Binary Image Compression Algorithms for FPGA Implementation [ ]


In this paper, we presents results concerning binary image compression algorithms for FPGA implementation. Digital images are found in many places and in many application areas and they display a great deal of variety including remote sensing, computer sciences, telecommunication systems, machine vision systems, medical sciences, astronomy, internet browsing and so on. The major obstacle for many of these applications is the extensive amount of data required representing images and also the transmission cost for these digital images. Several image compression algorithms have been developed that perform compression in different ways depending on the purpose of the application. Some compression algorithms are lossless (having same information as original image), and some are lossy (loss information when compressed). Some of the image compression algorithms are designed for particular kinds of images and will thus not be as satisfactory for other kinds of images. In this project, a study and investigation has been conducted regarding how different image compression algorithms work on different set of images (especially binary images). Comparisons were made and they were rated on the bases of compression time, compression ratio and compression rate. The FPGA workflow of the best chosen compression standard has also been presented. These results should assist in choosing the proper compression technique using binary images.