
International Journal of Scientific & Engineering Research Volume 3, Issue 5, May-2012 1
ISSN 2229-5518odd page

IJSER © 2012

http://www.ijser.org

Alphabet Recognition Using Pixel Probability

Distribution
VaidehiMurarka, Sneha Mehta, DishantUpadhyay, SonaliBhadra, AbhijeetLal

ABSTRACT

The project uses techniques of Image Processing and Machine Learning in Computer Vision.

Alphabetrecognition is the mechanical or electronic translation of scanned images of handwritten, typewritten or printed text into machine-encoded text. One of the

popular mobile applications includes reading a visiting card and directly storing it to the contacts.

The implementation of our project has been done using Visual Studio and Open CV (Open Source Computer Vision). Our algorithm is based on Neural Networks

(Machine learning). The language used is c++. Our software is a fully functional model.We have running software available with us.

The project was implemented in three modules viz.-

1. Training: This module aims “Database Generation”. Database was generated using two methods:

 Run-time generation

 Contour–detection:

2. Preprocessing: InputImage is pre-processed using image processing concepts such as adaptive thresholding, resizing and cropping and is made ready for

segmentation. “Segmentation” includes extraction of lines, words, and letters from the processed text image.

3. Testing and prediction: The extracted letters are classified and predicted using the neural networks algorithm. The algorithm recognizes an alphabet based on

certain mathematical parameters calculated using the database and weight matrix of the segmented image.

INDEX

 Contour-detection, neural networks, Pre-processing, Recognition coefficient, Runtime-template generation, Segmentation, Weight matrix

————————————————————

OBJECTIVE

INTRODUCTION

The recognition of optical characters is known to be one of

the earliest applications of Artificial Neural Networks,

which partially emulate human thinking in the domain of

artificial intelligence. The recognition of characters from

scanned images of documents has been a problem that has

received much attention in the fields of image processing,

pattern recognition and artificial intelligence. Classical

methods in pattern recognition do not as such suffice for

the recognition of visual characters. For this reason we use

the method of neural networks.

CUSTOM ALGORITHM

IMAGE DIGITIZATION

When a document is put to visual recognition, it is expected

to be consisting of printed (or handwritten) characters

pertaining to one or more scriptsor fonts. This document

however, may contain information besides optical

characters alone. For example, it may contain pictures and

colors that do not provide any useful information in the

instant sense of character recognition. In addition,

characters which need to be singlyanalysed may exist as

wordclustersor may be located at various points in the

document. Such an image is usually processed for noise-

International Journal of Scientific & Engineering Research Volume 3, Issue 5, May-2012 2
ISSN 2229-5518odd page

IJSER © 2012

http://www.ijser.org

reduction and separation of individual characters from the

document. It is convenient for comprehension to assume

that the submitted image is freed from noise and that

individual characters have already been located (using for

example, a suitable segmentation algorithm). This situation

is synonymous to the one in which a single

Fig.1

Noise-free character has been submitted to the system for

recognition.The process of digitization is important for the

neural network used in the system. In this process, the

input image is sampled into a binary window which forms

the input to the recognition system. In the above figure, the

alphabet A has been digitized into 6X8=48 digital cells, each

having a single colour, either black or white. It becomes

important for us to encode this information in a form

meaningful to a computer. For this, we assign a value +1 to

each black pixel and 0 to each white pixel and create the

binary image matrix I which is shown in the Fig. (1.c). So

much of conversion is enough for neural networking which

is described next. Digitization of an image into a binary

matrix of specified dimensions makes the input image

invariant of its actual dimensions. Hence an image of

whatever size gets transformed into a binary matrix of fixed

pre-determined dimensions. This establishes uniformity in

the dimensions of the input and stored patterns as they

move through the recognition system.

LEARNING MECHANISM

In the employed system, a highly simplified architecture of

artificial neural networks is used. In the used method,

various characters are taughtto the network in a supervised

manner. A character is presented to the system and is

assigned a particular label. Several variant patterns of the

same character are taught to the network under the same

label. Hence the network learns various possible variations

of a single pattern and becomes adaptive in nature. During

the training process, the input to the neural network is the

input matrix M defined as follows:

If I (i, j) =1Then M(i, j) =1

Else:

If I (i, j) =0 Then M(i, j) =(-1)

The input matrix M is now fed as input to the neural

network. It is typical for any neural network to learn in a

supervised or unsupervised manner by adjusting its

weights. In the current method of learning, each candidate

character taught to the network possesses a corresponding

weight matrix. For the kthcharacter to be taught to the

network, the weight matrix is denoted by Wk. As learning

of the character progresses, it is this weight matrix that is

updated. At the commencement of teaching (supervised

training), this matrix is initialized to zero. Whenever a

character is to be taught to the network, an input pattern

representing that character is submitted to the network. The

network is then instructedto identify this pattern as, say,

the kthcharacter in a knowledgebaseof characters. That

means that the pattern is assigned a label k. In accordance

with this, the weight matrix Wkis updated in the following

manner:

for all i=1 to x

{

for all j=1 to y

{

 W k (i, j) =W k (i, j) +M (i, j)

}

}

Here x and y are the dimensions of the matrix Wk(and M).

The following figure shows the digitization of three input

patterns representing S that are presented to the system for

it tolearn.

 Fig.2:

Note that the patterns slightly differ from each other, just as

handwriting differs from person to person (or time to time)

and like printed characters differ from machine to machine.

All characters shall each have acorresponding weight

matrix.

A close observation of the matrix would bring the

following points to notice:

 The matrix-elements with higher (positive) values

are the ones which stand for the most commonly

occurring image-pixels.

International Journal of Scientific & Engineering Research Volume 3, Issue 5, May-2012 3
ISSN 2229-5518odd page

IJSER © 2012

http://www.ijser.org

 The elements with lesser or negative values stand

for pixels which appear less frequently in the

images.

Neural networks learn through such updating of their

weights. Each time, the weights are adjusted in such a

manner as to give an output closer to the desired output

than before. The weights may represent the importanceor

priorityof a parameter, which in the instant case is the

occurrence of a particular pixel in a character pattern. It can

be seen that the weights of the most frequent pixels are

higher and usually positive and those of the uncommon

ones are lower and often negative. The matrix therefore

assigns importance to pixels on the basis of their frequency

of occurrence in the pattern. In other words, highly

probable pixels are assigned higher priority while the less-

frequent ones are penalized. However, all labelled patterns

are treated without bias, so as to include impartial

adaptationin the system.

NETWORK ARCHITECTURE

Fig.3

The overall architecture of the recognition system is shown

in Fig. (3).In this system, the candidate pattern I is the

input. The block ‘M’ provides the input matrix M to the

weight blocks Wk for each k. There are totally n weight

blocks for the totally n characters to be taught (or already

taught) to the system. The recognition of patterns is now

done on the basis of certain statistics that shall be defined

next.

 Candidate Score (Ψ(k)): This statistic is a product of

corresponding elements of the weight matrix Wkof the

kthlearnt pattern and an input pattern I as its candidate. It is

formulated as follows:

x y

Ψ(k)=∑ ∑ Wk(i,j)*I(i,j)

 i=1 i=1

It should be noted that unlike in the training process where

M was the processed input matrix, in the recognition

process, the binary image matrix I is directly fed to the

system for recognition.

 Ideal Weight-Model Score ():

This statistic simply gives the sum total of all the positive

elements of the weight matrix of a learnt pattern. It may be

formulated as follows (with (k) initialized to 0 each time).
for i=1 to x

{

for j=1 to y

 {

if W k(i, j)

then{ k) k) W k (i, j)

}

}

}

 Recognition Quotient (Q): This statistic gives a measure of

how well the recognition system identifies an input pattern

as a matchingcandidate for one of its many learnt patterns.

It is simply given by:
Q (k) = k)/ k)

The greater the value of Q, the more confidence does the

system bestow on the input pattern as being similar to a

pattern already known to it.

The classification of input patterns nowfollows the

following trivial procedure:-

1. For an input candidate pattern I, calculate the recognition

quotient (Q(k)) for each learnt pattern k.

2. Determine the value of k for which Q(k) has the

maximum value.

3. The pattern k for which Q(k) has the maximum value is

our recognised pattern.

4. Too low maximum value of Q(k) (say less than 0.5)

indicates poor recognition.

To improve recognition of this particular pattern, the same

pattern can be repeatedly input to the system and taught to

it as before under the same label. As a result, the value ofQ

approaches unity after each time the pattern is taught. This

illustrates learning from prior experience in neural

networks.

For the execution of the custom algorithm, we divided the

software into three modules, namely- Training,

Segmentation and Testing & Prediction.

International Journal of Scientific & Engineering Research Volume 3, Issue 5, May-2012 4
ISSN 2229-5518odd page

IJSER © 2012

http://www.ijser.org

 TRAINING

1) RUN TIME GENERATION OF DATABASE

A major challenge in front of us was to create various

templates and use them to create our weight matrix i.e. to

train our application. The storage and loading of many

templates would not only occupy a lot of memory, but

would also be very inefficient. So the algorithm of Run

Time Template Generation was very useful.

As per this algorithm, letters from A to Z were written only

once each in a text file. Now each letter was taken, and

using the function cvPutText(), the letter was put in a

blank image. The image size was the predetermined size of

the weight matrix i.e. 32 X 32. To use this opencv function,

first a function called cvInitFont() is used, which initializes

the font type, thickness, skew and the height and width of

the font. cvPutText() takes the pointers to the image and

the character, address of font, position of letter in image

and its colour as its parameters. Thus a letter is put into an

image, in the desired font, size, colour and thickness.

For this algorithm, we have used 6 standard fonts inbuilt in

opencv, 2 different sizes and 3 different thicknesses. Thus at

run time itself, we get the templates of a single letter in 36

different ways. These templates will now be used for

generation of weight matrix. We create a weight matrix of

size 32 X 32 and initialize

Once we get a template of a letter at run time, we pre-

process the image by using the functions cvThreshold and

cvSmooth. The algorithm requires a cropped image of size

32 X 32 as input at all times. So we wrote a piece of code for

cropping the template. This code finds the leftmost,

rightmost, topmost and bottommost pixels of the letter and

sets a ROI (Region of Interest) accordingly. We then resize

the cropped image to the size 32 X 32, using the cvResize()

function. We then pass the resulting image to a function,

which adds its data to the weight matrix.

In the function, a blank image of size 32 X 32 was loaded

and an ROI was set somewhere near the center of the

image, with height 32 and width same as the width of the

cropped image. We then copied the cropped image into this

ROI and then we reset the ROI. Now the modified template

was sent to the weight matrix generation function.

First we had created a weight matrix of size 32 X 32 and

initialized all its elements to 0. Once an image comes into

this function, we create a matrix corresponding to it. We

then access the pixel values of the image using cvGet2D().

If the pixel is the background pixel, we set its value to -1 in

the corresponding matrix. If it is a pixel of the character, we

set its value to 1. We then add this matrix to the previously

formed weight matrix, to form a new weight matrix. Thus

for each of the 36 templates of a letter, the weight matrix

goes on getting incremented. Vectors of labels and weight

matrices were created, which were filled as more letters

came. Now we have to store the contents of this weight

matrix in a text file, which will form our database.

The format in the database is the name of the letter

followed by the contents of its weight matrix. The file also

contains the total number of weight matrices and the size of

the matrices.

We also have a provision to add two or more such weight

matrices, to make a larger database.

ADVANTAGES OF THIS METHOD:

 Saves a lot of memory and time

 Templates need not be made manually

DISADVANTAGES OF THIS METHOD

 Only a limited number of fonts are available. So we

don’t get a variety in the database

2) CREATION OF A DATABASE USING BLOB

DETECTION

Another method of creating the database is to carry out the

letters from an image using the contours methods.

According to this algorithm:

 An image containing different fonts of a same

letter is an input.

 Program will extract out different all the letters

from an image using contour detection method.

 The program will also draw a bounding box

around the letter.

 Then we can pass the coordinates of this box and

crop out an image and resize it to 32x32 .

 The program will carry out all the letters from the

image input.

 These cropped images are then stored in a vector

and used to create the weight matrix.

Now, how this weight matrix is generated?

This is same as discussed in the earlier topic ‚runtime

generation of templates.

 SEGMENTATION

A test image is first broken down or segmented into its

component letters before the latter can be sent for

classification and prediction. How we go about all this is

explained below.

International Journal of Scientific & Engineering Research Volume 3, Issue 5, May-2012 5
ISSN 2229-5518odd page

IJSER © 2012

http://www.ijser.org

1. CROPPING

Before an image is sent for segmentation it is necessary to

first crop it. For this purpose we have written a function for

cropping. In this function we have assumed that

background is white while foreground is black. The

function can be modified a bit to suit the needs of images

which have black background and white foreground. The

output of this function is an image with the text touching

all its four sides.

 Input to cropping function

Output from cropping function

The aim of the cropping algorithm is to set an appropriate

Region of Interest (ROI) around the text. We find this ROI

by finding the leftmost, the rightmost, the bottommost and

the topmost black pixels in the image.

2. SEGMENTATION OF LINES

The input image is passed to the ‘extractlines’ function.

And this function does just what its name suggests, it

extracts different lines of text from the image.

But before that the image undergoes adaptive and binary

thresholds to remove the existing noise from the image.

After that it is resized according to its size. That is if the

image height is less than 45 or the image width is less than

600 it is resized maintaining its aspect ratio as we have

done in the code below.

Now the image is sent for cropping.

As we have mentioned earlier in the segmentation

algorithm, first we calculate the horizontal projection of the

cropped image. This means that the number of black pixels

(black because here it is assumed white background and

black foreground) in each of the rows of the cropped image

are stored in a vector. Now we have a vector whose size is

the same as the height of the cropped input image.

Now we iterate through the vector and locate the position

of the first row which has zero black pixels, because zero

black pixels means no text falls in that row which indicates

a new line. Now the image is segmented (cut) from that

position.

We repeat the same procedure until we cover all the rows.

The extracted lines are simultaneously passed to the

‘extractletters’ function. The output of the ‘extractlines’

function is the images of the different lines of text in the

input image.

3. SEGMENTATION OF LETTERS

We will now discuss how to extract individual letters from

a line.

ALOGORITHM

a) The most important step that needs to be

performed before segmentation of characters is

"Pre-Processing". This step includes resizing of

the image so that the minimum size of the input

image is greater than 32x32. Next, thresholding

needs to be performed (adaptive). The average

standard deviation of an image is calculated;

according to it the thresholding is done. The

image is also smoothened before segmentation.

b) After pre-processing, calculate the number of

black pixel in each column. Traverse the image

vertically, if a black pixel is encountered

increment the count(of black pixels) for that

column by 1. Store the values in a vector. In the

code "vector ch" contains the number of black

pixels in each column.

c) When we encounter a column containing some

black pixels and another column besides it which

is void of black pixels this means that the

character has ended there.

"ch.at(i)>0&&ch.at(i+1)==0" takes care of the

above condition .

d) The Integer "letter" stores the number of the times

condition (discussed above in 3.) is satisfied. Thus

, indirectly stores the total number of characters

in each line.

e) Declare two vectors namely 'r' and 's' of type

"IplImage *". 's' stores the segmented character

International Journal of Scientific & Engineering Research Volume 3, Issue 5, May-2012 6
ISSN 2229-5518odd page

IJSER © 2012

http://www.ijser.org

and 'r' contains the image remaining after a

character has been cropped from the image.

f) Set the ROI(Region Of Interest) using the

following logic. We know that when condition

3 is satisfied the character ends at 'i'th position. So

, we need to crop the character from (i+1)th

position. Thus, the x and y position of the first

character encountered is (0,0). The height of the

character will be same as the height of the line

and the width is (i+1). Set the ROI and push the

copied image in the vector 's'. Now, set ROI in the

same image with height ="line's height"

,width="line's width-(i+1)", y=0 and x=(i+1). Push

the image obtained into the vector 'r'. This

condition will help us to copy the remaining

portion of the image after a character has been

segmented and can be used for segmenting

another character. Using the image pushed in 'r'

repeat step 6 till the value of the "letter-1" >=0.

g) Integer "flag" is used for the special condition that

is when the line contains a single character. We

increment the value of the flag by 1 when the

condition 3 is satisfied. Else the value of the flag

would remain 0,as it was initialized so. If the

value of the flag is zero this means that the line

contains a single character and the loop discussed

in step 6 will not run. Thus there will be no

images in the vectors 's' and 'r'. Thus to avoid this

we push the line itself into the vector 's'.

h) Finally, all our segmented characters are now

present in the vector 's'. We have created a

structure named "inventory" with global scope.

struct inventory

{

 int x;

 int y;

 IplImage* image;

 int label;

};

Declare a vector "inv" of type "struct inventory"

globally. Push the segmented images ,its x and y

coordinate into the vector "inv" as per the loop.

*Remember that the vector "inv" contains

uncropped images of the character.

Therefore.before using them further crop them

using the "cropping" function. But the line you

obtain from "extractlines" function are cropped

ones. This will help you avoid unnecessary blank

images in our vector 'inv'.

4. SPACE DETECTION

Till now we just saw how to segment individual characters

from an image. Before we move to the recognition of

individual character, another important aspect is "space

detection". As we all know words are separated by spaces

and detecting them is important for displaying lines.

So, let's have a glance at the algorithm for "space detection".

ALGORITHM

First, calculate the average width of the line. Store the value

as an integer "avg1". Pass this value calculated to the

"find_spaces" function we are going to use to determine the

position of spaces in the line.

Next, in the "find_spaces" function calculate the number of

black pixels in each row, as we did in "extractletters"

function.

Now, we need to find spaces, so, search for the condition

that a column contains 0 black pixels. If the above condition

is encountered, then increment the value of the integer

"zcount". Store the column number as 'x1'. Keep on

incrementing the value of column till we get a column

which contains black pixels. Store this column number as

'x2'. The width of the space is (x2-x1).

International Journal of Scientific & Engineering Research Volume 3, Issue 5, May-2012 7
ISSN 2229-5518odd page

IJSER © 2012

http://www.ijser.org

Compare the width of the space with the character. If the

width of the space is greater than or equal to 40% of

(average width of the characters of the line, or 'avg1') then

the space encountered is the space between words or else it

is the space between the characters.

Create a structure spaces globally and a vector of type

"struct spaces" globally, containing integers 'x' and 'y'.

The value of "zcount+1" will give us the actual position of te

space in the line.

Push the values "zcount+1" and "line_number+1" as the 'x'

and 'y' values respectively of the structure into the vector

"spaces".

Finally, during the time of display using the position

number of the spaces displays them along with the

characters simultaneously. We shall discuss the displaying

of the characters and spaces later in detail, after detection of

the characters.

 TESTING AND PREDICTION

The third module in our letter recognition software

is the prediction of the segmented characters which

are being generated by the segmentation module.

This part is of utmost important as this shall be the

final output of our application and shall be the

deciding factor of the efficiency and effectiveness

of our program. Hence it is of prime importance to

focus on this part and implement our custom

algorithm in such a way so as to obtain high

predictability and satisfying results. However, it

still is very difficult to predict each and every

character accurately for all of its occurrences. But

we definitely achieve a satisfying and deterministic

output.

METHODOLOGY

As we know, we are using the weight matrix based

algorithm and shall be using some predefined and pre

decided parameters in order to identify a particular

character. We have the weight matrices generated for each

and every alphabet (capital English) which have been

created using more than 500 sample training templates for

each letter from A-Z. The weight matrix is a 32x32 matrix

calculated for each letter. Now we use this weight matrix to

calculate statistical parameter s namely:

‘psi’: Candidate Score

‘mu’: Ideal Weight Model Score

‘Q’ : Recognition quotient

The procedure of calculating these statistical parameters is

described as follows:

1) Computation of ‘psi’: We receive the segmented

character as input for our prediction module. This

black and white image is resized and converted to

a matrix of 1’s and 0’s, 1 denoting a black pixel and

0 denoting a white pixel. We denote this input

matrix by I (i, j). Psi is a statistic which is a product

of corresponding elements of the weight matrix Wk

of the kth learnt pattern (kth alphabet) and an input

pattern I as its candidate. It is formulated as

follows:

2) Computation of ‘mu’: This statistic simply gives

the sum total of all the positive elements of the

weight matrix of a learnt pattern. It may be

formulated as follows (with mu (k) initialized to 0

each time). It is formulated as follows:

for i=1 to x

{

for j=1 to y

{

if Wk(i, j) > 0 then

{

mu (k) =mu(k) + Wk(i, j)

}

}

}

Basically ‘mu’ turns out to be the sum of all the

positive elements in the weight matrix for the kth

letter.

3) Recognition Quotient (Q): This statistic gives a

measure of how well the recognition system

identifies an input pattern as a matching candidate

for one of its many learnt patterns. It is simply

given by:

 Q (k) = psi (k)/mu (k)

The greater the value of Q, the more confidence

does the application bestow on input patter as

being similar to a pattern already known to it.

International Journal of Scientific & Engineering Research Volume 3, Issue 5, May-2012 8
ISSN 2229-5518odd page

IJSER © 2012

http://www.ijser.org

ALGORITHM

Get the input segmented character image, preprocess it and

convert it to 32x32 matrixes of 1’s and 0’s.

Compute ‘mu’ value of the kth weight matrix for each such

weight matrix, in our case there would be 26 such matrices

for each alphabet. Hence we get 26 ‘mu’ values.

Compute the psi value with each weight matrix and the

input matrix using the above method. Just as for ‘mu’, we

shall get 26 such values corresponding to each alphabet.

Calculate Q value as the ratio of ‘psi’ and ‘mu’. Q can take

positive as well as negative values depending upon how

close the input matrix is to the weight matrix.

The label associated with the weight matrix for which the

maximum Q value occurs is identified as the matched letter

and returned in the output.

This process is repeated for all the segmented characters

obtained from the segmentation module.

*The weight matrices for each alphabet are stored in a text

file (generated after the training phase) and can be accessed

by calling the required functions.

CONCLUSION

The main advantage of our software is the database

generation method being used. The total size of our

database is restricted only to a few kilobytes and can be

easily extended for the recognition of handwritten

characters. The testing and prediction phase is based on

simple pixel probability. Segmentation being the most

important part of our software was also executed using a

simple algorithm. It provides us with a highly simplified

algorithm to help recognize English characters. The

software possesses immense potential and has an extensive

scope. The application is efficient and deterministic to a

great extent. The application is also efficient considering the

time and memory constraints. As far as possible, we have

used dynamic memory allocation techniques thereby

improving the memory efficiency of the program. The same

algorithm can be extended for handwriting recognition, by

training it with handwritten samples. However, the

number of training samples required would be significantly

higher.

RESULTS AND DISCUSSIONS

As we can see, the maximum Q value is for the letter ‘A’.

Hence, the input letter would be recognized as ‘A’.

ACKNOWLEDGMENT

We would like to express my gratitude to the Practice

School Division of BITS Pilani for the PS1 Program.We are

especially grateful to Mr. AbhayRaghuwanshi and Mr.

NinadPandey from Global Logic, Nagpur for their help and

advice in the project work. We are deeply indebted to Mr.

AshwinKorde for his support and encouragement. We

would like to thank our PS instructor Mrs. VaishnaviUnde

for her constant guidance, and our Practice School co-

instructor Mr. MohitAgrawal for his efforts to make our

work enjoyable.

REFERENCES

www.aishack.in,

http://www.waset.org/journals/waset/v38/v38-32.pdf,

http://www.cs.berkeley.edu/~fateman/kathey/char_recognit

ion.html,

http://opencv.willowgarage.com/documentation/cpp/index.

html,

http://www.ee.iitb.ac.in/~icvgip/PAPERS/161.pdf

http://www.aishack.in/
http://www.waset.org/journals/waset/v38/v38-32.pdf
http://www.cs.berkeley.edu/~fateman/kathey/char_recognition.html
http://www.cs.berkeley.edu/~fateman/kathey/char_recognition.html
http://opencv.willowgarage.com/documentation/cpp/index.html
http://opencv.willowgarage.com/documentation/cpp/index.html
http://www.ee.iitb.ac.in/~icvgip/PAPERS/161.pdf

