
International Journal of Scientific & Engineering Research, Volume 6, Issue 11, November-2015 1208
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

A New Failure Detector to Detect Failures in a
Distributed System

Sheikh Tania, Jannatul Maowa, Afsana Ahmed Munia

Abstract— Process groups in distributed applications and services rely on failure detectors to detect process failures completely, and as quickly, accu-
rately, and scalably as possible, even in the face of unreliable message deliveries. Failure detector is a simulation application that is responsible for
detection of node failures or crashes in a distributed system. It is impossible to distinguish with certainty a crashed process from a very slow process in a
purely asynchronous distributed system. Some parameters are used to evaluate a Failure Detector such as complete, quick, accurate, and scalable
even in the face of unreliable message deliveries. In contrast to previous failure detectors that have been used to circumvent impossibility results, the
heartbeat failure detector is implementable, and its implementation does not use timeouts. Here we introduce a failure detector which is based on heart-
beat message.

Index Terms— Distributed system, failure detection, asynchronus system, simulation, crash.

—————————— ——————————

1 INTRODUCTION

achieve good scalability in addition to efficiency, while still
(deterministically) guaranteeing completeness. Recently, Chen
et al. [6] proposed a comprehensive set of metrics to measure
the Quality of Service (QoS) of complete and efficient failure
detectors. This paper presented three primary metrics to quan-
tify the performance of a failure detector at one process detect-
ing crash-recovery failures of a single other process over an
unreliable network. The authors proposed failure detection
time, and recurrence time and duration times of mistaken de-
tection as the primary metrics for complete and efficient fail-
ure detectors. However, the paper neither deal with the opti-
mal relation among these metrics, nor focussed on distributed
or scalable failure detectors

2 RELATED WORK
Chandra and Toueg [5] were the first to formally address
the completeness and accuracy properties of failure detectors.
Subsequent work has focused on different properties
and classifications of failure detectors. This area of literature
has treated failure detectors as oracles used to solve the
Distributed Consensus/Agreement problem [12], which is un-
solvable in the general asynchronous network model. These
classifications of failure detectors are primarily based on the
weakness of the model required to implement them, in order
to solve the Distributed Consensus/Agreement problem
[10].
Proposals for implementable failure detectors have sometimes
assumed network models with weak unreliability semantics
eg., timed-asynchronousmodel [6], quasi-synchronous model
[2], partial synchrony model [11], etc. These proposals have
treated failure detectors only as a tool to efficiently reach
agreement, ignoring their efficiency from an application de-
signer’s viewpoint. For example, most failure detectors such as
[11] provide eventual guarantees, while applications are typi-
cally concerned about real timing constraints.
In most real-life distributed systems, the failure detection
service is implemented via variants of the “Heartbeat mecha-

Failure detector is an application that is responsible for de-

tection of node failures or crashes in a distributed system. A
failure detector is a distributed oracle that provides hints
about the operational status of other processes. The design
and verification of fault- tolerant distributed system is a diffi-
cult problem. The detection of process failures is a crucial prob-
lem, system designers have to cope with in order to build fault
tolerant distributed platforms. Unfortunately, it is impossible
to distinguish with certainty a crashed process from a very slow
process in a purely asynchronous distributed system.
The ability of the failure detector to detect process failures
completely and efficiently, in the presence of unreliable messag-
ing as well as arbitrary process crashes and recoveries,
can have a major impact on the performance of these systems.
“Completeness” is the guarantee that the failure of a group
member is eventually detected by every non-faulty group
member. “Efficiency” means that failures are detected quickly,
as well as accurately (i.e., without too many mistakes).
The recent emergence of applications for large scale distribut-
ed systems has created a need for failure detector algorithms
that minimize the network load (in bytes per second, or equiv-
alently, messages per second with a limit on maximum mes-
sage size) used, as well as the load imposed on participating
processes. Failure detectors for such settings thus seek to

 ————————————————
• Sheikh Tania is currently pursuing masters degree program in computer

scienceand engineering in Bangladesh University of Engineering and Tech-
nology, Bangladesh, PH-8801717042036. E-mail:
sheikhtania327@gmail.com.

• Jannatul Maowa is currently pursuing pursuing masters degree program in
computer scienceand engineering in Bangladesh University of Engineering
and Technology, Bangladesh, PH-8801670685446. E-mail:
jms.shopno@gmail.com.

• Afsana Ahmed Munia is currently pursuing masters degree program in com-
puter scienceand engineering in Bangladesh University of Engineering and
Technology, Bangladesh, PH-8801713492457. E-mail: afsana.106@gmail.com

IJSER

http://www.ijser.org/
mailto:sheikhtania327@gmail.com
mailto:jms.shopno@gmail.com

International Journal of Scientific & Engineering Research, Volume 6, Issue 11, November-2015 1209
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

nism” [1, 2, 3, 4, 6, 7, 8], which have been popular as they
guarantee the completeness property. However, all existing
heartbeat approaches have shortcomings. Centralized heart-
beat schemes create hot-spots that prevent them from scaling.
Distributed heartbeat schemes offer different levels of accura-
cy and scalability depending on the exact heartbeat dissemina-
tion mechanism used, but we show that they are inherently
not as efficient and scalable as claimed.
Probabilistic network models have been used to analyze
heartbeat failure detectors in [4, 6], but only with a single pro-
cess detecting failures of a single other process. [6] was the first
paper to propose metrics for non-distributed heartbeat failure
detectors in the crash-recovery model. These metrics were not
inclusive of scalability concerns.
In this paper we proposed a new approach of Failure Detector
that has strong accuracy, strong/weak completeness and the
approach is scalable in terms of Network load (messages per
unit time).

3 SCALABLE AND EFFICIENT FAILURE DTETECTORS

The first formal characterization of the properties of failure
detectors was offered in [4], which laid down the following
properties for distributed failure detectors in process groups:

• {Strong/Weak} Completeness: crash-failure of any
group member is detected by {all/some} non-faulty
members.
• Strong Accuracy: no non-faulty group member is
declared as failed by any other non-faulty group member.

[4] also showed that a perfect failure detector i.e., one which
satisfies both Strong Completeness and Strong Accuracy, is
sufficient to solve distributed Consensus, but is impossible
to implement in a fault-prone network.
Subsequent work on designing efficient failure detectors has
attempted to trade off the Completeness and Accuracy proper-
ties in several ways. However, the completeness properties
required by most distributed applications have lead to
the popular use of failure detectors that guarantee Strong
Completeness always, even if eventually. This of course means
that such failure detectorscannot guarantee Strong Accuracy
always, but only with a probability less than 1. For example,
all-to-all (distributed) heartbeating schemes have been popu-
lar because they guarantee Strong Completeness (since a
faulty member will stop sending heartbeats), while providing
varying degrees of accuracy.
The requirements imposed by an application (or its designer)
on a failure detector protocol can thus be formally specified
and parameterized as follows:
1. Completeness: satisfy eventual Strong Completeness
for member failures.
2. Efficiency:
(a) Speed: every member failure is detected by some

non-faulty group member within T time units after
its occurrence (T >>worst-case message round trip time).
(b) Accuracy: at any time instant, for every nonfaulty
member Mi not yet detected as failed, the probability that no
other non-faulty group member will (mistakenly) detect Mi as
faulty within the next T time units is at least (1−PM(T)).
T and PM(T) are thus parameters specified by the application
(or its designer). For example, an application designer
might specify T = 3 seconds, and PM(3 seconds) = 10−8.

4 THEORITICAL CONCEPT OF THE PROPOSED MODEL
Our proposed mechanism for detecting failure is a diffusion
work of Heartbeat algorithm proposed in [1]. The output of
the failure detector module of HB at a process p is a vector of
counters, one for each neighbor q of p. If neighbor q does is
live, its counter increases with no bound. If q crashes, its coun-
ter eventually stops increasing. The basic idea behind an im-
plementation of HB is that each process periodically sends a
heartbeat message to every other process and every process
receiving a heartbeat increases the corresponding counter.
Though quiescent reliable communication can be achieved
with HB failure detector that can be implemented without
timeouts in systems with process crashes and lossy links, the
major drawback of the procedure is message explosion that is
the network will be overloaded with failure detection related
messages. For a network with n number of nodes it needs to
transmit n2 messages periodically. HB is not like existing im-
plementations of failure detectors (in Ensemble and Phoenix,
have modules that are also called heartbeat [9, 4]). Although
existing failure detectors are also based on the repeated send-
ing of a heartbeat, they use timeouts on heartbeats in order to
derive lists of processes considered to be up or down; applica-
tions can only see these lists. In contrast, HB simply counts
heartbeats and shows these counts to applications.
We propose a new approach in which only a single node be-
comes a failure detector and every other node periodically
sends a heartbeat message to it. The FD maintains a vector of
counters one for each neighbor and increases the counter
when receives a HB message from corresponding neighbor.
When the FD detects a node as suspected it announces the
node as Suspected to all other nodes. Periodically FD node
shows the vector counts for all other nodes and others show
the suspected list of nodes. For a network with n number of
nodes it needs to transmit n messages periodically. The signif-
icant reduction of network load makes the proposed approach
very much efficient.

5 FEATURES OF PROPOSED FD
Our proposed heartbeat failure detector has the following

features. The output of the algorithm at failure detector, FD is
a vector {s1, s2, s3,…, sn} where sn is the status of the node n
and sn is a non negative integer. Clearly sn increases when
node n is live and stops increasing when n crashes. Again FD
prints the suspected node lists periodically.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 11, November-2015 1210
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

6 PROPOSED ALGORITHM
Task 1: Repeat periodically

for all p ε п do
Send HB to FD

end for

Task 2: When receive HB from some p
 if p ε SuspectedFD then
 HostStatusFD[p] + +
 else
 Update HostStatusFD[p]
 Send RECOVERED to all p ε п
 end if

Task 3: Repeat periodically
 for all p ε п do
 print HostStatusFD[p]
 Update SuspectedFD
 Send SuspectedFD to all p ε п
 end for

for all p ε п do
 print SuspectedListp

end for

7 EXPERIMENTAL RESULT
Our proposed Failure Detector maintains the basic properties
correctness and accuracy strongly. The main contribution of
this work is the signi_cant reduction of network load.
In HB algorithm the network needs to transmit n2 messages
per unit of time.
In our proposed algorithm the network needs to transmit n
messages per unit time. If any node is suspected then it needs
to transmit n messages again. So total cost for each period of
time is maximum 2n.

8 CONCLUSION
In our simulation we initially introduce two processes as fail-
ure detectors. So the probability of failure of FD's reduces. If
this probability can be reduced more the quality of the ap-
proach will be increased. The problem can be solved if number
of FDs can be increased as the size of the system increases.
Our future mission is to significantly reduce the probability by
adding more backup FD's.

REFERENCES
[1] M. K. M. K. Aguilera, W. Chen, and S. Toueg. Heartbeat: a

timeout-free failure detector for quiescent reliable communication. In
Proceedings of 11th International Workshop on Distributed Algorithms
(WDAG’97),

[2] C. Almeida and P. Verissimo. Timing failure detection
and real-time group communication in real-time
systems. In Proceedings of 8th Euromicro Workshop
on Real-Time Systems, June 1996.

[3] R. Bollo, J.-P. L. Narzul, M. Raynal, and F. Tronel.
Probabilistic analysis of a group failure detection
protocol. In Proceedings of 4th International
Workshop on Object-Oriented Real-Time Dependable
Systems, 1998.

[4] T. D. Chandra and S. Toueg. Unreliable failure
detectors for reliable distributed systems. Journal of
the ACM, 43(2):225–267, March 1996.

[5] W. Chen, S. Toueg, and M. K. Aguilera. On the
quality of service of failure detectors. In Proceedings of
30th International Conference on Dependable Systems
and Networks (ICDSN/FTCS-30), June 2000.

[6] S. A. Fakhouri, G. S. Goldszmidt, I. Gupta,
M. Kalantar, and J. A. Pershing. Gulfstream - a
system for dynamic topology management in
multi-domain server farms. Technical Report RC
21954, IBM T.J. Watson Research Center, February
2001.

[7] C. Fetzer and F. Cristian. Fail-awareness in timed
asynchronous systems. In Proceedings of 15th Annual
ACM Symposium on Principles of Distributed
Computing (PODC’96), pages 314–321a, May 1996.

[8] R. van Renesse, Y. Minsky, and M. Hayden. A
gossip-style failure detection service. In Proceedings of
International Conference and Distributed Systems
Platforms and Open Distributed Processing (IFIP),
1998.

[9] K. P. Birman. The process group approach to reliable
distributed computing. Communications of the ACM,
36(12):37–53, December 1993.

[10] J. M. Helary and M. Hurfin. Solving Agreement
problems with failure detectors; a survey. Annals of
Telecommunications, 52(9-10):447–464, September-October 1997.

[11] M. Larrea, A. Fernandez, and S. Arevalo. Optimal
implementation of the weakest failure detector for
solving Consensus. In Proceedings of 19th Annual
ACM-SIGOPS Symposium on Principles of
Distributed Computing (PODC 2000), July 2000.

[12] M. J. Fischer, N. A. Lynch, and M. S. Paterson.
Impossibility of distributed Consensus with one faulty
process. Journal of the ACM, 32(2):374–382, April
1985.process.

Fig. 1. Proposed FD

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 11, November-2015 1211
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

IJSER

http://www.ijser.org/

	1 Introduction
	2 Related Work
	3 Scalable And Efficient Failure Dtetectors
	4 Theoritical Concept of The Proposed Model
	5 Features of Proposed FD
	6 Proposed Algorithm
	end for

	7 Experimental Result
	8 Conclusion
	References

