Arabic Sentiment Analysis approaches: An analytical survey

Gehad S. Kaseb, Mona F. Ahmed

Abstract— Web 2.0 has contributed tremendously towards the rapid growth of web contents. People are motivated to develop a system that can identify and classify opinions which are represented in an electronic text. Because of its valuable return in many fields as ecommerce, politics, tourism, etc., Sentiment Analysis (SA) is one of the most active research areas in Natural Language Processing (NLP). Most research efforts in the area of opinion mining deal with English text and little work is done with Arabic text. This paper provides a summarization of the work done in Arabic SA. The paper also presents some challenges and open issues that need to be addressed and explored in more depth in order to improve this field.

Index Terms— Opinion Mining, Sentiment Analysis, NLP, Classification, Machine learning, Lexicon.

1 INTRODUCTION

Nowadays, the web has become a read and write platform where users are no longer consumers of information but producers of it as well. User-generated content written in natural language with unstructured free text is becoming an integral part of the web mainly because of the dramatic increase of social network web sites, video sharing websites, online news, online reviews sites, online forums and blogs. Because of this proliferation of user-generated content, web content mining is gaining considerable attention due to its importance for many businesses, governmental agencies and institutions.

The Arabic language is a collection of different variants where there is only one formal written standard variant in the media and education through the Arab world [33]. This variant is called Modern Standard Arabic (MSA), while others are called Arabic dialects. There is a high degree of difference between MSA and Arabic dialects. One interesting fact is that the MSA is not of any Arab's native languages.

MSA is the official language of the Arab world and it is syntactically, morphologically, and phonologically based on classical Arabic [33]. Classical Arabic is the language of the Qur'an (Islam's Holy Book) while Arabic dialects are true native language forms, they are used in informal daily communication and they are not taught in schools or standardized [33]. In contrast to dialects, MSA is usually written not spoken. Arabic dialects are poorly related to classical Arabic. There are many Arabic dialects and they are different in many aspects. One way for dividing Arab dialects is based on the geographic aspect [33] as follows:

• The most common dialect is Egyptian Arabic, which covers the Nile valley (Egypt and Sudan)

• Levantine Arabic covers the dialects of Syria, Lebanon, Jordan, Palestine and Israel.

• Gulf Arabic includes the dialects of Gulf countries (United Arab Emirates, Saudi Arabia, etc.).

• Maghrebi (North African) Arabic which cover dialects of Algeria, Tunisia, and Morocco.

• Iraqi Arabic covers Iraq and combines elements of Levantine and Gulf dialects.

Yemenite Arabic.

Each dialect group is completely linguistically homogeneous.

Sentiment Analysis (SA) is the study of people's comments, reviews and opinions about a specific object such as an event, an item, a topic, a news feed, a mobile application, or individuals. Sentiment Classification (SC) approaches can be grouped into three main categories: lexicon-based, Machine Learning (ML) and Hybrid approaches. Lexicon based approaches are unsupervised approaches that depend on external lexica to classify sentiments. ML approaches, are mainly supervised approaches that rely on the existence of labeled training documents/phrases. The main classifiers used in ML are Support Vector Machines (SVM), Naïve Bayesian (NB), Decision Trees (DT), K-Nearest Neighbor (KNN), Multinomial Naive Bayes (MNB), Bernoulli Naive Bayes (BNB), and Stochastic Gradient Descent (SGD). Hybrid approaches are those that combine lexicon and ML techniques.

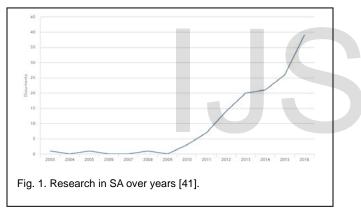
According to the literature, only little work has been carried out on Arabic language SA. Arabic language is a semitic language with rich morphology. Classical, Modern Standard Arabic (MSA), and colloquial are the three main variants of Arabic. Arabic is the fifth most widely used language in the world, and is the first language of more than 422 million people. The Arabic language is written from right to left and consists of 28 letters with no upper or lower cases.

The field of Arabic SA has been receiving a lot of attention since its rather shy start a decade ago. Recently, many teams have been making significant contributions to this field. The interested reader is referred to the following surveys [1], [2], [35] and [12] to learn more about the work in this field.

Only a few survey papers can be found in the literature summarizing recent research in the field of Arabic SA. The authors of [12] provide a comprehensive survey of existing lex-

Gehad S. Kaseb is currently pursuing master's degree in Computer Engineering at Cairo University, Egypt, PH-0201141213594. E-mail: Gehad.Kaseb@gmail.com

Mona F. Ahmed is Assistant professor in Computer Engineering at Cairo University, Egypt, Email: <u>Mona Farouk@eng.cu.edu.eg</u>


icon, machine learning, and hybrid sentiment classification techniques for Arabic language. Thirty-two papers were surveyed.

The authors of [1] and [2] provide surveys of the relatively few references detailing the different methods for building Arabic subjectivity and SA systems from the years 2010-2013 and 2004-2012 respectively, at a time when research on Arabic SA was so limited. The authors of [3] present a survey of Arabic tweets SA referencing only nine methodologies. The authors of [35] provide an extended analytical study in SA.

The remainder of this paper is organized as follows: section 2 explores SA related works. Section 3 presents a discussion with the summarization of the presented work. Section 4 shows Arabic language challenges. Section 5 presents concluding remarks. Section 6 discusses the future plans in this field.

2 RELATED WORK

In order to spot new research advancement in SA of Arabic, an exhaustive search process was performed using the Scopus databases. A total of 133 papers were found since 2003. The number of research on Arabic SA has witnessed an enormous increase in recent years; it reached 39 papers in 2016 up to this date. Figure 1 exhibits this increase.

There are 27 papers for Jordon, 18 for Egypt and 17 for Saudi Arabia and USA. Figure 2 shows paper statistics per country

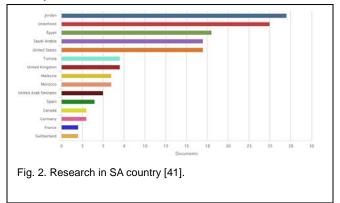
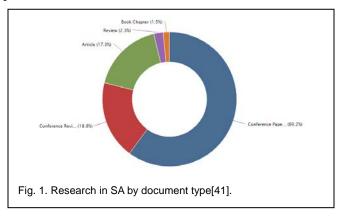



Figure 3 shows paper statistics per publishing document type.

SENTIMENT ANALYSIS DISCUSSION 3

It is obvious from the literature that, in contrast to the work in English language, work in Arabic SA is very little, with a lot of potential techniques and approaches still not applied yet. The following tables summarize work - to the best of our knowledge- related to Arabic SA published starting from 2011 with more concentration on much more recent work published in 2016. For simplicity the summary of the analyzed work is formulated in a table focusing on certain important parameters written in the following order:

Work reference.

• The publishing year of this work.

• The sentiment analysis level which can be document or sentence level

- The used Language and also the used dialects
- Whether the article is domain-oriented or not.

• The used polarities; the majority of papers used positive and negative polarities, however, some papers worked with neutral class or objective class and others worked with 5-star rating system.

• The kind of preprocessing and filtering used.

• The type of classification which may be ML, lexiconbased or hybrid.

- The used software if mentioned.
- The context and the dataset size used in experiments.

• The strengths of the applied methodology; it may be the authors opinion of the referenced work or this survey point of view.

• The weaknesses of the applied methodology; it is this survey own point of view.

• The results, the majority of papers use accuracy, however some papers use precision and recall.

- The contributions of this work in the field.
- The suggested future work.

LISER © 2016 http://www.ijser.org

Any empty cells are unknown information for this work.

bines three methods.

TABLE 1SUMMARIZATION OF [5]

Paper	[5]		
Publishing year	2011		
SA Level	Document level		
The Language	Arabic		
Domain Oriented	Yes (Multi-domain: Education, Sports, and Politics)		
Polarity	Positive & Negative		
Preprocessing & Filtering	 Stripping out the HTML tags and non-textual contents Separating the documents into posts and Converting each post into a single file. Normalizing some alphabets Removing some repeated letters 		
	 Correcting some of the wrong spelling words Tokenization Removing stop words Applying Arabic light stemmer Using Term Frequency-Inverse Document Frequency (TF-IDF) weight Removing some terms with a low frequency of occurrence. 		
The type of	lexicon-based opinion classifier, then Maximum		
classification	entropy method and finally k-nearest method		
Software Used	SentiStrength [24]		
The context and	Total of 1143 posts which contain 8793 Arabic statements with average of 7.7 statements in each post.		
the dataset size	The accuracy almost improved from 50% using one		
Strengths	method, 60% using two method and 80% using three methods which is a satisfactory performance especially for complex language such as Arabic.		
Weaknesses	No Arabic-specific features		
Results	Accuracy = 80.29%		
Contributions	Accuracy = 80.29% A combined approach that automatically extracts opinions from Arabic documents that consists of three successive methods; At the beginning, lexicon based method is used to classify as much documents as possible. The resultant classified documents are used as training set for the maximum entropy method which subsequently classifies some other documents. Finally, k-nearest method used the classified documents from lexicon based method and maximum entropy as training set and classifies the rest of the document		
Future Work	training set and classifies the rest of the document The experimental results further show that recall and precision of positive documents are better than the negative one. That means further studies should be done for mining of negation of Arabic statements. Also, in the future, it is planned to extend the work to be able to extract features from Arabic opinioned statements		

714

TABLE 2 SUMMARIZATION OF [8]

Paper [8] Publishing year 2011 SA Level Sentence Level The Language Arabic and English Domain Oriented No Polarity Positive & Negative Preprocessing & - Filtering - Stemming - Stemming - The type of classification Filtering tokens whose length was less than two characters. The type of classification SVM, NB using unigrams Software Used Rapid Miner [21], PROMT [34] as an online translation The context and OCA contains 500 reviews in Arabic
SA Level Sentence Level The Language Arabic and English Domain Oriented No Polarity Positive & Negative Preprocessing & - Tokenization Filtering - Removing Arabic stop words - Stemming - Filtering tokens whose length was less than two characters. The type of classification SVM, NB using unigrams To-IDF has been used as a weighting scheme. Software Used
The Language Arabic and English Domain Oriented No Polarity Positive & Negative Preprocessing & - Tokenization Filtering - Removing Arabic stop words - Stemming - Filtering tokens whose length was less than two characters. The type of classification SVM, NB using unigrams T-IDF has been used as a weighting scheme. Software Used
Domain Oriented No Polarity Positive & Negative Preprocessing & Filtering - Tokenization Filtering - Removing Arabic stop words - Stemming - Filtering tokens whose length was less than two characters. The type of classification SVM, NB using unigrams TF-IDF has been used as a weighting scheme. Software Used Rapid Miner [21], PROMT [34] as an online translation
Polarity Positive & Negative Preprocessing & Filtering - Tokenization Filtering - Removing Arabic stop words - Stemming - Filtering tokens whose length was less than two characters. The type of classification SVM, NB using unigrams TF-IDF has been used as a weighting scheme. Software Used Rapid Miner [21], PROMT [34] as an online translation
Preprocessing & - Tokenization Filtering - Removing Arabic stop words - Stemming - Stemming - Filtering tokens whose length was less than two characters. The type of classification SVM, NB using unigrams Tor-IDF has been used as a weighting scheme. Software Used Rapid Miner [21], PROMT [34] as an online translation
Filtering - Removing Arabic stop words Filtering - Stemming - Filtering tokens whose length was less than two characters. The type of classification SVM, NB using unigrams TF-IDF has been used as a weighting scheme. Software Used Rapid Miner [21], PROMT [34] as an online translation
- Stemming - Filtering tokens whose length was less than two characters. The type of classification TF-IDF has been used as a weighting scheme. Software Used Rapid Miner [21], PROMT [34] as an online translation
- Filtering tokens whose length was less than two characters. SVM, NB using unigrams classification TF-IDF has been used as a weighting scheme. Software Used Rapid Miner [21], PROMT [34] as an online translation
two characters. The type of classification SVM, NB using unigrams TF-IDF has been used as a weighting scheme. Software Used Rapid Miner [21], PROMT [34] as an online translation
The type of classification SVM, NB using unigrams TF-IDF has been used as a weighting scheme. Software Used Rapid Miner [21], PROMT [34] as an online translation
classification TF-IDF has been used as a weighting scheme. Software Used Rapid Miner [21], PROMT [34] as an online translation
Software Used Rapid Miner [21], PROMT [34] as an online translation
The context and OCA contains 500 reviews in Arabic
the dataset size EVOCA contains 500 reviews in English
 250 positive reviews for each corpus.
 250 negative reviews for each corpus.
Strengths After accomplishing several experiments using different
n-grams models, the obtained results with bi-grams and
trigrams were very similar to unigrams.
With regard to the machine learning algorithm, it is clear that SVM works better in all cases.
In all cases the stemming process gets worse results
except when using SVM on the EVOCA corpus. So for
the OCA corpus, removing stemmer always improves
the results
Weaknesses Using translation system for building EVOCA; so it's
not real reviews
Results Results with SVM:
OCA without stem P=.8699, R=.9480 & F1=.9073
EVOCA with stem P=.9007, R=.8680 & F1=.8840
Contributions Presenting OCA and EOCA which are freely available
for the research
Future Work

The authors in [8] presented Opinion Corpus for Arabic

The authors of [16] presented SAMAR, a system for Subjectivity and Sentiment Analysis (SSA) for Arabic social media genres.

TABLE 3SUMMARIZATION OF [16]

Paper	[16]			
Publishing year	2012			
SA Level	Sentence			
The Language	Arabic (MSA and Dialect Arabic (DA))			
Domain Oriented	No			
Polarity	Positive , Negative and Neutral			
Preprocessing &	- Tokenization (TOK)			
	- Lemmatization (LEM)			
Filtering				
The type of	A lexicon manually created of 3982 adjectives.			
classification	Using SVM light [31].			
	A two-stage classification approach; first OBJ or SBJ; second Positive or Negative			
	Features used : POS tagging (the reduced tagsets RTS			
	and the extended reduced tag set ERTS), UNIQUE			
	(Q) feature, Gender, User ID, Document ID, Polarity			
	Lexicon (PL)			
Software Used	AMIRA [26] for processing of MSA			
The context and	DARDASHA (DAR): 2798 chat from maktoob			
the dataset size	TAGREED (TGRD): 3015 Arabic tweets			
	TAHRIR (THR): 3008 MSA Wikipedia Talk Pages			
	MONTADA (MONT): 3097 forum MSA and DA			
Strengths	 Tackling a number of research questions 			
	 Exploiting data from four different social 			
	media genres.			
Weaknesses	 Disregarding the neutral class 			
Results	Best results in this case			
	 DAR dataset: 			
	For Objective/Subjective classification accuracy =			
	95.83 using TOK+ERTS+PL+Q3			
	For Positive/Negative classification accuracy=71.28			
	using LEM+PL+GEN			
	 TGRID dataset: 			
	For Objective/Subjective classification accuracy =			
	72.52 using LEM+ERTS+PL			
	For Positive/Negative classification accuracy=65.87			
	using TOK+ERTS+PL+GEN+LV+UID			
	 THR dataset: 			
	For Objective/Subjective classification accuracy =			
	83.33 using TOK+ERTS +PL+Q3			
	For Positive/Negative classification accuracy=67.44			
	using TOK+PL+GEN+UID			
	 MONT dataset: 			
	For Objective/Subjective classification accuracy =			
	84.19 using LEM+RTS+PL+Q3			
	For Positive/Negative classification accuracy =81.36			
	using TOK+PL+Q3			
Contributions	Arriving at these conclusions:			
	 Linear kernels yield the best performance. 			
	 Adding POS information improves 			
	accuracy and F score in most cases			
	 RTS outperforms ERTS with TOK, and 			
	the opposite with LEM where ERTS			
	outperforms RTS, however, overall			
	TOK+RTS yields the highest performance			
	of 91.49% F score on subjectivity			
	classification for the DAR dataset.			
	 For the TGRD and THR data sets, 			
	TOK+ERTS are equal to or outperform the			
	other conditions on subjectivity			
	1 10 11			
	classification.			
Future Work	Classification. Carring out a detailed error analysis of SAMAR in an attempt to improve its performance.			

TABLE 4SUMMARIZATION OF [4]

Paper Reference	[4]	
Publishing year	2012	
SA Level	Sentence level	
The Language	Arabic (Egyptian dialect)	
Domain Oriented	Yes	
Polarity	Positive and Negative	
Preprocessing &	- Removing the user-names	
Filtering	 Removing the pictures 	
	 Removing the hash tags 	
	 Removing the URLs 	
	 Removing all non-Arabic words. 	
	 Removing stop-words 	
The type of	The feature vectors applied to the classifier	
classification	contained the term frequency, as using statistical	
	machine learning.	
	First the process starts by extracting all the	
	unigrams and bigrams in the corpus that exceed	
	certain threshold.	
	Ignoreing negation for simplicity in experiments	
Software Used	WEKA [30]	
The context and the	1000 tweets consisting of	
dataset size	 500 positive and 500 negative. 	
Strengths	Developing Egyptian stop words list	
Weaknesses	 Using small size dataset 	
	 Ignoring negation 	
Results	Get maximum result using SVM, unigrams only,	
	after removing stop-words	
	 Accuracy = 0.726 	
	 Precision = 0.728 	
	- Recall = 0.726	
	 F-Measure = 0.725 	
Contributions	Aniving at these conclusions:	
	 SVM produces more accurate results 	
	than the NB.	
	 Regarding the n-gram model, bigram 	
	model didn't enhance the results using	
	the unigram model.	
Future Work	Improving corpus using techniques such as	
	enlarging or fine-grained annotation	
	Adding some stylistics features, in addition to	
	considering adding some semantic features thus	
	creating a hybrid approach that combines both the	
	ML and SO approaches.	
	Re-tweeting gives a misleading boosting to the weight of the terms in the sentence. The problem	
	of opinion spamming or untruthful opinions could	
	affect the accuracy	
	Building a more comprehensive list of all the	
	positive and negative sentiment words for the	
	Egyptian dialect also negations and valence shifters.	
	Neutral sentiment tweets has to be considered as in	
	real world applications neutral tweets cannot be	
	ignored.	
L	-9	

International Journal of Scientific & Engineering Research, Volume 7, Issue 10, October-2016 ISSN 2229-5518

The authors of [13] conducted a study to compare the effec- for Arabic comments. tiveness of two free online SA tools.

TABLE 5 SUMMARIZATION OF [13]

Paper	[13]		
Publishing year	2013		
SA Level	Sentence		
The Language	Arabic and English		
Domain Oriented	No		
Polarity	Positive and Negative		
Preprocessing &	 Removing spammed and noisy comments. 		
Filtering	 Removing duplicate comments and reviews 		
The type of	Building three dictionaries Arabic, English, Emotions.		
classification	 The English dictionary has 3,392 words/phrases of which 947 positive, 1100 		
	negative, and 1,345 neutral. - The Arabic dictionary has 1,159 much (shares of which 427 much in 206		
	words/phrases of which 427 positive, 306		
	negative, and 426 neutral. - The Emoticons dictionary has 204		
	Emoticons of which 71 positive, 70		
	negative, and 99 neutral.		
	Using NB, SVM, and KNN		
Software Used	SocialMention [27] and Twendz [28]		
The context and	4,050 English/Arabic comments and reviews generated		
the dataset size	by the users of social network sites.		
Strengths	The results indicate that SocialMention is more		
	effective than its counterpart (Twendz) to identify the		
	polarity of each entry in the collected dataset.		
	The conducted results showed that the Naïve Bayes algorithm yields the best results for both		
	SocialMention and Twendz tools.		
Weaknesses	Using a small dataset compared to dictionaries.		
Results	Using Naïve Bayes algorithm, the Twendz tool yields		
	an accuracy of 45.3% while the SocialMention tool		
	yields an accuracy of 66.2%.		
	Using SVM algorithm yields an accuracy of 43.3% for		
	the Twendz tool, and an accuracy of 65.4% for the SocialMention tool		
	Using K-NN algorithm when $K = 1$ yields an accuracy		
	of 44.4% for the Twendz tool, and an accuracy of		
	62.5% for the SocialMention tool.		
Contributions	Evaluating the two free online SA tools, by finding the		
	classification accuracy of each tool and developing		
	dictionary-based classifier.		
	Building three dictionaries Arabic, English, Emotions		
Future Work	Using a larger dataset, besides testing more free online		
	SA tools.		

Paper	[36]	
Publishing year	2013	
SA Level	Sentence level	
The Language	Arabic (Egyptian dialects)	
Domain Oriented	Yes	
Polarity	Supportive 'y', Attacking 'n', and Neutral 'u'.	
Preprocessing &	 Removing stop words from the comments 	
Filtering	returning the most important words.	
	 Removing very long comments with 	
	number of words -after stop word	
	removal- more than 150 words as abou	
	80% of very long comments in most case	
	are advertisements for pages on Facebook	
	 Removing the redundant comments; If two 	
	comments have similarity value equal to	
	or more than a threshold (0.4), removin	
	the shortest one.	
	 Removing special characters like #, @, ! 	
	% and others.	
	 Removing the redundant letters 	
	 Segmentation of comments into words 	
	spaces, commas, parenthesis and new lin for identifying words .	
The type of	- Classifiers:	
classification	Using SVM, NB and DT classifiers	
classification	 Feature extractors. 	
	Three groups of features:	
	1) Common Words between Post and Comment	
	Features Feature 1: Number of Words in Post Only Feature 2: Number of Words in Comment Only	
	Feature 3: Number of Words Common between Pos	
	and Comment	
	2) All Words in Posts and Comments Features	
	the union of all words in the posts and comments.	
	Each word (feature) takes one of the four values:	
	"C "if the word is not in the post or the comment	
	"M" if the word is in the post only	
	"N" if the word is in the comment only	
	"H" if the word is in both of the post and the commer	
	3) Negation and Relevance Features	
	Feature 1: Number of Negation Words in Post Feature 2: Number of Negation Words in Commer	
	Feature 3: Relevance with Post	
Software Used	WEKA	
The context and	2400 comments collected from 220 facebook posts	
the dataset size	800 neutral, 800 supportive, and 800 attacking.	
Strengths	Comparing different machine learning algorithms with	
ou cagtus	different features.	
Weaknesses	Counting only five different negation words, wherea	
	there are many more than these	
Results	Naive Bayes precision and recall = 59.9%.	
	Decision Tree precision and recall = 69.4%	
	SVM precision and recall = 73.4%.	
Contributions	Arriving at these conclusions:	
	 SVM gives the best results 	
	 Adding negation words and similarity 	
	features for all words in posts and	

TABLE 6 SUMMARIZATION OF [36] International Journal of Scientific & Engineering Research, Volume 7, Issue 10, October-2016 ISSN 2229-5518

The authors of [6] compared the lexicon-based and supervised approaches

TABLE 7 SUMMARIZATION OF [6]

Paper	[6]			
Publishing	2013			
year				
SA Level	Sentence Level			
The Language	Arabic (MSA and the Jordanian dialect)			
Domain	No			
Oriented				
Polarity	Positive & Negative			
Preprocessing	- Correcting misspellings			
& Filtering	 Removing the repeated letters 			
-	 Using naive algorithm for repeated letters 			
	which simply counts the number of letters in			
	each word. If the number exceeds 5, then it			
	eliminates the repeated letters and looks it up in the MS_Word dictioners			
	the MS Word dictionary.			
	 Removing all stop-words. 			
	Normalization process for the letters.			
The type of	For supervised, SVM, NB, DT, and KNN where K=9.			
classification	Use lexicon with 3479 words consisting of 1262 positiv			
	words and 2217 negative ones.			
	Unigram technique for feature extraction			
	lexicon L.			
	OUTPUT: S_= = (P, Ng, or Nt), where P: Positive, Ng: Negative, Nr. Newtral.			
	INITIALIZATION: Sum = 0, where sum: accumulates			
	the polarity of all tokens t_{class} in T . Begin			
	 For each t, ∈ T do 			
	2. Search for t, in \mathcal{L} 3. If t, \in L then			
	4. Sum == Sum + A _{nton} 5. End If			
	5. End For 6. End For 7. If Sam ≥ 0 then			
	9. Else If Sum < 0 then			
	10. $S_{ac} = N_{B}$			
	11. End 12. S ₂ = Nr 13. End If End			
	13. End If End			
	Fig. 4. Used Algorithm in [6].			
	Fig. 4. Used Algorithm in [0].			
	Mrs. Wood distingues 1991 as a sufficiency for minor alling			
Software Used	MS Word dictionary [22] as a reference for misspelling correction and selecting the first word suggested by it.			
Software Used	correction and selecting the first word suggested by it			
Software Used	correction and selecting the first word suggested by it automatically.			
Software Used	correction and selecting the first word suggested by it automatically. Khoja stemmer tool [23] as a reference for a list of Arabic			
Software Used	correction and selecting the first word suggested by it automatically. Khoja stemmer tool [23] as a reference for a list of Arabic stop-words			
Software Used	correction and selecting the first word suggested by it automatically. Khoja stemmer tool [23] as a reference for a list of Arabic			
Software Used	correction and selecting the first word suggested by it automatically. Khoja stemmer tool [23] as a reference for a list of Arabic stop-words SentiStrength [24] as a reference for 300 seed words translated for lexicon			
Software Used	correction and selecting the first word suggested by it automatically. Khoja stemmer tool [23] as a reference for a list of Arabic stop-words SentiStrength [24] as a reference for 300 seed words translated for lexicon RapidMiner software [21] for supervised experiments 2000 labeled tweets			
	correction and selecting the first word suggested by it automatically. Khoja stemmer tool [23] as a reference for a list of Arabic stop-words SentiStrength [24] as a reference for 300 seed words translated for lexicon RapidMiner software [21] for supervised experiments 2000 labeled tweets			
The context and the dataset size	correction and selecting the first word suggested by it automatically. Khoja stemmer tool [23] as a reference for a list of Arabic stop-words SentiStrength [24] as a reference for 300 seed words translated for lexicon RapidMiner software [21] for supervised experiments 2000 labeled tweets - 1000 positive tweets - 1000 negative tweets			
The context and the dataset	correction and selecting the first word suggested by it automatically. Khoja stemmer tool [23] as a reference for a list of Arabic stop-words SentiStrength [24] as a reference for 300 seed words translated for lexicon RapidMiner software [21] for supervised experiments 2000 labeled tweets - 1000 positive tweets - 1000 negative tweets In KNN, using K=9 gives the best accuracy than K= 1, 2, 3			
The context and the dataset size	correction and selecting the first word suggested by it automatically. Khoja stemmer tool [23] as a reference for a list of Arabic stop-words SentiStrength [24] as a reference for 300 seed words translated for lexicon RapidMiner software [21] for supervised experiments 2000 labeled tweets - 1000 positive tweets - 1000 negative tweets In KNN, using K=9 gives the best accuracy than K= 1, 2, 3 and 4			
The context and the dataset size	correction and selecting the first word suggested by it automatically. Khoja stemmer tool [23] as a reference for a list of Arabic stop-words SentiStrength [24] as a reference for 300 seed words translated for lexicon RapidMiner software [21] for supervised experiments 2000 labeled tweets - 1000 positive tweets - 1000 negative tweets In KNN, using K=9 gives the best accuracy than K= 1, 2, 3 and 4 SVM and NB have better accuracy than other classifiers			
The context and the dataset size	correction and selecting the first word suggested by it automatically. Khoja stemmer tool [23] as a reference for a list of Arabic stop-words SentiStrength [24] as a reference for 300 seed words translated for lexicon RapidMiner software [21] for supervised experiments 2000 labeled tweets - 1000 positive tweets - 1000 positive tweets In KNN, using K=9 gives the best accuracy than K= 1, 2, 3 and 4 SVM and NB have better accuracy than other classifiers when it comes to text classification.			
The context and the dataset size	correction and selecting the first word suggested by it automatically. Khoja stemmer tool [23] as a reference for a list of Arabic stop-words SentiStrength [24] as a reference for 300 seed words translated for lexicon RapidMiner software [21] for supervised experiments 2000 labeled tweets - 1000 positive tweets - 1000 negative tweets In KNN, using K=9 gives the best accuracy than K= 1, 2, 3 and 4 SVM and NB have better accuracy than other classifiers when it comes to text classification. Light-stemming gives better results than other stemming			
The context and the dataset size	correction and selecting the first word suggested by it automatically. Khoja stemmer tool [23] as a reference for a list of Arabic stop-words SentiStrength [24] as a reference for 300 seed words translated for lexicon RapidMiner software [21] for supervised experiments 2000 labeled tweets - 1000 positive tweets - 1000 negative tweets In KNN, using K=9 gives the best accuracy than K= 1, 2, 3 and 4 SVM and NB have better accuracy than other classifiers when it comes to text classification. Light-stemming gives better results than other stemming techniques			
The context and the dataset size Strengths	correction and selecting the first word suggested by it automatically. Khoja stemmer tool [23] as a reference for a list of Arabic stop-words SentiStrength [24] as a reference for 300 seed words translated for lexicon RapidMiner software [21] for supervised experiments 2000 labeled tweets - 1000 positive tweets - 1000 negative tweets In KNN, using K=9 gives the best accuracy than K= 1, 2, 3 and 4 SVM and NB have better accuracy than other classifiers when it comes to text classification. Light-stemming gives better results than other stemming techniques The bigger the lexicon is, the better the results are.			
The context and the dataset size	correction and selecting the first word suggested by it automatically. Khoja stemmer tool [23] as a reference for a list of Arabic stop-words SentiStrength [24] as a reference for 300 seed words translated for lexicon RapidMiner software [21] for supervised experiments 2000 labeled tweets - 1000 positive tweets - 1000 negative tweets In KNN, using K=9 gives the best accuracy than K= 1, 2, 3 and 4 SVM and NB have better accuracy than other classifiers when it comes to text classification. Light-stemming gives better results than other stemming techniques The bigger the lexicon is, the better the results are. No neutral class, small lexicon size and no intensive			
The context and the dataset size Strengths Weaknesses	correction and selecting the first word suggested by it automatically. Khoja stemmer tool [23] as a reference for a list of Arabic stop-words SentiStrength [24] as a reference for 300 seed words translated for lexicon RapidMiner software [21] for supervised experiments 2000 labeled tweets - 1000 positive tweets - 1000 negative tweets - 1000 negative tweets In KNN, using K=9 gives the best accuracy than K= 1, 2, 3 and 4 SVM and NB have better accuracy than other classifiers when it comes to text classification. Light-stemming gives better results than other stemming techniques The bigger the lexicon is, the better the results are. No neutral class, small lexicon size and no intensive handling for Arabic dialects			
The context and the dataset size Strengths	correction and selecting the first word suggested by it automatically. Khoja stemmer tool [23] as a reference for a list of Arabic stop-words SentiStrength [24] as a reference for 300 seed words translated for lexicon RapidMiner software [21] for supervised experiments 2000 labeled tweets - 1000 positive tweets - 1000 negative tweets In KNN, using K=9 gives the best accuracy than K= 1, 2, 3 and 4 SVM and NB have better accuracy than other classifiers when it comes to text classification. Light-stemming gives better results than other stemming techniques The bigger the lexicon is, the better the results are. No neutral class, small lexicon size and no intensive handling for Arabic dialects - In conpus-based accuracy = 87.2%			
The context and the dataset size Strengths Weaknesses	correction and selecting the first word suggested by it automatically. Khoja stemmer tool [23] as a reference for a list of Arabic stop-words SentiStrength [24] as a reference for 300 seed words translated for lexicon RapidMiner software [21] for supervised experiments 2000 labeled tweets - 1000 positive tweets - 1000 positive tweets In KNN, using K=9 gives the best accuracy than K= 1, 2, 3 and 4 SVM and NB have better accuracy than other classifiers when it comes to text classification. Light-stemming gives better results than other stemming techniques The bigger the lexicon is, the better the results are. No neutral class, small lexicon size and no intensive handling for Arabic dialects - In lexicon-based accuracy = 59.6%			
The context and the dataset size Strengths Weaknesses Results	correction and selecting the first word suggested by it automatically. Khoja stemmer tool [23] as a reference for a list of Arabic stop-words SentiStrength [24] as a reference for 300 seed words translated for lexicon RapidMiner software [21] for supervised experiments 2000 labeled tweets - 1000 positive tweets - 1000 positive tweets In KNN, using K=9 gives the best accuracy than K=1, 2, 3 and 4 SVM and NB have better accuracy than other classifiers when it comes to text classification. Light-stemming gives better results than other stemming techniques The bigger the lexicon is, the better the results are. No neutral class, small lexicon size and no intensive handling for Arabic dialects - In corpus-based accuracy = 87.2% - In lexicon-based accuracy = 59.6% Building a manually annotated dataset			
The context and the dataset size Strengths Weaknesses Results	correction and selecting the first word suggested by it automatically. Khoja stemmer tool [23] as a reference for a list of Arabic stop-words SentiStrength [24] as a reference for 300 seed words translated for lexicon RapidMiner software [21] for supervised experiments 2000 labeled tweets - 1000 positive tweets - 1000 positive tweets In KNN, using K=9 gives the best accuracy than K= 1, 2, 3 and 4 SVM and NB have better accuracy than other classifiers when it comes to text classification. Light-stemming gives better results than other stemming techniques The bigger the lexicon is, the better the results are. No neutral class, small lexicon size and no intensive handling for Arabic dialects - In lexicon-based accuracy = 59.6%			
The context and the dataset size Strengths Weaknesses Results Contributions	correction and selecting the first word suggested by it automatically. Khoja stemmer tool [23] as a reference for a list of Arabic stop-words SentiStrength [24] as a reference for 300 seed words translated for lexicon RapidMiner software [21] for supervised experiments 2000 labeled tweets - 1000 negative tweets - 1000 negative tweets In KNN, using K=9 gives the best accuracy than K= 1, 2, 3 and 4 SVM and NB have better accuracy than other classifiers when it comes to text classification. Light-stemming gives better results than other stemming techniques The bigger the lexicon is, the better the results are. No neutral class, small lexicon size and no intensive handling for Arabic dialects - In corpus-based accuracy = \$7.2% - In lexicon-based accuracy = \$7.2% Building a manually annotated dataset Showing the detailed steps of building the lexicon			
The context and the dataset size Strengths Weaknesses Results Contributions	correction and selecting the first word suggested by it automatically. Khoja stemmer tool [23] as a reference for a list of Arabic stop-words SentiStrength [24] as a reference for 300 seed words translated for lexicon RapidMiner software [21] for supervised experiments 2000 labeled tweets - 1000 positive tweets - 1000 negative tweets In KNN, using K=9 gives the best accuracy than K= 1, 2, 3 and 4 SVM and NB have better accuracy than other classifiers when it comes to text classification. Light-stemming gives better results than other stemming techniques The bigger the lexicon is, the better the results are. No neutral class, small lexicon size and no intensive handling for Arabic dialects - In corpus-based accuracy = 87.2% - In lexicon-based accuracy = 59.6% Building a manually annotated dataset Showing the detaled steps of building the lexicon Enlarging the dataset along with adding a third polarity			
The context and the dataset size Strengths Weaknesses Results Contributions	correction and selecting the first word suggested by it automatically. Khoja stemmer tool [23] as a reference for a list of Arabic stop-words SentiStrength [24] as a reference for 300 seed words translated for lexicon RapidMiner software [21] for supervised experiments 2000 labeled tweets - 1000 positive tweets - 1000 negative tweets In KNN, using K=9 gives the best accuracy than K= 1, 2, 3 and 4 SVM and NB have better accuracy than other classifiers when it comes to text classification. Light-stemming gives better results than other stemming techniques The bigger the lexicon is, the better the results are. No neutral class, small lexicon size and no intensive handling for Arabic dialects - In lexicon-based accuracy = \$9.2% - In lexicon-based accuracy = \$9.2% Building a manually annotated dataset Showing the detailed steps of building the lexicon Enlarging the dataset along with adding a third polarity case (neutral class)			
The context and the dataset size Strengths Weaknesses Results Contributions	correction and selecting the first word suggested by it automatically. Khoja stemmer tool [23] as a reference for a list of Arabic stop-words SentiStrength [24] as a reference for 300 seed words translated for lexicon RapidMiner software [21] for supervised experiments 2000 labeled tweets - 1000 positive tweets - 1000 pogative tweets In KNN, using K=9 gives the best accuracy than K= 1, 2, 3 and 4 SVM and NB have better accuracy than other classifiers when it comes to text classification. Light-stemming gives better results than other stemming techniques - In corpus-based accuracy = 87.2% - In lexicon-based accuracy = 59.6% Building a manually annotated dataset Showing the detailed steps of building the lexicon Enlarging the dataset along with adding a third polarity case (neutral class) Adding strength to the polarity of words that could vary between -5 to +5, which may end up with more accurate			
The context and the dataset size Strengths Weaknesses Results Contributions	correction and selecting the first word suggested by it automatically. Khoja stemmer tool [23] as a reference for a list of Arabic stop-words SentiStrength [24] as a reference for 300 seed words translated for lexicon RapidMiner software [21] for supervised experiments 2000 labeled tweets - 1000 negative tweets - 1000 negative tweets In KNN, using K=9 gives the best accuracy than K= 1, 2, 3 and 4 SVM and NB have better accuracy than other classifiers when it comes to text classification. Light-stemming gives better results than other stemming techniques The bigger the lexicon is, the better the results are. No neutral class, small lexicon size and no intensive handling for Arabic dialects - In corpus-based accuracy = 87.2% - In lexicon-based accuracy = 59.6% Building a manually annotated dataset Showing the detailed steps of building the lexicon Enlarging the dataset along with adding a third polarity case (neutral class) Adding strength to the polarity of words that could vary between -5 to +5, which may end up with more accurate outcomes			
The context and the dataset size Strengths Weaknesses Results Contributions	correction and selecting the first word suggested by it automatically. Khoja stemmer tool [23] as a reference for a list of Arabic stop-words SentiStrength [24] as a reference for 300 seed words translated for lexicon RapidMiner software [21] for supervised experiments 2000 labeled tweets - 1000 positive tweets - 1000 negative tweets In KNN, using K=9 gives the best accuracy than K= 1, 2, 3 and 4 SVM and NB have better accuracy than other classifiers when it comes to text classification. Light-stemming gives better results than other stemming techniques The bigger the lexicon is, the better the results are. No neutral class, small lexicon size and no intensive handling for Arabic dialects - In corpus-based accuracy = 87.2% - In lexicon-based accuracy = 59.6% Building a manually annotated dataset Showing the dataled steps of building the lexicon Enlarging the dataset along with adding a third polarity case (neutral class) Adding strength to the polarity of words that could vary between -5 to +5, which may end up with more accurate outcomes The sarcasm in some tweets always leads to misinterpretation and consequently a wrong polarity			
The context and the dataset size Strengths Weaknesses Results Contributions	correction and selecting the first word suggested by it automatically. Khoja stemmer tool [23] as a reference for a list of Arabic stop-words SentiStrength [24] as a reference for 300 seed words translated for lexicon RapidMiner software [21] for supervised experiments 2000 labeled tweets - 1000 negative tweets - 1000 negative tweets In KNN, using K=9 gives the best accuracy than K= 1, 2, 3 and 4 SVM and NB have better accuracy than other classifiers when it comes to text classification. Light-stemming gives better results than other stemming techniques The bigger the lexicon is, the better the results are. No neutral class, small lexicon size and no intensive handling for Arabic dialects - In corpus-based accuracy = 87.2% - In lexicon-based accuracy = 59.6% Building a manually annotated dataset Showing the detailed steps of building the lexicon Enlarging the dataset along with adding a third polarity case (neutral class) Adding strength to the polarity of words that could vary between -5 to +5, which may end up with more accurate outcomes			

The authors of [11] developed a framework that determines the polarity of Arabic Tweets.

TABLE 8SUMMARIZATION OF [11]

Paper	[11]		
Publishing year	2014		
SA Level	Sentence		
The Language	Arabic (MSA/ Jordanian dialect/ Arabizi)		
Domain Oriented	No		
Polarity	Positive, Negative and Neutral		
Preprocessing & Filtering	- Tokenization - Normalization		
1 mering	- Filtering Arabic stop-words		
	- Stemming		
	Extensions to Rapidminer:		
	- Emoticons Convertor		
	 Repetitions Remover 		
	 Negation Detection 		
	 Dialect to MSA convertor 		
	 Links Remover 		
	- Mentions Remover		
The type of	Jordanian dialect to MSA parallel dictionary 300 words		
classification	Negation Dictionary, Arabizi Dictionary		
	SVM, NB, and K-NN		
Software Used	Rapidminer [21], MS word [22]		
The context and	350,000 Arabic tweets		
the dataset size	25000+ rated tweets for the training dataset.		
Strengths	Building three dictionaries		
Weaknesses	The dataset and the dialect dictionary are of small size		
Results	SVM accuracy = 71.68% when both stopwords filter		
	and stemming were disabled		
Contributions	Handling negations, Arabizi and Arabic dialects.		
Future Work	Expanding the dictionaries and solving the memory		
	issue which is inherent in Rapidminer.		

The authors in [7] dealt with SA in Arabic reviews from a machine learning perspective.

TABLE 9 SUMMARIZATION OF [7]

Paper	[7]		
Publishing year	2014		
SA Level	Sentence		
The Language	Arabic		
Domain Oriented	No		
Polarity	Positive and Negative		
Preprocessing &	- Tokenization		
Filtering	 Stemming (Arabic) 		
	 Filtering Stop-words (Arabic) 		
	- Generating n-Grams (Terms) operators n=2		
The type of	Using NB, SVM and KNN (at K=10) classifiers		
classification			
Software Used	RapidMiner [21], crowdsourcing tool for annotating		
	dataset		
The context and	2591 Tweet/Comment		
the dataset size	 1073 Positive and 1518 Negative 		
Strengths	Utilizing crowdsourcing to label the used dataset		
Weaknesses	Using small dataset		
Results	SVM achieve the best precision = 75.25.		
	KNN achieve the best recall = 69.04		
Contributions	Arriving at this conclusion:		
	SVM gives the highest precision while KNN gives the		
	highest Recall.		
Future Work	Increasing the datasets.		
	Semi-supervised learning techniques could be used in		
	Arabic SA text as these techniques have been applied		
	successfully to other languages.		

The authors in [37] built a collected dataset of Arabic twitter corpora for SSA

TABLE 10 SUMMARIZATION OF [37]

Paper	[37]		
Publishing year	2014		
SA Level	Sentence Level		
The Language	Arabic		
Domain Oriented	No		
Polarity	Positive, Negative and Neutral		
Preprocessing &	- Normalization		
Filtering	 Removing usemames and digits. 		
_	- Eliminating Latin characters (i.e. URLs,		
	emails).		
The type of	Overview of annotated feature sets		
classification	Morphological Feature sets: Diacritic, Aspect, Gender,		
	Mood, Person, Part of speech, State, Voice, having		
	morphological analysis.		
	Syntactic Feature sets: n-grams of words, POS,		
	lexemes including Bag of Words (BOW), Bag of		
	lexemes.		
	Semantic Feature sets: Having positive lexicon,		
	Having negative lexicon, Having neutral lexicon,		
	Having negator.		
	Stylistic Feature sets: Having positive emoticon,		
	Having negative emoticon. Social Signals Feature sets: Having consent, Having		
	dazzle, Having laugh, Having regret, Having sigh		
Software Used	dazzie, naving laugh, naving regiet, naving sign		
The context and	Development dataset: This dataset contains 7,503		
the dataset size	random multi-dialectal Arabic tweets.		
	Test data: This dataset contains a total of 1,365		
	instances.		
Strengths	Manually labling dataset which increase the accuracy		
Weaknesses	No contextual features to detect sarcasm.		
	Significant drop in performance for sentiment analysis		
	which was found out by error analysis to be due to the		
	noise introduced by the emoticon-based labels.		
Results	The overall observed agreement is 91.74% and		
	resulting weighted Kappa reached k= 0.816, which		
	indicates reliable annotations		
Contributions	Presenting a gold-standard annotated corpus to support		
	SSA of Arabic twitter feeds, the first publicly		
	available corpus for this task which is released via the		
	ELRA repository.		
Future Work			

The authors in [9] proposed the Arabic social sentiment analysis dataset (ASTD)

TABLE 11SUMMARIZATION OF [9]

Paper	[9]	
Publishing year	2015	
SA Level	Sentence	
The Language	Arabic (MSA and Egyptian)	
Domain Oriented	No	
Polarity	Objective, subjective positive, subjective negative and subjective neutral.	
Preprocessing & Filtering	 Filtering out the non-Arabic tweets Removing HTML content 	
The type of classification	MNB, BNB, SVM, SGD and KNN	
Software Used		
The context and	10,006 Arabic tweets.	
the dataset size		
Strengths	SVM is the best classifier so it is a reliable choice.	
Weaknesses	The small number of subjective tweets it contains.	
Results	Accuracy = 0.691 F1 score = 0.626 for SVM trigram unbalanced TF-IDF	
Contributions	Presenting the properties and the statistics of the dataset ASTD	
Future Work	Increasing the size of the dataset. Discussing the issue of unbalanced dataset and text classification. Extending the generated method either automatically or manually.	

The author of [14] investigated SVM, NB, KNN and DT on Arabic Twitter corpus.

TABLE 12 SUMMARIZATION OF [14]

	Paper	[14]
	Publishing year	2015
	SA Level	Sentence Level
	The Language	Arabic
	Domain Oriented	No
	Polarity	Positive, Negative and Neutral.
	Preprocessing &	 Removing all the user identifiers.
	Filtering	 Removing Arabic function words
		 Removing pictures.
		 Removing Arabic stop words
		 Removing non-Arabic words
		 Removing digits and punctuation marks.
		 Normalization some Arabic letters such as
		Hamza, Alef and Tatweel.
	The type of	DT, NB, KNN and SVM
	classification	
	Software Used	Weka [30]
iment	The context and	3700 Arabic tweets
	the dataset size	 1579 Positive
		 1374 Negative
		- 747 Neutral
	Strengths	SVM performed better than all learning methods on
		three classes but NB excelled SVM on Negative class.
	Weaknesses	Neutral class has unacceptable results, this shows that
		the Neutral class is extremely correlated with other
		classes.
	Results	Precision = 0.727, F1 score = 0.722
	Contributions	Arriving at this conclusion:
		SVM learning method outperformed the KNN, NB and
		Decision tree learning methods with regard to Recall,
		Precision and F1 measures.
	Future Work	Developing a new stemming method that stems Arabic
		words because the writers do not write the message
		based on standard Arabic language that works on
IJSER © 2016 http://www.ijser.or.		traditional stemmer.
nup://www.ijser.org	1	

The authors of [15] explored Distant Supervision (DS) based on emoticons.

TABLE 13 SUMMARIZATION OF [15]

Paper	[15]	
Publishing year	2015	
SA Level	Sentence	
The Language	Arabic	
Domain Oriented	No	
Polarity	Positive and Negative.	
Preprocessing &	 Normalization of digits and non-Arabic 	
Filtering	characters	
	 Removing user-names and links 	
The type of	DS, SVM	
classification		
Software Used		
The context and	Gold-Standard Dataset	
the dataset size	Emoticon-Based Queries training Dataset (120,747 data	
	instances)	
	Lexicon-Based annotation training Dataset (18,105	
	positive, 10,039 negative instances)	
Strengths	DS approaches to SSA for Arabic Twitter feeds show	
	significantly higher performance in accuracy and F-	
	score than a fully supervised approach.	
	SVM is the best performing scheme.	
Weaknesses	Using DS but not providing improvement over the	
	supervised techniques in the task of Sentiment Analysis	
Results	Accuracy = 95.19%	
Contributions	The first to explore distant supervision (DS) approaches	
	for automatic SSA classification for Arabic social	
	networks.	
Future Work		

The authors of [10] presented a SA system for MSA and Egyptian dialect.

The authors of [18] compared between SVM and NB for po-TABLE 14

SUMMARIZATION OF [10]

Paper	[10]	
Publishing year	2015	
SA Level	Sentence	
The Language	Arabic (MSA and Egyptian dialect)	
Domain Oriented	No	
Polarity	Positive and Negative.	
Preprocessing & Filtering	 Removing foreign characters, symbols, numbers, etc. Removing stop-words Normalization (unified Arabic characters) 	
The type of classification	and removing all diacritics) A semi-supervised approach for SA using a high coverage Arabic sentiment words lexicon (400 adjectives collected manually from different websites) which is automatically increased, and Arabic sentiment idioms/saying phrase lexicon (12785 wisdoms and idioms are collected from websites and books) to	
	improve the classification process. Using SVM classifier with linguistically and syntactically influenced features.	
Software Used		
The context and	2000 Arabic sentiment statements	
the dataset size	 1000 MSA tweets and Arabic dialect tweets 1000 microblogs (hotel reservation comments, product reviews, TV program& movie comments) 	
Strengths	Exploiting idioms and saying lexicon with a high	
	coverage polarity lexicon has the largest impact on classification accuracy. Also, the automatic expansion of the polarity lexicon yields a great effect on sentiment classification.	
Weaknesses	A dataset of small size	
Results	Accuracies over 95% in some cases.	
Contributions	Employing a number of novels and rich feature sets to handle the valence shifters (negation, intensifiers), questions and supplication terms and to improve the classification performance. Building two lexicons; Arabic sentiment words lexicon	

litical Arabic twitter data.

The authors of [20] used Twitter in trading strategy with Mubasher products [25]. TABLE 15

SUMMARIZATION OF [18]

The authors of [19] used supervised learning for tweets written in Arabizi.

Paper	[18]	
Publishing year	2016	
SA Level	Sentence	
The Language	Arabic	
Domain Oriented	Yes	
Polarity	Positive and Negative.	
Preprocessing &	- Tokenization	
Filtering	- Normalization	
_	 Stemming (light) 	
	 Removing non-Arabic characters 	
	 Removing Stop words 	
The type of	SVM and NB	
classification	Using of TF-IDF	
Software Used	WEKA [30]	
The context and	18278 tweets	
the dataset size	 11910 positive and 6368 negative 	
Strengths	Building a political corpus	
Weaknesses	No real addition	
Results	SVM get P =.862 and R =.884 and F =.871	
	NB get P =.925 and R =.921 and F =.922	
Contributions	Aniving at this conclusion:	
	The results shows that the NB method is of the highest	
	accuracy and the lowest error rate.	
Future Work	Comparing the results obtained from these used	
	classifiers with other classifiers.	
	Comparing the results obtained from light stemmer	
	which is used and Khoja stemmer [23].	
	Comparing the results obtained from unigram, bigram	
	and trigram.	

TABLE 16 SUMMARIZATION OF [20]

*		
Paper	[20]	
Publishing year	2016	
SA Level	Sentence	
The Language	Arabic	
Domain Oriented		
Polarity	Positive, Negative and Neutral	
Preprocessing &	- Replacing some words, such as company	
Filtering	codes, percentage sign (%).	
_	 Normalization. 	
	- Tokenization	
	 Removing stop word 	
	 Stemming Light 	
	 Filtering token by length 3. 	
The type of	NB and SVMs	
classification	TF-IDF and Binary-Term Occurrence.	
Software Used	Mubasher software [25], Rapidminer [21], Twitter Data	
	Grabber [38]	
The context and	1331 Total	
the dataset size	 378 Positive, 755 Negative, 198 Neutral 	
Strengths	The best accuracy was achieved by SVM without N-	
	Gram feature .On the other hand, the best accuracy was	
	completed by Naive-Bayes when the N-Gram feature is	
	involved.	
Weaknesses	Dataset of small size	
Results	Accuracy = 89.68% for SVM using TF-IDF	
Contributions	Classifiying Arabic sentiments toward Mubasher	
	products through different algorithms	
Future Work	Extracting technical features aspects of Mubasher	IJSER © 2016
	products such as Human Computer Interaction (HCI).	http://www.ijser.org
		0

TABLE 17 SUMMARIZATION OF [19]

Paper	[19]	
Publishing year	2016	
SA Level	Sentence level	
The Language	Arabic (Arabizi)	
Domain Oriented	No	
Polarity	Positive, Negative and Neutral	
Preprocessing &	 Tokenizing tweets into words 	
Filtering	 Mapping every emoticon into its 	
-	corresponding word	
	 Converting tweets written in Arabizi into 	
	tweets written in Arabic using the built-in	
	rule-based converter.	
	 Removing stop-words. 	
	- Calculating the weight of every token using	
	the Binary Model.	
The type of	NB and SVM	
classification		
Software Used	Crowdsourcing was used to label the dataset.	
The context and	Arabizi dataset consists of 3206 tweets.	
the dataset size	 1803 positive, 831 negative, 572 neutral 	
Strengths	SVM accuracies are higher than NB accuracies.	
	Removal of stop-words and mapping emoticons to their	
	corresponding words did not greatly improve the	
	accuracies for Arabizi data.	
	Eliminating neutral tweets at early stage in the	
	classification improves precision for both NB and	
	SVM. However, Recall values fluctuated, sometimes	
	they got improved; on other times they did not improve	
Weaknesses	Dataset of small size	
Results	SVM (before removing Neutral class)	
	 with filter Recall for positive class = .831 for negative class = .377 	
	 without filter Recall for positive class = .814 for negative class = .386 	
	SVM (after removing Neutral class)	
	- with filter Recall for positive class = .869	
	for negative class = .367	
	 without filter Recall for positive class = .862 	
Contributions	for negative class =.404	
Contributions Future Work		

The authors of [17] showed the use of divide-and-conquer hierarchical structure of classifiers

TABLE 18SUMMARIZATION OF [17]

Paper	[17]
Publishing year	2016
SA Level	Sentence
The Language	Arabic (MSA and colloquial Arabic)
Domain Oriented	No
Polarity	1,2,3,4,5 rating classes
Preprocessing &	 Bag-Of-Word using StringToWordsVector
Filtering	 Tokenization using WordTokenizer
-	 Removing stop words
	 No stemmers
The type of	SVM, NB, KNN and Decision Tree (DT).
classification	Construct different hierarchical classifier trees.
	Classifier 1
	if registive?
	Classifier2 3 classifier3
	Fig. 5. The 2-level hierarchical classifier.
	Classifier 3
	the if cleans is not
	Chevaller 5
	the Folice a part from a P
	For Felmin Loop Frame in P
	Canadian 4
	Roma 17Roma 24
	Fig. 6. The 4-level hierarchical classifier.
	-
Software Used	Weka [30]
The context and	LABR dataset: consists of 63,257 book reviews which
the dataset size	have a rating (1 to 5)
	 Class 1 contains 2,939 reviews.
	 Class 2 contains 5,285 reviews.
	 Class 3 contains 12,201 reviews.
	 Class 4 contains 19,054 reviews.
	 Class 5 contains 23,778 reviews.
Strengths	Hierarchical classifiers give significant improvements
	(of more than 50% in certain cases) over flat classifiers.
Weaknesses	No stemmers were used during preprocessing. Using
	LABR dataset only for the experiments.
Results	Accuracies
	SVM (Flat= 45.7%, 2-level= 45.2%, 4-level=47.4%)
	DT (Flat= 40.2%, 2-level= 43.9%, 4-level= 47.6%)
	NB (Flat= 38.2%, 2-level= 39.9% 4-level= 48.9%)
	KNN (Flat= 38.6%, 2-level= 46.2%, 4-level= 57.8%)
Contributions	Showing how the use of this divide-and-conquer
	hierarchical structure of classifiers can generate better
	results than the use of existing flat classifiers for the
	Multi-Way Sentiment Analysis (MWSA) problem (5
Future Work	

The authors of [39] built a Saudi twitter corpus for SA.

TABLE 19SUMMARIZATION OF [39]

Paper	[39]	
Publishing year	2016	
SA Level	Sentence	
The Language	Arabic (Saudi dialect)	
Domain Oriented	No	
Polarity	Positive, Negative and Neutral.	
Preprocessing &	 Removing duplicate tweets before and after 	
Filtering	the cleaning process	
	 Removing links, hashtags and non Arabic 	
	words	
The type of classification	begin Prepare set of three application accounts on twitter to be used as a way of authenticating while Authenticated by the account that has available rate limit do for each hastlag win Hashlagr do for each hastlag arount rate limit is reached then l becak end Use twitter api to search for term (hashtag)	
	Image: Save the collected tweets for the current hashing end end end Fig. 1 Pseudo Code for collecting tweets using twitter API used in this work	
Software Used	Ruby-on-Rails (RoR)	
	Twitter API to collect data.	
The context and the dataset size	4700 tweets - First annotator: 1830 positive, 1991 negative and 904 neutral - Second annotator: 2100 positve, 2016 negative and 584 neutral	
Strengths	Building a free public corpus	
Weaknesses	Dataset of small size	
Results	Saudi dialect corpus with (Kappa = 0.807)	
Contributions	Presenting an annotated publicly available corpus that applied SA to Twitter content.	
Future Work	Extending this corpus Generating a large scale lexicon for Saudi dialect Building a comprehensive SA system for Saudi dialect using big data technique.	

The authors of [40] built a mutli-dialects Arabic corpus.

TABLE 20		
SUMMARIZATION OF	[40]	

Paper	[5]	
Publishing year	2011	
SA Level	Document level	
The Language	Arabic	
Domain Oriented	Yes (Multi-domain: Education, Sports, and Politics)	
Polarity	Positive & Negative	
Preprocessing &	- Stripping out the HTML tags and non-	
Filtering	textual contents	
Thering	 Separating the documents into posts and 	
	Converting each post into a single file.	
	 Converting each post into a single file. Normalizing some alphabets 	
	 Removing some repeated letters 	
	 Correcting some of the wrong spelling 	
	words	
	- Tokenization	
	- Removing stop words	
	 Applying Arabic light stemmer 	
	- Using Term Frequency-Inverse Document	
	Frequency (TF-IDF) weight	
	- Removing some terms with a low	
	frequency of occurrence.	
The type of	lexicon-based opinion classifier, then Maximum	
classification	entropy method and finally k-nearest method	
Software Used	SentiStrength [24]	
The context and		
the dataset size	Total of 1143 posts which contain 8793 Arabic	
	statements with average of 7.7 statements in each post.	
Strengths	The accuracy almost improved from 50% using one	
	method, 60% using two method and 80% using three methods which is a satisfactory performance	
	especially for complex language such as Arabic.	
Weaknesses	No Arabic-specific features	
Results	Accuracy = 80.29%	
Contributions	A combined approach that automatically extracts	
	opinions from Arabic documents that consists of three	
	successive methods; At the beginning, lexicon based	
	method is used to classify as much documents as	
	possible. The resultant classified documents are used	
	as training set for the maximum entropy method which	
	subsequently classifies some other documents. Finally,	
	k-nearest method used the classified documents from	
	lexicon based method and maximum entropy as	
T / TT /	training set and classifies the rest of the document	
Future Work	The experimental results further show that recall and	
	precision of positive documents are better than the	
	negative one. That means further studies should be	
	done for mining of negation of Arabic statements.	
	Also, in the future, it is planned to extend the work to	
	be able to extract features from Arabic opinioned	
	statements	

4 ARABIC LANGUAGE CHALLENGES

Arabic language is complex to analyze because of the special properties it has. The following points will explain the challenges in Arabic language:

(1) The limited work in this area when compared to other languages especially English. Arabic online resources are increasing nowadays, but they are still comparatively very small.

(2) Morphological complexities and dialectal varieties of the Arabic language which require advanced pre-processing and lexicon-building steps. Every country/part of a county has its own version or dialect of Arabic. That means there are differ-

ent dialects of Arabic text available online that could hold different meaning [3].

(3) The limitation of customized tools for Arabic SA may not be easy to come by. Available tools may be limited in current functionality or may not be freely available.

(4) Multiple words prefixes, suffixes, affixes, and diacritical forms add high-order dimensionality for words, where the same three-letter root can generate different words in each case.

(5) Arabic grammar is highly complex. Different types of sentence structures can exist in Arabic: verbal, where the sentence starts with a verb phrase, and nominal, where the sentence starts with a noun phrase. Additionally the language allows for different variants within each type of sentence [32].

(6) The presence of negation words can cause a sentence to have two opposite sentiments at the same time or toggle the polarity.

5 CONCLUSION

From the study, comparison and analysis of the different proposed methodologies for SA it was observed that SVM yield the best performance in case of SA. The problem with NB is that it is based on probabilities, thus it is more suitable for inputs with high dimensionality. Because of the principal advantages of SVM, it was applied successfully in several sentiment analysis tasks. These principal advantages can be summarized as follows: They are robust in high dimensional spaces. All features are considered relevant. They are robust when there is a sparse set of samples. Finally, most text categorization problems are linearly separable [29].

This work highlighted important papers in Arabic Sentiment analysis. It also revealed many challenges and open areas that need to be addressed and investigated to enhance this field.

6 FUTURE WORK

We can summarize the future work in Arabic SA as follows:

- Building a big corpus and putting it freely public.
- Using the big corpus to compare methodologies.
- Building larger lexicons and dictionaries
- More investigation for Arabic negation.
- Building appropriate Stemmer for Arabic dialects.

- More research in semantic analysis as the same word can have many meanings in different contexts.

REFERENCES

- Fouzi Harrag. Estimating the Sentiment of Arabic Social Media Contents: A Survey. 5th International Conference on Arabic Language Processing, 2014.
- [2] Korayem, M., Crandall, D., and Abdul -Mageed, M. 2012. Subjectivity and Sentiment Analysis of Arabic: A Survey. Advanced Machine Learning Technologies and Applications, Communications in Computer and Information Science. 322, 128-139.
- [3] Sarah O. Alhumoud, Mawaheb I. Altuwaijri, Tarfa M. Albuhairi, Wejdan M. Alohaideb. Survey on Arabic Sentiment Analysis in Twitter. International Journal of Social, Behavioral, Educational, Economic and Management Engineering Vol:9, No:1, 2015.

- [4] Shoukry, A., & Rafea, A. (2012, May). Sentence-level Arabic sentiment analysis. In Collaboration Technologies and Systems (CTS), 2012 International Conference on (pp. 546-550). IEEE.
- [5] El-Halees, A.: Arabic Opinion Mining Using Combined Classification Approach. In: Proceedings of the International Arab Conference on Information Technology, ACIT (2011)
- [6] Nawaf A. Abdulla, Nizar A. Ahmed, Mohammed A. Shehab and Mahmoud Al-Ayyoub. Sentiment Analysis: Lexicon-based and Corpus-based. 2013 IEEE Jordan Conference on Applied Electrical Engineering and Computing Technologies (AEECT) 978-1-4799-2303-8/13.
- [7] Rehab M. Duwairi and Islam Qarqaz, Arabic Sentiment Analysis using Supervised Classification, The 1st International Workshop on Social Networks Analysis, Management and Security (SNAMS - 2014), August 2014, Barcelona, Spain.
- [8] Rushdi-Saleh, M., Martín-Valdivia, M. T., Ureña-López, L. A., & Perea-Ortega, J. M. (2011). Bilingual experiments with an arabic-english corpus for opinion mining.
- [9] Mahmoud Nabil, Mohamed Aly and Amir F. Atiya. ASTD: Arabic Sentiment Tweets Dataset. Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pages 2515–2519, Lisbon, Portugal, 17-21 September 2015.
- [10] Hossam S. Ibrahim, Sherif M. Abdou and Mervat Gheith.SENTIMENT ANALYSIS FOR ODERN STANDARD ARABIC AND COLLOQUIAL. International Journal on Natural Language Computing (IJNLC) Vol. 4, No.2, April 2015.
- [11] R. M. Duwairi, Raed Marji, Narmeen Sha'ban, Sally Rushaidat. Sentiment Analysis in Arabic Tweets. 2014 5th International Conference on Information and Communication Systems (ICICS) 978-1-4799-3023-4/14
- [12] Biltawi M., Etaiwi W., Tedmori S., Hudaib A., and Awajan A., "Sentiment Classification Techniques For Arabic Language: A Survey," in Proceedings of the 7th International Conference on Information and Communication Systems, Jordan, 2016.
- [13] M. Al-Kabi, N. M. Al-Qudah, I. Alsmadi, M. Dabour, and H. Wahsheh, "Arabic/english sentiment analysis: An empirical study," in The fourth International Conference on Information and Communication Systems (ICICS 2013), 2013.
- [14] Hadi, Wa'el. "Classification of Arabic Social Media Data." Advances in Computational Sciences and Technology 8.1 (2015): 29-34.
- [15] E. Refaee and V. Rieser, "No Bad Feelings: Distant Supervision Helps Subjectivity but not Sentiment Analysis of Arabic Twitter Feeds," Proceedings of the 8th Saudi Scientific Conference, London, UK, 2015, pp. 2–18.
- [16] Abdul-Mageed, Muhammad, Sandra Kübler, and Mona Diab. "Samar: A system for subjectivity and sentiment analysis of arabic social media." Proceedings of the 3rd workshop in computational approaches to subjectivity and sentiment analysis. Association for Computational Linguistics, 2012.
- [17] M. Al-Ayyoub, A. Nuseir, G. Kanaan, and R. Al-Shalabi, "Hierarchical classifiers for multi-way sentiment analysis of arabic reviews," International Journal of Advanced Computer Science and Applications (IJACSA), vol. 7, no. 2, pp. 531–539, 2016.
- [18] Elghazaly, Tarek, Amal Mahmoud, and Hesham A. Hefny. "Political Sentiment Analysis Using Twitter Data." Proceedings of the International Conference on Internet of things and Cloud Computing. ACM, 2016.
- [19] Duwairi, Rehab M., et al. "Sentiment analysis for Arabizi text." 2016 7th International Conference on Information and Communication Systems (ICICS). IEEE, 2016.
- [20] Al-Rubaiee, Hamed, Renxi Qiu, and Dayou Li. "Identifying Mubasher software products through sentiment analysis of Arabic tweets." 2016 International Conference on Industrial Informatics and Computer Systems (CIICS). IEEE, 2016.

- [21] The rapid-I website. [Online]. Available: http://www.rapid-i.com/
- [22] Microsoft Office. (2013) The Office website. [Online]. Available: http://office.microsoft.com/en-GB/?CTT=97
- [23] Shereen Khoja. (1999) The Pacific University homepage. [Online]. Available: http://zeus.cs.pacificu.edu/shereen/research.htm
- [24] The SentiStrength website. [Online]. Available: http://sentistrength.wlv.ac.uk/SentStrength_Data/
- [25] The Mubasher website. [Online]. Available: http://www.mubasher.net/index.html
- [26] Diab, Mona. "Second generation AMIRA tools for Arabic processing: Fast and robust tokenization, POS tagging, and base phrase chunking." 2nd International Conference on Arabic Language Resources and Tools. 2009.
- [27] The Social Mention website. [Online]. Available: http://socialmention.com
- [28] The Twendz website. [Online]. Available: http://twendz.waggeneredstrom.com/
- [29] M. Rushdi-Saleh, M. Teresa, L. Martín-Valdivia, A. Ureña-López, and J. M. Perea-Ortega, "OCA: Opinion corpus for Arabic". Journal of the American Society for Information Science and Technology, 62: 2045– 2054.doi:10.1002/asi.21598.2011.
- [30] The WEKA website. [Online]. Available: http://www.cs.waikato.ac.nz/ml/weka
- [31] Thorsten Joachims. 2008. Svmlight: Support vector machine. http://svmlight.joachims.org/, Cornell University, 2008.
- [32] Farra, Noura, et al. "Sentence-level and document-level sentiment mining for arabic texts." 2010 IEEE International Conference on Data Mining Workshops. IEEE, 2010.
- [33] N. Habash. Introduction to Arabic natural language processing. Synthesis Lectures on Human Language Technologies, 3(1):1–187, 2010.
- [34] The PROMT website. [Online]. Available: http://translation2.paralink.com
- [35] Abdulla, Nawaf A., Mahmoud Al-Ayyoub, and Mohammed Naji Al-Kabi. "An extended analytical study of arabic sentiments." International Journal of Big Data Intelligence 1 1.1-2 (2014): 103-113.
- [36] Hamouda, Alaa El-Dine Ali, and Fatma El-zahraa El-taher. "Sentiment analyzer for arabic comments system." Int. J. Adv. Comput. Sci. Appl 4.3 (2013).
- [37] Refaee, Eshrag, and Verena Rieser. "An Arabic Twitter Corpus for Subjectivity and Sentiment Analysis." LREC. 2014.
- [38] The Twitter Data Grabber website. [Online]. Available: https://dev.twitter.com/rest/public
- [39] Assiri, Adel, Ahmed Emam, and Hmood Al-Dossari. "Saudi Twitter Corpus for Sentiment Analysis." World Academy of Science, Engineering and Technology, International Journal of Computer, Electrical, Automation, Control and Information Engineering 10.2: 242-245.
- [40] Al-Kabi, Mohammed N., et al. "A Prototype for a Standard Arabic Sentiment Analysis Corpus." International Arab Journal of Information Technology (IA-JII) 13 (2016).
- [41] The Scopus website. [Online]. Available: https://www.scopus.com/