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Abstract - A  two-unit PLC system is analysed with two different situations resulting in to two models. In first model two identical units are 
used in hot standby and no priority regarding operation/ repair is set for any of the units.  While in the other model two units are used in hot 
standby on master-slave basis. The slave unit can also fail but generally its failure rate is lower than that of the master unit. Priority is given 
to the repair of minor fault over the major fault. In other cases of failure, priority for repair is given to the master unit. Also, priority for 
operation is given to the master unit. For various measures of system effectiveness the expressions are obtained and a comparative study 
of both the models is done for the profit with respect to various parameters followed by the conclusion. 

Index Terms -  Relaibility, Semi-markov, Regenerative Point, PLC, Hot Standby, Comparative Study, Profit 

——————————      —————————— 

1  INTRODUCTION 
 In the field of reliability engineering, a number of 
researchers like [1] to [5] have analysed various models under 
different assumptions and collecting real data. System based on 
a particular model cannot be considered as best. A model may 
be better in some situations and may be worse in some other 
situations when compared with some other models. Keeping 
this in view, the present study deals with the comparison 
between two models at a time to see which is better than the 
other under the stated situations. The comparison is done 
graphically considering the particular case that the time to 
repair/replacement are exponential as taken in the concerned 
models. Graphs are plotted taking the values of rates, costs and 
probabilities estimated based upon the data collected from an 
industry. Values of some other rates/costs have been assumed 
wherever used.  
The system is analysed by making use of semi-Markov 
processes and regenerative point technique and expressions for 
different measures of the system effectiveness are obtained. 

 

2.  MODEL - I 
2.1 Assumptions 

1.  Initially one unit is operative and the other is hot standby. 
 2. Failure times are assumed to have exponential     

distribution whereas the other times have general  
     distributions. 
3. There are two types of failure - minor failures (repairable)  

and major failures (irreparable). 
4. After each repair, the system works as good as new one. 

 
In this model, it is considered that both the operative as well 

as the standby unit are identical and no particular unit is given 
any priority for operation/ repair. All failures are repaired by 
an expert repairman.  

 
2.2  Notations  

O      -   operative unit 
hs      -    hot standby unit 
         -   constant failure rate of the unit 
         -   constant failure rate of the hot standby unit 
p         -   probability of  minor failure 
q1       -   probability of minor failure  (repairable) 
q2       -   probability of major failure (irreparable) 
Fre      -  unit is under repair in case of minor failure 

 FRe   - repair by the repairman is continuing from the   
previous state  

Frep     -  unit is under replacement in case of major failure 
FRep    -  replacement is continuing from  the previous state  
wre       -  failed unit waiting for repair from the repairman 
wrep - failed unit waiting for replacement from the  

repairman 
g1(t), G1(t) - p.d.f. and c.d.f. of repair time of unit having 

minor failure 
h(t), H(t)  - p.d.f. and c.d.f. of replacement time of unit 

having major failure 
w(t), W(t)    -  p.d.f. and c.d.f. of waiting time. 
                  -   Stieltjes transform 

 
2.3 Transition Probabilities and Mean Sojourn Times 
 A transition diagram showing the various states of 
transition of system is shown as in Fig. 1. The epochs of entry 
into states 0, 1 and 2 are regenerative points and thus these 
states are regenerative states. The transition probabilities are 
given below: 
p01 = p + q1   , 
p02 = q2 ,   
p13 = (p + q1)[1 – g1*()] ,  
p14 = q2[1 – g1*()] ,   
p10 = g1*() ,  
p20 = h*() ,  
p25 = (p + q1)[1 – h*()] ,      
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Failed State    Up State 

p26 = q2[1 – h*()] , 
(3)
11   p  (p + q1)[1 – g1*()] , 
(4)
12   p  q2[1 – g1*()] ,      
(5)
21   p  (p + q1)[1 – h*()], 
(6)
22   p  q2[1 – h*()] 

By these transition probabilities, it can be verified that 
p01 + p02  = 1 

p10 + p13 + p14 = 1 = p10 + 
(3) (4)
11 12  p p  

p20 + p25 + p26  = 1 = p20 + 
(5) (6)
21 22   p p  

The mean sojourn time (i) in the regenerative state ‘i’ are given 
by 

0 = 

1
λ α , 1 = 

1g1 (λ )
λ



 , 2 = 

1 (λ )h
λ



 

The unconditional mean time taken by the system to transit for 
any regenerative state ‘j’ when it (time) is counted from the 
epoch of entrance into state ‘i’ is mathematically stated as 

 mij =  

'*
ij ij

0
td (t)  -  (0)qQ




 
Thus, 
m01 + m02 = 0 
m10 + m13 + m14 = 1 
m20 + m25 + m26 = 2 

m10+m11(3)+m12(4) = 0
G




1(t) dt = 1 (say)   

m20+m21(5)+m22(6) = 0
H




(t) dt = 2 (say)   
 
 

 
 
 
 
                                                                                                                                                                                                                                                                                                                              
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                       
                       Fig. 1 
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2.4  Mean Time to System Failure 
Regarding the failed state as absorbing states and employing 
the arguments used for regenerative processes, we have the 
following recursive relation for i(t) . 

0(t) = Q01(t) 1(t) + Q02(t)  2(t) 

1(t) = Q10(t) 0(t) + Q13(t) + Q14(t)  

2(t) = Q20(t)  0(t) + Q25(t) + Q26(t)  
Now, taking L.S.T. of the above equations and solving them for 
0**(s), the mean time to system failure (MTSF) when the 
system starts from the state 0, is 

MTSF = 

**
0

0

1 - (s)φ N   lim
s Ds


 

Where 
N = 0 + p01 1 + p02 2  and   
D = 1 – p01 p10 – p02 p20  
 
2.5  Availability Analysis 
A0(t) = M0(t) + q01(t) © A1(t) + q02(t) © A2(t)  
A1(t) = M1(t) + q11(3)(t) © A1(t) + q12(4)(t) © A2(t) + q10(t) © 
A0(t) 
A2(t) = M2(t) + q21(5)(t) © A1(t) + q22(6)(t) © A2(t) + q20(t) © 
A0(t) 
where 

M0(t) = e - (+) t  ,  M1(t) = e -  t G 1(t) , M2(t) = e -  t H (t) 
Taking L.T. of the above equations and solving them for A0*(s), 
and then in steady-state, availability of the system is given by: 

 A0 = 
*
0

0
 s (s)lim A

s  = 

1

1

N
D         where 

 
N1 = 0 [(1–p11(3)) (1–p22(6)) – p12(4) p21(5)] + 1 [p01 (1–
p22(6)) – p02 p21(5) ] + 2 [p01  p12(4) + p02 (1–p11(3))] 
D1 = 0 [p10 p21(5) + p10 p20 + p20 p12(4)] + 1 [p21(5) + p01 
p20] + 2 [p12(4) + p10 p02] 
 
2.6  Busy Period Analysis of Expert Repairman  (Repair 

Time Only) 
Using the probabilistic arguments, we have the following 
recursive relations for BRi(t) : 
BR0(t)  =  q01(t) © BR1(t) + q02(t) © BR2(t)   
BR1(t) = W1(t)+q11(3)(t)©BR1(t)+q12(4)(t)©BR2(t)+q10(t)© 
BR0(t) 
BR2(t) = q21(5)(t)©BR1(t) + q22(6)(t)©BR2(t) + q20(t)©BR0(t) 
where 

W1(t) = 1G (t) 
Taking L.T. of the above equations and solving them for 
BR0*(s), and then in steady-state, the total fraction of time for 
which the system is under repair by expert repairman, is given 
by : 

 BR0 = 
*
0

0
 s (s)lim BR

s  = 

2

1

N
D  

where, 
N2 = 1 [p01 p20 + p21(5)]  and   D1 is already specified. 
 
 2.7  Busy Period Analysis of Expert Repairman  

(Replacement Time Only) 
Using the probabilistic arguments, we have the following 
recursive relations for BRPi(t) : 
BRP0(t) =  q01(t) © BRP1(t) + q02(t) © BRP2(t) 
BRP1(t) =  q11(3)(t) © BRP1(t) + q12(4)(t) ©BRP2(t)+q10(t) © 
BRP0(t) 
BRP2(t) =  W2(t) + q21(5)(t) © BRP1(t) + q22(6)(t) © BRP2(t) + 
q20(t) ©  BRP0(t)  
where 

W2(t) = H (t) 
Taking L.T. of the above equations and solving them for 
BRP0*(s), and then in steady-state, the total fraction of time for 
which the system is under replacement by expert repairman, is 
given by : 

 BRP0 = 
*
0

0
 s (s)lim BRP

s  = 

3

1

N
D  

Where 
N3 =  2 [p12(4) + p02 p10]  and   D1 is already specified. 
 
2.8  Expected Number of Visits by Expert Repairman 
Using the probabilistic arguments, we have the following 
recursive relations for Vi(t) : 

V0(t) = Q01(t) [1+V1(t)]+Q02(t) [1+V2(t)]  

V1(t) = Q10(t) V0(t)+Q11(3)(t) V1(t)+Q12(4)(t)  V2(t) 

V2(t) = Q20(t) V0(t)+Q21(5)(t) V1(t)+Q22(6)(t) V2(t)  
Taking L.S.T. of the above equations and solving them for 
V0**(s), and then in steady-state , the number of visits per unit 
time is given by : 

 V0 = 

**
0

s 0
 s (s)Vlim

  = 

4

1

N
D  

 
where  
N4 = p10 p20 + p12(4) p20 + p10 p21(5)      and D1 is already 
specified.  
 
2.9 Expected Number of Replacements 
Using the probabilistic arguments, we have the following 
recursive relations for RPi(t) : 

RP0(t)  = Q01(t)  RP1(t) + Q02(t)  [1+RP2(t)]  

RP1(t) =  Q10(t)  RP0(t) + Q11(3)(t) RP1(t) + Q12(4)(t) 

 [1+RP2(t)] 
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RP2(t) =  Q20(t)  RP0(t) + Q21(5)(t)  RP1(t) + Q22(6)(t) 

 [1+RP2(t)]  
 
Taking  L.S.T. of the above equations and solving them for 
RP0**(s),  and then in steady-state, the number of replacements 
per unit time is given by : 

 RP0 = 
**
0

s 0
 s (s)lim RP

  = 

5

1

N
D  

where  
N5 =  p12(4) + p02  p10    and  D1 is already specified. 
 
2.10  Profit Analysis 
Profit (P1) = C0 (A0) – C2 (BR0) – C3 (BRP0) – C4 (V0) – C5 
(RP0) 
where 
C0 = Revenue per unit uptime. 
C2 = Cost per unit uptime for which the expert repairman is 
busy for repair. 
C3 = Cost per unit uptime for which the expert repairman is 
busy for replacement. 
C4 = Cost per visit of repairman. 
C5 = Cost per unit replacement 

 

3.   MODEL - II 
 
3.1 Assumptions 
 In this model, another situation is analysed where 
PLCs are used as hot standby on the basis of master-slave 
concept. The slave unit can also fail but generally its failure rate 
is lower than that of the master unit. Priority is given to the 
repair of minor fault over the major fault. In other cases of 
failure, priority for repair is given to the master unit. Also, 
priority for operation is given to the master unit.  
Rest of the assumptions are as same as in model-I. 

 
3.2 Notations  
Mo      -  master unit is operative  
So        -  slave unit is operative  
Shs      -  slave unit is hot standby  
      -  constant failure rate of the master unit 
       - constant failure rate of the slave unit 
Mre   -      master unit is under repair of repairman in case of 
minor failure 
MRe  -      repair of master unit by the repairman is continuing 
from the previous state 
Mrep   -  master unit is under replacement in case of major 
failure 
MRep  -   replacement of master unit is  continuing from the 
previous state  
Mwre   -   failed master unit waiting for repair from the 
repairman 

Mwrep  -   failed master unit waiting for replacement from the 
repairman 
Sre     -  slave unit is under repair of repairman in case of minor 
failure 
SRe   -    repair of slave unit by the repairman is continuing from 
the previous state 
Srep   - slave unit is under replacement in case of major failure 
SRep  -  replacement of slave unit is  continuing from the   
previous state  
Swre  - failed slave unit waiting for repair from the repairman 
Swrep -    failed slave unit waiting for replacement from the 
repairman 
 
Rest other notations are same as used in model-I. 

 
3.3 Transition Probabilities and Mean Sojourn Times 
 A transition diagram showing the various  states of 
transition of system is shown as in Fig. 2. The epochs of entry 
into states 0, 1, 2, 3 and 4 are regenerative points and thus these 
states  are regenerative  states. The transition probabilities are 
given below  : 

p01 = 

 2αq
λ α     ,     p02 = 

 2λq
λ α , 

p03 = 

 1(p ) αq
λ α

  , p04 = 

 1(p ) λq
λ α

 , 

p15 = (p + q1) [1 – h*()] ,   
p16 = q2 [1 – h*()] ,  p10 = h*() ,  
p27 = q2 [1 – h*()] ,      
p28 = (p + q1) [1 – h*()] ,   
p20 = h*() ,   
p39 = q2 [1 – g1*()] ,        
p3,10 = (p + q1) [1 – g1*()] ,  
p30 =  g1*() ,   
p4,11 = (p + q1) [1 – g1*()] , 
p4,12 = q2 [1 – g1*()] ,  p40 =  g1*() , 

(6)
12   p  q2 [1 – h*()] ,   
(5)
14   p  (p + q1) [1 – h*()] , 
(7)
21   p  q2 [1 – h*()] ,   
(8)
23   p  (p + q1) [1 – h*()] , 
(9)
32   p  q2 [1 – g1*()]  ,  
(10)
34   p  (p + q1) [1 – g1*()] , 
(11)
43   p  (p + q1) [1 – g1*()],  
(12)
41   p  q2 [1 – g1*()] 

By these transition probabilities, it can be verified that 
p01 + p02 + p03 + p04 = 1 
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p10 + p16 + p15   = 1 = p10 + 
(6) (5)
12 14   p p  

p20 + p27 + p28   = 1 = p20 + 
(7) (8)
21 23  p p  

p30 + p39 + p3,10   = 1 = p30 + 
(9) (10)
32 34  p p  

p40 + p4,11 + p4,12 = 1 = p40 + 
(11) (12)
43 41  p p  

 The mean sojourn time (i) in the regenerative state ‘i’ are 
given by   

0 = 

1
λ α ,    1 = 

*1 (λ )h
λ



, 

2 = 

*1 (α )h
α



  ,  3 = 

*
1g1 (λ )
λ



 ,  

4 = 

*
1g1 (α )
α



 
The unconditional mean  time taken by the system to transit for 
any regenerative state ‘j’ when it (time) is counted from the 
epoch of entrance into state ‘i’ is mathematically stated as 

mij =  

* '
ij ij

0
td (t)  -  (0)qQ




 

Thus, 
m01 + m02 + m03 + m04 = 0 
m10 + m15 + m16 = 1 
m20 + m27 + m28 = 2 
m30 + m39 + m3,10  = 3 
m40 + m4,11 + m4,12  = 4 

m10 + m14(5) + m12(6)= 0
H




(t) dt = 1 (say)   

m20 + m21(7) + m23(8)= 0
H




(t) dt =  1   

m30+ m32(9) + m34(10)= 0
G




1(t)dt =2 (say)   

m40 + m43(11) + m41(12) = 0
G




1(t) dt  = 2   

 
3.4 Mean Time to System Failure 
Regarding the failed state as absorbing states and employing 
the arguments used for regenerative processes, we have the 
following recursive relation for i(t) . 
 

0(t) = Q01(t) 1(t) + Q02(t) 2(t) + Q03(t) 3(t) + 

Q04(t) 4(t) 

1(t) = Q10(t) 0(t) + Q15(t) + Q16(t) 

2(t) = Q20(t)  0(t) + Q27(t) + Q28(t) 

3(t) = Q30(t) 0(t) + Q39(t) + Q3,10(t)  

4(t) = Q40(t) 0(t) + Q4,11(t) + Q4,12(t)  
Now, taking L.S.T. of the above equations and solving them for 
0**(s), we obtain 

  0**(s) = 

0

0

(s)N
(s)D   

where 
* * * * * *

0 01 15 16 02 27 28(s) (s) [ (s) (s)] (s) [ (s) (s)]   q q q q q qN             
*
03(s)q * *

39 3,10 [ (s) (s)]q q * * *
04 4,11 4,12 (s)[ (s) (s)]q q q 

  
* * * *

0 01 10 02 20(s)      1 - (s) (s) (s) (s)  q q q qD               
* * * *
03 30 04 40- (s) (s) - (s) (s)q q q q   

Now the mean time to system failure (MTSF) when  the system 
starts from the state 0, is 
 

MTSF = 

**
0

s 0

1 - (s)φ N   lim s D


 
N = 0 + p01 1 + p02 2 + p03 3  + p04 4 
D = 1 – p01 p10 – p02 p20 – p03 p30  – p04 p40 
 
3.5 Availability Analysis 
A0(t) = M0(t) + q01(t) © A1(t) + q02(t) © A2(t) + q03(t) © A3(t) + 
q04(t) © A4(t)  
A1(t) = M1(t) + q10(t) © A0(t) + q12(6)(t) © A2(t) + q14(5)(t) © 
A4(t)   
A2(t) = M2(t) + q20(t) © A0(t) + q21(7)(t) © A1(t) + q23(8)(t) © 
A3(t) 
A3(t) = M3(t) + q30(t) © A0(t) + q32(9)(t) © A2(t) + q34(10)(t) © 
A4(t) 
A4(t) = M4(t) + q40(t) © A0(t) + q41(12)(t) © A1(t) + q43(11)(t) © 
A3(t) 
where 
M0(t) = e -(+)t        

M1(t) = e - t H (t)          

M2(t) = e - t H (t)  

M3(t) = e - t G 1(t)  

M4(t) = e - t G 1(t) 
Taking L.T. of the above equations and solving them for A0*(s), 
we get : 

  A0*(s) = 

1

1

(s)N
(s)D  

In steady-state, availability of the system is given by : 

 A0 = 
*
0

s 0
 s (s)lim A

  = 

1

1

N
D  
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              Fig. 2 

 
where 
N1 = 0[{1– p12(6) p21(7)} {1– p34(10) p43(11)} - p14(5) 
p41(12) {1 -  p23(8)  p32(9)} - p23(8){p32(9) + p12(6) p34(10) 
p41(12)} + p43(11){ p34(10) p02  - p14(5) p32(9) p21(7)}] + 1 
[{p01 + p04 p41(12)} {1 - p23(8) p32(9)} + p34(10) p41(12) {p03 
+ p02 p23(8)} + p21(7) p02 + p34(10) p43(11) p01(p02 – 1) + 
p32(9) p21(7) {p03 + p04 p43(11)}] + 2 [{p02 + p03 p32(9)} {1 
– p14(5) p41(12)} + p01 p12(6) {1 – p34(10) p43(11)} + p41(12) 
p12(6) {p04  +  p03 p34(10)}  +  p43(11) p32(9){p04 + p01 
p14(5)}] + 3 [{p03 + p02 p23(8)} {1 – p14(5) p41(12)} – p14(5) 
p43(11) {p01 + p02 p21(7)} – p43(11) p04 {1 – p12(6) p21(7)} +  
p12(6) p23(8) {p01 + p04 p41(12)} - p12(6) p21(7) ] + 4 [{p04 
+ p03 p34(10)} {1 – p12(6) p21(7)} + p34(10) p23(8) {p02 + p01 
p12(6)} - p23(8) p32(9) p04 + p14(5) p01{1 - p23(8) p32(9)} + 
p14(5) p21(7) {p02 + p03 p32(9)}]  
 
D1 = 0 [p10{1 - p34(10)p43(11) – p32(9) p23(8)} + p40 
p14(5){1 - p32(9) p23(8)} + p12(6) p20 {1 – p34(10) p43(11)} + 
p14(5) p43(11){p30 + p20 p32(9)} + p12(6) p23(8){p30 + p40 
p34(10)}] +  1 [p01{1 - p34(10)p43(11) – p32(9) p23(8)} + p04 
p41(12) {1 - p32(9) p23(8)} + p02 p21(7){1 - p34(10) p43(11)} + 
p21(7) p32(9){p03 + p04 p43(11)} +  p41(12) p34(10) {p03 + 
p02 p23(8)} + p02{1 - p34(10)p43(11) – p41(12) p14(5)} + p03 
p32(9) {1 – p41(12) p14(5)} + p01 p12(6){1 - p34(10)p43(11)} + 

p43(11) p32(9){p04 - p01 p14(5)} +  p41(12) p12(6) {p04 + p03 
p34(10)}] +  2 [p03{1 – p12(6) p21(7) – p03 p41(12)} + p04  
p34(10) {1 – p12(6) p21(7)} + p02  p23(8)    {1 – p14(5) p41(12)} 
+ p12(6) p23(8){p01 + p04 p41(12)} +  p43(11) p14(5) {p01 + 
p02 p21(7)} + p04{1 – p21(7)p12(6) – p32(9) p23(8)} + p03 
p34(10) {1 - p21(7) p12(6)} + p01 p14(5){1 – p23(8)p32(9)} + 
p21(7) p14(5){p02 - p03 p32(9)} +  p01 p23(8) {p12(6 ) p34(10) 
– p32(9) p14(5)}]  
 
3.6 Busy Period Analysis of Expert Repairman  

(Repair Time Only) 
Using the probabilistic arguments, we have the following 
recursive relations for BRi(t) : 
BR0(t) = q01(t) © BR1(t) + q02(t) © BR2(t) + q03(t) © BR3(t)  + 
q04(t) © BR4(t) 
BR1(t) = q10(t)   © BR0(t) + q12(6)(t) © BR2(t) + q14(5)(t) © 
BR4(t)   
BR2(t) = q20(t) © BR0(t) + q21(7)(t) © BR1(t) + q23(8)(t) © 
BR3(t)  
BR3(t) = W3(t) + q30(t) © BR0(t) +  q32(9)(t) © BR2(t) + 
q34(10)(t) © BR4(t) 
BR4(t) = W4(t) + q40(t) © BR0(t) +  q41(12)(t) © BR1(t) + 
q43(11)(t) © BR3(t)  
where 
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W3(t) = 1G (t) = W4(t) 
Taking L.T. of the above equations and solving them for 
BR0*(s),we get : 

 BR0*(s) = 

2

1

(s)N
(s)D  

In steady-state, the total fraction of time for which the system 
is under repair by expert repairman, is given by : 

 BR0 = 
*
0

s 0
 s (s)lim BR

  = 

2

1

N
D  

where,  
N2 = 2 [(1+ p34(10))(p01 p12(6) p23(8) + p02 p23(8) + p03 - 
p03 p12(6) p21(7)) + (1 + p43(11)) (p01 p14(5) + p02 p14(5) 
p21(7) + p04) - p14(5) p41(12)(p03 + p02 p23(8)) + p14(5) 
p32(9) (p03 p21(7) - p01p23(8)) - p04 (p12(6) p41(12) + p23(8) 
p32(9) + p21(7) p12(6)]    
and D1 is already specified. 
 
 3.7 Busy Period Analysis of Expert Repairman  

(Replacement Time Only) 
Using the probabilistic arguments, we have the following 
recursive relations for BRPi(t) : 
BRP0(t) = q01(t) © BRP1(t) + q02(t) © BRP2(t) + q03(t) © 
BRP3(t) + q04(t) © BRP4(t) 
BRP1(t) = W1(t) + q10(t) © BRP0(t) + q12(6)(t) © BRP2(t) + 
q14(5)(t) © BRP4(t)    
BRP2(t) = W2(t) + q20(t) © BRP0(t) + q21(7)(t) © BRP1(t) + 
q23(8)(t) © BRP3(t)  
BRP3(t) = q30(t) © BRP0(t) + q32(9)(t) © BRP2(t) + q34(10)(t) 
© BRP4(t)  
BRP4(t) = q40(t) © BRP0(t) +  q41(12)(t) © BRP1(t) + q43(11)(t) 
© BRP3(t)  
where 

W1(t) = H (t) = W2(t) 
Taking L.T. of  the above equations and solving them for 
BRP0*(s),we get : 

 BRP0*(s) = 

3

1

(s)N
(s)D  

In steady-state, the total fraction of time for which the system 
is under replacement by expert repairman, is given by : 

 BRP0 = 
*
0

s 0
 s (s)lim BRP

  = 

3

1

N
D  

where, 
N3 =  1 [(1- p34(10) p43(11))  (p01 + p02 +  p01 p12(6) + p02 
p21(7))  + p32(9)  (p04 p43(11)  + p03) (1 + p21(7)) + p01 
p32(9) (p14(5) p43(11) - p23(8)) +  p41(12){(1 + p12(6)) (p04 + 
p03 p34(10)) + p02 p23(8) p34(10) - p04 p23(8) p32(9)  + p02  
p14(5)  - p03 p14(5) p32(9)}]   
and D1 is already specified. 
 
3.8     Expected Number of Visits By Expert 

Repairman 
Using the probabilistic arguments, we have the following 
recursive relations for Vi(t) : 

V0(t) = Q01(t)  [1+V1(t)] + Q02(t)  [1+V2(t)] + 

Q03(t)  [1+V3(t)] + Q04(t)  [1+V4(t)]  

V1(t) = Q10(t) V0(t)+ Q12(6)(t) V2(t) + Q14(5)(t)  
V4(t)  

V2(t) = Q20(t) V0(t)+ Q21(7)(t) V1(t) + Q23(8)(t)  
V3(t)  

V3(t) = Q30(t) V0(t)+ Q32(9)(t) V2(t) + Q34(10)(t)  
V4(t)  

V4(t)= 

Q40(t) V0(t)+Q41(12)(t) V1(t)+Q43(11)(t) V3(t)  
 
Taking  L.S.T. of the above equations and solving them for 
V0**(s), we get : 

 V0**(s) = 

4

1

(s)N
(s)D  

In steady-state, the number of visits per unit time is given by 
: 

 V0 = 
**
0

s 0
 s (s)Vlim

  = 

4

1

N
D  

where  
N4 =  1- p34(10) p43(11) - p23(8) p32(9) – p12(6) p21(7) + 
p12(6) p21(7) p34(10) p43(11) – p21(7) p32(9)  p14(5) p43(11) – 
p41(12) p12(6) p23(8) p34(10) - p14(5) p41(12) + p41(12)   
p14(5) p32(9) p23(8)  
and D1 is already specified.  
 
3.9    Expected Number of Replacements 
Using the probabilistic arguments, we have the following 
recursive relations for RPi(t) : 

RP0(t)=Q01(t) [1+RP1(t)]+Q02(t) [1+RP2(t)]+Q03(t)

      RP3(t) + Q04(t)  RP4(t)    

RP1(t)=Q10(t) RP0(t)+Q12(6)(t) [1+RP2(t)]+       

Q14(5)(t)  RP4(t) 

RP2(t)=Q20(t) RP0(t)+Q21(7)(t) [1+RP1(t)]+ 

Q23(8)(t)  RP3(t)  

RP3(t)=Q30(t) RP0(t)+Q32(9)(t) [1+RP2(t)]+ 

Q34(10)(t)   RP4(t)   
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0

2

4

6

(P
1-P

2)

C 0  =  5 5
C 0  =  6 0
C 0  =  6 5

RP4(t)=Q40(t) RP0(t)+Q41(12)(t) [1+RP1(t)]+Q43(11)(t

) RP3(t)  
Taking  L.S.T. of the above equations and solving them for 
RP0**(s), we get : 

 RP0**(s) = 

5

1

(s)N
(s)D  

 
 
In steady-state, the number of replacements per unit time is 
given by : 

 RP0 = 
**
0

s 0
 s (s)lim RP

  = 

5

1

N
D  

where  
N5  = (p01 + p02) [(1- p34(10)p43(11))(1 – p12(6)p21(7)) - 
p14(5) p41(12) (1 - p32(9)p23(8)) + p23(8)(- p32(9) - 
p41(12)p34(10)p12(6)) + p43(11)(p02   p34(10) - 
p14(5)p32(9)p21(7)] + p12(6)[(1- p32(9)p23(8)) (p04p41(12) + 
p01) + p02p21(7) + p41(12) p34(10)(p02 p23(8) + p03) - 
p34(10) p43(11)   p01(1 -  p02) + p32(9)p21(7) (p04 p43(11) + 
p03)] + p21(7)[(1- p14(5)   p41(12) ) (p03 p32(9) + p02) + 
p01p12(6)(1 - p34(10)p43(11)) + p41(12)   p12(6)(p34(10) p03 + 
p04 ) + p32(9)p43(11) (p14(5)p01 + p04 )] + p32(9)   [(1- 
p14(5)p41(12) )(p02p23(8) + p03) - p14(5)p43(11) (p01+ 
p02p21(7)) – p04p43(11)(1 – p12(6) p21(7)) - p12(6)p21(7) + 
p12(6)p23(8) (p04 p41(12) + p01)] + p41(12) [(1- p12(6)p21(7) 
)(p03 p34(10) + p04 ) + p34(10)p23(8) (p02 + p01p12(6)) + 
p01p14(5) (1 – p23(8)p32(9)) + p14(5)p21(7) (p02  + p03 p32(9) 
) - p04 p23(8) p32(9)] 
and D1 is already specified. 
 
 
 
 
3.10 Profit Analysis 
Profit (P2) = C0 (A0) – C2 (BR0) – C3 (BRP0) – C4 (V0) – C5 
(RP0) 
where 
C0 = Revenue per unit uptime. 
C2 = Cost per unit uptime for which the expert repairman is 
busy for repair. 
C3 = Cost per unit uptime for which the expert repairman is 
busy for replacement. 
C4 = Cost per visit of repairman. 

C5 = Cost per unit replacement. 
 
 
4.  Comparative Analysis 
Let Pi be the profit of the model discussed in the ith model (i 
= 1,2) respectively.   
4.1 Comparison Between Model-I and Model – II 

       Fig. 3 shows the behaviour of the difference of 
profits (P1 – P2) with respect to failure rate (α) for different 
values of the revenue per unit up time (C0). It can be 
interpreted from the graph that the difference of profits (P1 – 
P2) decreases with increasing failure rate (α) and has higher 
values for higher values of the revenue per unit up time (C0). 
Further, more conclusions can be drawn as follows: 
(i)  For C0 = 55, the difference of profits (P1 – P2)  > or = or < 
0 if α < or = or > 0.00126.  So, the model-I is better or worse 
than that of model-II according as α < or > 0.00126. In case of 
α = 0.00126, both the models are equally good. 
(ii) For C0 = 60, the difference of profits (P1 – P2)  > or = or < 
0 if α < or = or > 0.00135.  Therefore, the model of model-I is 
better or worse than that of model-II according as α < or > 
0.00135 . Both the models are equally good for α = 0.00135. 
(iii) For C0 = 65, the difference of profits (P1 – P2)  > or = or < 
0 if α < or = or > 0.00152.  So, the model of model-I is better 
or worse than that of model -II according as α < or > 0.00152. 
For α = 0.00152, both the models are equally good. 
 
 

Fig. 4 shows the behaviour of the difference of 
profits (P1 – P2) with respect to cost per visit for different 
values of the revenue per unit up time (C0). It can be 
observed from the graph that the difference of profits (P1 – 
P2) decreases with increase in the cost per visit and has 
higher values for higher values of the revenue per unit up 
time (C0). More conclusions can be drawn as follows:  
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

DIFFERENCE OF PROFIT (P1-P2) vs. FAILURE RATE (α) FOR DIFFERENT 
VALUES OF THE REVENUE PER UNIT UP TIME (C0) 
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                                                                                                  Fig. 3 
 

 
Fig. 4 

 
 
 
(i)  For  C0 = 8, the difference of profits (P1 – P2)  > or = or < 0 if 
cost per visit  < or = or > INR 28510.  So, the model of model-I is 
better or worse than that of model-II according as cost per visit 
< or > INR 28510. In case cost per visit = INR 28510, both the 
models are equally good. 
(ii) For  C0 = 9, the difference of profits (P1 – P2)  > or = or < 0 if 
cost per visit  < or = or > INR 39750.  So, the model of model-I is 
better or worse than that of model-II according as cost per visit 

< or > INR 39750. Both the models are equally good if cost per 
visit = INR 39750. 
(iii) For  C0 = 10, the difference of profits (P1 – P2)  > or = or < 0 
if cost per visit  < or = or > INR 60014.  So, the model of model-I 
is better or worse than that of model-II according as cost per 
visit < or > INR 60014. If cost per visit = INR 60014, both the 
models are equally good. 
 

Failure Rate (α) 

p=0.193,  q1=0.706,  q2=0.101,  =0.000055,  
 1=0.3206,  2=0.3417,  3=0.1336,   C2=1000,  
 C3=1000,  C4=5000, C5 =254838 
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DIFFERENCE OF PROFIT (P1 - P2) vs. COST PER VISIT  FOR DIFFERENT VALUES 
OF THE REVENUE PER UNIT UP TIME (C0) 

C0 = 8
C0 = 9
C0 = 10

p=0.193,  q1=0.706,  q2=0.101,  =0.000055,  
=0.000015, 1=0.3206,  2=0.3417,   3=0.1336,  
C2=1000,  C3=1000, C5 =254838 
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Conclusion 
After comparison between the two models, we conclude that 
there are different situations where in a particular model can be 
preferred over the other model. Depending upon resources 
available and situations, the organization can adopt the model 
which is more profitable to it.  
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