜇12𝑃𝑃𝑠𝑠[1, 1] = 1                       (26) 

(𝑠𝑠 + 𝜆𝜆2
′ + 𝜆𝜆12 + 𝜇𝜇1)𝑃𝑃𝑠𝑠[1, 0] − 𝜆𝜆1𝑃𝑃𝑠𝑠[0, 0] − (𝜇𝜇2

′ + 𝜇𝜇12)𝑃𝑃𝑠𝑠[1, 1] = 0                                 (27) 

(𝑠𝑠 + 𝜆𝜆1
′ + 𝜆𝜆12 + 𝜇𝜇2)𝑃𝑃𝑠𝑠[0, 1] − 𝜆𝜆2𝑃𝑃𝑠𝑠[0, 0] − (𝜇𝜇1

′ + 𝜇𝜇12)𝑃𝑃𝑠𝑠[1, 1] = 0                                 (28) 

(𝑠𝑠 + 𝜇𝜇1
′ + 𝜇𝜇2

′ + 3𝜇𝜇12)𝑃𝑃𝑠𝑠[1, 1] − 𝜆𝜆12𝑃𝑃𝑠𝑠[0, 0] − (𝜆𝜆2
′ + 𝜆𝜆12)𝑃𝑃𝑠𝑠[1, 0] − 

−(𝜆𝜆1
′ + 𝜆𝜆12)𝑃𝑃𝑠𝑠[0, 1] = 0            (29) 

The previous system is consisted of a set of linear equations which can be solved and the 
state probabilities of the system can be obtained by taking the inverse Laplace 
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transformations of the results. The availability function can be calculated from the 
following sum of the probabilities of the working states.  

𝐴𝐴(𝑡𝑡) = 𝐿𝐿−1{𝑃𝑃𝑠𝑠[0, 0] + 𝑃𝑃𝑠𝑠[1, 0] + 𝑃𝑃𝑠𝑠[0, 1]} 

= 𝑃𝑃𝑡𝑡[0, 0] + 𝑃𝑃𝑡𝑡[1, 0] + 𝑃𝑃𝑡𝑡[0, 1]                                            (30) 

4. Numerical Example 

Suppose that the parameters of the system have the following numerical values. 

𝜆𝜆1 = 0.01, 𝜆𝜆2 = 0.02, 𝜆𝜆12 = 0.03, 𝜆𝜆1
′ = 0.04, 𝜆𝜆2

′ = 0.05,𝜇𝜇1 = 0.06,𝜇𝜇2 = 0.07,𝜇𝜇12 = 0.08, 

𝜇𝜇1
′ = 0.09,𝜇𝜇2

′ = 0.095,𝛽𝛽 = 1.1 

Substituting these values in the system of equations (1)-(4) and using Maple package to 
solve the system of differential equations. Numerical solutions for the availability 
function are obtained and the results are shown in Figure 2. 

 

Fig.2: The availability function versus time 

Steady state availability probability is computed from equation (15) and the result is 

 
 

In order to find the reliability function, we substitute the numerical values in equation 
(19) and hence the reliability function is obtained as follows and the result versus time is 
shown graphically in Figure 3. 
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Fig.3: The reliability function versus time 

The result for the mean time to system failure is obtained by using equation (21) and the 
results are illustrated graphically in Figures 4 and 5. 

Fig.4: The mean time to system failure versus 𝜆𝜆1 and 𝜆𝜆12  
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Fig.5: The mean time to system failure versus 𝜆𝜆2 and 𝜆𝜆12  

As a special case we suppose that  𝛽𝛽 = 1 and hence substituting the numerical values in 
the model (26)-(29) and using the equation (30), the availability function is obtained as 
follows and the results are shown graphically in Figure (6).  

 

 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 8, Issue 2, February-2017                                                         388 
ISSN 2229-5518 

IJSER © 2017 
http://www.ijser.org 

Fig.6: The availability function versus time 

5. Conclusion 

When components of a system fail, they do not necessarily fail independently of each 
other. The failures may be synchronised, and these cases have a common cause. Bivariate 
Weibull distribution is suitable and more flexible to model the life times of the dependent 
units. Bivariate Weibull model is a generalization of the bivariate exponential model. 
Markov model is a tool to analyze the availability and reliability of a system. It is not 
easy to solve system of differential equations to find the state probabilities of the model 
and in this case, numerical solutions can be obtained instead of analytical solutions.     
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