International Journal of Scientific & Engineering Research, Volume 3, Issue 10, October-2012 1

ISSN 2229-5518

# V.B.L. Chaurasia+

Department of Mathematics, University of Rajasthan
Jaipur-302004, India
AND

# R.C. Meghwal++

Department of Mathematics, Govt. Post Graduate College
Neemuch-458441, India

# Abstract

The aim of this paper is to analysis the subclass SC(,,) pertaining to the
Hadamard product of pq-function ([12]) with negative coefficients in unit disc
 = {z : | z | < 1}.
Further, coefficient estimates, distortion theorem and radius of convexity for this class are also established. In addition we discuss closure properties and integral operator for function belonging to the class SC(,,).
Key words and Phrases: pq-function, Hadamard product, coefficient estimates,
Distortion theorem, closure properties.

*2000 Mathematics Subject Classification. 30 C 45, 33 C 20.
+E-mail: drvblc@yahoo.com
++E-mail: meghwal66@gmail.com

International Journal of Scientific & Engineering Research, Volume 3, Issue 10, October-2012 2

ISSN 2229-5518

# 1. Introduction

Let A denote the class of the function of the form

f(z)  z  k2

a z k

k

…(1.1)
which are analytic in the unit disc  = {z : | z | < 1 }.
A function f  A is said to belong to the class A of starlike functions of order
 (0   < 1), if it satisfies, for z  , the conditions
 z f ' z) 

Re 

f(z)
  

…(1.2)
We denote this class by S*(). Further, f  A is said to be convex function of order
 in , if it satisfies
 z f '' z) 
Re 1 

f ' z)
  

z   

…(1.3)
for some  (0   < 1). We denote this class k(). Let T denote subclass of A,
consisting functions of the form
f(z)

 z 

k2

a z k

k

a  0

k

…(1.4)
The function
S z)  z (1  z) 21 

 0    1
…(1.5)
is the familiar extremal function for the class S*(), setting

International Journal of Scientific & Engineering Research, Volume 3, Issue 10, October-2012 3

ISSN 2229-5518

k

i  2

C( k)  i2
k  1
k  2,
…(1.6)
Using (1.5) and (1.6), we can write

S z)  z 

k2

C ( k) z k
…(1.7)
Clearly, C(,k) is a decreasing function in , and that
 1

  ,   2

lim

k  

C(  k)   1

   1
2
1
…(1.8)

1   
 2
By the definition of differential operator Dn, introduced by Slagean [8], we know
that

Dn f(z)  z  k2

k n a

k

z k
…(1.9)
Therefore Hadamard product of two analytic functions given by (1.7) and (1.9) can
be written as
Dn

f S  z)  z 

k2

k n C( k) a z k

k

…(1.10)
Here we use the condition which is satisfied by the subclass SC(,,)
 1  z[z(D n f  S
' z)  (1   Dn f  S
 z)' 

Re 1 
 
  
…(1.11)
  
z(D n f  S

' z)  (1   Dn f  S

 z) 

0    1 0    1  C, z  

International Journal of Scientific & Engineering Research, Volume 3, Issue 10, October-2012 4

ISSN 2229-5518

The Fox-Wright function [12, p.50, equation 1.5] appearing in this paper is
defined by
 a   

p

j1

a

j

 k
 z k j

j j 1,p

 z)  

p q p q  b  

z  q
…(1.12)
j j 1,q
k 0

j1

b  k  k !

j j

where

q

  j  1,..., p) and   j  1,..., q) are real and pos itiveand1 

j j

j1

p

    j j j1
Now we can write
z {

p

 z)}] 

q

p

j1

q

a 

j

z 

p

j1

q

a   k  1 z k j j

…(1.13)

j-1

b 

j

k 2

j1

b

j

  k  1 k  1

j

and
A [z{

p

 z)}]  A (z

q

p q   z  A

p

j1

q

a   k  1 z k j j

…(1.14)

k 2

j1

b

j

  k  1 k  1

j

where

q

A  j1 p

j1

b 

j

a 

j

…(1.15)

International Journal of Scientific & Engineering Research, Volume 3, Issue 10, October-2012 5

ISSN 2229-5518

# Theorem 1. Let the function

A[z{

p

 z)}]

q

is in the class SC(,,) iff

A k n k  1  k  1    1 C(  k)

p

j1

q

a   k  1

j j

 1  

k 2

j1

b

j

  k  1 k  1

j

…(2.1)

# Proof. Assume that the inequality (2.1) holds true, then by using (1.11)

1  z [z{D n A(z
 S

p q 

' z)  (1  Dn A(z
  S

p q 

 z)] '
1

  1
  z {D n A(z

 S

p q 

' z)  (1  Dn A(z
  S

p q 

 z) 

p
 a
 j

  k  1 C(  k) 

j

 A

k n j1 q
k  1  1  k)z k 1
k 2

 

j1

b

j

p

  k  1 k  1

j

  1  

 1  A

k n j1 q
a   k  1 C(  k)

j j

k  1   z k 1

k 2

j1

b

j

  k  1 k  1 

j

Hence, by using the maximum modulus principle,
A [z{

p

 z)}]

q

is in the class
SC(,,). Conversely, assume that the function
A [z{

p

 z)}]

q

defined by (1.14) is
in the class SC(,,). Then we will have

International Journal of Scientific & Engineering Research, Volume 3, Issue 10, October-2012 6

ISSN 2229-5518

  z[z{D n A(z 

p q
  S

' z)  (1  Dn A(z
  S

p q 

 z)] '


  
Re 1 
  
z {D

n A(z    S ' z)  (1  Dn

p q 

1 
A(z    S  z) 

p q  

  p
 
  j1
a

j

  k  1 C(  k)

j






  A

k n k  1  1  k)z k 1 
 
 1 

Re 1  
 

k 2

j1

b

j

p

  k  1 k  1

j



  

 
  1  A

k n j1

q

a

j

  k  1 C(  k)

j

k  1   z


k 1 



 
 

k 2

j1

b

j

  k  1 k  1

j



and now when
z  1
we obtain

A k n k  1  1  k) C(  k)

p

j1

q

a   k  1

j j

k 2

j1

p

b

j

  k  1 k  1

j

    1

1  A
k n k  1  

j1

q

a   k  1 C(  k)

j j

k 2

j1

b

j

  k  1 k  1

j

and finally

A k n k  1  k  1    1 C(  k)

p

j1

q

a   k  1

j j

 1  

k 2

j1

b

j

  k  1 k  1

j

International Journal of Scientific & Engineering Research, Volume 3, Issue 10, October-2012 7

ISSN 2229-5518

# Corollary 1. Let the function

A [z{

p

 z)}]

q

defined by (1.14) be in the class
SC(,,). Then

p

j1

q

a

j

  k  1

j

 1  
A k n k  1  k  1    1 C(  k)
 k
 2).

j1

b

j

  k  1 k  1

j

…(2.2)
and the equality is attained for the function
A [z{

p

 z)}]

q

given by
A [z{

p

 z)}]  z 

q

1  

k n k  1  k 1   1 C( k)
z k
…(2.3)

# Theorem 2. Let the function

A [z{

p

 z)}]

q

be in class SC(,,) then for
0  | z | = r

r 
1  
r k  A [z{
 z)}] |
k n k  1  k 1   1 C( k) p q
 r 
1  

k n k  1  k 1   1 C ( k)
r k
…(3.1)

# Proof. Using equation (2.3), we observe that

 z | 
1  

k n k  1  k 1   1 C( k)
| z |k  A [z{

p

 z)}] |

q

  z |

 1  
k n k  1  k 1   1 C ( k)
| z |k

International Journal of Scientific & Engineering Research, Volume 3, Issue 10, October-2012 8

ISSN 2229-5518

Now as we have assumed | z | = r < 1, we get the required result easily.

# Corollary 2. If the function

A [z{

p

 z)}]

q

is in the class SC(,,) then
A [z{

p

 z)}]

q

is included in a disc with centre at the origin and radius r, where
r  1 

1   
k n k  1  k 1   1 C ( k)
…(3.2)

# Theorem 3. Let the function

A [z{

p

 z)}]

q

be in the class SC(,,) then

1  1  
k n1 k  1  k 1   1 C( k)
r k1  A [z{

p

 z)}] |

q

 1 
1  

k n1k  1  k 1   1 C ( k)
r k1
where equality holds for the function
A [z{

p

 z)}]

q

given by (1.14).

1  k1  
k n k  1  k 1   1 C( k)
| z |k1  A [z{

p

 z)}] |

q

 1 
k1  

k n k  1  k 1   1 C ( k)
| z |k1
Again by assuming | z | = r, we get the desired result easily.

# Theorem 4. If

A [z{

p

 z)}]

q

is in the class SC(,,) then
A [z{

p

 z)}] is

q

convex in | z | < R, where

International Journal of Scientific & Engineering Research, Volume 3, Issue 10, October-2012 9

ISSN 2229-5518

R  Inf. k n 2 k  1  k  1    1 C(  k)

p

j1

q

a

j

  k  1

j

1

k 1

…(4.1)

j1
b

j

  k  1 k  1

j

The result is sharp.

# Proof. In order to establish the required result, it is sufficient to show that

z Az{

p

 z)}] '' q

 1
 z |  R 
[Az{

p

 z)}] ' 

q

In view of (1.4), we have

A

k 2

p k(k  1 j1

q

a

j

  k  1

j

 z |k 1
z Az{

p

 z)}] ' '

q

j1

b   k  1 k  1

j j

[Az{

p

 z)}] ' q

1  A

p

k j1 q
a

j

  k  1  z |k 1 j

k 2

j1

b

j

  k  1 k  1

j

Hence, we get

A k 2

p

j1

q

a

j

  k  1  z |k 1 j
 1
…(4.2)

k 2

j1

b

j

  k  1 k  1

j

But from Theorem 1, we have

International Journal of Scientific & Engineering Research, Volume 3, Issue 10, October-2012 10

ISSN 2229-5518

p

k n k  1  k  1    1 C( k)

A j1 q
a

j

  k  1

j

 1
…(4.3)

k 2

 1  

j1

b

j

  k  1 k  1

j

and thus from (4.2) and (4.3), we obtain

1

 k n2 k  1  k 1    1 C ( k)  k 1

 z |  

1   
Hence
A [z{

p

 z)}]

q

is convex in | z | < R. The result is sharp and given by (4.1).

# Theorem 5. Let the function

A [z{

pr

 z)}],

qr

(r = 1,2,…,m) be defined by
A [z{

pr

 z)}]  z  A

r

p

j1

q

a   k  1z k jr jr
…(5.1)

k 2

j1

b

jr

  k  1 k  1

jr

for z  , be in the class SC(,,) then the function h(z) defined by

h(z)  z  k2

b z k k
also belongs to the class SC(,,), where
1 m

b  a 

k m r1 kr

…(5.2)
where

International Journal of Scientific & Engineering Research, Volume 3, Issue 10, October-2012 11

ISSN 2229-5518

a  A

kr

p

j1

q

 a   k  1

jr jr

…(5.3)

j1

b   k  1 k  1

jr jr

# Proof. Since

A [z{

pr

 z)}]

qr

belongs to SC(,,), it follows from Theorem 1, that

A k n k  1  k  1    1 C ( k)

p

j1

q

a   k  1

jr jr

k 2

. 1
k 1
 1  
r  1,2,..., m)

j1

b

jr

  k  1

jr

Therefore

k2

k n k  1  k 1   1 C ( k) b

k

 1 m

 k n k  1  k 1   1 C( k) 
 m
a 

kr

k2

r1
1 m

m r1

k2
k n k  1  k 1   1 C ( k) a
  1  

kr

where akr is given by (5.3).
Hence by Theorem 1,
h(z) SC(  

# 6. Integral Operators

International Journal of Scientific & Engineering Research, Volume 3, Issue 10, October-2012 12

ISSN 2229-5518

# Theorem 6. Let the function

A [z{

p

 z)}]

q

defined by (1.14) be in the class
SC(,,) then pq (z), defined by
 a    z
 z)  

j j 1,p z 

  x)
dx.
…(6.1)

p q p

q  b j j 1,q 

0 p q

also belongs to the class SC(,,).
Proof. From the representation of pq(z), it is obtained that
 z) 

p q

p

j1

q

a 

j

z 

p

j1

q

a     k  z k j j j

j1

b 

j

k 2

j1

b

j

    k

j

 k !

j

and
A [ 

p q

z)]  z  A

p

j1

q

a  k  1  z k j j

…(6.2)

k 2

j1

b

j

 k  1  k !

j

where A is given by (1.15).
Therefore

A k n k  1  k  1    1 C ( k)

p

j1

q

a     k  

j j j

   1

k 2

j1

b

j

    k 

j

 k !

j

International Journal of Scientific & Engineering Research, Volume 3, Issue 10, October-2012 13

ISSN 2229-5518

Since
A [z{

p

 z)}]SC(  

q

so by virtue of Theroem 1,
{A 

p q

z)}
is in the
class SC(,,).
Then pq(z) is univalent in | z | < R*, where

# Theorem 7. Let the function

A 

p q

z)} is in the classSC(  
and defined by
equation (6.2).Then
 is univalent in | z | < R*, where

p q

 k n
R *  Inf.

1

k  1  k  1   1 C( k)  k 1  k  2
…(6.3)
  1   
The result is sharp.

# Proof. In order to obtain the required result, it is sufficient to prove that

 A {

p

 z)}' 1  1

q

for | z |  R *
Now since
A{

p

 z)}'  1  A

q

p

j1

q

a

j

    k

j

  z |k 1 j
 1
…(6.4)

k 2

j1

b

j

    k

j

 k  1

j

But from Theorem 1, we know that

p

k n k  1  k  1    1 C( k)

A j1 q
a   k  1

j j

 1
…(6.5)

k 2

1  )

j1

b

j

  k  1 k  1

j

From equation (6.4) and (6.5), we have

International Journal of Scientific & Engineering Research, Volume 3, Issue 10, October-2012 14

ISSN 2229-5518

 z |
 k n
 

1

k  1  k  1   1 C( k)  k 1  k
 2).
 1   
The result is sharp and given by (6.3).

# 7. Special Cases

On putting
  j  1,..., p)  1 and   j  1,..., q)  1

j j

in the result (2.1), (3.1) and
(4.1), the coefficient estimates, Distortion Theorem and radius of convexity will also applicable for Generalized Hypergeometric function pFq(z). [1,p.73, equation 2].
We obtain the following results:
(I) Let the function [z{pFq(z)}] is in the class SC(,,) iff

A k n k  1  k  1    1 C ( k)

p

j1

q

a  k  1

j

   1

k 2

j1

b

j

 k  1 k  1!
…(7.1)
(II) Let the function z{

p

F z)}]

q

be in the class SC(,,) then for 0  | z | < r

r  1   r k
k n k  1  k 1   1 C( k)
z{

p

F z)}] |

q

 r 
(1  

k n k  1  k 1   1 C( k)
r k
…(7.2)
(III) If
z{

p

F z)}]

q

is in the class SC(,,) then
z{

p

F z)}]

q

is convex in
| z | < R, where

International Journal of Scientific & Engineering Research, Volume 3, Issue 10, October-2012 15

ISSN 2229-5518

R  Inf. k n 2 k  1  k  1    1 C ( k)

p

j1

q

a

j

 k  1

1

k 1

j1
b

j

 k  1 k  1! 

…(7.3)
The result is sharp.
(IV) Closure property and integral operator for the function pFq(z) can also be examine to the class SC(,,).

International Journal of Scientific & Engineering Research, Volume 3, Issue 10, October-2012 16

ISSN 2229-5518

# Acknowledgement

The authors are highly thankful to Professor H.M. Srivastava of the University of Victoria, Victoria, Canada, for his kind help and many valuable suggestions in the preparation of this paper.

# References

[1] E.D. Rainville (1971). Special Functions. Chelsea Publ. Co. Bronx, New
York.
[2] M.K. Aouf and N.E. Cho, On a certain subclass of analytic functions with negative coefficients, Turkish. J. Math., 22(1), 1988, 33-42.
[3] M.K. Aouf, H.M. Hossen and A.Y. Lashin, On certain families of analytic function with negative coefficients, Indian J. pure. Appl. Math., 31, 2000,
999-1015.
[4] M.K. Aouf, H.M. Hossen and A.Y. Lashin, A class of univalent functions defined by using Hadamard product, Math. Vesnik, 55, 2003, 83-96.
[5] S.Owa, On the distortion theorem I, Kyungpook Math. J., 18, 1978, 53-59.
[6] S.Owa and M.K. Aouf, On subclass of univalent function with negative coefficients II, Pure Appl. Math. Sci.,29, 1989, 131-139.
[7] S. Ruscheweyh, New criteria of univalent functions, Proc. Amer. Math. Soc.,

# 49, 1975, 109-115.

[8] G.S. Salagean Subclasses of Univalent functions, Lecture Notes in Math. (Springer Verlag), 1013, 1983, 362-372.

International Journal of Scientific & Engineering Research, Volume 3, Issue 10, October-2012 17

ISSN 2229-5518

[9] H.M. Srivastava and S. Owa,An application of fractional derivatives, Math.
Japan, 29, 1984, 384-389.
[10] H.M. Srivastava and S. Owa (Editors), Current topics in Analytic Function Theory, World Scientific Publishing Co., Singapore, New Jersey, London and Hongkong, 1992.
[11] H.M. Srivastava, M. Saigo and S. Owa, A class of distortion theorem involving certain operators of fractional calculus, J. Math. Anal. Appl., 131,
1998, 412-420.
[12] H.M. Srivastava and H.L. Manocha., A Treatise on Generating Functions, Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons,
New York, Chichester, Brisbane and Toronto, 1984.