Anemia Management in Uremic Patients Treated With Chronic Intermittent Dialysis

1. Prof. Dr. Nasir Behxheti, 2. M-r.Dr. Zamira Bexheti, 1,2, 3. M-r.Dr. Gazmend Zylbeari, 1,2, 4. Mr. Pharm Mirlind Behxheti, 4. Prof. Dr. Lutfi Zylbeari, 1,2.

1. State University of Tetova, Medical Faculty, Tetova, Macedonia
2. Private Special Hospital For Nephrology and Hemodialysis "Vita Medical Group" - Tetova, Macedonia
3. State University of Tetova, Faculty of Pharmacy, Tetovo, Macedonia

Abstract: Chronic kidney failure (Terminal Chronic Kidney Insufficiency-TCKI) is a pathological condition followed by physiological decrease of the kidney function or a gradual decrease of the glomerular filtration rate (GFR - Glomerular Filtration Rate). One of the most common consequences that appears in patients with TCKI is renal anemia. Chronic Kidney Disease (CKD) is widespread all around the world, and the number of patients that are affected is continuing to grow. In the United States, it is evaluated that till the year 2010 - 2 million people were affected with Terminal Chronic Kidney Insufficiency. The impact of anemia in patients with CKD is deep. Besides the known symptoms such as fatigue, dizziness, shortness of breath, chest discomfort anemia is associated with serious adverse outcomes, such as cardiovascular complications, including left ventricular hypertrophy and congestive heart failure. Although the most severe form of TCKI is kidney failure and the need for renal replacement therapy (hemodialysis, peritoneal dialysis, or kidney transplantation), many more patients are affected by less severe forms of the TCKI. National Kidney Foundation (NKF-National Kidney Foundation K / DOQI) based on the norm of glomerular filtration rate (GFR), chronic kidney failure divides into five distinct phases: Phase 1: GFR (glomerular Filtration Rate) is ≥ 90 ml / min / 1.73 m2. Phase 2: GFR = 60-89 ml / min / 1.73 m2. The third phase /min/1.73 m2 = 30-59 ml and when the fourth phase of GFR 15-29 ml / min / 1.73 m2, respectively, the final stage is the fifth stage when GFR is <15 ml / min / 1.73 m2 or when patients seek replacement therapy or respectively hemodialysis treatment (2). Chronic kidney weakening presents gradual irreversible impairment of secretory, secretory endocrine, metabolic and homeostatic kidney functions as a result of various congenital or acquired kidney diseases. During Chronic Kidney Failure (CKF) the production of the hormone Erythropoietin (EPO) is decreased which is a leading cause of renal anemia in these patients. The role of EPO (hormone which mainly secretes in kidney) is the stimulation of Erythropoese. So it is very clear that in TCKI when the secretory function of the kidney is weakened, the nephron function is reduced then also the Erythropoietin concentration is reduced too and in high positive correlation with the development of anemia. Anemia, as defined by ICF National Kidney Foundation, the values of hemoglobin (Hb) are <12 g / dl for women and <13.5 g / dl for men (3), on the other hand, best European guidelines for anemia management in patients with chronic kidney failure define anemia by age and gender. Anemia is defined as aHb concentration of <11.5 g / dl of the female gender, males ≤ 70 years Hb<13.5 g / dl in men and > 70 years Hb<12 g / dl (4). The aim of the paper: The purpose of this study is to verify and document the positive therapeutic effects of Epoetin (stimulative preparations of erythropoese) in the renal anemia treatment in uremic patients treated with chronic repetitive hemodialysis. The Material and Methods: In the cohort-prospective study (, cross-section) were included a total N= 120, patients treated with hemodialysis from which: 54 (45%) were females whereas 64 (55%) were males, with an average age: 58.20 ± 18.0 years old, treated with dialysis for more than 12 years in the Clinic of Nephrology - Skopje and in the Special Hospital for Nephrology and Hemodialysis "Vita Medical group" in Tetovo (table N-2-a and N-2-a graph).

Index Terms: Anemia, epoetina, uremia, Hemodialysis

1 INTRODUCTION

Anemia appears from the beginning of kidney weakening (when kidney function starts weakening by 30-50%), that's why the correction of the initial stages is of great importance, because the early correction of anemia not only corrects the blood statements, it also protects the body from its consequences: left ventricular hypertrophy, infections and other diseases of the blood vessels. Etiology of renal anemia and the correlation with the kidney insufficiency depends on many different factors. In patients with TCKI treated with hemodialysis (HD), it's recommended that as an treatment objective of anemia to be the value of Hb ≥ 11g / dl for female gender and ≥12 g / dl for male gender. Many studies have shown a high positive correlation between the Hb concentration and kidney function. One of the major of studies, Health and Nutrition Survey of Third National Review (NHANES III - Third National Health and Nutrition Examination Survey (NHANES III)), has examined more than 15,000 people in the US general population in the period of the
years 1988-1994 and found an inverse relationship between GFR < 60 ml/ min \(1.73 \text{m}^2\) and the prevalence of anemia. Using GFR and calculating the prevalence of anemia, defined as a concentration of Hb < 12 g/dl in men and <11 g/dl in women, they found that anemia increases by 1% in patients with a GFR of 60 ml/ min to 1.73 m2, by 9% in patients with Prof. Dr. Nasir Behxheti-State University of Tetova, Medical Faculty, Tetova, Macedonia M-r Dr. Zamira Behxheti-State University of Tetova, Medical Faculty, Tetova, Macedonia „Private Special Hospital For Nephrology and Hemodialysis “Vita Medical Group” - Tetova, Macedonia Dr. Gazemend Zylbeari- State University of Tetova, Medical Faculty, Tetova, Macedonia „Private Special Hospital For Nephrology and Hemodialysis “Vita Medical Group” - Tetova, Macedonia

Mr. Pharm Mirlind Behxheti-State University of Tetova, Faculty of Pharmacy, Tetova, Macedonia

Prof. Dr. Lutfi Zylbeari - State University of Tetova, Medical Faculty, Tetova, Macedonia „Private Special Hospital For Nephrology and Hemodialysis “Vita Medical Group” - Tetova, Macedonia

Although patients with diabetes are monitored regularly for a variety of complications, such as polineuropathy, nephropathy and diabetic retinopathy, the Hb concentrations are often not routinely assessed. Interestingly, Hb reductions often occur prior to the beginning of diabtic nephropathy. This Hb reduction occurs for a variety of reasons. About 90% of the hormone erythropoietin is produced by the kidneys. Under normal physiological conditions, hypoxia in the kidneys leads to an increase in the production of erythropoietin, which then stimulates erythropoesis (8) of the kidneys, in turn, having increased the oxygenation due to the formation of red blood cells and then reduction of the GFR degree of 30 mL/ min/1.73 m2 and up to 33% for males and 67% for women when the rate of GFR falls of 15 mL/min/1.73 m2. (5, 6). Patients with stage four and five of TCKI and diabetes have higher prevalence of anemia compared with patients without diabetes and other underlying diseases (7).

Erythropoietin production. However, tubulointerstitial damage associated with diabetes occurs early in the course of diabetes, even before a reduction in GFR or the manifestation of albuminuria. Functional kidney tissue in patients with TCKI, are not able to produce sufficient amounts of erythropoietin in response to renal hypoxia. Several factors affect negatively in reducing the production of Hb such as metformin, fibrates, statins, thiazolidinediones, ACE inhibitors and finally, systemic inflammation (MIA syndrome) associated with the microvascular disease in patient witj diabetes which leads to in the production of inflammatory cytokines mediators, such as interleukin, tissue necrosis factors. Other factors, though not specifically affecting in the worsening of anemia in patients with TCKI, are also: platelet dysfunction that leads to an increased risk of gastro-intestinal bleeding, short red blood cell lifespan (30-60%, whereas normally: 120 days), hemolysis, accumulation of uremic toxins. In patients treated with HD as a cause of anemia, are also counted the chronic loss of blood resulting from frequent phlebothomy for frequent laboratory examinations, frequent punctures of arterio-venous fistulas and blood loss during dialyser rupture, malnutrition and iron deficiency, folate and vitamin B12, all influence in the manifestation of anemia and reduction of the Hb values and so in stimulating the production of erythropoietin and also erythropoesis. (10,11).

2 MATERIAL AND METHODS USED

In the cohort-prospective study (., cross-section) were included a total of N0 = 120 patients that were treated with hemodialysis, from which: 54 (45%) were females and 64 (55%) were males, with an average age: 18.0 ± 58.20 years, treated with dialysis for more than 12 years in Skopje Clinic of Nephrology and Special Hospital for Nephrology and Hemodialysis “Vita Medical Group” in Tetovo (table number 2-a and graph No. 2-a, b). From the total 120 patients, in a 100 of them (83%) was manifested anemia which showed a sensibility towards Erythropoietin. Whereas 20 (17%) patients had normal values of hemoglobin, erythrocytes, haematocrit and MCV. All anemic patients were treated with epoetin with a dose of 2000-4000 international units intravenously administrated at the end of haemodialysis sessions. Before starting the Epo therapy administration, all patients were subjected to laboratory examination of: Er, Hg, Htc, iron in serum, blood ferritine, Le, thrombocytes, urea, creatinine, uric acid, total proteins, albumin and electrolytes (Na, Chlorine, K, Ca, Inorganic Phosphorous, Magnesium). Blood for analysis was taken at the morning 08h at room temperature (19-240C), prior to the haemodialysis sessions and arteriovenous fistula. Blood taken for examination inserted in the test tube with a few drops of heparin (5ccm serum) were sent for analysis in the laboratory of Special Hospital for Nephrology and Hemodialysis “Vita Medical Group” in Tetovo. Parallel with this, a vial from the same patients were also sent in the Institute of Clinical Laboratory in Skopje, purposely the obtained results to be verified and calibrated more efficiently. After the correction of anemia over the fifth or six week and achieving the Hb target of 115 g/l we began to reduce the maintenance dose of 20-30 units per Kg / PT applied intravenously, individually depending on each patients.

Table no. 1: Distribution of patients examined by sex and presence of anemia

<table>
<thead>
<tr>
<th>Anemia</th>
<th>Number</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>The examined group</td>
<td>100</td>
<td>8</td>
</tr>
<tr>
<td>Males</td>
<td>52</td>
<td>4</td>
</tr>
</tbody>
</table>

http://www.ijser.org
From the examined group of 120 patients, in 100 of them (83%) was verified the presence of anemia whereas in 20 of them (17%) was not noted signs of anemia. Significant comparison for $p < 0.001$. Anemia was registered in 52 female patients and 48 male patients (tab. and graph no. 3).

Table no. 2: Presentation of patients by gender and average age

<table>
<thead>
<tr>
<th>Gender</th>
<th>Total patient number</th>
<th>Average age ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Males</td>
<td>65 (55%)</td>
<td>56.40 ± 12.80</td>
</tr>
<tr>
<td>Females</td>
<td>54 (45%)</td>
<td>59.50 ± 14.50</td>
</tr>
</tbody>
</table>

The average age of the examined patients between genders shows a non-significant difference for $p = 0.0005$ indicating a homogeneous group of examined patients.

3 STATISTICAL PROCESSING OF EXAMINED MATERIAL

From the statistical basic methods were used the arithmetic average value and the standard deviation $X ± SD$. Hemogram's comparative statistics were analyzed with a test called STUDENTOV test, Mann-Whitney-U test and ANOVA Two-Factor with the statistic value for p less than 5%, respectively < 0.0005 and $p < 0.0001$.

4 THE OBTAINED RESULTS

The obtained results presented in tabular and graphic methods represent the average values from the three consistent measurements with a difference of 3 months in identical conditions. For the examination was used 5 + (5) ml of venous blood taken from the arteriovenous fistula puncture (FAV) while the patient was in a lying position.
Table No. 3: Average values of the Hemogramit (Hemoglobin, Erythrocytes and Hematocrit) of examined patients by sex before the application of erythropoetin

<table>
<thead>
<tr>
<th>Gender</th>
<th>Hb</th>
<th>Er</th>
<th>Htc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Males</td>
<td>86.20 ± 5.40</td>
<td>2.80 ± 0.64</td>
<td>0.28 ± 0.05</td>
</tr>
<tr>
<td>Females</td>
<td>80.5 ± 4.70</td>
<td>2.60 ± 0.59</td>
<td>0.24 ± 0.05</td>
</tr>
</tbody>
</table>

Table No. 4. Hemogram's average values (Hb, Er, and Htc) in patients examined by gender, after the application of EPO therapy with a duration of 8 weeks (or 56 days)

<table>
<thead>
<tr>
<th>PtsN0=100</th>
<th>1st WEEK</th>
<th>4th WEEK</th>
<th>8th WEEK</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hb</td>
<td>Er</td>
<td>Htc</td>
</tr>
<tr>
<td>Males</td>
<td>86.20</td>
<td>2.80</td>
<td>0.28</td>
</tr>
<tr>
<td>Females</td>
<td>80.50</td>
<td>2.60</td>
<td>0.24</td>
</tr>
</tbody>
</table>

Obtained values from the group of 100 examined patients are shown in Table no. 4. The difference between genders was statistically insignificant for p <0.0005 (tab. no 4). The optimal target was reached to in 20 of 54 female patients, whereas the desired response by the treatment with rHuEpo (110>Hb> 100 g / l) was reached in 30 out of 54 examined females. In males the optimal target from the substitutional erythropoietin therapy was achieved (target , , Hgb>110g/l) in 24 out of 66 male examined patients, while desired values of 110> HGB> 100g / l was reached at N0 = 36/66. The whole group of examined male patients showed an optimal response to erythropoietin (Hb>110g/l) was achieved in all examined patients. The inadequate effect from the Erythropoietin therapy was dependent on patient's body weight, periods of not applying the erythropoietin in required dose because of unified drug application in all patients treated with recurrent haemodialysis (three times in a week a 2000 international unit without accounting the additional needs of the Epo), lack of the drug from the market, the frequent losses during the haemodialysis sessions (different bleedings, bleedings from the arterio-venous fistula, femoral catheter, grafts, extracorporal blood coagulation, menstrual disturbance of the female gender ...) disruption and discontinuity in the application of erythropoietin during hypertensive crisis, during intra/interdialysis, vitamin B12 deficiency, iron deficiency, etc. (11). The difference of the erythropoietin effect between genders in males is depended by the excessive stimulation of the bone marrow, and the frequent disturbance in the menstrual cycle and loss of blood from the female genitals. As expected the positive results of the Epo therapy began to express after the third week, respectively after the fourth week, whereas in 60% of patients the target Hb values were manifested after the sixth week. The values obtained are presented in the Table 1. In addition to Hb, Er, Htc we also analyzed serum iron values (Fes). The absence of iron in serum was treated individually depending on the needs through ampoules Venofer (ferric -hydroxyd-III) intravenously. At all the time during the study, we followed the adverse effects of the drug such as arterial hypertension, headaches, muscle pain. The drug was analyzed in patients who manifested clinical picture and symptoms of renal anemia and anemic syndrome (fatigue, apathy, dizziness, insomnia and also laboratory analysis documented for anemia: Hb<95g / l, Er<2.60, Htc<0.30 and the values of serum iron <7 micromoles / l ...) treated with intermittent HD at the Special Hospital for Nephrology and Hemo-dialysis ,, Vita Medical Group * in Tetovo.
Anemia from the World Health Organization (WHO) is determined when the concentration of hemoglobin (Hb) is lower than 13.0 g / dL in adult men and women in post-menopausal period <12.0 g / dL. Based on these criteria, nearly 90 percent of patients with a glomerular filtration rate (GFR) of less than 25-30 mL / min have anemia, levels of Hb<10g / dL. Since the adoption and disclosure of recombinant human erythropoietin (epoetin alfa, beta, zeta etc.), this and also other stimulating agents of the erythropoiesis have become the gold standard of care for the treatment of anemia that occurs in a large number of patients with advanced chronic renal disease (CKD) and terminal chronic renal failure (ESRD). By the year 2006, 90% of patients treated with chronic hemodialysis in the United States were treated with an epoetin with an average Hb level of 12.0 g / dL. While two thirds of all patients had Hb levels between 11-13 g / dL. Anemia is also considered as a contributing factor in many of the symptoms associated with reduced kidney function. Other factors, though not specific to patients with diabetes, further aggravate anemia in patients with CKD. These include platelet dysfunction that leads to an increased risk of gastrointestinal bleeding, short erythrocyte lifespan (30-60% of the normal 120 days), hemolysis and accumulation of uremic toxins. Hypoxia caused by anemia stimulates the Renin-Angiotensin-Aldosterone System and contributes in kidney vasoconstriction. These factors further exacerbate proteinuria in TCKI by raising proteins in renal tubes. In a large number of patients with type 2 diabetes, it’s shown that anemia is an independent risk factor associated with loss of renal function (12). Thoughts are that anemia significantly impacts in accelerating the progress of nephropathy and diabetic neuropathy (11), other general complications that are related to the reduction of renal function, reduction of thinking function, physical activity, increased libido, damaged lifestyle, and the need for transfusion . The correction of anemia showed that significantly affects the improvement of cardiac function or myocardial ischemia. Numerous studies have examined mortality reduction in predialytics and in those treated with HD and also with Erythropoietin (12,13,14,15). As a result of the possible severe consequences of anemia in patients with kidney failure, discovery, management and early treatment of anemia are necessary. In 2006 the NKF-KDOQI objective, recommended that Hb concentrations should be brought ≥11 g / dL. Finally, the trial was terminated prematurely by the Data and Safety Monitoring Board due to the inability to show a benefit (futility) and due to the suggestion of harm from higher Hb objective, which was not achieved (17, 18). A large number of authors have concluded that in predialytic patients, the anemia correction does not influence in the risk reduction of cardiovascular diseases (17,18,19). In 2007 NKF / DOQI took a conservative approach and lowered the lower limit for the Hb treatment would remain 11 g / dL, while those receiving rHuEpo objective of Hb it would be ≤13 g/dL (20,21,22,23). The cause of renal anemia, whether normocrome or normocite is not only the reduced concentration of erythropoietin but also: reduced erythropoiesis, short red blood cell lifespan , iron deficiency, the impact of uremic toxins, the beginning of bone marrow fibrosis and many other factors. Presenting symptoms of anemia start when the glomerular filtration rate is decreased under 40 ml / min, although at this stage the concentration of hemoglobin (Hb) and hematocrit values are normal (reference values of Hb = 7.76-10.6 mmol / L while for Htc = 0.37 to 0.54). With the progressive weakening of renal function and glomerular filtration rate <40 ml / min, starts the fall of the Hb concentration value, Htc and red blood cells (erythrocytes), which results in an increase and higher activity of erythropoietin which in this stage appears as a protectant and inhibitor of renal anemia presentation. For increasing the concentration of the erythropoietin in this phase when glomerular filtration is under 40 ml / min as the main incentive is exactly anemia and the high and increased activity of the renin-angiotensin system. In this phase the body is adapted and does not manifests signs of anemia. With the passing of time and the progressive weakening of kidney function we have weakened and decreased glomerular filtration and reduction of erythropoietin production which results in high anemia. Many multicentric-clinical studies among patients with weakened kidneys showed that the correction of anemia has proved that mortality is significantly higher in patients with weakened kidneys as a result of cardiovascular disease (left ventricular hypertrophy, congestive heart weakening, myocardial infarction ...) and cerebrovascular diseases compared with a healthy population. Left ventricular hypertrophy appears as a result of renal anemia with increased volume of the heart, hypertension, increased sympathetic activity and cardiac rhythm being manifested with sinus tachycardia and paroxysmal. Cardio-cerebrovascular complications in patients with weakened kidneys as a result of renal anemia start to appear especially with declining Hb concentration under the values of 0.5 g / dL and then the risk to left ventricular hypertrophy increases to 32-40%. In the past, renal anemia in patients with chronic renal insufficiency (preterminal) is treated by transfusion of red blood cells or whole blood, but it jeopardized the immunization and so the transfer of virus B and C hepatitis, which inspired the experts to think of any drug in order to avoid this contemporary occurrence. Renal anemia treatment instructions are supported under the proposals that are based on the principles of evidence-based medicine (evidence-based-medicine). For optimal treatment of renal anemia most commonly used instructions are the instructions of two associations: the Europe-European-Best-Practice-Guedlines (EBPG) and America: National-Kidney-Foundation (NKF) K-doqi Guidelines. Between these two associations are many similarities, such as: ways of applying epoetin is generally the same except (alpha epoetin) all other types are given in subcutaneous administration and this kind of application reduces the risk of hypertension caused by epoetina compared with administrating it intravenous way. Association-EBPG proposes that treatment with epoetin should be started when Hb>11 g / dL and association-NFK / doqi proposes that target Hb values should range between 11-12 g / dL. Modern studies suggest that the values of Hb in patients with chronic kidney failure (before the terminal phase) is not allowed to be over 14g / dL. In patients with chronic kidney weakening is presented the absence of a stimulating agent of the erythropoiesis, the so-called Erythropoietin. Erythropoietin (EPO) is a glycoprotein hormone produced mainly in the kidneys and to a lesser extent in liver. Erythropoietin synthesis has been demonstrated in the brain, uterus, testis and spleen. This is the most important hematopoietic factor of the phylogenetic growth that belongs among cytokines - and
somatotropin, interleukins 2-7, et al. The gene for Erythropoietin which is located on the seventh chromosome with the chain of 193 amino acid polypeptide. The native form is composed of 62% protein and 38% sugar. Individual molecules exist in the 4 glycosylation sites. These are 3 through a nitrogen atom and 1 through an oxygen atom. Sugar components are not important for the in vitro activity of erythropoietin, erythropoietin as receptor binds with the protein part. Sugar component is important for the prolonged duration of erythropoietin action and reducing its elimination. Erythropoietin biological activity in vivo is eliminated practically, if the molecule is not glycosylated. Sugar components play an important role in expanding its operation and reducing its elimination. The formation of red blood cells or erythropoiesis is controlled by a system of humoral growth factors and cytokines. Erythropoietina acts directly on erythroid progenitor cells some of the precursors of red blood cells in the bone marrow, control their proliferation, maturation and differentiation. Erythropoietina is 85-90% of kidney origin, the rest being excreted by hepatocytes. Formation of erythropoietin in the kidneys, in particular, increases the state of hypoxia, where red blood cells are important to ensure a steady supply of oxygen. This link between hypoxia and the number of red blood cells and anemia was observed clinically from the late 19th century, when they noticed an increase in the number of red blood cells, when staying at higher altitudes. Erythropoietin is insulated quite late (in 1977) from the urine of patients with aplastic anemia. Above mentioned hypoxia leads to anemia with increased erythropoietin level in the blood which in turn stimulates erythropoiesis. The normal plasma concentration value of erythropoietin i.e. ml range from 0.01-1203. Due to hypoxia and anemia, the value can be increased by 100-1000 times. In patients with obstructed IRKT is prevented the enough erythropoietin formation, in order for it to develop anemia. In the market there are different forms of the erythropoietin isoforms (alpha, beta, delta darbepoetin, eqralys) that are recombinated (rHuEpo) which are heterogeneous and change the structure of the sugar chains but with the same biological properties. Recombinant erythropoietin alfa, beta and delta are called epoetins. The reduction of the number of red blood cells, the treatment of renal anemia in uremic predialytic patients and those treated with hemodialysis represents a major revolution in contemporary medicine. Before starting treatment with Simulatin Preparations of Erythropoiesis-PSE (PSE is the term of the new appointed by EDTA-European Association for dialysis-transplant and artificial organs who replaces terms of Epoetins) in patients with chronic renal insufficiency preterminal must be completed the following laboratory tests: concentration of hemoglobin (Hb) values of hematocrit (Htc), concentration of red blood cells (erythrocytes), index of erythrocyte (average volume cell-MCV and hemoglobin average cell-MCH), concentration of ferritin in the plasma (so that the depo quantity of iron would be valued) transferinit serum values, the concentration of ferritin in the plasma values of C-reactive protein in the plasma to value the inflammation. In general, patients with Chronic Kidney weakening, the values of Hb should be brought >11 g / dl and Htc>33% or these values should be reached in the period of 4 months (these values are individual and are depended largely by-race, age, ethnicity, genetic predisposition ...). In patients with cardiovascular disease os scale III according to NYHA-New York Heart Association Classification of Congestive Heart Failure, in patients with Diabetes Mellitus and with peripheral vascular disease is not preferred that the Hb values to be >12 g / dl), PSE therapy should be apply to all patients with chronic kidney weakening, to which the values of Hb (assigned at least twice within the distance of 14 days) are <11 g / dl and Htc<33%. Erythropoietin application way in patients with chronic kidney weakening in the phase before terminal, is subcutaneous, whereas patients treated with recurrent hemodialysis the erythropoietin application is in intravenous way. Dosage of PSE (EPO erythropoietin) in patients with Chronic Kidney weakening in preterminal stage is individual and dependent on the values of Hb and Htc (3x 2,000 units per week during the correction of anemia to 2000 or 4000 unit international week during the maintenance phase). During maintenance of PSE therapy is preferred also the administration of the iron preparates (25-150 mg per week dose intravenously). In these last years, in addition for PSE and iron preparations administration, is preferred also the body supplementation body with high doses of vitamins which significantly affect growth Hb values. There is verifiable evidence that treatment with Vit. E, Vit. C, Folic Acid and L-Carnitine decreases the possibility of the appearance of oxidative stress, resistance to therapy PSE which appears in rare cases. The most common causes of resistance to epoetins are iron deficiency, inflammation, hyperparathyroidism, aluminum-hydroxide intoxications, hemoglobinopathies, chronic and frequent bleedings, multiply myeloma, malnutrition, hemolysis, absence of Vit. B-12, folic acid, side effects of immunosuppressive preparations, enzyme inhibitors and angiotensin-converter. Over the last decade with the discovery of erythropoietin and its application, numerous studies documented that correction of renal anemia by erythropoietin has shown higher effects. At the beginning of the presentation of these studies, this theory, from some experts and other studies were objections by insisting to prove that the use of erythropoietin in initial stages of renal failure-preterminal speeds the appearance of anemia and weakening the nefrone function. But many studies proved and verified the opposite of the above theory. Some contemporary studies on the application of epoetin have proven that during the use of it, is presented a very serious complication-abilation of erythrocytes caused by antibodies against erythropoietin, but this occurrence is not verified completely therefore still remains as contemptuous. The beneficial effects of the use of erythropoietin and correction of anemia in the early stages of renal failure menifests with these symptoms: reduction of the energical body needs, increasing physical activity, improvement of the health and mental status, increased social activity, slows the rapid development of kidney weakening, slows the development of early left ventricular hypertrophy, reduces the occurrence of cardiovascular diseases. All studies on the role of erythropoietin and on its positive effects have proven that it is more than necessary the early beginning of treatment and correction of renal anemia in patients with preterminal renal insufficiency. Often the question is submitted that which are the adequate values of hemoglobin, hematocrit and red blood cells to initiate the correction of anemia in patients with preterminal renal insufficiency. A multicenter-international-study-CREATE (The Cardiovascular Risk Reduction Early Anaemia By epoetin β treatment.) in which the study wereincluded over 600 patients with preterminal kidney weakening with a creatinine clearance of 35ml / min and values Hb = 10.0-15.0 g / dl.In the first group the treatment with Erythropoietin began when Hb values were 12.0-15.0 g / dl, while the treatment of the second group began when Hb values were 10.5 g / dl. After finishing the study, which lasted four years, experts found that patients with values of Hb<10.5 g / dl, although it was applied Erythropoietin dose similar to other group morbidity, symptoms of left ventricular hypertrophy, arterial
hypertension, cardiovascular and cerebrovascular diseases were 40% more manifested than in the other group when the treatment with Erythropoietin began with the Hb values = 12.0 – 15.0 g/dl. Therefore, the treatment of renal anemia should begin early when hemoglobin values are 11.0 g/dl. In the beginning of treatment Erythropoietin (Eritropoetin of Recombinant Human) should be applied from 2000-4000 international units once a week bearing in mind that the increase in Hb level is not to exceed the values of 11.5 – 13.3 g/dl. It is known that patients with preterminal weakened kidneys lack iron which increases the negative effects of anemia in renal failure, so that to correct this phenomenon and the effect of erythropoietins to be more powerful while using epoetin, it is necessary to be given also iron medications (Amp. Ferri (III) Oxidum Saccharatum) year C, year E, folic acid and L- Carnitine.

6 CONCLUSION
Results of our study showed that the application of Epoetin represents an extremely safe and effective way for the correction and treatment of renal anemia and also preventing left ventricular hypertrophy in a timely manner, thus also having the reduction of the incidence of cardiovascular diseases and cerebrovascular disease. Besides the therapy and substitution of lack of iron with iron preparations, uremic patients treated with HD because of oxidative stress and as a prevention against the resistance (although rare) on erythropoietin have a need for antioxidants therapy with: Ascorbit (Vit. C), Pridoksin (annually. B6), Tocopherol (Vit. E), Vit.B6, Folic Acid, L- Carnitine. As a conclusion we can ascertain and suggest that the inhibition and prevention of presentation of above mentioned consequences of renal anemia, oblige us to start its treatment at an early stage of manifestation of the first symptoms.

REFERENCES

Address of author
Prof. DR. NASIR BEHXHETI
E-mail: nasir.behxheti@unie.edu.mk