
International Journal of Scientific & Engineering Research, Volume 4, Issue 3, March-2013 1
ISSN 2229-5518

IJSER © 2013

http://www.ijser.org

An Early Approach to Identify and Classify
Crosscutting Concerns in Aspect-Oriented
Requirement Engineering (AORE) for Better

Software Modularity
Waseem Baig, Dr. Muhammad Ahsan Latif, Ahmed Mateen, Tasleem Mustafa and M. Imran Habib

University of Agriculture Faisalabad Pakistan

Abstract

n this era of science and technology, where dependability on computer based systems is increasing, the size of software code is also increasing due
to diverse nature of user requirements. Large software systems must have understandable code and impact of change should also be known
otherwise it would be quite reasonable to say that software is very complex. The software complexity can be minimized by increasing the modularity

either by using Procedural languages or Object-oriented languages but Code-tangling and Code-scattering cannot be avoided entirely by these
approaches. Code-tangling and code-scattering would ultimately result in poor-traceability and difficulty in software evolution. Requirement gathering is a
key task for any project but for a successful completion of any project common functionality of all the modules should also be known which is called
crosscutting concerns. Besides identification of crosscutting concerns, the classification of crosscutting concerns is also very important especially when
software modularity is concerned. Without identification and classification of crosscutting concerns, software development process would be devastating
and is simply wastage of both time and money. The better identification, classification and separation of crosscutting concerns mean better modularity of
the software system thus results in enhanced software quality. Aspect-oriented software engineering is relatively a new software paradigm which
actually deals with the crosscutting concerns to avoid code tangling and scattering for better software modularity. The purpose of this paper is to
establish a roadmap for identifying and classifying crosscutting concerns for better software modularity to support Aspect-oriented software development
approach.

Index terms – Approach, Aspect-oriented, Classify, Code-tangling, Code-scattering, Crosscutting, Concerns, Engineering, Identify, Modularity,
Requirements.

1 Introduction
Software modularization faces Crosscutting concerns

as a major problem which may create a hurdle for many of
the upcoming needs and a reason for the failure of the
software as well. Although AOP (Aspect Oriented
Programming) [1] provide a good solution to problems,
which may arise from AOP and can affect Object Oriented
implementation after encapsulation in a crosscutting-way
[2]. Need of identification of such aspects at early stage of
software life cycle is one of the most significant issue [3].

If we identify the aspects at requirement level, the
development will have the ability of evolution and
dependability [4, 5, 6]. A lot of research has already been
done with the provision of different kinds of methods to
identify the aspects at early stages of software life cycle, but
limited practical output is given against much effort and a
lot of previous knowledge which sometimes create a barrier
between the theory of such methods and the practical
approach to implement these methods. Also, software
engineers are not bound to furnish these methods before
use to make them in accordance with the software
development processes in common. To lessen the effect of

AOP adaptation, it is necessary to chose best practices and
principles of Aspect Oriented Software Development with
common software development methods.

Our paper presents a new approach to classify the
aspects whether they are crosscutting concerns or not. Our
approach will work at use case model level of software life
cycle, which is a requirement gathering level approach
though with all salient feature of software development but
without introducing new models or concepts to save the
developers’ community from any suffering or chaotic
study.

 The organization of paper is as follows: Section # 2 is
about an introduction to early aspects nature and use cases.
Section # 3 presents our approach using use case models to
identify crosscutting concerns. In section # 4, a hypothetical
company is chosen as a case study to present the
application of our approach with an evaluation based on
Concern-Morph which is a plug-in of Eclipse Integrated
Development Environment. Section # 5 is about related
work. At the end, section # 6 presents conclusion, issues
and motivation for future work.

I

International Journal of Scientific & Engineering Research, Volume 4, Issue 3, March-2013 2
ISSN 2229-5518

IJSER © 2013

http://www.ijser.org

2 Background
To support modeling and better implementation of

AOP development, there must be some predictive software
methods to identify the aspects in software life cycle. By
using requirement models definition and its analysis can
help to demonstrate the crosscutting nature of certain
aspects.

Use cases are used to set an interaction scenario within
a system. The very good nature of use cases help to use
them in different software development approaches [7].
Uses of case are used to describe the interaction of a user
with the software system. Mainly use cases are used to
describe functional requirements of the software system,
which actually consists of behavioral requirements of the
system under design though case cases can be used to
describe non-functional requirements of the system under
study as well [8].

Use of use cases is not only a technique which is used
at requirement gathering level but it’s a technique which is
smoothly helpful in the all stages of software life cycle. In
this paper, we have used use cases only for a requirement
gathering technique which is presented by the specification
and diagrams of use cases. The use case specification and
diagrams collectively comprises of various views of entire
specification of a software system [8].

3 Methodology
In this section, the proposed technique is presented in

which use cases description is used to identify the
crosscutting concerns. RUP requirement engineering and
many other software requirement engineering processes are
using use cases their main structure [8]. A use case is
actually a composition of different requirements as it may
contain several requirements inside it to show their
responsibilities and objectives. The main structure of use
case is used to describe the functional requirements of the
software under design but it also has sections to show other
types of requirements such as non-functional software
requirements, data inputs as well as business rules. A
“special requirement” section is included in use case
templates of RUP style to describe non-functional or
behavioral requirements of the software system under
design. After designing a system using use cases, different
sections of use case are then interpreted into relevant
functional or non-functional requirements. Furthermore,
this is the stage to then decompose these use cases to
identify and classify crosscutting concerns [7].

Our approach takes primary actors main goals as base
concerns in each of the use cases. Primary actors’ interests

must be protected by every use case as well as protection of
interests of all the stakeholders in system under design [7].
So it is justifiable that all type of requirements either
functional or non-functional requirements that are not part
of the objectives of main goal of the system under design
crosscuts the concerns at base while protecting the interest
of all the stakeholders in that use case model.

Table # 1 consists of decomposed requirements with
indication whether a crosscutting concern is represented at
this stage or not as well as the identification of crosscutting
concerns.

Rule
ID

Requirement’s
type

Whether
crosscutting

concern or not?

Found at
level?

BR01 Main Goal No Short
description/
contained

in a certain
section

Justification: This requirement described summarized
information of primary actors’ main goal and does not
covers any functional or non functional behavior of the
system under design.

BR02 Basic flow No Specificatio

n of the use
case

Justification: This requirement describes the behavior of
the system under design. This is a base concern whose
addressed concern is the primary actors’ main goal.

BR03 Alternative
flow

Yes (if it is not
the basic flow)

Specificatio
n of the use

case
Justification: Alternative flow also has a goal and
guarantees [7, 9]. The alternative flows ultimately have to
interact with the basic flow with its goal. Aspects can be
used as an alternative flow [8]. Also, initial aspects can be
depicted from linked requirements [5]. In some cases
many alternative flows can be used for a basic flow and all
the alternative flows will meet the goals of the basic flow
as well. If alternative flows are going towards base flows
then they could also be taken as basic ones [7]. As these
basic concern of the primary actors is being addressed by
these alternative flows so they are not crosscutting
concerns.

International Journal of Scientific & Engineering Research, Volume 4, Issue 3, March-2013 3
ISSN 2229-5518

IJSER © 2013

http://www.ijser.org

BR04 Extension use
case

Yes Diagram of use
case

Justification: same as alternative flows, these are
extensions to use cases and with the help of these
extensions we can add new behavior to the existing use
cases [8]. These extensions have nothing to do with the
main goal of the system under design and whatsoever is
the case, coupling nature of these extensions we can
categorize them as crosscutting concern.

BR05 Inclusion
use case

Yes (if and only
if more than one

use cases
includes them)

Includes use
case diagrams,
hyperlinks and
references that

are made
primary use

case
Justification: The basic requirement is modularization for
which separation of crosscutting concerns is necessary.
This type of use cases point towards reusability or
behaviors’ reuse. Actually when a use case is being
referred by more than one use cases then we can say that
its behavior crosscuts. If this relation is one to one then
this will not be considered as crosscutting and may be
included for formal process, only.

BR06 Pre-condition No Specification of
use case

Justification: These types of requirements are out of the
boundary of implementation of use case itself [10]. As these
are outside the systems’ boundary so they are not considered
as implemented concerns.

BR07 Post-
condition

Yes (if and only
when present in at
least two use cases

with same
requirements)

Specification of
use case

Justification: if post-condition is being reproduced by
more than one use case then it can be considered as a sub-
goal for all the relevant use cases, so it addresses the same
requirement and also crosscuts the main goal for all the
relevant use cases.

BR08 Business
rule

Yes Alternative flows
and certain

special
requirements in
the specification

of use case
Justification: As business structure is identified by
business rules so functional or behavioral requirements
are not described by them and same alike structure of the
business, they do affect some functionality of the system
under design but not a representation of the system under
design [5, 11, 12]. Many development approaches indicate
that business rules are candidates of aspects and certainly
purposes solutions by using aspects.

BR09 Non-functional
requirements

Yes Special
requirements

Justification: The major category of potential crosscutting
concerns is non-functional requirements and also broadly
referenced by many researchers [5]. Simply, if functional
or behavioral requirement is the main goal of a use case
then if it is not important for the success of a use case,
non-functional requirement will crosscut.

Table - 1

4 Case Study
A hypothetical company’s HR software requirement

specs are produced for the evaluation of our approach and
then an implementation plan is also developed to show and
discuss the results for our conclusion.

5 Analysis
The main goal of the system under study is to manage

the employees; hiring, firing, assigning departments to the
newly hired employees, daily “IN” and “OUT” of the
employees and then calculating the wages/ salary of the
employees.

The main steps of the process are as follow: (i) a
person should be hired through standard operating
procedure (SOP); vacancies are published through
company’s website (ii) A person should register through
website (iii) after proper interview, employees join the
company and then his/ her card is get printed and proper
“IN” attendance is marks through the system under study
(iii) if the employee left the company, wages/ salary of the
employee is calculated (iv) if a person tries to register for an
already filled post, he is informed that the post has already
been filled and this that he may register himself/ herself for
future vacancies and the person will be intimated
accordingly upon the availability of a vacancy. Figure#1 is
representing the use case diagram, which shows the
company’s HR system in a broader sense. Furthermore,
table#2 is created with identified crosscutting concerns for
the said system which is going to use the approach.

International Journal of Scientific & Engineering Research, Volume 4, Issue 3, March-2013 4
ISSN 2229-5518

IJSER © 2013

http://www.ijser.org

Figure # 1

ID System
Requirement

Use case Rule
ID

CCC01 To handle waiting
list of candidates

Use case diagram
BR04

CCC02 To calculate
wages/ salary

Use case diagram
BR05

CCC03 Do not allow
application

against filled
vacancy

Hire employees
use case specs

BR03

CCC04 Cancel application
against filled

vacancy

Hire employees
use case specs BR03

CCC05 Management of
existing

employees

Hire employees
use case specs BR03

CCC06 Filled posts Hire employees
use case specs

BR03

CCC07 Candidate is not
register with
waiting list

Handle waiting
list use case specs BR03

CCC08 No wages/ salary Calculate wages/
salary use case

specs
BR03

CCC09 Candidates in the
waiting list

Employees left use
case specs

BR03

CCC10 Employee left
without

intimation

Employees left use
case specs BR03

CCC11 Delete employee Manage
departments use

case specs
BR03

CCC12 Employee
department

cannot be changes

Manage
departments use

case specs
BR08

CCC13 Department
cannot be deleted

Manage
departments use

case specs
BR08

CCC14 Employee number
missing

Employees “IN”
use case specs

BR03

CCC15 Change
employees
department

Employees “IN”
use case specs BR03

CCC16 Employees’ data
not found

Employees “IN”
use case specs

BR03

CCC17 Delete blank data
employees

Manage
employees use
case specs

BR03

CCC18 Working
employees cannot
be deleted

Employees “IN”
use case specs BR08

CCC19 Wages per day Calculate wages/
salary use case
specs

BR08

CCC20 Employees
categories

Calculate wages/
salary use case
specs

BR08

CCC21 Bonus and
increments

Calculate wages/
salary use case
specs

BR08

CCC22 Messages and
alerts sent

Employee hired
and left use case
specs

BR07

CCC23 Email messages
and alerts

Special
requirements in all
use case specs

BR09

CCC24 User security
levels

Special
requirements in all
use case specs

BR09

CCC25 Employees data
encryption for
secrecy

Special
requirements in all
use case specs

BR09

CCC26 Making
transaction, loan/
advances etc

Special
requirements in all
use case specs

BR09

CCC27 Errors intimation Special
requirements in all
use case specs

BR09

CCC28 Transaction logs Special
requirements in all
use case specs

BR09

CCC29 Calendar planning Special
requirements in all

BR09

International Journal of Scientific & Engineering Research, Volume 4, Issue 3, March-2013 5
ISSN 2229-5518

IJSER © 2013

http://www.ijser.org

use case specs
Table # 2

5.1 Discussion
CCC02 is identified by applying rule-BR05 (Inclusion

use case). This inclusion which made by use cases “Hire
employees” and “Employees Left” depicts that use case
“Calculate wages/ salary” crosscuts other two concerns
which thus indicates crosscutting concern. Both the uses
cases “Hire employees” and “Employees Left” need this
inclusion to achieve each goal. But the concern presented
by “Calculate wages/ salary” is crosscutting and its
accuracy is greater as a company’s concern instead of an
employees’ concern when an employee decided to join the
company and left the company for some reason. Such
evaluation must be checked for correctness to assess the
profitability of the company which is in both cases not the
goal of primary actor of the system under design.

Same is the case with CCC01, which is also coupling;
where rule-BR04 “Extension use case” is applicable because
this is a sub-goal of use case “Hire employees” which
assures that future hiring is possible so it must be focused
although it is not possible at the current stage. As guarantee
concept given by Cockburn [7], there must be minimum
guarantee for every use case which is at base and every
distinct behavior or significant guarantee may be separated
by a use case instead of going into details to set as an
alternative flow.

Rule-BR03 “Alternative flow” is applied to both
CCC03 and CCC06 and they both are identified as
crosscutting concerns. This alternative flow is activated if
there is lack of information in each case and rule is defined
in business context. The scenario of CCC03 is that no
candidate can apply against an already filled post or a
candidate cannot apply for the same post twice. This flow
has a hidden business rule thus this is a crosscutting
concern requirement because this will stop candidates to
append for a job without a sort of verification.

Crosscutting concerns CCC04, CCC07, CCC08,
CCC10, CCC11 & CCC17 are related to the requirements
where candidate withdrawal from the required post or his/
her appointment/ hiring is need to be cancelled. Such
requirements are essential part of any system where users
are going to interact with the system and should be focused
attentively as flaws in such requirements may lead towards
an unsuccessful software product. As these requirements
can act as a primary actor concern but owing to the reason
that these types of requirements opposes the main goal of
the system so should be taken as crosscutting concerns.

Rules -BR03 “Alternative flow” is also applied to
CCCC05, CCC09, CCC14, CCC15 & CCC16 and these
concerns are identified as crosscutting concerns. Alternative
flows are such flows of system where there is a need to
study the system under design in more detail or where
there information is not available completely but keep in
mind that all the alternative flows ultimately will meet the
basic flow somewhere in the system under design and these
alternative flows are included for exceptional cases only.
Because alternative flow may present anywhere in the
system under design, so it will be considered as
crosscutting concerns. Alternative flows are sub-goals of
the main goal crosscut it in special circumstances to achieve
the targets of main goals. Just to give an example of the
system under study, CCC09 is a such type of flow which is
focused on the best interest of the candidates and if there is
a vacant post in the company, this will automatically
intimate the candidate that now he/ she can walk for an
interview vice versa. This flow also takes responsibility to
send and intimation to the first candidate in waiting list.

Rule-BR08 “Business rule” is applied to CCC12,
CCC13, CCC19, CCC20 & CCC21 and these concerns are
identified as crosscutting concerns. For example, CCC20 &
CCC21 are designed to presents such rules which are in the
best interest of the employee so he/ she may remain an
active member of the company as well as a tangible asset of
the company. Such rules help to progress the company in a
sense that the employees make the good repute of the
company and they want to work for the company for years
and years. Use cases “Calculate wages/ salary”,
“Employees Left” & “Manage employees” are under such
rules for classification purpose or to give them incentives
like bonus or increments. Although, these rules provide
certain benefits to the employees and problem for the
company from finance view point but also work as a
stimulator for the employees to increase their performance,
loyal to the company and to enhance good repute of the
company as well. Thus these concerns can be taken as
crosscutting concerns as they crosscut the main goal of each
of the use case.

Rule-BR09 “Non-functional requirements” is applied
to CCC23, CCC24, CCC25, CCC26, CCC27, CCC28 &
CCC29 and these concerns are identified as crosscutting
concerns. All use cases are using these non-functional
requirements. Example given: CCC25 is crosscuts as it
addresses the all operation related to the data
communication.

Rule-BR07 “Post-condition” is applied to CCC22 and
this concern is identified as crosscutting concern as it has

International Journal of Scientific & Engineering Research, Volume 4, Issue 3, March-2013 6
ISSN 2229-5518

IJSER © 2013

http://www.ijser.org

same goal in two use cases “Hire employee” and
“Employee left”. Such post-conditions are added to send a
notification at relevant times to the relevant persons to
intimate him/ her for whether he/ she is “hired” for a job or
“left” the job so that such condition must be satisfied. In a
sense, this concern has little bit similarities with CCC23 &
CCC09 but it arises from different cause. CCC23 is about
sending intimation to the candidate/ employee via email
which is a technology based factor but the intimation/
notification can be sent via other sources but in this case
mean of sending intimation/ notification is purely based on
technologies. CCC09 is about handling candidates whether
they are waiting for a vacancy, waiting for the wages/
salary collection or at the time of “left” from the company.
In this scenario, candidate is waiting for to get a chance for
vacant post and at the same time speedy availability of a
suitable candidate for the vacant post from company’s
perspective which actually crosscuts it for the satisfaction of
a specific concern and not linked with the output which is
actually sending intimation/ notification. This type of
requirements can be seen through CCC22 which is
represented to send intimation/ notification at a certain
time in the system under design.

From the discussion it can be said that there are some
aspects which crosscut other aspects so the aspects being
used to send email by encapsulation should relate to the
aspect that are used to send notification by encapsulation.
Same is the case with employees handling concern in
“Employee left” and thus bridging to perform certain
behaviors of the system under design.

5.2 Implementation
A Software house was requested to implement the

software under design in JAVA language while software
specs were kept under study. The plan was to code each
identified crosscutting concern as a separate aspect. Specific
purpose AspectJ [13] - figure # 3 and Hibernate [14] and
Swing-Bean framework [15] - figure # 4 was used for object-
relation/ mapping, database access and user interfaces
building.

Although it was almost a full scale project but many
simplification were made that were unrelated or would not
bring different results, to keep the research within time
schedule and budget. Simplification like only one type of
user to control “Hire employee”, “Employee left” and
Employees’ “IN” and ‘OUT” and instead of web based user
interface, a simple desktop interface was developed.

As CCC01& CCC06 were brought together in single
code as former is an extension to the later one. CCC04 &

CCC07 were excluded from the implementation due to only
a minor output of “no” option. CCC05 & CCC25 were
related to the web implementation and as web
implementation was previously simplified to desktop
interface that’s why both of these concerns were eliminated
from the implementation. Hibernate use eliminated the
implementation of CCC26 as Hibernate has its own built in
transaction control functions. Crosscutting concern CCC28
was also eliminated from the implementation because log
has nothing to do with the results of this research.
Crosscutting concern CCC22 is purely based on the nature
and demand of technology which would be in use for
sending intimation/ notifications thus has nothing to do
with the results of this research that’s why also excluded
from the implementation. CCC11 & CCC17 were used in
the implementation to show the better approach. As we can
see, they both present cancellation or delete functions and a
minor change was made in their requirement: a
confirmation dialog box was added at the time of deletion
to confirm whether the user wants to continue with the
delete option or not. Only the vital crosscutting concerns
were implemented as different aspects for the purpose to
evaluate the technique more accurately, efficiently.

5.3 Evaluation
Every technique should be tested after

implementation to see whether the results are according to
the expectations. Evaluation and testing [20] is also
necessary to determine whether all the crosscutting
concerns that were identified were really the crosscutting
concerns and actually modularized or not. Many of such
questions were evaluated through ConcernMorph [16] -
figure # 2. ConcernMorph is metric-based software which
detects crosscutting concerns based on ConcernMapper.
ConcernMapper is a simple Plug-in for Eclipse IDE that
facilitates to map between classes, methods & their related
fields. Mapping which was created by ConcernMorph is
based on implementation concern and ConcernMorph can
evaluate many metrics and can identify crosscutting
concern. It can also deal to identify and name the
crosscutting concerns as one of famous crosscutting
concern types.

The first step of evaluation was to identify concern
and then their mapping with classes, methods and fields.
As we have simplified some details and irrelevant
requirements thus it was easy to pick concerns because
every use case presents some functions of the software
under design and thus use cases can be used as concerns.
Identified crosscutting concerns are natural candidates.
Although non-functional requirements can also be used as

International Journal of Scientific & Engineering Research, Volume 4, Issue 3, March-2013 7
ISSN 2229-5518

IJSER © 2013

http://www.ijser.org

concerns but we have already taken them as crosscutting
concerns. 25 concerns were picked and every concern had
his implementation map. While using ConcernMorph, only
3 out of 25 were identified as crosscutting concerns and
these are use cases of “Hire employee”, “Employee left”
and “Calculate wages/ salary”.

An implementation issue was found during
“Calculate wages/ salary” use case: it was already been
detected as crosscutting concern and owing to this reason it
was implemented as a concern. The departments’ domain
class carries department daily rates and the code was
scattered by ConcernMorph.

For another two use cases, a same situation was faced.
There were many input screens to get input data from user
for example employees’ daily “IN” and “OUT”, employees’
identification at different stages during his/ her stay at the
company and by implementation such concern as distinct
classes and the said tool detected a scattered code here as
well.

The results of evaluation were very good as they
showed that all the implemented crosscutting concerns
were modularized and this that after all simplifications and
exclusion, only four use cases were crosscutting free
namely “Manage employees”, “Manage departments”,
“Hire employee” and “Handling waiting list”. Other three
use cases crosscutting have implementation related specific
issues. Furthermore, an improved description for
simplification of CCC11 and CCC17 should be done.

Figure # 2

Figure # 3

Figure # 4

6 Related work
Early identification of aspects in Aspect-Oriented

Software Development is not entirely focused here in light
of use cases. This research focused on identification and
modeling [19] of aspects according to uses cases life cycle
[8]. It recommends slice and use case modules and new
entities of use case models. Relation between different use
cases can be modeled through these entities, which further

International Journal of Scientific & Engineering Research, Volume 4, Issue 3, March-2013 8
ISSN 2229-5518

IJSER © 2013

http://www.ijser.org

gives inter-type declaration and pointcuts modeling. As
this is not focusing on early identification of aspects that’s
why might not present bright approach for aspects
identification.

Sousa et al. [17] presents a method that is closely non-
functional requirements oriented by adapting NFR
Framework [18] for identification and mapping of
crosscutting concerns. It also purposes a relationship of use
cases namely “crosscut” which would be helpful in
extension use cases, where extender is not depends on the
main goal of the use case and also use case is not specific to
the base case. This paper works on the usual relationship of
use cases owing to the reason that it would help to
understand the system under design and same is the aim of
eliciting of requirements process. As crosscutting concerns
are indicated by extension use cases thus motivation for
such relationship shows that there are additional features
presented by extender that are not important for main goal
that’s why these uses case are not included in the scenario.

Till now, no method deal with use case specification
specific requirements but there is only a presentation of
relationship of different use cases and their structures.
Additional information regarding identification of
crosscutting concern through use cases is not possible as
use cases are only atomic units of the requirement
specifications.

7 Conclusion

Our work has tried to present a case study based
approach to better identify crosscutting concerns. In our
research, we have tried to include different aspect and
almost every property of use cases to get sufficient
knowledge about crosscutting concerns. Our approach did
not plan to find software solution that may apply according
to these identifications and not the capability to find all the
crosscutting concerns as well.

 On the other hand, by using this approach, most of
crosscutting concerns can be identified and this approach
can be very useful for an organization/ company where use
cases are used as requirement engineering technique. Our
main goal was to propose a knowledgeable way to support
in crosscutting concerns’ identification in early stages of
software life cycle for better requirement specification
gathering and further refinements.

By evaluating this approach good results were
collected after implementation and the gathered metrics
point out towards the fact that the total number of assumed

crosscutting concerns has reduced by implementation
through this approach.

This approach can work with any existing software
system which has used case based requirement engineering
processes [8]. This approach can also help the newbie’s to
better predict and identify crosscutting concerns in a better
way as this is the easiest approach ever used and thus it’s
very easy to work with this approach with limited
resources and without introducing any sort of new
software process. Adaptation of this approach is very easy
but the outcome is fruitful.

Future work would include further phases of software
development life cycles i.e. parameters and methods for
analysis and design, Unified Markup Language (UML)
analysis, classifying crosscutting concerns according their
importance and impact factor in the software system under
design for better assumption for their inclusion or exclusion
and metaphors for better understanding crosscutting
concerns and their impact on the system under design and
effects on Software Life Cycle (SLC).

References
[1]. G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C.

Lopes, J.-M. Loingtier, and J. Irwin. Aspect-oriented
programming. pages 220–242. 1997.

[2]. A. Przyby ek. Where the Truth Lies: AOP and Its
Impact on Software Modularity. FASE 2011, LNCS
6603, Pages 447-461, 2011.

[3]. B. T. e. M. A. Jethro Bakker. Characterization of early
aspects approaches. In Proceedings of the Early
Aspects Workshop at AOSD, Netherlands, 2005.

[4]. A. Rashid. Aspect Oriented Requirements
Engineering: An Introduction. pages 306-309. IEEE,
2008.

[5]. S. Busyairah Ali and Z. Kasirun. An approach for
crosscutting concern identification at requirements
level using NLP. International Journal of the Physical
Sciences Vol. 6(11), pages 2718-2730, 2011.

[6]. E. Baniassad and S. Clarke. Theme: an approach for
aspect-oriented analysis and design. Pages 158–167,
2004.

[7]. A. Cockburn. Writing Effective Use Cases. Addison-
Wesley Professional, January 2000.

[8]. I. Jacobson and P.-W. Ng. Aspect-Oriented Software
Development with Use Cases (Addison-Wesley
Object Technology Series). Addison-Wesley
Professional, 2004.

[9]. P. Metz, J. O’Brien, and W. Weber. Specifying use
case interaction: Types of alternative courses. Journal
of Object Technology, 2(2):111–131, 2003.

International Journal of Scientific & Engineering Research, Volume 4, Issue 3, March-2013 9
ISSN 2229-5518

IJSER © 2013

http://www.ijser.org

[10]. K. E. Wiegers. Software Requirements. Microsoft
Press, Redmond, WA, USA, 2003.

[11]. A. M. d. C. Antonio Maria P. de Resende, Fabio
Fagundes Silveira and H. A. X. Costa. Meaid: A
method for early aspect identification and definition.
2008.

[12]. M. A. Cibran, M. D’Hondt, and V. Jonckers. Aspect-
oriented programming for connecting business rules.
Pages 306–315, 2003.

[13]. I. Kiselev. Aspect Oriented Programming with
AspectJ. 2002.

[14]. J. Elliott. Hibernate: A Developer's Notebook. 2004.
[15]. R. Johnson. Introduction to the Spring Framework.

2005.
[16]. A. G. Eduardo Figueiredo, Jon Whittle.

Concernmorph: Metrics-based detection of
crosscutting patterns.

[17]. G. Sousa, S. Soares, P. Borba, and J. Castro.
Separation of crosscutting concerns from
requirements to design: Adapting the use case driven
approach. In In Proc. Early Aspects Workshop at
AOSD, 2004.

[18]. L. Chung1 and J. Cesar. On Non-Functional
Requirements in Software Engineering. Mylopoulos
Festschrift, LNCS 5600, pages 363–379, 2009.

[19]. J. Evermann. A meta-level specification and profile
for aspectj in UML. In AOM ’07: Proceedings of the
10th international workshop on Aspect-oriented
modeling, pages 21–27, New York, NY, USA, 2007.

[20]. A. Rashid, T. Cottenier, P. Greenwood and R.
Chitchyan. Aspect Oriented Software Development
in Practice, Tales from AOSD, Europe. IEEE
Computer Society, 2010.

