Inte rnatio nal Jo urnal o f Sc ie ntific & Eng inee ring Re se arc h Vo lume 3, Issue 3, Marc h -2012 1

ISS N 2229-5518

The Smart Home: Renewable Energy

Management System for Smart Grid Based On

ISM Band Communications

Ms. S. Mathavi, Mrs. D. Vanitha, Mrs. S. Jeyanthi, Mr. P.Senthil kumaran

A b s t r a c t Increasing complexity of pow er grids, grow ing demand, and requirement f or greater reliability, security and eff iciency as w ell as environmental and energy sustainability concern continue to high light then need f or a quantum leap in harnessing communicati on and information technologies. This leap tow ard a “smarter” grid is w idely ref erred to as “smart grid”. A smart grid can help us reach the goal of clean air and energy independence by utilizing renew able pow er such as w ind and solar energy. In earlier a real time, massive, online, multi -time f rame simu lation is proposed as a means f or building a co mmon vision of smart grid f unctions. A massive simulation w ill include hundreds of participants that pla y roles of reliability coordinators, transmission operators, distribution operators, pow er plant operators, and substation operators. In this paper critically review s the reliability impacts of major smart grid resources such as renew able, demand response and storage. A Smart Meter is designed v ia ISM band communication to develop a smart grid. These highly visible drills can demonstr ate how the new smart grid systems, people, and processes can all w ork together economically and reliably. We can get low cost, saf e, and easily conf igurable simulations instead of w aiting f or exp ensive and hard w ired deployments.

Inde x Terms Embedded System, HEMS, ISM Band, So lar Panel, Substation, Smart meter, Microcontroller

—————————— ——————————


1.1. What is Smart Gr id?

The Smart Gr id is a combination of har dwar e, management and r eporting softwar e, built atop an intelligent communications infr astr uctur e. In the wor ld of the Smart Grid, consumers and utility companies alike have tools to manage, monitor and r espond to ener gy issues [1]. The flow of electr icity fr om utility to consumer becomes a two-way conver sation, saving consumers money, ener gy, deliver ing mor e tr anspar ency in terms of end-user use, and r educing carbon emissions. Modernization of the electr icity delivery system so that it monitors, pr otects and automatically optimizes the operation of its inter connected elements – fr om the central and distributed gener ator thr ough the high- voltage networ k and distribution system, to industr ial users and building automation systems, to ener gy storage installations and to end-use consumers and their thermostats, electric vehicles, appliances and other household devices. The Smart Grid in lar ge, sits at the intersection of Ener gy, IT and Telecommunication Technologies.

———— ——— ——— ——— ———

S.Mathavi is currently pursuing master degree program in Applied

Electronics Anna University Trichy. E-mail:

D.Vanitha Asst.Prof master degree program in Applied Electronics Jayaram

College of Engg & Tech, Anna university Trichy..


S.Jeyanthi master degree program in Computer Science Anna

university Chennai E-mail:

P.Senthil kumaran Asst.Prof is currently pursuing master degree program in

VLSI Design RVS College of Engg & Tech, Anna university of techno logy

Madurai E-mail:

1.2 Pillars of Smart Grid

Tra ns miss ion Optimiza tion

De ma nd Side Ma na geme nt

Dis tribution Optimiza tion

As set Optimiza tion

1.3 Demand Optimization

De ma nd Res ponse – Utility

De ma nd Res ponse – Cons ume r

De ma nd Res ponse Ma nage me nt Syste m

I n Home Technology e na bling

1.4 Why Smart Grid?

 I ntegra te is ola te d technologies : Sma rt Grid e na bles be tte r ene rgy ma na geme nt.
 Proactive ma na geme nt of e lectrica l ne twork during eme rgency s itua tions .
 Be tter de ma nd s upply / de ma nd res ponse ma na geme nt.
 Be tter powe r qua lity
 Re duce carbon emiss ions .
 I ncreas ing de ma nd for e nergy : re quires more comple x
a nd critica l s olution with be tte r ene rgy ma nage me nt

IJSER © 2012 http ://

Inte rnatio nal Jo urnal o f Sc ie ntific & Eng inee ring Re se arc h Vo lume 3, Issue 3 , Marc h -2012 2

ISS N 2229-5518

1.5 Smart Grid Function

The te rm “s mart grid” ca n cover a wide va rie ty of technologie s a nd functions ra nging from home a utoma tion s ys tems to interconnection-wide pha ros monitoring sys te ms [1][2]. The e mphas is of this pa per is on deve lopme nt of sma rt grid functions tha t require inte gra te d control of ge ne ra tion, tra nsmiss ion, distribution, a nd cus tomer premises . The future s mart grid mus t a ccommoda te large r pe ne trations of inte rmitte nt wind a nd s ola r ene rgy s ources both ce ntra lize d a nd dis tribute d. I t mus t a ls o accommoda te ra pid de mand growth due to plug-in e lectric ve hicles a nd lea rn how to ma ke optima l use of the ir inhe re nt s tora ge ca pa city. Se lf -hea ling grids ca n a da pt to a ny le ve l of multiple continge ncies due to acts of na ture, a cts of te rror, equipme nt fa ilures or ope ra tor error. The y ca n gra cefully de gra de by s he dding the lowes t priority loa ds firs t a nd lea ving on a ll critica l loa ds without inte rruption. Sma rt is landing will be imple me nte d a t both tra nsmiss ion a nd dis tribution le ve ls . At the tra nsmiss ion le ve l, is la nds will be forme d to limit the propa ga tion of ge ne ra tion loa d imba la nces . At the dis tribution le ve l loca l ge ne ra tion will continue to provide power e ve n whe n powe r from the utility is a bse nt. Combining dis tribute d resources of e very description—rooftop PV sola r, fue l ce lls , e lectric ve hicles —the community ca n ge ne ra te s ufficie nt e lectricity to kee p the mos t critica l loa ds up a nd running. Ma xima l flow grids are des igne d to e fficie ntly move re mote ge nera tion to loca l loa ds . I n a ma xima l flow grid the tra ns miss ion pa th flows will be ma ximize d. The tra ns miss ion tra ns fer limit s will be de termine d prima rily by the rea l-time therma l a nd volta ge s ta bility limits . Continge ncy-base d the rma l, voltage , and tra ns ie nt sta bility limits will be mitiga te d us ing direct loa d a nd storage controls . Ta pping the potentia l to dire ctly ma na ge a pplia nces on millions of cus tomer premises will be the s ilve r bulle t tha t ma kes ma ny smart grid a pplica tions feas ible . A la rge proportion of cus tome r loa ds including a ir conditione rs , wa ter hea ters , free zers , a nd re frige ra tors ha ve the rma l ine rtia . The y ca n a ll be inte rrupte d for 15 min to 1 h without a ny inconve nie nce for cus tomers . The s ma rt grid will re quire improve d inte rfaces a nd a na lytica l me thods , to s upport opera tor decis ion-ma king. Sys tem ope ra tors will pla y a n e ve n more vita l role a s the y s upe rvise m ore s ophis tica te d control s ys tems tha t active ly ma nage s ys tems with tighte r tra nsmiss ion a nd ge nera tion reserve ma rgins .

1.6 The Smart Grid as an Economic Development Tool The s mart grid is a tra ns formative se t of te chnologies a nd bus iness mode ls . W ith mutua lly s upportive private a nd

public inves tme nt a nd with gove rnme nta l policies tha t accommoda te entre pre ne uria l s mart grid innova tions , we ca n grow our economy, crea te ne w high-pa ying jobs , a nd he lp prote ct our e nvironme nt. The conve rge nce of these diverse be ne fits re prese nts a n unpa ra lle le d opportunity for policy ma ke rs to a dva nce a n a genda base d on research a nd de ve lopme nt, on innova tion, a nd on economic de ve lopment. Through continue d a dva nceme nt of the I llinois Sma rt Grid
Regiona l I nnova tion Cluste r, the s tate is pos itione d to be a lea de r in the de ve lopment a nd de ployment of s ma rt grid e nabling s tra tegies , services a nd te chnologies .


Exis ting e nergy ma na geme nt s ys tems ha ve been de s igne d a round the conce pt tha t the powe r s ys tem ca n ope ra te in one of four s ta tes [4]. I n the norma l secure s ta te a ll e quipme nt is opera ting within limits a nd no s ingle or proba ble double continge ncies will ca use rea l-time opera ting limit viola tions . I n the norma l insecure s ta te , a ll equipme nt is ope ra ting within rea l-time limits but one or more s ingle or proba ble double continge ncies will ca use ope ra ting limit viola tions . I n the eme rgency s ta te s ome e quipme nt is ope ra ting outs ide of its rea l-time ope ra ting limits . The restorative s ta te occurs whe n there has been a major outa ge of gene ra tion, tra nsmiss ion, a nd cus tome r loa d. The res tora tive sta te ma y be e ntere d as a re s ult of continge ncies tha t ca use loss of cus tome r loa d or as a re s ult of de libe ra te control actions to s he d loa d a nd/or ge ne ra tion in a portion of the s ys tem. Control actions in the re stora tive sta te s hould be des igne d to tra ns ition the syste m back to the norma l s ta te but could ina dve rtently tra ns ition the s ys tem to a n eme rge ncy s ta te. EMS a pplica tions focus on providing ope ra tor decis ion ma king tools for the norma l secure a nd norma l insecure s ta tes .
The re a re fe w rea l-time tools that ha ve bee n des igne d to s upport ope ra tor decis ion ma king in the e merge ncy an d re stora tive s ta tes . The re are a lso fe w tools tha t ca n pre pare the s ys tem or ope ra tor to ha ndle e xtre me continge ncies . Energy ma nage ment sys te ms ha ve evolve d s lowly ove r the las t twe nty five yea rs . The core s pecifications for functions s uch as SCADA, a la rming, s ta te es tima tor, a nd continge ncy a na lys is ha ve not cha nge d s ignifica ntly. These functions now run on much lower cos t compute rs a nd use higher resolution dis pla ys for s howing s ys te m ma ps a nd s ta tion diagra ms . Ma ny a pplica tion codes writte n in the ea rly 1980s a re s till running toda y[3].The ra te of evolution of e ne rgy ma na geme nt s ys tems has to acce le ra te if sma rt tra ns mis s ion grids a re to be de ploye d by 2020.

2.1 The Role of Simulators

Mas s ive , rea l-time , multi–time frame , ope n architecture s imula tors ca n acce le ra te the de ve lopme nt and imple me nta tion of s ma rt grids . Building a s mart se lf hea ling grid re quires continuing e duca tion a nd crea tion of a common vis ion a nd goa ls for pla yers a t a ll le ve ls including politicia ns , re gula tors , e xe cutives , ma na gers , e nginee rs , ope rators , line me n, a nd technicia ns . Highly vis ible mass ive rea l-time s imula tions of the ma jor U.S. interconnections with hundre ds of pa rticipa nts ca n de mons tra te how ne w s mart grid sys te ms , pe ople , a nd processes ca n a ll work toge ther to be ne fit syste m re lia bility a nd economy. The indus try a nd es pe cia lly sma rt grid s ys tem deve lope rs ca n ge t fee dba ck from a ll pa rties

IJSER © 2012 http ://

Inte rnatio nal Jo urnal o f Sc ie ntific & Eng inee ring Re se arc h Vo lume 3, Issue 3 , Marc h -2012 3

ISS N 2229-5518

through low cos t, sa fe , a nd ea s ily configura ble s imula tions ins tea d of wa iting for e xpe ns ive a nd hardwire d de ployme nts . As a n e xa mple , these mass ive rea l-time s imula tions will more clearly demons tra te how fa s t wide a rea control of loa ds on
cus tomer pre mises ca n be use d to preve nt ca sca ding outa ges
by e nha ncing rotor a ngle , volta ge , freque ncy, a nd the rma l s ta bility. Sma rt grid home a utoma tion s upplie rs would the n be ince nte d to build in fa s te r loa d controls .

2.2. Co st saving theme

At the moment KPX does not provide e xa ct billing informa tion to its cus tome rs , s o HEMS type of s ys tem is not s upporte d. Howe ve r, the s itua tion s hould be cha nging with the Smart Grid technology. Smart Grid is a sys te m tha t ca n inte grate e nvironme nta l frie ndly e nergy sources into conventiona l powe r grid. Other importa nt fea ture is the city le ve l loa d ba la ncing, us ing diffe re nt powe r pla nts base d on the current powe r cons umption.
To be a ble to ba la nce loa ds , Smart Grid requires online powe r cons umption information from the houses . I n re turn, the s ma rt grid provides house-leve l functions in form of the s mart mete r. Smart mete r s hould provide up-to-da te informa tion to the user, so m onitoring e nergy cons umption in the house is poss ible online . The re fore it is ve ry like ly tha t the cus tomer ca n tra ck the e nergy cos ts in the future a s we ll.

2.3. Energy saving theme

Sta tis tica l da ta presente d in the following ta bles s how tha t curre ntly the use rs do not ca re about how much a n a pplia nce is cons uming. I n Table 1, the a pplia nces ’ ene rgy cons umption (kW h) is prese nte d on the le ft s ide . I t ca n be see n tha t in ma ny cases , es pecia lly in case of a n a ir conditione r, the e nergy cons umption is not re ga rde d as a proble m. This mea ns tha t the user unde rs ta nds the ine fficie nc y of the a pplia nce but is s till us ing it.
I n Ta ble 2, the a mount of da ys a n a pplia nce is use d in a yea r is prese nte d. As it ca n be seen, the cons umption of the de vice is not a factor whe n de ciding if the de vice is use d or not.

Table 1

Yea rly Cons umption of Diffe re nt Applia nces with Diffe re nt
Powe r Cons umptions (3500 Hours )

Table 2

Time Average Number of Usage Day s p er App liance in a Year




Air condit ioner


Electric blanker

Electric heat er












































A home e ne rgy ma na geme nt s ys tem (HEMS) providing the a lte rna tive e nergy s ources , sma rt houses would be e quippe d with a solar powe r gene ra tor a nd a windmill powe r ge ne ra tor. Als o inte llige nt a pplia nces a re controlle d by powe r line communica tion, a nd a sma rt me ter. Eve ry 15 minute s the s mart me te r would provide re ports on power cons umption through a n e ne rgy service porta l (ESP)via a broa dband I nterne t connection a nd tha t informa tion would be a va ila ble online through a Web inte rfa ce[3]. The HEMS re lies on the powe r cons umption his tory to control a pplia nces .
Our home network mode l is base d on three bas ic ne twork e ntities : (1) De vices , (2) Ne tworks a nd (3) Services . Each of them conta ins s ome informa tion or working conce pts , which re strict intera ction betwee n other e ntities or e na ble functiona lity be tween the m. These three bas ic e ntities ca n be further de fine d is as follows :
1. De vice: De vice is a n e ntity tha t ca n conta in services or functions . These services a nd functions ca n be accesse d de vice, the de vice ca n a lso activa te othe r de vice ’s se rvices /functions . Each device s hould ha ve a t leas t one ne twork. The bas ic ope ra tion of a de vice is to be controlle d or monitore d.
2. Ne twork: Ne twork has own s pe cific prope rties s uch as Addre ss , QoS a nd s ome configura tion informa tion. Ne twork re prese nts a pa th from de vice to de vice.
3. Service : Se rvice is a process tha t conta ins the service logic. The se rvice logic e xecutes diffe re nt de vice functions a nd services , a nd monitors the ir s ta tes . Se rvice logic ha ndles the

IJSER © 2012 http ://

Inte rnatio nal Jo urnal o f Sc ie ntific & Eng inee ring Re se arc h Vo lume 3, Issue 3 , Marc h -2012 4

ISS N 2229-5518

re la tions hip with the de vice a nd the ne twork, as we ll a s the re la tions hip be twee n the de vices it inte racts with.

3.1 General Block Diagram of Smart Meter

Fig.3 Automatic Meter ing benefits

3.3 HEMS

Fig.1 Block Diagram of Smart Meter

3.2 Smart Meter

Fig.2 Automatic Meter ing

3.3 Smart Meter Benefits

Fig.4 Ener gy Distr ibution in HEMS


Ene rgy ma na geme nt cons is ts of a group of functions tha t
facilita te re mote monitoring, controlling, pla nning a nd re pa iring of opera tions a nd provide informa tion on the s ta tus of ins ta lle d de vices a nd the ne twork. The HEMS ha s the following four functions :

Auto-configura tion: a uto-configuration is the mos t

importa nt function for cus tomers of home ne twork
se rvices beca use ma ny homes ha ve a wrong configura tion.

Eas y monitoring: comfort a nd eas y access to rea l-

time informa tion on e nergy cons umption he lp the use r pa y a ttention to ene rgy sa ving.

Remote controlling: online a ccess to a cus tome r’s

usa ge pa ttern a nd de vice s ta tus ena bles a pplia nces to be controlle d remote ly.

Sma rt pla nning: a utoma tic pea k loa d ma na geme nt

provides s ma rt pla nning for re ducing e ne rgy cons umption.


5.1 Load Management / Demand respon se

IJSER © 2012 http ://

Inte rnatio nal Jo urnal o f Sc ie ntific & Eng inee ring Re se arc h Vo lume 3, Issue 3 , Marc h -2012 5

ISS N 2229-5518

Loa d ma na ge ment involves re duction of loa d in res ponse to eme rgency a nd/or high-price conditions . Such conditions are more preva le nt during pea k loa d or conges te d opera tion. Re duction initia te d by the cons ume r is us ua lly re fe rre d to as de ma nd res ponse . None merge ncy de ma nd res ponse in the ra nge of 5% to 15% of pe a k loa d ca n provide s ubs ta ntia l be ne fits in re ducing the nee d for a dditiona l res ources a nd lowering rea l- time prices [3]. De ma nd res ponse does not s ubs ta ntia lly cha nge the tota l e nergy cons umption s ince a la rge fraction of the ene rgy sa ve d during loa d curta ilme nt is cons ume d at a more opportune time —thus a fla tte r loa d profile . Loa d rejection as a n eme rge ncy re source to protect the grid is we ll unde rs tood a nd is imple me nte d to ope rate e ither by sys te m opera tor comma nd or through unde r freque ncy a nd/or unde r volta ge re lays . I n a s mart grid, this ca n be e nha nce d to a llow more inte llige nce a nd wide r cus tomer pa rticipa tion. Price-base d de ma nd res ponse a s a s ys tem resource to ba la nce dema nd a nd s upply has not been wide ly a dopte d ye t. Contract-base d pa rticipa tion has been typica lly be low 5% (with MI SO be low 8%) of pea k loa d. I n a s mart grid, rea l-time prices e nable wide r voluntary pa rticipa tion by cons ume rs through e ithe r a utoma tic or ma nua l res ponse to price s igna ls , or through a bidding proce ss base d on direct communica tion betwee n the cons ume r a nd the ma rke t/s ys tem opera tor or through aggrega tors a nd/or loca l utilit ies . I n a ddition to ca pa bility to fla tte n the loa d profile , de ma nd res ponse ca n se rve as a n a ncilla ry res ource to he lp re lia bility.


Curre nt Tra ns former

Digita l Conve rter

Compa ra tor

8051 Micro Controlle r


LCD Dis pla y

6.1 Current Tr ans for mer

I n e lectrica l e nginee ring, a current tra ns former (CT) is use d for meas ure me nt of e lectric curre nts . Curre nt tra ns forme rs , toge ther with volta ge tra ns formers (VT) (pote ntia l tra ns formers (PT)), are known a s ins trume nt tra ns forme rs . W he n current in a circuit is too high to dire ctly a pply to meas uring ins trume nts , a current tra ns former produces a re duce d curre nt accura te ly proportiona l to the current in the circuit, which ca n be conve nie ntly connecte d to meas uring a nd re cording ins trume nts . A curre nt t ra ns former a lso is ola tes the meas uring ins trume nts from wha t may be very high voltage in the monitore d circuit. Curre nt tra ns forme rs are commonly use d in me te ring a nd protective re lays in the e lectrica l powe r indus try.
Usa ge
Curre nt tra ns forme rs a re use d e xte ns ive ly for
meas uring curre nt a nd monitoring the ope ration of the powe r grid. Along with volta ge lea ds , re venue -gra de CTs drive the
e lectrica l utility's wa tt-hour me ter on virtua lly e very building with three-phase se rvice a nd s ingle -phase services grea ter tha n
200 a mp.
The CT is typica lly describe d by its curre nt ratio from
prima ry to seconda ry. Ofte n, multiple CTs are ins ta lle d as a
"sta ck" for various uses . For e xample , protection de vices a nd re ve nue me tering may use se para te CTs to provide is ola tion be twee n me tering a nd protection circuits , a nd a llows curre nt tra ns formers with diffe re nt cha racteris tics (accura cy, ove rloa d pe rforma nce ) to be use d for the de vices.

6.2 A-D Conver ter

Norma lly a na logue -to-digita l conve rter (ADC) nee ds inte rfacing through a microprocessor to convert a na logue da ta into digita l forma t. This re quires ha rdwa re a nd ne cessary s oftwa re, res ulting in increase d comple xity a nd he nce the tota l cos t.
An a na log-to-digita l converte r (a bbre via te d ADC, A/D or A to
D) is a device tha t converts a continuous qua ntity to a dis cre te time digita l re prese nta tion. An ADC ma y a lso provide a n is ola te d meas ureme nt. The re verse ope ra tion is pe rforme d by a digita l-to-a na log conve rter (DAC).

Table 3

Sa mple Ra tings

Voltage le ve ls [V]

Bina ry re presenta tion

















6.3 Compar ator

The LM324 conta ins four inde pe nde nt high ga in opera tiona l a mplifie rs with inte rna l fre que ncy compe nsa tion. The four op- a mps ope ra te ove r a wide voltage ra nge from a s ingle powe r s upply. Als o use a s plit powe r s upply. The device has low powe r s upply current dra in, rega rdless of the powe r s upply voltage . The low po we r dra in a ls o ma kes the LM324 a good choice for ba tte ry ope ra tion.
ATme l 89C51 PI N DI AGRAM

IJSER © 2012 http ://

Inte rnatio nal Jo urnal o f Sc ie ntific & Eng inee ring Re se arc h Vo lume 3, Issue 3 , Marc h -2012 6

ISS N 2229-5518

Ra dio fre que ncie s in the ISM ba nds ha ve bee n use d for communica tion purposes, a lthough s uch devices ma y e xpe rie nce inte rfere nce from non-communica tion sources . I n the Unite d Sta tes , as ea rly as 1958 Class D Citize n's Ba nd was a lloca te d a djace nt to a n I SM freque ncy. I n the US, the FCC firs t ma de unlice nse d s prea d s pe ctrum ava ila ble in the ISM ba nds in rules a dopte d on Ma y 9, 1985. Ma ny other countrie s la te r a da pte d these FCC regula tions , e na bling use of this technology in a ll major countries .[citation need ed ] The FCC a ction wa s propose d by Michae l Ma rcus of the FCC s ta ff in 1980 a nd the s ubseque nt re gula tory a ction took 5 more yea rs . I t was pa rt of a broa de r proposa l to a llow civil use of s prea d s pectrum technology a nd wa s oppose d a t the time by ma ins trea m e quipme nt ma nufacture rs a nd ma ny ra dio s ys tem ope ra tors .

6.4 Micr ocontr oller

Fig.5 Pin Diagr am

For ma ny pe ople , the mos t commonly e ncounte re d ISM de vice is the home microwa ve ove n ope ra ting a t 2.45 GHz. Ho we ve r, in rece nt years these ba nds have a ls o been s ha re d with lice nse -free error-tole ra nt communica tions a pplica tions s uch as W ire less Se nsor Ne tworks in the 868 MHz, 915 MHz
AT89C51 is a n 8-bit microcontrolle r a nd be longs to Atme l’s 8051 fa mily. AT89C51 as 4KB of Flas h programmable and e rasa ble rea d only me mory (PEROM) a nd 128 bytes of RAM. I t ca n be era se d a nd progra m to a ma ximum of 1000 times . I n 40 pin AT89C51, the re are four ports des igna te d as P1, P2, P3 a nd P0.All these ports are 8-bit bi-dire ctiona l ports , i.e ., the y ca n be use d as both input a nd output ports . Exce pt P0 which nee ds e xte rna l pull- ups , res t of the ports ha ve inte rna l pull-ups .W he n 1s are writte n to these port pins , the y a re pulle d high by the inte rna l pull- ups a nd ca n be use d as inputs .These ports a re a lso bit a ddressa ble a nd s o the ir bits ca n a lso be accesse d individua lly. Port P0 a nd P2 are a lso use d to provide low byte a nd high byte a ddresses , res pective ly, whe n connecte d to a n e xte rna l memory. Port 3 has multiple xe d pins for s pecia l functions like seria l communica tions , ha rdwa re interrupts , timer inputs a nd rea d/write opera tion from e xterna l memory.AT89C51 has a n inbuilt UAR T for se ria l communica tion. I t ca n be progra mme d to opera te a t diffe re nt ba ud ra tes . I ncluding two time rs & hardwa re inte rrupts , it ha s a tota l of s ix inte rrupts
ATme l 89C51 Te chnica l Description

4K Bytes of I n-Sys tem Re progra mma ble Flas h Memory

Fully Sta tic Ope ra tion: 0 Hz to 24 MHz

Three -le ve l Program Memory Lock

128 x 8-bit I nte rna l RAM 32

Progra mma ble I /O LinesSS

Two 16-bit Time r/Counters

Six I nterrupt Sources Programmable Seria l Cha nne l

Low-po we r I dle a nd Power-down Modes 40-pin DI P

6.5 IS M Band Communicati on

His tory
a nd 2.450 GHz ba nds , as we ll as wire less LANs a nd cordless
phone s in the 915 MHz, 2.450 G Hz, a nd 5.800 GHz ba nds . Beca use unlice nse d de vices a lrea dy a re require d to be tole ra nt of ISM emiss ions in these ba nds , unlice nse d low po we r uses a re gene ra lly a ble to ope ra te in the se ba nds without ca us ing proble ms for ISM use rs ; ISM equipme nt does not us ua lly include a ra dio rece ive r in the I SM ba nd. I n the Unite d Sta tes , according to 47 CFR Part 15.5, low po we r communica tion de vices mus t a cce pt inte rfere nce from lice nse d users of tha t fre que ncy ba nd, a nd the Pa rt 15 device must not ca use inte rfere nce to lice nse d use rs . Note tha t the 915 MHz band s hould not be use d in countrie s outs ide Re gion 2, e xce pt those tha t s pecifica lly a llow it, s uch as Aus tra lia a nd Is rae l, es pecia lly those tha t use the GSM-900 ba nd for ce ll phones . The ISM ba nds a re a ls o wide ly use d for Ra dio-fre que ncy ide ntifica tion (RFI D) a pplica tions with the mos t commonly use d ba nd be ing the 13.56 MHz ba nd us e d by sys te ms complia nt with I SO/I EC 14443 including those use d by biome tric pass ports a nd contactless s ma rt ca rds .
The indus tria l, s cie ntific a nd me dica l (ISM) ra dio ba nds a re ra dio ba nds (portions of the ra dio s pectrum) rese rve d inte rna tiona lly for the use of ra dio fre que ncy (RF) e nergy for indus tria l, scie ntific a nd me dica l purposes othe r tha n communica tions . Exa mples of a pplica tions in these ba nds include ra dio-freque ncy process hea ting, microwa ve ove ns , a nd me dica l dia the rmy machines . The powe rful emiss ions of these de vices ca n crea te e le ctroma gne tic interfe re nce and dis rupt ra dio communica tion us ing the sa me freque ncy, s o these devices we re limite d to ce rta in ba nds of freque ncies . I n ge ne ra l, communica tions equipme nt ope ra ting in these ba nds mus t tole ra te any inte rfere nce gene ra te d by ISM e quipme nt, a nd use rs ha ve no re gula tory protection from I SM de vice opera tion.

6.6 LCD Dis pl ay

IJSER © 2012 http ://

Inte rnatio nal Jo urnal o f Sc ie ntific & Eng inee ring Re se arc h Vo lume 3, Issue 3 , Marc h -2012 7

ISS N 2229-5518

A 16 Cha racter x 2 Line LCD Module to the Para lle l Port. These LCD Modu les are ve ry common these da ys , a nd a re quite s imple to work with, a s a ll the logic require d to run the m is on boa rd.



Low cos t

Sa fe a nd eas ily configura ble s imula tions

Re duce Powe r Shorta ge

Simple Cons truction


Efficie ncy

Grea ter Re liability


I n 2010, the globa l va lue of sma rt me ters wa s in e xcess of $4.3 billion, a nd is forecas te d to reach as much as $15.2 billion by
2016. China has purchase d 48 million s ma rt mete rs in the pas t two yea rs a nd in 2010 Chine se Ta ipe i a nnounce d its AMI de ployment pla n.
The Council of the Europea n Union forma lly a dopte d the third Ene rgy Package in April 2009. The ne w s ma rt me ter provis ion will re quire Me mbe r Sta tes to carry out a cos t -be ne fit assess ment within 18 months of e ntry into force of the ne w le gis la tion, a nd the n roll out the me ters to a t leas t 80% of domes tic cus tome rs by 2020 - but the 80% will only a pply to those cus tome rs who ha ve been ide ntifie d as cos t e fficie nt to s upply with me te rs . The inte ntion is ultima te ly a 100% roll out by
2022. Security:
Ma ny of the technologies dis cusse d a bove to s upport Smart Grid,
s uch a s sma rt me ters , se ns ors , a nd a dva nce d communica tions ne tworks , ca n the mse lves increase the vulnera bility of the grid to cyber a ttacks . Accordingly, it is e ssentia l tha t Sma rt Grid de ployment le verage the bene fits of increase d threa t a wa reness while mitiga ting a ga ins t he ighte ne d security concerns . I t will be a difficult tas k, but one tha t ca n be a ddresse d by be ing a wa re of the ris ks a nd le vera ging security bes t practices from other indus tries .
Upfront Cons umer Expe nses :
I n the res ponses of 200 utility ma na gers to a 2009 s urvey, 42
pe rce nt cite d "upfront cons ume r e xpe nses" as a ma jor obs tacle to
the s ma rt grid. The se conce rns we re confirme d by cons umer re s ponses in which 95 pe rce nt of res ponde nts indica te d the y are inte res te d in rece iving de ta ile d informa tion on the ir e ne rgy use ; howe ve r, only 1 in 5 we re willing to pa y a n upfront fee to rece ive tha t informa tion. Regula tory a pprova l for ra te increases nee de d to pa y for s mart grid inves tments is a lwa ys difficult, a nd the re ce ptive ness of regula tors va ries from s ta te to s ta te .
La ck of Sta nda rdiza tion:
La ck of technology s ta nda rds has been cons ide re d as a ma jor obs ta cle to sma rt grid de ployme nt. A Smart Grid is a ne w inte grate d ope ra tiona l a nd conce ptua l mode l for utility opera tions . This re quires it to both imple ment a sys te m -wide ins ta lla tion of monitoring device a nd to ma xima lly communicate with components . Howe ve r, deve loping this kind of syste m will us ua lly cos t multi-yea rs .
Beca use s mart grid is s till a ne w conce pt a nd the technologies
tha t there is mis unde rs ta nding amongst cons ume rs , regula tors ,
policyma ke rs , wha t its cos ts a nd be ne fits a re. Sta ke holde rs tha t a re ge nera lly a ligne d conclus ions base d on a diffe rent unde rs ta nding of the sma rt grid.


This pa pe r des cribes the s ma rt grid Sys tem a nd its
imple me nta tions us ing I SM Ba nd. For s upporting e ne rgy ma nage ment services , HEMS monitors sma rt mete r a nd ma ke a pla n to control the a pplia nces re la te d to e nergy re mote ly from s mart me ter providing a uto-configura tion, re mote monitoring, e nergy ma nage me nt, feas ible controlling. Es pe cia lly, pla nning ma kes to s hift de vice controlling on pea k price time a nd to s mooth powe r de ma nd work loa d. Fina lly, HEMS ca n de live r clear be ne fits about resource utiliza tion, e ne rgy conse rva tion a nd cos t re duction to use rs .

IJSER © 2012 http ://

Inte rnatio nal Jo urnal o f Sc ie ntific & Eng inee ring Re se arc h Vo lume 3, Issue 3 , Marc h -2012 8

ISS N 2229-5518


[1] Robin Podmore , Fe llow-I EEE, a nd Ma rck Ra mon Robins on., “The Role of Simula tors for Sma rt Grid Deve lopme nt”., I EEE Tra nsa ctions On Sma rt Grid,VOL.1,NO.2, Se pte mbe r2010.
[2] Khos row Mos le hi, Membe r-I EEE a nd Ra njit Kuma r, Se nior Me mbe r, I EEE., “A re liability Pe rs pective of the Sma rt Grid”, I EEE Tra nsa ctions On Sma rt Grid,vol.1,no.1,june 2010.
[3] Young-Sung Son, Topi Pulkkine n Kye ong -De ok Moon and Chae kyu Kim, “Home Ene rgy Ma na geme nt Syste m base d on Powe r Line Communica tion”, I EEE Tra nsactions on Cons umer Electronics , Vol. 56, No. 3, Augus t 2010.
[4] Ha mid Gha ravi, Fe llow I EEE a nd Bin Hu, Me mbe r I EEE.,
Multiga te Communica tion Ne twork for Sma rt Grid,
Procee dings of the I EEE Vol.99, No.6, J une 2011.
[5] M. A. S. Masoum, Se nior Me mber, I EEE, P. S. Moses , Stude nt
Me mbe r, I EEE, a nd S. De ila mi, Stude nt Me mbe r, I EEE “Loa d
Ma na geme nt in Smart Grids Cons ide ring Ha rmonic
Dis tortion a nd Tra ns forme r De ra ting” 2010.
[6] An I ntroduction a nd User’s Guide to the I EEE Smart Grid
Web Porta l, “Cla udio Lima , Ma rty Burns , He nry Louie ,
Me mbe r I EEE. 2010
[7] I EEE Tra nsa ctions on Applie d Superconductivity, VOL. 21,
NO. 3, J UNE 2011,Proof-of-Conce pt of a Smart Fa ult Curre nt Controlle r W ith a Supe rconducting Coil for the Sma rt Grid Min Che ol Ahn a nd Tae Kuk Ko, Me mbe r, I EEE.
[8] For the Grid a nd Through the Grid:The Role of Power Line Communica tions in the Sma rt Grid By Ste fa no Ga lli, Se nior Anna Sca glione , a nd Zhifa ng Wa ng, Me mbe r I EEE.
[9] Mult iga te Communica tion Ne twork for Sma rt Grid, By
Ha mid Gha ra vi, Fe llow I EEE a nd Bin Hu, Me mbe r I EEE.
[10] Tra ns miss ion Chara cteris tics of Low-Voltage Dis tribution Ne tworks Unde r the Smart Grids Environme nt Ming-Yue Zha i, Me mbe r, I EEE.
[11] D. Ta o, P. We i, H. J ia ng a nd L. Xiyu, “Ada ptive Ene rgy Sa ving Monitoring Te chnology for Air Condition in Te le communica tion Equipme nt Room”, pp.155-160, I EEE I NTELEC 2007.
[12] K. Moon, Y. Lee , Y. Son a nd C. Kim, “Unive rsa l home
ne twork middle wa re gua ra ntee ing seamless inte rope ra bility
a mong the he terogene ous home network middle wa re ”, I EEE Tra nsa ction on Cons umer Electronics , Vol.49, pp.546-553, 2003 [13] C. Lie n, Y. Ba i, H. Che n a nd C. Hung, “Home Applia nce Ene rgy Monitoring a nd Controlling Ba se d on Power Line
Communica tion”, I EEE I CCE 2009.
[14] KPX ( Korea Power Excha nge ), “Surve y on Ele ctricity
Cons umption Chara cteris tics of Home Applia nces ”, De c.
[15] Ha n, i. Ha n a nd K. Pa rk, “Service -Orie nte d Powe r
Ma na geme nt for a n I nte gra te d Multi-Function Home Se rve r”,
I EEE Tra nsa ction on Cons umer Electronics , Vol.54, pp.204 -
208, 2007.
[16] H. Ahn, M. Cho, M. J ung, Y. Kim, J . Kim, a nd C. Lee , “UbiFOS: A Sma ll Rea l-Time Ope ra ting Sys tem for Embe dde d Sys tems ”, ETRI J ourna l, vol.29, no.3, pp.259-269, J une 2007.
[17] Ele ctric Utility De regula tion a nd Res tructuring a nd Powe r Te chnologies (DRPT), 2011 , “6-9 J uly 2011, We iha i, China Rea l-Time Ope ra ting Sys te ms for Sma ll Microcontrolle rs Micro, I EEE, Se pt.-Oct. 2009.
[18] On me mory protection in rea l-time OS for sma ll
embe dde d syste ms , Procee dings - Fourth I nterna tiona l W orks hop on Rea l-Time Computing Syste ms and Applica tions , 27-29 Oct 1997.
[19] Ne w e mbe dde d digita l front-e nd for high resolution
PET s ca nne r, Nuclea r Scie nce , I EEE Tra nsactions on , J une
Wa ve le t-Base d Reactive Powe r a nd Energy Meas ure ment in the Prese nce of Powe r Qua lity Dis turba nces, Powe r Sys te ms , I EEE Tra nsa ctions on, Aug. 2011.
[20] Ultra Low Fre que ncy Power-Line Communica tions Us ing a Res ona tor Circuit Da vid W. Rie ken, Se nior Me mbe r, I EEE, a nd Michae l R.Wa lke r II , Me mbe r, I EEE, I EEE tra nsactions on sma rt grid, VOL.2, NO.1, MARCH 2011.
[21] Applica tion of Powe r Line Communica tion for Da ta
Tra ns miss ion ove r PW M Network Nicolas Ginot, Marc
Anthony Ma nna h, Chris tophe Ba ta rd, a nd Moha me d Ma chmoum, I EEE tra nsa ctionson s ma rt grid, VOL.1, NO.2, SEPTEMBER2010.
[22] Concurre nt Simula tion Pla tform for Ene rgy-Awa re Sma rt Me tering Sys tems Se unghyun Pa rk, Ha njoo Kim, Hicha n Moon, Membe r, I EEE, J un Heo, Me mber, I EEE, Sungroh Yoon, Member, I EEE, Aug. 2010.
[23] "ARTI CLE 1 - Te rms a nd De finitions " (HTML). I nte rna tiona l Te lecommunica tion Union. 19

October, 2009. 1.15. " I ndus tria l, s cie ntific a nd me dica l (ISM)
a pplica tions (of ra dio fre que ncy ene rgy)”.
[24] www.a dica .com.
[25] www. is tcoa
[26] Ele ctronics For You, J uly 2011. Te ch I nnova tion –A
Sma rt Plug Tha t Monitors Powe r Cons umption And
Ge nera tes Alerts , W ire less ly.

IJSER © 2012 http ://