A Survey on 64 Bit Floating Point Multiplier Based on Vedral Multiplication Techniques

Pranal D. Kale, Prof. M. N. Thakre, Prof. Mrs. R. N. Mandavgane

Abstract—Floating point number’s multiplication is the most important process in the area of graph theory, multidimensional graphics, and digital signal processing, high performance computing etc. However, computers use binary numbers and it would like more precision however, it was found that binary numbers should be precise enough for most scientific and engineering calculations. So it was decided to double the amount of memory allocated. The Binary Floating point numbers are represented in Single and Double formats. The Single consist of 32 bits and the Double consist of 64 bits. The formats are composed of 3 fields; Sign, Exponent and Mantissa. The performance of Mantissa calculation Unit dominates overall performance of the Floating Point Multiplier. Many researchers have investigated the design of multiplier with different approaches. In this paper, we present the overview of work done by various researchers in their literature towards the design of Floating Point Multiplier. The creation of floating point units under a collection of area, latency and throughput constraint is an important consideration for system designers.

Index Terms—floating point multiplier, Vedral Mathematics.

1 INTRODUCTION

Floating-point numbers are widely adopted in many applications due their dynamic representation capabilities. Floating-point representation is able to retain its resolution and accuracy compared to fixed-point representations. A large number of FP multiplications are carried out in various applications such as scientific calculation and computer graphics (CG). CG, in particular, requires enormous amount of FP multiplications to obtain high quality images required for multimedia systems. It is also of key importance to many modern applications such as 3D graphics accelerators, Digital Signal Processors (DSPs), High Performance Computing etc.

These applications usually involve floating point calculations with double precision format. The growing computational demands of scientific applications shows that in many cases there is a need for increased precision in floating point calculations. Examples are the fields of computational physics, computational geometry, climate modeling etc., which require high precision calculations and great accuracy.

Double precision binary floating-point is a commonly used format on PCs, due to its wider range over single precision floating point, even if at a performance and bandwidth cost. These applications usually require floating point calculations with double precision format, because this improves the accuracy of calculations and leads to more reliable results. For this reason, most Floating Point Units (FPUs) tend to provide support for executing double precision operations.

The IEEE 754 standard provides the format for representation of binary floating point numbers [7]. The Binary Floating point numbers are represented in Single and Double formats. The Single consist of 32 bits and the Double consist of 64 bits. The Fig1 shows the structure of Single and Fig2 shows the structure Double formats of IEEE 754 standard. The formats are composed of 3 fields; Sign, Exponent and Mantissa. For single precision format, the Mantissa is represented in 23 bits and 1 bit is added to the MSB for normalization, Exponent is represented in 8 bits which is biased to 127 and MSB of Single is reserved for Sign bit. For Double precision format, the Mantissa is represented in 52 bits, the Exponent is represented in 11 bits which is biased to 1023 and the MSB of Double is reserved for sign bit. For both When the sign bit is 1 that means the number is negative and when the sign bit is 0 that means the number is positive.

<table>
<thead>
<tr>
<th>1BIT</th>
<th>8BIT</th>
<th>23BIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIGN</td>
<td>EXPONENT</td>
<td>MANTISSA</td>
</tr>
<tr>
<td>MSB</td>
<td>LSB MSB</td>
<td>LSB</td>
</tr>
</tbody>
</table>

Fig1- IEEE Format for single precision

<table>
<thead>
<tr>
<th>1BIT</th>
<th>11BIT</th>
<th>53BIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIGN</td>
<td>EXPONENT</td>
<td>MANTISSA</td>
</tr>
<tr>
<td>MSB</td>
<td>LSB MSB</td>
<td>LSB</td>
</tr>
</tbody>
</table>

Fig2-IEEE Format for double precision

The performance of Mantissa calculation Unit dominates overall performance of the Floating Point Multiplier. This unit requires unsigned multiplier for multiplication of bits. The Vedral Multiplication technique is one of the technique for the implementation of this unit. The Vedral multiplication system is based on 16 Vedral sutras, which describes natural ways of solving a whole range of mathematical problems. Bharati Krishna Tirthaji, who was also the former Shankaracharya (major religious leader) of Puri, India, delved into the ancient
Vedic texts and established the techniques of this system in his pioneering work, Vedic Mathematics (1965), which is considered the starting point for all work on Vedic mathematics. According to Mahesh Yogi, the sutras of Vedic Mathematics are the software for the cosmic computer that runs this universe. A great deal of research is also being carried out on how to develop more powerful and easy applications of the Vedic sutras in geometry, calculus, and computing. Conventional mathematics is an integral part of engineering education since most engineering system designs are based on various mathematical approaches. The need for faster processing speed is continuously driving major improvements in processor technologies, as well as the search for new algorithms. The Vedic mathematics approach is totally different as well as fast and considered very close to the way a human mind works.

2 LITERATURE REVIEW

According to IEEE-754 standards, the floating point number is represented as:

\[V = (-1)^{sign} \times 2^{exponent-bias} \times 1.fraction \]

Implicit bit is used before fraction or mantissa, which is \(^{\prime}1\) for normalized number and \(^{\prime}0\) for un-normalized number. Exponent bias is \((2e-1)\), which comes out to be 127 for single precision and 1023 for double precision exponent.

Floating point multiplication is not as simple as integer multiplication. Designing of a floating point multiplier of floating point numbers represented in IEEE 754 format can be divided in different units:

- Mantissa Calculation Unit
- Exponent Calculation Unit
- Sign Calculation Unit
- Control unit

Sign of the result is calculated by XORing sign bits of both the operands A and B.

Exponents of two multiplying numbers will be added to get the resultant exponent. Addition of exponent will be using adder.

The Mantissa Calculation Unit requires a multiplier. This unit requires unsigned multiplier for multiplication. There are number of techniques that can be used to perform multiplication. Main considering factors are latency, throughput, area, and design complexity. Research work on floating point multiplier is covered by various authors. Review of this research work is given below. In earlier work array multiplication technique was used where two binary numbers A and B, of ‘m’ and ‘n’ bits. There are ‘mn’ summations that are produced in parallel by a set of ‘mn’ AND gates and booth’s multiplication techniques was used for multiplication where two signed binary numbers multiplied in two’s complement notation. The algorithm was invented by Andrew Donald Booth. As compared to array multiplication booth’s multiplication is faster.

In array multiplier for \(n \times n\) multiplier requires \(n(n-2)\) full adders, \(n\) half-adders and \(n^2\) AND gates. Also, in array multiplier worst case delay would be \((2n+1)\) \(t_d\). Booth’s floating point multiplier is faster than the array multiplier, by calculating the delay value we can get that power dissipation is also less compare to array multiplier. In BOOTH multiplication algorithm to reduce the time needed for multiplication number of partial products to be added are reduced. BOOTH recording reduces the number of adder units needed and hence reduced the delay by reducing number of nonzero bits in the multiplier [13]. In BOOTH recoding, the long sequence of \(1\)s is replaced by two no zero bits; for example, If \(k\) and \(j\) through (down to) \(k\) are 1s, then,

\[2^j + 2^j+1 + \ldots + 2^{k+1} + 2^k = 2^{j+1} - 2^k \]

This represents, the sequence of additions can be replaced by an addition of the multiplicand shifted by \(j+1\) positions and a subtraction of the multiplicand shifted by \(k\) positions [12]. The drawback of BOOTH recording is the high power consumption and thus reduced efficiency [8]. The multiplier implementation in floating point multiplication is done by Modified Booth Encoding (MBE) multiplier to reduce the partial products by half. The multiplier takes care of overflow and underflow cases. Rounding is not to give more precision when using the multiplier implemented in a multiply and Accumulate (MAC) unit. By using MBE multiplier we increases the speed of multiplication, reduces the power dissipation and cost of a system. The proposed multiplier will be designed and verified using ModelSim with Verilog HDL. Xilinx is used for synthesis. This paper presents an implementation of a floating point multiplier that supports the IEEE 754 binary interchange format; one of the important aspects of the presented design is that it can be applicable to all kinds of floating point multipliers. The present design is compared with ordinary floating point array multiplier and modified Booth encoder multiplier via synthesis. It shows that Booth’s floating point multiplier is faster than the array multiplier, by seeing the delay value we can know this factor and power [9].

<table>
<thead>
<tr>
<th>Design (single precision)</th>
<th>Number of slices</th>
<th>Adders/Subtractors</th>
<th>4 input LUTs</th>
<th>Bonded IOBs</th>
<th>Delay</th>
</tr>
</thead>
<tbody>
<tr>
<td>Array Multiplier</td>
<td>630</td>
<td>32</td>
<td>1147</td>
<td>96</td>
<td>96.08 ns</td>
</tr>
<tr>
<td>Booth Multiplier</td>
<td>1582</td>
<td>26</td>
<td>2781</td>
<td>97</td>
<td>36.97 ns</td>
</tr>
</tbody>
</table>

Table1- comparison of multipliers

Implement multiplier for both conventional, as well as Vedic mathematical methods in VHDL language and highlight a comparative study of both approaches in terms of gate delays. The functional verification through simulation of the VHDL code was carried out using ModelSim SE 6.0 simulator. The synthesis is done using Xilinx Synthesis Tool (XST) available with Xilinx ISE 9.1i. The design is optimized for speed and area using Xilinx, device family Spartan3. In this paper, it is observed that 86.71% lesser slice and also around 88% lesser four input look-up are utilized for Vedic multiplier compared...
to other multipliers. It shows that 8 bit Vedic multiplier achieves higher speed by reducing gate delay by factor of 24% compared to array multiplier and around 18.2% compared to booth multiplier. Similarly, 16 bit Vedic multiplier achieves higher speed by reducing gate delay by factor of 39.9% compared to array multiplier and around 48.36% compared to booth multiplier [1].

<table>
<thead>
<tr>
<th>Name of the Multiplier (16 bit)</th>
<th>Number of slices</th>
<th>No of IOs</th>
<th>4 input LUTs</th>
<th>Bonded IOBs</th>
<th>Delay</th>
</tr>
</thead>
<tbody>
<tr>
<td>Array multiplier</td>
<td>290 out of 768</td>
<td>65</td>
<td>505 out of 1536</td>
<td>64 out of 124</td>
<td>70.928 ns</td>
</tr>
<tr>
<td>Booth multiplier</td>
<td>499 out of 768</td>
<td>65</td>
<td>923 out of 1536</td>
<td>65 out of 124</td>
<td>60.809 ns</td>
</tr>
<tr>
<td>Vedic multiplier</td>
<td>120 out of 768</td>
<td>90</td>
<td>240 out of 1536</td>
<td>90 out of 124</td>
<td>36.563 ns</td>
</tr>
</tbody>
</table>

Table 2 - Design Summary

Vedic Multiplication Technique is used to implement IEEE 754 single precision (32 bits) Floating point multiplier. The Urdhvatri- yakhyam sutra is used for the multiplication of Mantissa. The underflow and overflow cases are handled. The inputs to the multiplier are provided in IEEE 754, 32 bit format. The multiplier is implemented in VHDL and Virtex-5 FPGA is used. A test bench is used to generate the stimulus and the multiplier operation is verified. The overflow and under flow flags are incorporated in the design in order to show the overflow and underflow cases. The paper shows the efficient use of Vedic multiplication method in order to multiply two floating point numbers. The lesser number of LUTs verifies that the hardware requirement is reduced, thereby reducing the power consumption. The power is reduced affectively still not compromising delay so much [3].

![Fig3-Architecture of single precision (32 bits) Floating Point Multiplier](image1)

![Fig4- Block Diagram of 24*24 bit Vedic Multiplier](image2)
PROPOSED WORK

Use of numerical methods is prevalent in most software algorithms. Computational physics, computational geometry, climate modeling etc., which require high precision calculations and great accuracy. Such applications demand an efficient code for basic mathematical operations i.e. multiplication. Real Time Systems demand instantaneous response to environmental variables and quick execution of taken decision. This motivated for an increased precision (64 bits) using ‘time efficient’ method for ‘multiplication’ (Vedic multiplication technique) to improve processor throughput.

Proposed method for designing of a 64 bits double precision floating point multiplier of floating point numbers represented in IEEE 754 format is as follows. Initially, two operands will be checked to determine whether they contain a zero. If one of the operands is zero. The output results zero. If neither of them will zero, then the inputs with IEEE754 format will be unpacked and will be assigned to the check sign, add exponent and multiply mantissa.

The product is positive when the two operands have the same sign; otherwise it is negative. Sign of the result is calculated by XORing sign bits of both the operands A and B. Exponents of two multiplying numbers will be added to get the resultant exponent. Addition of exponent will be done using 16 bits adder. Exponents will be expressed in excess 1023 bit.

The Mantissa Calculation Unit requires a 53 bit multiple. This unit requires unsigned multiplier for multiplication of 53*53 BITs. The Vedic Multiplication technique is chosen for the implementation of this unit. This technique gives promising result in terms of speed and power. The Vedic multiplication system is based on 16 Vedic sutras, which describes natural ways of solving a whole range of mathematical problems. Out of these 16 Vedic Sutras the Urdhva tryakhyam sutra or Nikhilam Sutra will be suitable for this purpose.

CONCLUSION

From above survey, multiplier is designed by various techniques and observed that Vedic is better than booth’s method and the best than array multiplication method. Floating point multiplications are required in most of the signal processing applications. The growing computational demands of scientific applications shows that there is a need for increased precision in floating point calculations like 64 bits and always has scope for improving the speed with the fast multiplication technique by reducing time delay. The Vedic multipliers are much faster than the conventional multipliers. This gives us method for hierarchical multiplier design. So the design complexity gets reduced for inputs of large no of bits and modularity gets increased. So, proposed work shows Vedic technique can be implemented for double precision floating point multiplier also for improved efficiency in terms of speed exhibits by the high speed multiplier algorithm. This will give successful and correct multiplication of two IEEE-754 Standard Double Precision floating point multiplier by using Vedic multiplication technique and expected that there is reduction in time delay.

ACKNOWLEDGMENT

The authors like to wish thank’s to all the supportive teaching staff and faculty members, and reference authors who guided by their papers.

REFERENCES

doi:10.1109/DELTA.2008.19