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ABSTRACT 

The project uses techniques of Image Processing and Machine Learning in Computer Vision.  

Alphabetrecognition is the mechanical or electronic translation of scanned images of handwritten, typewritten or printed text into machine-encoded text. One of the 

popular mobile applications includes reading a visiting card and directly storing it to the contacts.   

The implementation of our project has been done using Visual Studio and Open CV (Open Source Computer Vision). Our algorithm is based on Neural Networks 

(Machine learning). The language used is c++. Our software is a fully functional model.We have running software available with us. 

The project was implemented in three modules viz.- 

1. Training: This module aims “Database Generation”. Database was generated using two methods:  

 Run-time generation  

 Contour–detection:  

2. Preprocessing: InputImage is pre-processed using image processing concepts such as adaptive thresholding, resizing and cropping and is made ready for 

segmentation. “Segmentation” includes extraction of lines, words, and letters from the processed text image. 

3. Testing and prediction: The extracted letters are classified and predicted using the neural networks algorithm. The algorithm recognizes an alphabet based on 

certain mathematical parameters calculated using the database and weight matrix of the segmented image. 
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INTRODUCTION 

The recognition of optical characters is known to be one of 

the earliest applications of Artificial Neural Networks, 

which partially emulate human thinking in the domain of 

artificial intelligence. The recognition of characters from 

scanned images of documents has been a problem that has 

received much attention in the fields of image processing, 

pattern recognition and artificial intelligence. Classical 

methods in pattern recognition do not as such suffice for 

the recognition of visual characters. For this reason we use 

the method of neural networks. 

CUSTOM ALGORITHM 

IMAGE DIGITIZATION 

When a document is put to visual recognition, it is expected 

to be consisting of printed (or handwritten) characters 

pertaining to one or more scriptsor fonts. This document 

however, may contain information besides optical 

characters alone. For example, it may contain pictures and 

colors that do not provide any useful information in the 

instant sense of character recognition. In addition, 

characters which need to be singlyanalysed may exist as 

wordclustersor may be located at various points in the 

document. Such an image is usually processed for noise-
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reduction and separation of individual characters from the 

document. It is convenient for comprehension to assume 

that the submitted image is freed from noise and that 

individual characters have already been located (using for 

example, a suitable segmentation algorithm). This situation 

is synonymous to the one in which a single 

 

                            

Fig.1 

 

 

 

 

 

 

 

Noise-free character has been submitted to the system for 

recognition.The process of digitization is important for the 

neural network used in the system. In this process, the   

input image is sampled into a binary window which forms 

the input to the recognition system. In the above figure, the 

alphabet A has been digitized into 6X8=48 digital cells, each 

having a single colour, either black or white. It becomes 

important for us to encode this information in a form 

meaningful to a computer. For this, we assign a value +1 to 

each black pixel and 0 to each white pixel and create the 

binary image matrix I which is shown in the Fig. (1.c). So 

much of conversion is enough for neural networking which 

is described next. Digitization of an image into a binary 

matrix of specified dimensions makes the input image 

invariant of its actual dimensions. Hence an image of 

whatever size gets transformed into a binary matrix of fixed 

pre-determined dimensions. This establishes uniformity in 

the dimensions of the input and stored patterns as they 

move through the recognition system. 

 

LEARNING MECHANISM 

In the employed system, a highly simplified architecture of 

artificial neural networks is used. In the used method, 

various characters are taughtto the network in a supervised 

manner. A character is presented to the system and is 

assigned a particular label. Several variant patterns of the 

same character are taught to the network under the same 

label. Hence the network learns various possible variations 

of a single pattern and becomes adaptive in nature. During 

the training process, the input to the neural network is the 

input matrix M defined as follows: 

 

If I (i, j) =1Then M(i, j) =1 

Else: 

If I (i, j) =0 Then M(i, j) =(-1) 

The input matrix M is now fed as input to the neural 

network. It is typical for any neural network to learn in a 

supervised or unsupervised manner by adjusting its 

weights. In the current method of learning, each candidate 

character taught to the network possesses a corresponding 

weight matrix. For the kthcharacter to be taught to the 

network, the weight matrix is denoted by Wk. As learning 

of the character progresses, it is this weight matrix that is 

updated. At the commencement of teaching (supervised 

training), this matrix is initialized to zero. Whenever a 

character is to be taught to the network, an input pattern 

representing that character is submitted to the network. The 

network is then instructedto identify this pattern as, say, 

the kthcharacter in a knowledgebaseof characters. That 

means that the pattern is assigned a label k. In accordance 

with this, the weight matrix Wkis updated in the following 

manner: 

for all i=1 to x                                                     

{ 

for all j=1 to y 

{ 

 W k (i, j) =W k (i, j) +M (i, j) 

} 

}  

Here x and y are the dimensions of the matrix Wk(and M). 

The following figure shows the digitization of three input 

patterns representing S that are presented to the system for 

it tolearn.                                                                              

 

   Fig.2: 

 

Note that the patterns slightly differ from each other, just as 

handwriting differs from person to person (or time to time) 

and like printed characters differ from machine to machine. 

All characters shall each have acorresponding weight 

matrix. 

 

A close observation of the matrix would bring the 

following points to notice: 

 The matrix-elements with higher (positive) values 

are the ones which stand for the most commonly 

occurring image-pixels. 
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 The elements with lesser or negative values stand 

for pixels which appear less frequently in the 

images. 

Neural networks learn through such updating of their 

weights. Each time, the weights are adjusted in such a 

manner as to give an output closer to the desired output 

than before. The weights may represent the importanceor 

priorityof a parameter, which in the instant case is the 

occurrence of a particular pixel in a character pattern. It can 

be seen that the weights of the most frequent pixels are 

higher and usually positive and those of the uncommon 

ones are lower and often negative. The matrix therefore 

assigns importance to pixels on the basis of their frequency 

of occurrence in the pattern. In other words, highly 

probable pixels are assigned higher priority while the less-

frequent ones are penalized. However, all labelled patterns 

are treated without bias, so as to include impartial 

adaptationin the system. 

NETWORK ARCHITECTURE 

Fig.3 

The overall architecture of the recognition system is shown 

in Fig. (3).In this system, the candidate pattern I is the 

input. The block ‘M’ provides the input matrix M to the 

weight blocks Wk for each k. There are totally n weight 

blocks for the totally n characters to be taught (or already 

taught) to the system. The recognition of patterns is now 

done on the basis of certain statistics that shall be defined 

next. 

 Candidate Score (Ψ(k)): This statistic is a product of 

corresponding elements of the weight matrix Wkof the 

kthlearnt pattern and an input pattern I as its candidate. It is 

formulated as follows: 

x   y 

Ψ(k)=∑ ∑ Wk(i,j)*I(i,j) 

 i=1 i=1 

 

It should be noted that unlike in the training process where 

M was the processed input matrix, in the recognition 

process, the binary image matrix I is directly fed to the 

system for recognition. 

 Ideal Weight-Model Score (): 

This statistic simply gives the sum total of all the positive 

elements of the weight matrix of a learnt pattern. It may be 

formulated as follows (with (k) initialized to 0 each time). 
for i=1 to x  

{ 

for j=1 to y 

 { 

if W k( i, j) 

then{ k) k) W k ( i, j) 

} 

} 

}  

 Recognition Quotient (Q): This statistic gives a measure of 

how well the recognition system identifies an input pattern 

as a matchingcandidate for one of its many learnt patterns. 

It is simply given by: 
Q (k) =  k)/  k) 

The greater the value of Q, the more confidence does the 

system bestow on the input pattern as being similar to a 

pattern already known to it.  

The classification of input patterns nowfollows the 

following trivial procedure:- 

 

1. For an input candidate pattern I, calculate the recognition 

quotient (Q(k) ) for each learnt        pattern k. 

2. Determine the value of k for which Q(k) has the 

maximum value. 

3. The pattern k for which Q(k) has the maximum value is 

our recognised pattern. 

4. Too low maximum value of Q(k) (say less than 0.5) 

indicates poor recognition.  

 

To improve recognition of this particular pattern, the same 

pattern can be repeatedly input to the system and taught to 

it as before under the same label. As a result, the value ofQ 

approaches unity after each time the pattern is taught. This 

illustrates learning from prior experience in neural 

networks. 

 

For the execution of the custom algorithm, we divided the 

software into three modules, namely- Training, 

Segmentation and Testing & Prediction. 
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 TRAINING 

1) RUN TIME GENERATION OF DATABASE 

A major challenge in front of us was to create various 

templates and use them to create our weight matrix i.e. to 

train our application. The storage and loading of many 

templates would not only occupy a lot of memory, but 

would also be very inefficient. So the algorithm of Run 

Time Template Generation was very useful. 

As per this algorithm, letters from A to Z were written only 

once each in a text file. Now each letter was taken, and 

using the function cvPutText( ), the letter was put in a 

blank image. The image size was the predetermined size of 

the weight matrix i.e. 32 X 32. To use this opencv function, 

first a function called cvInitFont( ) is used, which initializes 

the font type, thickness, skew and the height and width of 

the font. cvPutText( ) takes the pointers to the image and 

the character, address of font, position of letter in image 

and its colour as its parameters. Thus a letter is put into an 

image, in the desired font, size, colour and thickness.  

For this algorithm, we have used 6 standard fonts inbuilt in 

opencv, 2 different sizes and 3 different thicknesses. Thus at 

run time itself, we get the templates of a single letter in 36 

different ways. These templates will now be used for 

generation of weight matrix. We create a weight matrix of 

size 32 X 32 and initialize 

Once we get a template of a letter at run time, we pre-

process the image by using the functions cvThreshold and 

cvSmooth. The algorithm requires a cropped image of size 

32 X 32 as input at all times. So we wrote a piece of code for 

cropping the template. This code finds the leftmost, 

rightmost, topmost and bottommost pixels of the letter and 

sets a ROI (Region of Interest ) accordingly. We then resize 

the cropped image to the size 32 X 32, using the cvResize( )  

function. We then pass the resulting image to a function, 

which adds its data to the weight matrix. 

In the function, a blank image of size 32 X 32 was loaded 

and an ROI was set somewhere near the center of the 

image, with height 32 and width same as the width of the 

cropped image. We then copied the cropped image into this 

ROI and then we reset the ROI. Now the modified template 

was sent to the weight matrix generation function. 

 

First we had created a weight matrix of size 32 X 32 and 

initialized all its elements to 0. Once an image comes into 

this function, we create a matrix corresponding to it. We 

then access the pixel values of the image using cvGet2D( ). 

If the pixel is the background pixel, we set its value to -1 in 

the corresponding matrix. If it is a pixel of the character, we 

set its value to 1. We then add this matrix to the previously 

formed weight matrix, to form a new weight matrix. Thus 

for each of the 36 templates of a letter, the weight matrix 

goes on getting incremented. Vectors of labels and weight 

matrices were created, which were filled as more letters 

came. Now we have to store the contents of this weight 

matrix in a text file, which will form our database. 

The format in the database is the name of the letter 

followed by the contents of its weight matrix. The file also 

contains the total number of weight matrices and the size of 

the matrices. 

We also have a provision to add two or more such weight 

matrices, to make a larger database. 

ADVANTAGES OF THIS METHOD: 

 Saves a lot of memory and time 

 Templates need not be made manually 

DISADVANTAGES OF THIS METHOD 

 Only a limited number of fonts are available. So we 

don’t get a variety in the database 

 

 

2) CREATION OF A DATABASE USING BLOB 

DETECTION 

Another method of creating the database is to carry out the 

letters from an image using the contours methods. 

According to this algorithm: 

 An image containing different fonts of a same 

letter is an input. 

 Program will extract out different all the letters 

from an image using contour detection method. 

 The program will also draw a bounding box 

around the letter. 

 Then we can pass the coordinates of this box and 

crop out an image and  resize it to 32x32 . 

 The program will carry out all the letters from the 

image input. 

 These cropped images are then stored in a vector 

and used to create the weight matrix. 

Now, how this weight matrix is generated? 

This is same as discussed in the earlier topic ‚runtime 

generation of templates. 

 

 SEGMENTATION 

A test image is first broken down or segmented into its 

component letters before the latter can be sent for 

classification and prediction. How we go about all this is 

explained below. 
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1. CROPPING 

Before an image is sent for segmentation it is necessary to 

first crop it. For this purpose we have written a function for 

cropping. In this function we have assumed that 

background is white while foreground is black.  The 

function can be modified a bit to suit the needs of images 

which have black background and white foreground. The 

output of this function is an image with the text touching 

all its four sides. 

 

  Input to cropping function 

 

 

 

 

 

 

 

 

 

Output from cropping function 

 

The aim of the cropping algorithm is to set an appropriate 

Region of Interest (ROI) around the text. We find this ROI 

by finding the leftmost, the rightmost, the bottommost and 

the topmost black pixels in the image. 

 

2. SEGMENTATION OF LINES 

The input image is passed to the ‘extractlines’ function. 

And this function does just what its name suggests, it 

extracts different lines of text from the image. 

But before that the image undergoes adaptive and binary 

thresholds to remove the existing noise from the image. 

After that it is resized according to its size. That is if  the 

image height is less than 45 or the image width is less than 

600 it is resized maintaining its aspect ratio as we have 

done in the code below. 

Now the image is sent for cropping. 

As we have mentioned earlier in the segmentation 

algorithm, first we calculate the horizontal projection of the 

cropped image. This means that the number of black pixels 

(black because here it is assumed white background and 

black foreground) in each of the rows of the cropped image 

are stored in a vector. Now we have a vector whose size is 

the same as the height of the cropped input image. 

Now we iterate through the vector and locate the position 

of the first row which has zero black pixels, because zero 

black pixels means no text falls in that row which indicates 

a new line. Now the image is segmented (cut) from that 

position. 

We repeat the same procedure until we cover all the rows. 

The extracted lines are simultaneously passed to the 

‘extractletters’ function. The output of the ‘extractlines’ 

function is the images of the different lines of text in the 

input image. 

 

3. SEGMENTATION OF LETTERS 

We will now discuss how to extract individual letters from 

a line. 

ALOGORITHM 

a) The most important step that needs to be 

performed before segmentation of characters is 

"Pre-Processing". This step includes resizing of 

the image so that the minimum size of the input 

image is greater than 32x32. Next, thresholding 

needs to be performed (adaptive). The average 

standard deviation of an image is calculated; 

according to it the thresholding is done. The 

image is also smoothened before segmentation. 

 

b) After pre-processing, calculate the number of 

black pixel in each column. Traverse the image 

vertically, if a black pixel is encountered 

increment the count(of  black pixels) for that 

column by 1. Store the values in a vector. In the 

code "vector ch" contains the number of black 

pixels in each column. 

 

c) When we encounter a column containing some 

black pixels and another column besides it which 

is void of black pixels this means that the 

character has ended there. 

"ch.at(i)>0&&ch.at(i+1)==0" takes care of the 

above condition . 

 

d) The Integer "letter" stores the number of the times 

condition (discussed above in 3.) is satisfied. Thus 

, indirectly stores the total number of characters 

in each line. 

 

e) Declare two vectors namely 'r' and 's' of type 

"IplImage *". 's' stores the segmented character  
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and 'r' contains the image remaining after a 

character has been cropped from the image.   

 

f) Set the ROI(Region Of Interest) using the 

following logic.     We know that when condition 

3 is satisfied the character ends at 'i'th position. So 

, we need to crop the character from (i+1)th 

position. Thus, the x and y position of the first 

character encountered  is (0,0). The height of the 

character will be same as the height of the line  

and the width is (i+1). Set the ROI and push the 

copied image in the vector 's'. Now, set ROI in the 

same image with height ="line's height" 

,width="line's width-(i+1)", y=0 and x=(i+1). Push 

the image obtained into the vector 'r'. This 

condition will help us to copy the remaining 

portion of the image after a character has been 

segmented and can be used for segmenting 

another character. Using the image pushed in 'r' 

repeat step 6 till the value of the "letter-1" >=0.  

 

g) Integer "flag" is used for the special condition that 

is when the line contains a single character.  We 

increment the value of the flag by 1 when the 

condition 3 is satisfied. Else the value of the flag 

would remain 0,as it was initialized so. If the 

value of the flag is zero this means that the line 

contains a single character and the loop discussed 

in step 6 will not run. Thus there will be no 

images in the vectors 's' and 'r'. Thus to avoid this 

we push the line itself into the vector  's'. 

 

h) Finally, all our segmented characters are now 

present in the vector 's'. We have created a 

structure named "inventory" with global scope.  

struct inventory                                  

{ 

  int x; 

  int y; 

  IplImage* image; 

  int label; 

};  

Declare a vector "inv" of type "struct inventory" 

globally. Push the segmented images ,its x and y 

coordinate into the vector "inv" as per the loop.  

*Remember that the vector "inv" contains 

uncropped images of the character. 

Therefore.before using them further  crop them 

using the "cropping" function. But the line you 

obtain from "extractlines" function are cropped 

ones. This will help you avoid unnecessary blank 

images in our vector 'inv'.  

 

4. SPACE DETECTION  

Till now we just saw how to segment individual characters 

from an image. Before we move to the recognition of 

individual character, another important aspect is "space 

detection". As we all know words are separated by spaces 

and detecting them is important for displaying lines. 

So, let's have a glance at the algorithm for "space detection". 

 

ALGORITHM 

First, calculate the average width of the line. Store the value 

as an integer "avg1". Pass this value calculated to the 

"find_spaces" function we are going to use to determine the 

position of spaces in the line.  

 

Next, in the "find_spaces" function calculate the number of  

black pixels in each row, as we did in "extractletters" 

function.  

 

Now, we need to find spaces, so, search for the condition 

that a column contains 0 black pixels. If the above condition 

is encountered, then increment the value of the integer 

"zcount". Store the column number as 'x1'. Keep on 

incrementing the value of column till we get a column 

which contains black pixels. Store this column number as 

'x2'. The width of the space is (x2-x1).  
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Compare the width of the space with the character. If the 

width of the space is greater than or equal to 40% of 

(average width of the characters of the line, or 'avg1') then 

the space encountered is the space between words or else it 

is the space between the characters.   

 

Create a structure spaces globally and a vector of type 

"struct spaces" globally, containing integers 'x' and 'y'. 

 

The value of "zcount+1" will give us the actual position of te 

space in the line. 

 

Push the values "zcount+1" and   "line_number+1" as the 'x' 

and 'y' values respectively of the structure into the vector 

"spaces". 

 

Finally, during the time of display using the position 

number of the spaces displays them along with the 

characters simultaneously. We shall discuss the displaying 

of the characters and spaces later in detail, after detection of 

the characters. 

 

 

 TESTING AND  PREDICTION 

The third module in our letter recognition software 

is the prediction of the segmented characters which 

are being generated by the segmentation module. 

This part is of utmost important as this shall be the 

final output of our application and shall be the 

deciding factor of the efficiency and effectiveness 

of our program. Hence it is of prime importance to 

focus on this part and implement our custom 

algorithm in such a way so as to obtain high 

predictability and satisfying results. However, it 

still is very difficult to predict each and every 

character accurately for all of its occurrences. But 

we definitely achieve a satisfying and deterministic 

output. 

 

METHODOLOGY 

As we know, we are using the weight matrix based 

algorithm and shall be using some predefined and pre 

decided parameters in order to identify a particular 

character. We have the weight matrices generated for each 

and every alphabet (capital English) which have been 

created using more than 500 sample training templates for 

each letter from A-Z. The weight matrix is a 32x32 matrix 

calculated for each letter. Now we use this weight matrix to 

calculate statistical parameter s namely: 

 

‘psi’: Candidate Score  

‘mu’: Ideal Weight Model Score  

‘Q’ : Recognition quotient 

The procedure of calculating these statistical parameters is 

described as follows: 

1) Computation of ‘psi’:  We receive the segmented 

character as input for our prediction module. This 

black and white image is resized and converted to 

a matrix of 1’s and 0’s, 1 denoting a black pixel and 

0 denoting a white pixel.  We denote this input 

matrix by I (i, j). Psi is a statistic which is a product 

of corresponding elements of the weight matrix Wk 

of the kth learnt pattern (kth alphabet) and an input 

pattern I as its candidate. It is formulated as 

follows: 

 

 

 

2) Computation of ‘mu’: This statistic simply gives 

the sum total of all the positive elements of the 

weight matrix of a learnt pattern. It may be 

formulated as follows (with mu (k) initialized to 0 

each time). It is formulated as follows:   

for i=1 to x 

{ 

for j=1 to y 

{ 

if  Wk( i, j) > 0 then 

{ 

mu (k) =mu( k) + Wk( i, j) 

} 

} 

} 

Basically ‘mu’ turns out to be the sum of all the 

positive elements in the weight matrix for the kth 

letter. 

 

3) Recognition Quotient (Q): This statistic gives a 

measure of how well the recognition system 

identifies an input pattern as a matching candidate 

for one of its many learnt patterns. It is simply 

given by: 

 Q (k) = psi (k)/mu (k) 

The greater the value of Q, the more confidence 

does the application bestow on input patter as 

being similar to a pattern already known to it. 
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ALGORITHM 

Get the input segmented character image, preprocess it and 

convert it to 32x32 matrixes of 1’s and 0’s. 

Compute ‘mu’ value of the kth weight matrix for each such 

weight matrix, in our case there would be 26 such matrices 

for each alphabet. Hence we get 26 ‘mu’ values. 

Compute the psi value with each weight matrix and the 

input matrix using the above method. Just as for ‘mu’, we 

shall get 26 such values corresponding to each alphabet. 

Calculate Q value as the ratio of ‘psi’ and ‘mu’. Q can take 

positive as well as negative values depending upon how 

close the input matrix is to the weight matrix. 

The label associated with the weight matrix for which the 

maximum Q value occurs is identified as the matched letter 

and returned in the output. 

This process is repeated for all the segmented characters 

obtained from the segmentation module. 

*The weight matrices for each alphabet are stored in a text 

file (generated after the training phase) and can be accessed 

by calling the required functions. 

CONCLUSION 

The main advantage of our software is the database 

generation method being used. The total size of our 

database is restricted only to a few kilobytes and can be 

easily extended for the recognition of handwritten 

characters. The testing and prediction phase is based on 

simple pixel probability. Segmentation being the most 

important part of our software was also executed using a 

simple algorithm. It provides us with a highly simplified 

algorithm to help recognize English characters. The 

software possesses immense potential and has an extensive 

scope. The application is efficient and deterministic to a 

great extent. The application is also efficient considering the 

time and memory constraints. As far as possible, we have 

used dynamic memory allocation techniques thereby 

improving the memory efficiency of the program. The same 

algorithm can be extended for handwriting recognition, by 

training it with handwritten samples. However, the 

number of training samples required would be significantly 

higher. 

 

RESULTS AND DISCUSSIONS 

As we can see, the maximum Q value is for the letter ‘A’. 

Hence, the input letter would be recognized as ‘A’. 
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