A Survey on Channel Estimation Techniques in MIMO-OFDM Mobile Communication Systems

R.S.Ganesh, Dr. J.Jaya Kumari

Abstract— A Modern wireless broadband system of MIMO-OFDM (multiple input multiple output- orthogonal frequency division multiplexing) is more popular because of good data transmission rate and its robustness against multipath fading & good spectral efficiency. This system provides reliable communication & wide coverage. A main challenge to MIMO-OFDM system is retrieval of the channel state information (CSI) accurately and synchronization between the transmitter & receiver. The channel state information is retrieved with the help of various estimation algorithms such as training based, blind and semi blind channel Estimation. This paper describes the basic introduction of OFDM, MIMO-OFDM system and explains the different channel estimation algorithms, optimization techniques and their utilization in MIMO system for 4G wireless mobile communication systems.

Index Terms— Channel Estimation, Channel State information, LS Estimation, MMSE Estimation, MIMO-OFDM, Pilot Carriers, Mean Square Error, Spectral Efficiency.

1 INTRODUCTION

FourTH Generation Mobile system (4G) has very good features than previous generation networks such as 2G & 3G. Data transmission speed is very high when compared with previous generation mobile systems. It can fully supports multimedia services with extreme quality, audio, video files, wireless internet and other broadband services with superior quality. This technology provides the user to select any desired service with more freedom & flexibility.

Mobile communication systems transmit information by changing the amplitude or phase of radio waves. In the receiving side of mobile system, amplitude or phase can vary widely. This causes degradation in the quality of system since the performance of receiver is highly dependent on the accuracy of estimated instantaneous channel. In a wireless link, channel state information (CSI) provides the known channel properties of the link. It provides the detail of signal propagation between transmitter and the receiver and tells about the effects of scattering, fading. The CSI can incorporate current channel conditions with transmission data for achieving reliable communication. This CSI should be estimated at the receiver and fed back to the transmitter.

The channel state information can be obtained through different types of channel estimation algorithms. This estimation can be done with a set of well known sequence of unique bits for a particular transmitter and the same can be repeated in every transmission burst. Thus the channel estimator estimates the channel impulse response for each burst separately from the well known transmitted bits and corresponding received samples. This paper describes the fundamentals of MIMO-OFDM system and study of various channel estimation techniques and their performance.

2 ORTHOGONAL FREQUENCY DIVISION MULTIPLEXING

2.1 Overview of OFDM

Orthogonal frequency-division multiplexing (OFDM) is a type of frequency-division multiplexing (FDM) method which can be used as a digital multi-carrier modulation technique. Usually a large number of closely-spaced orthogonal sub-carriers are used to carry data. The data is split into various parallel data streams or channels for each sub-carrier. Each sub-carrier is modulated by digital modulation technique such as quadrature amplitude modulation (QAM) or Quadrature phase-shift keying (QPSK) at a low symbol rate, maintaining total data rates similar to conventional single-carrier modulation schemes in the same bandwidth. The Modulator outputs are combined and the resulting signal is transmitted. It could be upconverted and amplified if needed. This scheme is mostly used in various applications such as digital TV & audio broadcasting, wireless LANs, Wi-Fi, WiMAX, LTE, ultra-wideband (UMB) systems.

2.2 Features

In OFDM, the sub-carriers are orthogonal to each other. It avoids the interference between the sub-channels and hence no need of guard bands. Therefore the design of both the transmitter and receiver becomes easy. Unlike conventional FDM, a separate filter is not necessary for each sub-channel. The orthogonality also allows high spectral efficiency. But OFDM requires accurate frequency synchronization between the receiver and the transmitter.

It is more easy to transmit a large number of low-rate data streams in parallel instead of a single high-rate stream. It is easy to insert a guard interval between the OFDM symbols if the symbol duration is high. By this way, the inter symbol interference is eliminated. The guard interval also eliminates the necessity of pulse-shaping filter.
2.3 Mathematical Description

If N sub-carriers are used, and each sub-carrier is modulated by M alternative symbols, the OFDM symbol alphabet consists of MN combined symbols.

The lowpass equivalent of OFDM signal is given as

\[v(t) = \sum_{k=0}^{N-1} X_k e^{j2\pi kt/T}, \quad 0 \leq t < T \]

Where \(X_k \) - Data Symbols
N- Number of Subcarriers
T- OFDM Symbol Time.

3 MIMO-OFDM SYSTEM

MIMO-OFDM (multiple input multiple output - orthogonal frequency division multiplexing) is a modern wireless broadband technology which has great capability of high rate data transmission and its robustness against multi-path fading and other channel impairments.

In MIMO system, multiple number of transmitters at one end and multiple number of receivers at the other end are effectively combined to improve the channel capacity of wireless system. This technology highly improves the spectrum efficiency, reliability of system & coverage area. A simple MIMO system with two transmit antennas and two receiving antennas shown in figure 1.

Precoding is one of the multi-stream beam forming technique which is employed at the transmitter. In beam forming, the same type of signal is emitted from each one of the transmit antennas with appropriate phase weighting such that the maximum received input signal power at the receiver. This technique increases the received signal gain, by employing signals emitted from multiple antennas and also reduces the multipath fading effects. It requires exact knowledge of channel state information (CSI) at the transmitter.

Spatial multiplexing requires MIMO antenna configuration. In spatial multiplexing, a high rate signal is split into several low rate data streams and each stream is transmitted with the help of different transmit antennas which are having the same frequency. If these signals arrive at the receiver antenna array with different spatial signatures, the receiver can easily separate this stream of data into parallel channels. It is one of the excellent technique to increase the channel capacity and improves high signal-to-noise ratios (SNR). The maximum number of spatial streams is limited by less number of transmitting antennas at the transmitter or at the receiver. Spatial multiplexing can be used with or without the knowledge of transmitter.

Diversity Coding techniques are used when there is no channel knowledge at the transmitter. In diversity coding, a single data stream is transmitted with a coding technique called as space-time coding. The signal is emitted from each of the transmit antennas with full or near orthogonal coding. Diversity coding exploits the independent fading in the multiple antenna links to enhance signal diversity. Because there is no channel knowledge, there is no beam forming or array gain from diversity coding. Spatial multiplexing can also be combined with precoding when the channel is known at the transmitter or combined with diversity coding when decoding reliability is in trade-off.

Spatial multiplexing techniques makes the receivers very complex. Therefore it is usually combined with Orthogonal frequency-division multiplexing (OFDM) or with Orthogonal Frequency Division Multiple Access (OFDMA) modulation, where the problems created by multi-path channel are handled efficiently.

MIMO technology is one of the major attracting technique in wireless communications, because it offers significant increases in data throughput and coverage without additional bandwidth or transmit power. It also has high spectral efficiency and link reliability or diversity. Because of these properties, MIMO is an important part of modern wireless communication standards such as IEEE 802.11n (Wi-Fi), 4G, 3GPP Long Term Evolution, Wi-MAX and HSPA+.

3.1 Mathematical Description

A narrowband flat-fading channel with multiple transmit and receive antennas (MIMO), the system is modeled as

\[y = Hx + n \]

where \(y \) and \(x \) are the receive and transmit vectors, respectively, and \(H \) and \(n \) are the channel matrix and the noise vector respectively.
Ideally, the channel matrix H is known perfectly. Due to channel estimation errors, the channel information can be represented as

$$\text{vec}(H) \sim \text{CN}(\text{vec}(H_{\text{estimate}}), R_{\text{error}})$$

(3)

Where H_{estimate} is the channel estimate and R_{error} is the estimation error covariance matrix. CN is the circular symmetric complex normal.

3.2 Channel Estimation

In a wireless communication link, channel state information (CSI) provides the known channel properties of the link. This CSI should be estimated at the receiver and usually fed back to the transmitter. Therefore, the transmitter and receiver can have different CSI. The Channel State information may be instantaneous or statistical. In Instantaneous CSI, the current channel conditions are known, which can be viewed by knowing the impulse response of the transmitted sequence. But statistical CSI contains the statistical characteristics such as fading distribution, channel gain, spatial correlation etc. The CSI acquisition is practically limited by how fast the channel conditions are changing.

In fast fading systems where channel conditions vary rapidly under the transmission of a single information symbol, only statistical CSI is reasonable. But, in slow fading systems instantaneous CSI can be estimated with reasonable accuracy. So channel estimation technique is introduced to improve accuracy of the received signal.

The radio channels in mobile communication systems are usually multi path fading channels, which are causing inter symbol interference (ISI) in the received signal. To remove ISI from the signal, many kind of detection algorithms are used at the receiver side. These detectors should have the knowledge on channel impulse response (CIR) which can be provided by separate channel estimator.

3.3 Classification of Channel Estimation

Basic classification of channel estimation algorithm is shown in figure 2. They are training based, blind channel estimation or semiblind channel estimation.

The training-based channel estimation can be performed by either block type pilots or comb type pilots. In block type pilot estimation, pilot tones are inserted into all frequency bins within the periodic intervals of OFDM blocks. This estimation is suitable for slow fading channels. But in comb type pilot estimation, pilot tones are inserted into each OFDM symbol with a specific period of frequency bins. This type of channel estimation is very much suitable where the changes even in one OFDM block.

The blind channel estimation is carried out by evaluating the statistical information of the channel and particular properties of the transmitted signals. This blind channel estimation has no overhead loss and it is only suitable for slowly time-varying channels. But in training based channel estimation, training symbols or pilot tones that are known to the receiver, are multiplexed along with the data stream for channel estimation.

4 CHANNEL ESTIMATION ALGORITHMS

Siavash M. Alamouti [1] proposed a simple two-branch transmit diversity scheme. In this scheme two transmit antennas and one receive antenna provides the same diversity order as maximal-ratio receiver combining (MRRC) with one transmit antenna, and two receive antennas. This diversity scheme does not require any bandwidth expansion and its computation complexity is similar to MRRC. The BER performance of this transmit diversity scheme was compared with MRRC scheme. Also the implementation issues such as power requirements, delay effect, channel estimation errors were discussed.

Eric Pierre Simon et. al [2] presented a novel pilot aided algorithm for MIMO-OFDM system operating in a fast varying environment. This joint estimation algorithm jointly estimates multipath Rayleigh channel complex amplitude(CA) and the carrier frequency offset(CFO). Time varying CA is approximated by Base Expansion Model (BEM) and CFO parameters are modeled by first order AR process. This algorithm is better in fading channel.

Eric Pierre Simon et. al [3] proposed joint carrier frequency offset(CFO) and channel estimation for OFDM system over the fast time varying frequency selective channel using Expectation-Maximization (EM) Algorithm. This algorithm jointly estimates path channel gain and CFO in the presence of high mobility. The time varying channel gain in each OFDM symbol is approximated by a basis expansion model (BEM) representation. This algorithm is better efficient than existing algorithm for fast time varying channels.
A Channel estimator using neural network is presented by A. Omri et.all [4] for Long Term evolution (LTE) uplink. This method uses knowledge of pilot channel properties to estimate the unknown channel response at non-pilot subcarriers. This type of estimator learns to adapt to the channel variations and then it estimates the channel frequency response. This method is less complex and high quality than conventional methods such as least Square (LS), Minimum Mean Square Error (MMSE). Also this method has more mobility.

Ahamed Gomaa et. all.[5] presented a novel approach based on compressive sensing(CS) theory to estimate and mitigate synchronous narrow band interference(NBI) in MIMO-OFDM system. Compressive sensing theory showed how to reconstruct a sparse vector from a noisy environment. In this approach, NBI is first estimated and cancelled before channel estimation. This technique has less performance loss due to the channel estimation errors. This approach is studied for time varying & frequency selective channels. This NBI estimation can be applied to both zero padded-OFDM and Cyclic Prefix –OFDM systems.

A semi blind algorithm is presented by Feng Wan et.all [6] for the estimation of sparse MIMO-OFDM system. In this approach , a second order statistics of signal received through sparse channel is expressed in terms of most significant taps(MSTs) of the sparse channel. Blind constraint for the channel is derived from the MST position and this constraint is then combined with the training based least square method to develop a semi blind algorithm. Simulation results of this method shows that performance of this method is better than other blind algorithms. This method has also been extended for sparse channels in the up-sampling domain for MIMO-OFDM system.

Nima Sarmadi et.all[7] proposed a new blind channel estimation algorithm for MIMO-OFDM system. This method uses specific properties of orthogonal space time block codes to estimate the finite impulse response channel parameters in time domain. A semi definite relaxation technique is used for estimation in this approach. This technique has less complexity and good performance than existing blind channel estimation techniques.

4.1 Training Based Channel Estimation Techniques

The training-based channel estimation can be performed by either block type pilots or comb type pilots. Least Square (LS), Minimum Mean Square Error estimation techniques and their performance is discussed in [8],[9]. In block type pilot estimation, pilot tones are inserted into each OFDM symbol with a specific period of frequency bins. This type of channel estimation is very much suitable where the changes even in one OFDM block.

A fast fading channel has channel impulse response changes rapidly within symbol duration and the channel changes between adjacent OFDM symbols. In this fast fading, the pilots are transmitted at all times but with an even spacing on the sub carriers, representing a comb type pilot placement which is shown in Fig. 3(a). The channel estimates from the pilot sub carriers are interpolated to estimate the channel at the data subcarriers.

A block fading channel is a channel which is constant over a few OFDM symbols. In this channel, pilots are transmitted on all sub carriers in periodic intervals of OFDM blocks. This type of pilot arrangement is shown in Fig. 3(b), is called as block type arrangement.

The MIMO-OFDM system performance is evaluated by means of the plot of Mean Square Error (MSE) and Bit Error Rate (BER). Block-type and comb type pilot based channel estimation using LS and MMSE algorithms [9] are used to model Rayleigh fading channel of MIMO-OFDM system and Mean square error is estimated. The MMSE channel estimation has low Mean Square Error than LS channel estimation algorithm in this approach.

4.2 Optimization Techniques

Various optimization techniques are used [10],[11],[12] to optimize the placement of pilots, power and LS & MMSE algorithms.

Muhammet Nuri Seyman et.all. [10] proposed particle swarm optimization (PSO) to optimize the placement and power of comb-type pilot tones used for LS channel estimation in MIMO-OFDM system. Mean square error is used as an objective function of PSO in this technique. This approach has less complexity and better placement of pilot tones with minimum error.

K.Vidhya et.all [11] proposed evolutionary programming technique to optimize LS & MMSE algorithms for better results. In this approach, evolutionary programming method of mutation & crossover operations are applied to the existing algorithms and best channel estimation matrix is derived. Experimental results of this approach shows that this enhanced channel estimation outperforms the LS & MMSE estimation techniques.
Muhammet Nuri Seyman et al.[12] proposed differential evolution algorithm to optimize pilot tones in MIMO-OFDM system. Simulations of this approach shows that the performance of LS algorithm was increases by optimizing pilot tones with the help of differential evolution algorithm.

5 CONCLUSION

In this paper, the basic concepts of Orthogonal Frequency Division Multiplexing (OFDM), Multiple Input Multiple Output (MIMO) systems are discussed. The various channel estimation techniques such as training based, blind channel, semi-blind channel based algorithms and their performance are also discussed. Also different optimization techniques such as particle swarm optimization, evolutionary programming is reviewed to optimize LS & MMSE algorithms.

REFERENCES