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ABSTRACT 

Mycobacterium tuberculosis (Mtb), the etiological agent of tuberculosis, is an infectious disease 

of bacteria that poses major concerns for public health worldwide because of its threat to health 

for many years. The challenges in diagnosis, prolonged treatment and drug resistance 

mechanism of tuberculosis necessitate the need to investigate the genetic factors that play a 

significant role in the pathogenesis of Mtb. This research aimed at utilising genome-wide 

transcriptomics analysis to identify the molecular signature of Mtb. 

The gene expression profile datasets of active tuberculosis and healthy control were retrieved 

from the Gene Expression Omnibus (GEO) database. The four selected microarray datasets 

were analysed using Limma package in R to identify the Differentially Expressed Genes (DEGs). 

The functional enrichments were conducted using WebGestalt. The protein-protein interaction 

(PPI) network was constructed using STRING and Cytoscape software was used to visualise 

the hub genes. Finally, the Drug-target interactions were identified in DrugBank using the DGidb 

database. 

The analysis produced a total of 36 common DEGs associated with Mtb. The functional analysis 

revealed that the genes were majorly enriched in biological regulation, membrane and protein 

binding. The pathway enrichment of the genes was mainly in immune responses. The high 

expression of GBP5, GBP1, BATF2 and other 10 hub genes may play a crucial role in the 

pathogenesis of Mtb which may be a biomarker for early diagnosis while SERPING1, LAP3, 

ADM, CACNA1I and BMX may be helpful in the development of novel therapy for tuberculosis 

disease in the future. 

Keywords: Mycobacterium tuberculosis or M. tuberculosis, Genome-wide analysis, 

transcriptomics, Molecular signature, Biomarker, Differentially Expressed Genes, 

Core genes. 
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CHAPTER ONE 

INTRODUCTION 

1.1  Background of the Study 

Mycobacterium tuberculosis (M. tuberculosis), the etiological agent of tuberculosis is an 

infectious disease of bacterium that is characterised by the progressive development of certain 

granulomatous lesions or tubercles in the lung tissues (pulmonary tuberculosis), lymph nodes 

and other body parts (extrapulmonary tuberculosis) (Ahmad, 2011; Alam et al., 2019). It is 

estimated that M. tuberculosis latently infects about one-third of the world's population and 

causes between 8 and 10 million newly diagnosed cases of active tuberculosis (ATB) annually 

(Ottenhoff et al., 2012). Tuberculosis is one of the key health issues worldwide, especially in 

many developing countries. However, with more than one billion migrants all over the world 

(Dhavan et al., 2017), developed countries are not exempted from the threat of tuberculosis and 

so has become a major concern of public health in many countries. A better and clearer 

understanding and knowledge of the behaviour of transmission, its implications, possible future 

predictions about the method of transmission, tuberculosis diagnosis, therapeutic approach and 

survival rate of patients has been understood with the application of bioinformatics tools and 

system biology analysis.  

This study uses genome-wide transcriptomics analysis to identify the molecular signature of M. 

tuberculosis (Mtb). In this study, differential expression analyses were carried out to identifying 

Differentially Expressed Genes (DEGs) of Mtb from datasets downloaded from the Genes 

Expression Omnibus (GEO) database, functional enrichment and pathway, Protein-Protein 

Interactions (PPI) as well as drug interaction of the genes. The DEGs were identified using 

Linear Models for Microarray Analysis (Limma) packages in R programming language, functional 

enrichment and pathway were done using WebGestalt database, PPI network was computed by 

the Search Tool for the Retrieval of Interacting Genes (STRING) and constructed using 

Cytoscape software. The drug interactions were obtained from the DGidb database. 

1.2  Epidemiology of Mycobacterium tuberculosis 

Although tuberculosis is a largely preventable and curable disease. However, in 2022, it was the 

second most common infectious agent-related cause of death worldwide after coronavirus 

disease (COVID-19), tuberculosis caused nearly twice as many deaths as HIV/AIDS. Each year, 

more than 10 million people still contract tuberculosis (WHO, 2023). It is estimated that a quarter 
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of the world's population has tuberculosis infection (Raman and Chandra, 2011; Houben and 

Dodd, 2016). After infection, the first two years have the highest chance of developing 

tuberculosis (about 5%), shortly after which the risk is significantly reduced (Menzies et al., 2018) 

and some individuals will recover from the illness. Approximately 90% of all cases of tuberculosis 

occur in adults, with a higher incidence rate in men than in women (WHO, 2023). 

In 2022, 7.5 million people worldwide were tuberculosis diagnosed newly and were formally 

reported as tuberculosis incidents. This was higher than the pre-COVID level (7.1 million in 

2019), 16% higher than the level in 2021, 28% higher than the level in 2020, and the highest 

number in a single year since the WHO began tracking tuberculosis globally in the mid-1990s 

(Figure 1) (WHO, 2023). Over time, Mtb has adapted new subversion means to effectively evade 

the host's immune system and survive within the host, leading to the active or latent 

manifestation of disease (Ponnusamy and Arumugam, 2022). 

 

Figure 1: Global Trend in Case of People Diagnosed with Tuberculosis, 2010 to 2022 (World 

Health Organisation (WHO), 2023)  
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The mortality rate of tuberculosis disease is estimated to be high (approximately 50%) without 

treatment. However, approximately 85% of tuberculosis patients can be cured with the current 

treatments (a 4-to-6-month anti-tuberculosis medication regimen) recommended by WHO. Also, 

available are the 1-to-6-months regimens for tuberculosis infection treatment. It is also possible 

to lower the number of tuberculosis-related infections and illnesses (and consequently, the 

number of tuberculosis-related deaths) by implementing multisectoral initiatives to address 

tuberculosis determinants like undernourishment, poverty, HIV infection, diabetes and smoking, 

(WHO, 2023). Research advancements (such as identifying the core genes responsible for 

tuberculosis, development of a new vaccine and treatment) are required to quickly bring the 

number of new cases per year (i.e., tuberculosis incidence) down worldwide. 

1.3 Mycobacterium tuberculosis Species 

The Mycobacteriaceae family is made up of a wide range of bacteria that have different 

characteristics that make them pathogenic to humans and animals, as well as different host 

reservoirs and growth dynamics in culture (Kanabalan et al., 2021). These bacteria are primarily 

aerobic, Gram-positive, non-spore-forming, acid-fast bacilli, non-motile species that have a 

slightly curved shape and may branch out from their cell wall made of mycolic acid (Fong, 2020). 

The complex cell wall envelope of members of the Mycobacterium genus causes the cells to 

have low permeability. Additionally, the Zhiel-Neelsen acid-fast stain differential staining method 

can be used to distinguish the genus from another bacterial genus (Kanabalan et al., 2021). 

Based on their rates of growth, the Mycobacterium genus can be divided into two main groups: 

fast-growing and slow-growing Mycobacteria. For example, the fast-growing Mycobacteria 

consists of Mycobacterium smegmatis, a non-pathogenic or opportunistic bacteria in general 

whereas the slow-growing Mycobacteria such as M. tuberculosis, Mycobacterium bovis (M. 

bovis) and Mycobacterium leprae (M. leprae) which causes human tuberculosis (H. 

tuberculosis), bovine tuberculosis (B. tuberculosis) and leprosy, respectively (Forrellad et al., 

2013; Kanabalan et al., 2021). 

Mycobacterium tuberculosis complex (MTBC) comprises a group of genetically related 

Mycobacteria such as M. tuberculosis, M. bovis, M. africanum, M. canettii, M. caprae, M. 

pinnipedii and M. microti (Forrellad et al., 2013). In addition to the seven common species listed 

above, two novel species, Mycobacterium orygis and Mycobacterium mungi, are also referred 

to as MTBC (Pfyffer, 2015). A subgroup of the pathogenic species are animal-adapted strains 

that infect various mammalian species. Among them are M. bovis (found in cows), M. caprae 
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(found in goats and sheep), M. orygis (found in oryxes), M. microti (found in voles) and M. 

pinipedii (found in seals or sea lions) (Smith et al., 2006; van Ingen et al., 2012; Kanabalan et 

al., 2021). A summary of the fundamental traits of the MTBC members is shown in Table 1.  

 

Table 1: A Summary of the Fundamental Traits of the Mycobacterium tuberculosis complex's 

(MTBC) members (Forrellad et al., 2013; Pfyffer, 2015; Kanabalan et al., 2021) 

Species of MTBC Summary of the Fundamental Traits 

M. tuberculosis Human tuberculosis. 

Most widely known species of the MTBC. 

Affecting more than one-third of the world’s population. 

Causes between 8 and 10 million newly diagnosed cases of 

ATB 

It can be transmitted from humans to animals. 

M. bovis Bovine tuberculosis. 

Exhibits the broadest range of host infections. 

This affects cattle, goats, both domestic and wild and 

humans. 

Used to develop laboratory-selected mutant “M. bovis var 

BCG” early childhood sole vaccine used for the prevention 

of tuberculosis.  

M. africanum and  
M. canettii 

A strong connection to M. tuberculosis. 

Affecting humans. 

Typical isolates of patients from Africa. 

M. caprae An infection of goats. 

M. orygis An infection of large mammals on the continent of Africa, 

such as oryxes, antelopes, gazelles, and waterbucks. 

M. microti An infection from rodents 

M. pinnipedii Pathogens from seals or sea lions 

M. mungi Etiological agent of banded mongoose TB (Mungo mungo). 
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1.4 Molecular Signature of Mycobacterium tuberculosis 

The virulence determinant of Mtb is enhanced by a secretion system encoded by the region of 

difference 1 locus (Volkman et al., 2004), which is the primary molecular mechanism responsible 

for BCG attenuation (Pym et al., 2002; Sgaragli and Frosini, 2016), identified as early secreted 

antigenic target, 6 kDa protein (ESAT-6) secreted by bacteria. Enhancing the recruitment of 

macrophages interacts with the host epithelium to induce matrix metalloproteinase-9 (MMP-9), 

which in turn promotes the maturation of nascent granulomas and bacterial growth (Volkman et 

al., 2010). The culture filtrate protein, 10 kDa (CFP-10) family of mycobacterial secreted proteins 

is another group of proteins that ether-dimerizes with ESAT-6 (Renshaw et al., 2002). Strong T-

cell antigens such as CFP-10 and ESAT-6, are detected by serum from tuberculosis patients 

(Ulrichs et al., 1998). The macrophage signaling pathway is modulated by ESAT6, CFP-10, and 

their complex, specifically the ERK 1/2 MAP kinase pathway (Ganguly et al., 2007) by 

significantly reducing the phosphorylation of extracellular signal-regulated kinases 1/2 (ERK1/2) 

in the nucleus and then activating them. Increased phosphatase activity in the nucleus mediates 

this inhibition, leading to the dephosphorylation of pERK1/2 originating from the cytoplasm. The 

expression of the LPS-inducible c-myc gene is down-regulated because of the restriction of 

ERK1/2 activation, which also impacts the expression of c-Myc, a crucial component in 

macrophage activation (Sgaragli and Frosini, 2016). T-cell-derived lymphokines orchestrate 

CMI, which is executed by TDM-activated macrophage effector cells (Russell, 2007), is so 

effective that, during their lifetime, 90% of immunocompetent humans infected with Mtb can 

suppress the infection (LTB) and prevent the disease from progressing to clinical disease (ATB) 

(Sutherland, 1976; Sgaragli and Frosini, 2016). 

The series of immunological events begins with alveolar macrophages engulfing Mtb. In turn, 

the bacilli may prevent macrophages from undergoing phago-lysosomal fusion. The 

macrophages secrete cytokines (IL1 [CXCL8], TNFα, IFN-γ, IL10, TGFβ, IL12, GM-CSF, 

RANTES [CCL5] and MCP1 [CCL2]). Major Histocompatibility Complex (MHC) is used to 

present Mtb antigens to CD4+, CD8+ T helper cells, CD1 and γδT cells. Antigens leave the lungs 

and are transported to draining lymph nodes after being presented to dendritic cells as well 

(Figure 2). T helper cells that are CD4+ and eventually CD8+ become activated in the tissues of 

lymph nodes. To increase the pool of lymphocytes specific for antigen, CD4+ cells produce IL2. 

The primed T cells return to the lung infection site and induce the development of granulomas 

(Sgaragli and Frosini, 2016). 
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Figure 2: Pathogenesis of Human Tuberculosis (Kanabalan et al., 2021) 

 

1.5 Genome-Wide Transcriptomic Analysis of Mycobacterium tuberculosis 

Mycobacterium tuberculosis (Mtb), the bacterium that causes tuberculosis, continues to be a 

major global health concern, requiring a better understanding of the molecular mechanisms 

underlying its pathogenesis (Sgaragli et al., 2016; Kanabalan et al., 2021). Blood culture isolates 

provide a unique perspective on tuberculosis because they show how the bacterium behaves in 

the bloodstream, which is a vital site for the spread of infection. The investigation of Mtb's genetic 

composition, transcriptional landscape, and protein expression patterns in this context is made 

possible by the integration of cutting-edge molecular biology techniques, including whole-

genome sequencing, RNA-seq, and mass spectrometry-based proteomics (Li et al., 2023). One 

essential tool for organising and understanding the enormous datasets produced by these high-

throughput methods is bioinformatics. It enables the creation of complex gene regulatory 

networks, the identification of genetic variants, and differential gene expression patterns 
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(Mehmood et al., 2014). Systems biology techniques support these analyses by offering a 

comprehensive comprehension of the intricate relationships between Mtb and the host, enabling 

researchers to go beyond studies of single genes and understand the larger biological context 

(Raman and Chandra, 2011). It is crucial to identify the important genes for several reasons. 

Firstly, it clarifies the particular genetic variables that allow Mtb to proliferate in the bloodstream 

and aid in its systemic spread. Secondly, these key genes might be crucial to the virulence of 

the bacteria, affecting the severity of the illness and its treatment results. Thirdly, comprehending 

the molecular aspects of the host-pathogen interaction provides opportunities for tailored 

therapeutic approaches, encompassing innovative pharmacological targets and plausible 

biomarkers for prognostic and diagnostic functions (Doran and Fulde, 2016). 

Blood can reflect immunological and pathological changes in the parts of the body, Numerous 

studies have confirmed that human blood samples can be used to diagnose a variety of 

inflammatory and infectious diseases (Li et al., 2023). For example, Shao et al., (2021), found 

that the pregnancy zone protein (PZP) content of serum exosomes in patients with inflammatory 

bowel disease (IBD) can help with clinical therapy and may be a useful diagnostic biomarker. Li 

et al., (2022) constructed a PPI network after studying the gene expression profiles in peripheral 

blood mononuclear cell (PBMC) samples. In addition, it has been discovered that three genes, 

HP, FUCA2 and SERPINA1 may be important in PTB. Validation of immune markers (for 

example, CXCL1, CXCL2, CXCL10, CCL1 and CCL3,) in plasma clearly distinguishes confirmed 

tuberculosis from unconfirmed tuberculosis in children, as demonstrated by a study that provided 

fresh evidence for the application of chemokines in plasma as markers of children tuberculosis 

(Kumar et al., 2021). 

1.6 Genomics and Discovery of Host Biomarkers 

To treat tuberculosis, over 20 medications as well as the Bacillus Calmette-Guerin (BCG) 

vaccine are available. Even though the current medications are extremely valuable, they have 

several drawbacks. The most significant one is the development of drug resistance, which 

makes even the front-line medications ineffective (Raman and Chandra, 2011). Protease 

inhibitors, for instance, have been demonstrated to be incompatible with anti-tuberculosis 

regimens that contain rifampicin (Bonora and Di Perri 2008). Several obstacles in the fight 

against tuberculosis require the use of more advanced methods to research, comprehend, and 

develop strategies to combat tubercular infection (Raman and Chandra, 2011). 
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The fields of genomics and post-genomics are experiencing a rapid expansion in the types and 

quantity of information available, encompassing not only genome sequences and protein 

structures but also gene expression, regulation, and protein-protein interactions. This is due to 

the simultaneous advancements in high-throughput experimental methods and screening 

techniques to analyse whole genomes and proteomes (Raman and Chandra, 2011). There are 

now several in silico approaches to systematically address important questions in biology, with 

a clear impact on drug discovery, thanks to the availability of such data in publicly accessible 

databases and the advancements in computational power and methods for data mining and 

modeling (Apic et al., 2005; Claus and Underwood 2002). Several steps in the drug discovery 

process benefit from systems-level approaches, especially target identification and determining 

the molecular cause of disease for sensible drug discovery (Raman and Chandra, 2011). 

According to Raman et al., (2005), the mycolic acid pathway (MAP) was stimulated and 

reconstructed for Mtb using Flux Balance Analysis (FBA), a method for analysing metabolic 

networks based on constraints. The biosynthesis of mycolic acids was mathematically 

abstracted, and the pathway was studied using fluorescence band alignment (FBA). This 

allowed for the identification of critical points in the pathway and the delineation of possible drug 

targets. Two genome-scale reconstructions of Mtb were published in 2007 (Beste et al., 2007; 

Jamshidi and Palsson 2007), through the examination of key genes and hard-coupled reaction 

sets, with applications in drug target identification (Raman and Chandra, 2011). 

The identification of differential gene variation signatures in MTBC, specifically Mtb infection, 

coupled with a significant spike in host omics data has given rise to a valuable window of 

information regarding the role that genetic variation plays in tuberculosis diagnosis (Kanabalan 

et al., 2021). For instance, Chang et al., (2018) analysed the genetic variations of the gene 

encoding IFN-induced protein-SP110 in a sizable patient cohort from Taiwan that included 68 

latent tuberculosis infections, 301 active cases of tuberculosis, and 278 healthy controls. Among 

the five SNPs in the SP110 gene—rs7580912, rs7580900, rs9061, rs2241525, and 

rs11556887), the authors found that rs9061 is substantially associated with disease 

susceptibility to LTB1. The authors' additional analysis reveals that SP110 rs9061 SNP is linked 

to lower plasma TNF-α levels in patients with latent tuberculosis infection. This implies that 

genetic polymorphisms in SP110 could function as biomarkers for susceptibility to both latent 

and active tuberculosis infection in humans (Chang et al., 2018). However, a pilot study was 

conducted to investigate the possibility of epigenetic changes in immune cells serving as a 

tuberculosis biomarker (Esterhuyse et al., 2015). The neutrophils and monocytes isolated from 
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patients with latent and active tuberculosis infections were subjected to simultaneous 

transcriptome, proteome, and epigenome analyses by the authors. The authors emphasised the 

role that microRNAs and the epigenome (DNA methylation profiles) play in controlling function 

in both latent and active tuberculosis infections. Large-scale DNA methylome analysis based on 

age, gender, and cell types in tuberculosis infection is therefore required (Esterhuyse et al., 

2015; Kanabalan et al., 2021). 

1.7 Transcriptomics and Discovery of Host Biomarkers 

Transcriptomics has been extensively used for the past decade to simplify the host-

mycobacterial interaction and find likely host biomarkers for tuberculosis diagnosis. Examining 

blood transcriptomics profiles also helps us comprehend how host elements and the underlying 

molecular mechanism of Mtb infection are intertwined (Kanabalan et al., 2021). Furthermore, 

although the primary immune response against Mtb is concentrated in the lungs, pathological 

events during tuberculosis infection are typically reflected in the peripheral blood by circulating 

host immune cells (Weiner et al., 2013). Numerous research works have used blood 

transcriptomics analysis to discover host biomarkers. For example, a microarray study and 

quantitative polymerase chain reaction analysis identified several genes that were expressed 

differently in monocytes between peripheral blood mononuclear cells from tuberculosis patients 

and healthy donors infected with Mtb. These genes were primarily derived from monocytes 

(Jacobsen et al., 2007). In another blood transcriptome study conducted by Berry et al., (2010), 

393 transcripts were associated with active tuberculosis. The authors also identified 86 distinct 

transcript signatures that distinguish tuberculosis from other inflammatory and infectious 

diseases. The authors emphasised that type-1 IFN-αβ signaling and IFN-̴ are among the 

neutrophil-driven interferon-inducible genes that are primarily expressed in ATB (Berry et al., 

2010). Furthermore, Lee et al. (2016) showed that patients with LTBI greatly exhibit gene 

expression linked to natural killer cell activation and apoptosis, whereas the expression of innate 

immune-related genes is strongly correlated with ATB (Lee et al. 2016). 

Microarray technology advancements have made it possible to analyse mRNA expression 

profiles at the genome-scale in a variety of organisms, including Mtb. Waddell et al., (2007) 

reported a thorough examination of Mtb's genome-scale expression analyses (Waddell et al., 

2007). A study conducted by Boshoff et al., (2004) also reported an extensive examination of 

Mtb’s differential transcriptional reactions to growth-inhibitory conditions and medications 

(Boshoff et al., 2004). In a different study, microarray analysis was used to determine Mtb's 
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response to the minimal inhibitory concentrations of six anti-microbials to clarify the mechanisms 

of Mtb's innate resistance (Waddell et al., 2004). Studies have also been conducted on the 

expression of Mtb genes in macrophages (Schnappinger et al., 2003) by employing microarray 

technology to analyse RNA extracted from infected mouse macrophages. When comparing the 

macrophages to broth cultures, 454 induced and 147 repressed Mtb genes were found; these 

genes are referred to as the "differential intraphagosomal transcriptome." (Raman and Chandra, 

2011). The integration of genome-scale transcriptional analyses can yield a multitude of data, 

which can contribute to a better understanding of the pathogenesis of TB disease. 

Furthermore, there is increasing evidence that studying the impact of non-coding RNA at various 

stages of tuberculosis infection can be accomplished through RNA sequencing (Kanabalan et 

al., 2021). The differential expression of a panel of microRNAs (miRNAs) between latent and 

ATB infections has been found in several studies, underscoring the potential of miRNAs as 

useful biomarkers in tuberculosis infection (Chakrabarty et al., 2019; Lyu et al., 2019; Kanabalan 

et al., 2021). In addition to miRNA, other research by de Araujo et al., (2019) showed that piRNA 

and small nucleolar RNA (snoRNA) may also be useful biomarkers to distinguish between latent 

and ATB infection (de Araujo et al., 2019). However, the potential of circular RNA (circRNA) as 

a tuberculosis biomarker has been investigated by Fu et al., (2019). The authors found that 171 

deregulated circRNA were found in tuberculosis patients, with circRNA_101128, 

circRNA_103017, and circRNA_059914 being significantly up-regulated and circRNA_062400 

being significantly down-regulated (Fu et al., 2019). According to research by Lv et al., (2017), 

there is a difference in the expression of exosomes between latent and ATB infections. This 

suggests that different stages of Mtb infection can cause different RNA cargoes to be packaged 

into exosomes. Further functional and pathway analysis showed that the immune system and 

the signaling pathway were downregulated, while the apoptotic and necrotic processes were 

upregulated (Lv et al., 2017). 

1.8 Functional Linkages in Mycobacterium tuberculosis 

Protein-protein interactions play a crucial role in controlling cellular processes. They serve as 

the building blocks of numerous transcriptional regulatory networks and signal transduction 

pathways in the cell. The understanding of the structure and function of proteins has been a 

crucial motivator for biological research in the last few decades (Raman and Chandra, 2011). It 

is possible to deduce functional interactions between proteins across the genome through 

computational analyses or high-throughput experiments. There have been reported genome-
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wide functional linkages in Mtb by Eisenberg and colleagues (Strong et al., 2003). Raman and 

Chandra, (2011) stated that it is possible to determine functionally linked gene clusters 

throughout the proteome and deduce the function of uncharacterized proteins by grouping 

proteins with comparable functional linkage profiles. These protein-protein interaction maps are 

also useful for identifying drug targets and in the resistance pathway analysis (Verkhedkar et al. 

2007; Raman et al. 2008; Raman and Chandra 2008). It has been demonstrated that numerous 

highly connected proteins in protein interaction networks, also known as "hubs," are essential 

for cellular function; hub proteins like these could also be targets for medications (Jeong et al., 

2001; Verkhedkar et al. 2007). 

False positives and negatives are other problems with computational approaches for predicting 

functional linkages, but these can be avoided by taking consensus predictions from several 

approaches into account. The STRING database gives each interaction a confidence score after 

taking into account predictions made using a variety of techniques and experimental data (Von 

Mering et al. 2007; Raman and Chandra, 2011). Future analyses will likely be more reliable due 

to the significant improvement in the quality of constructed interactomes, which will be made 

possible by advancements in both computational and experimental methods for defining protein-

protein interactions (Raman and Chandra, 2011). 

1.9 Significance of the Study 

Pulmonary tuberculosis (PTB) and extrapulmonary tuberculosis (EPTB) are two subtypes of 

tuberculosis, a chronic infectious disease caused by Mtb (Harding, 2020; Li et al., 2023). PTB is 

the most prevalent clinical form of tuberculosis among them, while tuberculosis affecting organs 

other than the lungs, such as the pleura, lymph nodes, bones, meninges, etc., is referred to as 

EPTB (Cukic and Ustamujic 2018; Holden et al., 2019). A variety of symptoms, such as weight 

loss, cough and fever are experienced by people who harbour tuberculosis, and some people 

infected with Mtb may also develop latent tuberculosis infection (LTBI) (LoBue and Mermin, 

2017). For the effective control of tuberculosis transmission, early diagnosis and appropriate 

therapy are therefore crucial. For example, sputum detection must come later because 

radiological diagnosis is not sufficient to reach a definitive independent diagnosis (Woodring et 

al., 1986; Krysl et al., 1994). The best sample for identifying lung diseases is sputum, and the 

most popular technique for tuberculosis diagnosis is sputum smear microscopy. Nevertheless, 

despite being simple to use, the technique requires a lot of time and has a low threshold for 

detection (Schaberg et al., 1995; Steingart et al., 2006). Although the sensitivity of nucleic-acid 
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amplification (NAA) molecule detection is too low, it is a dependable technique for increasing 

diagnostic specificity, particularly in cases of smear-negative (paucibacillary) disease in which 

the clinical diagnosis is unclear (Greco et al., 2006; Ling et al., 2008). Early detection and therapy 

are delayed as a result of traditional methods' inability to detect Mtb quickly and effectively. More 

and more data shows that the population with tuberculosis is at an increased risk of long-term 

disability and death, with the percentage of mortality surpassing the total of all other common 

infectious diseases (Romanowski et al., 2019; Li et al., 2023). As a result, improving diagnostic 

techniques is crucial to increasing tuberculosis patients' chances of survival and this called for 

the importance of studying Mtb molecular signature through a genome-wide transcriptomics 

analysis for understanding pathogenesis, epidemiology and treatment of tuberculosis. 

The findings from this study hold significant implications for both advancing academic knowledge 

and clinical applications. The knowledge gathered from these analyses can guide the creation 

of focused treatment plans and advance our understanding of the pathophysiology of 

tuberculosis. These are some main ideas emphasising how important this identification is: 

Understanding Pathogenesis of Tuberculosis: one of the major significant of this study is to 

gain an understanding of the molecular processes that underlie Mtb infection and comprehend 

the genetic elements implicated in the adaptation to the host environment which makes Mtb 

thrive and survive in the host. 

Discovery of Biomarker: identifying the core genes of Mtb may help in biomarker discovery for 

early detection, treatment and monitoring of tuberculosis which may help to reduce the spread 

of the disease 

Understanding of Virulence and Host Interaction: some genes may be associated with the 

virulence of Mtb, thereby influencing its capacity to cause disease in the host. Knowledge of the 

interaction between such genes and the immune system of the host may help the development 

of interventions to modify the host response. 

Drug Resistance Prediction: this can help to understand the genetic basis of resistance and 

predict drug resistance species for better development of therapeutic strategies.  

Discovery of Drug Target: this can give insight into novel drug target discovery and may also 

increase the effectiveness of current medications thereby improving the treatment of 

tuberculosis. 
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Research and Development: this may serve as a basis for further tuberculosis research and 

development and can encourage continued efforts to improve treatment approaches, 

preventative measures, and diagnostic instruments. 

1.10 Scope and Objectives of the Study 

The scope of this study is to conduct a comprehensive genome-wide transcriptomics analysis 

of Mtb and identify the molecular signature associated with Mtb. The workflow of the research 

will involve analysing large-scale transcriptomics and genomics data to profile gene expression 

patterns in Mtb, to identify the differentially expressed genes. Achieving success in this study 

will involve the use of various bioinformatics tools and system biology analysis. This project aims 

to identify the core genes and drug target interactions of active tuberculosis using genome-wide 

transcriptomics analysis. 

The specific objectives of this study are stated below: 

• To identify the Differentially Expressed Genes (DEGs) in active tuberculosis. 

• To carry out functional enrichment and KEGG pathway analysis on the identified genes 

to help in understanding the pathogenesis of Mycobacterium tuberculosis. 

• To construct a Protein-Protein Interaction (PPI) network of genes to identify the potential 

hub genes in the pathogenesis of M. tuberculosis. 

• To identify the list of drugs in the DrugBank targeting the genes 

1.11 Organisation of the Study 

Chapter one would be based on the introduction of the study, it would include the background 

of the study, exploring existing literature on Mycobacterium tuberculosis, significance of the 

study, scope and objectives of the study, and organisation of the study. Chapter two would be 

based on the research methodology, including research design, data collection and processing, 

statistical analysis and data validation. Chapter three will present the results of the analysis, 

including all analysis, explanations, figures and tables generated from the statistical analysis. 

Chapter four will focus on the discussion of the results and interpretations of the analysis’s 

findings. Chapter five would be the final chapter and focus on presenting the study's conclusion 

and recommendations, and it would also cover its limitations.   
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CHAPTER TWO 

METHODOLOGY 

This chapter describes the study methodology and research design, clarifies the methods used 

in data collection, and also explains various techniques and tools used in analysing this study. 

The concept of this study is focused on quantitative research methodology because it aims at 

analysing broad gene profile datasets, calculating the DEGs in ATB patients and healthy controls 

and conducting precise measurements of the genes’ interactions. Workflow of the Study with 

summary of methods are shown in (Figure 3). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Workflow of the Study with summary of methods. 

 

2.1 Research Design 

Research design is a part of research methodology dealing with how the research is done 

(Goundar, 2012). Research design ensures that the data gathered, and the proof obtained can 
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or acquiring concrete evidence entails defining the kinds of data or evidence needed to address 

a research question, assess a programme, or verify a theory. Before beginning data collection 

or analysis, a structure or design must be developed for any research. This means that before 

beginning any research, we should honestly consider the following questions: concentrating on 

this research question, what kind of evidence or data is needed to provide a clear and compelling 

response? (Creswell, 2017). The research design that will be adopted for this study is a 

retrospective case-control study. This is because it permits the comparison of data and the 

evaluation of existing records.  

According to Tasiou et al., (2017), a retrospective case-control study compares people with a 

particular disease/condition (cases) to people without the disease/condition (controls). The 

research goes back in time to find and examine any possible risk factors that may have aided in 

the emergence of the disease/condition (Tasiou et al., 2017). 

This study will compare the genetic profiles of individuals with ATB (cases) to healthy individuals 

(controls). This will involve analysing whole blood isolate samples from previous ATB patients 

and healthy individuals. The study will analyse gene expression profile datasets of ATB and 

healthy controls. A series of bioinformatics tools will be employed to identify DEGs, biological 

processes, cellular components, molecular functions and pathways of the genes that are 

differentially expressed in ATB patients compared to the healthy control. This study will further 

construct the PPI of the DEGs, find the hub genes that may serve as markers for tuberculosis 

diagnosis and identify the list of drugs in the DrugBank targeting these DEGs, which may be 

helpful in the development of vaccines or drugs for tuberculosis. 

2.2 Data Collection and Preparation 

The gene expression profiles datasets of ATB and healthy control analysed in this study were 

retrieved from the Gene Expression Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/) 

built and maintained by the National Center for Biotechnology Information (NCBI). The GEO is 

a global public repository that the scientific community uses to submit functional genomic data 

sets from next-generation sequencing and high-throughput microarray technology. The 

database allows for the searchable, cross-linked, and indexed archiving of raw, processed, and 

metadata. All the data is freely downloadable in multiple formats. In addition, GEO offers several 

web-based techniques and tools to help users analyse, query and visualise data (Barrett et al., 

2012). The following selection criteria were used to further filter the datasets: (i) The gene 

expression profile datasets were from tuberculosis-affected patients with no current treatment, 

https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/
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(ii) only samples from healthy control and patients with active tuberculosis (ATB) were taken into 

consideration, (iii) each of the ATB and healthy control groups should have more than five 

samples, (iv) the datasets were from whole blood culture isolates of tuberculosis patients with 

no secondary diseases. 

2.3 Dataset Features 

At the time of the study (December 2023), 154 GEO microarray datasets for TB-related host 

response were found through database querying and filtering. However, based on further filtering 

according to the selection criteria for the study, a total of four (4) microarray datasets 

(GSE19435, GSE19439, GSE19444 (Berry et al., 2010) and GSE28623 (Maertzdorf et al., 

2011)) which include active tuberculosis (ATB) patients and healthy control samples were 

selected for analysis (Table 2). The table also includes the two (2) RNA-Seq datasets 

(GSE107991 and GSE107994 (Singhania et al., 2018)) used for validation. No experiment was 

conducted on any human or animal and all data retrieved was publicly available online. 

 

Table 2: GEO Datasets Features 

Dataset Gene 
Expression 

Platform ATB Healthy 
Control 

Total 
Samples 

GSE19435 Microarray GPL6947 Illumina 21 12 33 

GSE19439 Microarray GPL6947 Illumina 13 12 25 

GSE19444 Microarray GPL6947 Illumina 12 12 24 

GSE28623 Microarray GPL4133 Agilent 46 37 83 

GSE107991 RNA-Seq GPL20301 Illumina 12 21 33 

GSE107994 RNA-Seq GPL20301 Illumina 53 50 103 

 

2.4 Differentially Expressed Genes (DEGs) Analysis 

The downloaded datasets that met the inclusion criteria were processed by using Linear Models 

for Microarray Analysis (Limma) packages in R programming language, the data were log-

transformed, normalized and missing values were removed. Limma analyses microarray data 

by using linear models, it utilises a Bayesian framework to estimate differences in gene 

expression while accounting for the unpredictability present in microarray experiments (Symth, 
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2004; Ritchie et al., 2015).  The main concept is to apply empirical Bayes moderation to the 

standard errors of the estimated coefficients after fitting a linear model to the log-transformed 

gene expression data. To increase the differential expression estimates' accuracy. One 

important statistic that Limma uses to find genes with differential expression is the moderated t-

statistic (Ritchie et al., 2015). Therefore, the Limma package was used for this study because it 

a strong tool for reading, normalising, and analysing such data in this study. 

The DEGs were identified between the ATB and healthy control calculating the Adjusted P value 

(Adj-P value) and Log2-Fold Change |Log2FC| at the same time. The parameters for the DEGs 

were set at a level with Adj-P value < 0.05 and |Log2FC| cut-off > 1.0. After the statistical analysis 

of each dataset, Boxplots and Volcano plots were drawn by R to have a picture representation 

of the dysregulated genes, upregulated genes and downregulated genes. 

After the statistical analysis of each dataset, the common DEGs were calculated by using the 

Venn diagram (https://bioinformatics.psb.ugent.be/webtools/Venn/). Venn diagram is a free 

online web tool used to calculate the intersection(s) of the list of components. It produces a text 

output listing the components that are exclusive to a given list or that are in each intersection. It 

also produces a graphical output in a Venn/Euler diagram which can be downloaded as a figure 

in SVG and PNG format. The tool can calculate the intersections of a maximum of 30 lists. 

2.5 Functional Annotations and Pathway Analysis  

An essential step in interpreting gene lists obtained from extensive genetic, transcriptomic, and 

proteomic research is functional enrichment analysis (Wang et al., 2013). Currently, there are 

many methods for functional annotations and pathway analysis. For instance, Database for 

Annotation, Visualization and Integrated Discovery (DAVID), is a frequently employed technique 

that utilises a modified Fisher's exact test to assess the significance of genes that are enriched 

in a particular pathway. One more well-known technique is gene set enrichment analysis 

(GSEA), which incorporates function enrichment analysis with the differential expression of 

genes. (Yang et al., 2019). However, for this study, the functional annotations and pathway 

analysis were conducted on the genes using the WebGestalt (WEB-based Gene SeT AnaLysis 

Toolkit) database (https://www.webgestalt.org). This is because WebGestalt's statistical models 

are frequently predicated on tried-and-true techniques for gene set enrichment analysis and the 

hypergeometric test is one of the statistical technique frequently used by WebGestalt to 

determine whether a specific gene set is overrepresented in a list of differentially expressed 

genes relative to what would be predicted by chance. other techniques like the Fisher's exact 

https://bioinformatics.psb.ugent.be/webtools/Venn/
https://www.webgestalt.org/
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test or the chi-squared test may also be used, depending on the type of data and analysis (Wang 

et al., 2013). The gene functions were categorised by Gene Ontology (GO) annotation 

(Biological Processes (BPs), Cellular Components (CC), Molecular Functions (MF)) and Kyoto 

Encyclopaedia of Gene and Genomes (KEGG) Pathway enrichment analysis. The organism of 

interest was set at Homo sapiens; the method of interest was set at ORA and the parameters 

were left as default settings on WebGestalt. 

2.6 Protein-Protein Interaction (PPI) Network Construction 

The Search Tool for the Retrieval of Interacting Genes (STRING) database (http://string-db.org/) 

was used to complete PPI network construction with a 0.4 confidence level. The STRING 

database incorporates both predicted and known protein associations, including functional and 

physical interactions. Likewise, the pathogen proteins interact with the host DEGs (Ponnusamy 

and Arumugam, 2022). All the identified common DEGs were uploaded to the STRING database 

to assess and construct the potential human protein – Mtb protein interaction network. 

2.7 Identification of Hub Genes 

To identify and visualized the hub genes, Cytoscape software was used. Cytoscape is a 

bioinformatic platform that is free to use and can be enhanced with numerous plugins to increase 

visualisation options and network analysis power. It's simple to view a network's graphical 

representation using Cytoscape, and the interactome provides access to several levels of data, 

such as extensive genome-wide experiments and annotations of protein functions. Based on 

the Cytoscape API, the CytoHubba plugin is implemented in Java. Eleven node ranking 

techniques are implemented by the plugin to assess a node's significance in a biological 

network, including Degree. Out of the eleven techniques, the recently suggested method, 

Maximal Clique Centrality (MCC), performs better in terms of accuracy when predicting essential 

proteins from the yeast PPI network. (Chin et al., 2014). The whole network was entered into 

the Cytoscape software (version 3.10.1) and using a plugin CytoHubba to evaluate the genes 

network, the hub genes were identified and ranked accordingly using MCC.  

2.8 Drug Interactions 

DGidb database (https://www.dgidb.org) was used for the Drug-target interactions and to identify 

the list of drugs in DrugBank targeting DEGs. DrugBank is an extensive database that contains 

details on drugs, including their targets, interactions, and mechanisms Ponnusamy and 

Arumugam, 2022). The common DEGs were entered into the DrugBank database, to query the 

http://string-db.org/
https://www.dgidb.org/
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DEGs against the DrugBank to mine the drugs’ interactions with the genes and to identify drugs 

with clinical and experimental evidence for direct interactions with the genes. 

2.9 RNA-Seq Datasets 

The statistical analysis was further validated using cross-validation by comparing the genes 

expressed in RNA-Seq datasets of ATB patients and healthy control samples. The RNA-Seq 

datasets were analysed using GEO2R and the results were compared with the results obtained 

from the statistical analysis, this is to obtain the strength of the results from the statistical 

analysis. 
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CHAPTER THREE 

RESULTS 

This chapter presents the results of the data analysis in this study. It presented the results as 

explained in the methodology and address the aim and objectives of the study stated in chapter 

one of this study.  

3.1 Identification of DEGs 

After the analysis of the datasets, a total of 259 DEGs, 109 upregulated and 150 downregulated 

genes were identified from GSE19435, a total of 211 DEGs, 133 upregulated and 78 

downregulated genes were identified from GSE19439, a total of 211 DEGs, 133 upregulated 

and 78 downregulated genes were identified from GSE19444 and a total of 355 DEGs, 291 

upregulated and 64 downregulated genes were identified from GSE28623 (Table 3). Figure 4 

shows the Volcano plots of the DEGs of each dataset. The blue dots represent the 

downregulated genes, the red dots represent the upregulated genes, and the black dots 

represent not significant genes. The common genes among all 4 datasets were identified by the 

Venn diagram and the intersection of the DEGs was drawn by Venn analysis. 36 common DEGs, 

26 upregulated genes and 10 downregulated were identified among the 4 datasets (Figure 5), 

indicating their status as high-confidence DEGs in the context of active tuberculosis versus 

healthy control samples.  

 

Table 3: DEGs, Upregulated and Downregulated Genes 

Dataset Upregulated Genes Downregulated Genes     DEGs 

GSE19435 109 150 259 

GSE19439 133 78 211 

GSE19444 133 78 211 

GSE28623 291 64 355 

Total 666 370 1,036 
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Figure 4: Volcano plots. (a) represents the volcano plot for GSE19435, (b) is for GSE19439 

(c) is for GSE19444 and (d) represents volcano plot of GSE28623.  

  

 

 

 

 

 

Figure 5: Venn Diagram of DEGs common to the 4 datasets. (a) represents Venn diagram of 

total (36) (b) is for the upregulated genes (26) (c) is for the downregulated genes (10). 
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3.2   Functional Enrichment Analysis 

GO analysis discovered that upregulated DEGs were mainly relevant in BP, MF and CC. In BP, 

biological regulation was most enriched, followed by a response to stimulus, multicellular 

organismal process, localisation, metabolic process, development process, cell communication, 

multi-organism process, cellular component organisation, cell proliferation and others. MF 

showed the involvement in protein binding being the most enriched, followed by ion binding, 

nucleic acid binding, enzyme regulator activity, hydrolase activity, nucleotide binding, transferase 

activity and others. The CC analysis showed membrane involvement has been the most 

enriched, followed by the endomembrane system, vesicle, membrane-enclosed lumen, nucleus, 

extracellular space, cytosol, cell projection, Golgi apparatus, protein-containing complex and 

others (Figure 6a). GO analysis discovered that downregulated DEGs were particularly 

significant in BP and MF with no relevant difference in CC. BP showed biological regulation as 

the most enriched, followed by cell communication, response to stimulus, localisation, 

multicellular organismal process on the same level and metabolic process and developmental 

process on the same level as well. CC showed membrane as the most enriched with no 

significant difference in others. MF showed protein binding as the most enriched, followed by 

ion binding, transferase activity, nucleotide binding and others on the same levels (Figure 6b). 

The GO analysis identified that the total DEGs were significant in BP, MF and CC. In BP, 

biological regulation was most enriched, followed by a response to stimulus, multicellular 

organismal process, localisation and involvement in metabolic process, cell communication, and 

development process. MF showed the involvement in protein binding being the most enriched, 

followed by ion binding, nucleotide binding, transferase activity, nucleic acid binding, enzyme 

regulator activity, hydrolase activity and others. The CC analysis showed membrane 

involvement has been the most enriched, followed by a vesicle, endomembrane system, 

nucleus, extracellular space, membrane-enclosed lumen, cytosol, protein-containing complex, 

cell projection, Golgi apparatus and others (Figure 6c).   
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Figure 6: Gene Oncology Analysis. (a) BP, CC and MF of the upregulated gene, (b) BP, CC     

and MF of the downregulated gene (c) BP, CC and MF of total DEGs. 
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The KEGG pathway enrichment analysis was done for upregulated DEGs, downregulated DEGs 

and the total DEGs separately with WebGestalt. The analysis identified upregulated DEGs at a 

false discovery rate (FDR) of < 0.05 and they are being enriched in pathways of regulation of 

innate immune response, positive regulation of immune response, regulation of immune 

response, response to biotic stimulus, innate immune response, immune effector process, 

defense response, secretion, secretion by cell and immune response (Figure 7a). The analysis 

identified downregulated DEGs and they are been enriched in pathways of paramethadione, 

negative regulation of glycogen biosynthetic process, negative regulation of glycogen metabolic 

process, C-X-C chemokine receptor activity, regulation of glucagon secretion, B cell receptor 

signaling pathways with PPI_BIOGRID_M162, PPI_BIOGRID_M74, antigen receptor-mediated 

signaling pathway and side of membrane as being least enriched (Figure 7b). The analysis 

identified total DEGs as being enriched in pathways of B cell receptor signaling pathway, antigen 

receptor-mediated signaling pathway, immune response-regulating cell surface receptor 

signaling pathway, immune response-activating cell surface receptor signaling pathway, 

regulation of innate immune response, activation of immune response, immune response-

regulating signaling pathway, positive regulation of immune response, regulation of defense 

response, regulation of response to external stimulus, positive regulation of immune system 

process, response to biotic stimulus, innate immune response, secretion by cell, immune 

effector process, secretion and defense response, regulation of immune system process and 

immune response been the least enriched pathways (Figure 7c). The KEGG analysis also 

produced volcano plots for the upregulated DEGs, downregulated DEGs and the total DEGs 

shown in (Figure 8a-c). The top 10 significantly enriched GO for the upregulated DEGs and 

downregulated DEGs identified in the analysis are presented in (Table 4). 
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Figure 7: KEGG Pathways. (a) Upregulated DEGs pathways (b) Downregulated DEGs 

Pathways (c) total DEGs pathways. 

a 

b 

c 



26 
 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: Volcano plots of Pathways. (a) Upregulated DEGs pathways (b) Downregulated DEGs 

Pathways (c) total DEGs pathways. 

 

a 

b 

c 



27 
 

Table 4: Top 10 significantly Enriched GO  

 

3.3    Protein-Protein Interaction Network Construction 

The PPI network of 34 nodes and 47 edges was identified after uploading the DEGs into the 

STRING database (Figure 9). about 24 genes were identified to show direct interactions with 

their neighbours. The top 10 hub genes were identified by using the CytoHubba plugin in 

Cytoscape software (Figure 10) and were ranked by MCC measures (Table 5). The results 

showed that GBP5 (guanylate binding protein 5) was the most significant gene with MCC score 

= 99, followed by GBP1 (MMC score = 86), BATF2 (MCC score = 73), EPSTI1 (MCC score = 

48), PARP9 (MCC score = 48), FCGR1B (MCC score = 30), SERPING1 (MCC score = 24), 

LAP3 (MCC score = 24), ANKD22 (MCC score = 14) and ETV7 (MCC score = 12). All the 

identified hub genes are upregulated. 

 

 

 

 

Sort Gene Set Description Ratio P value 

Up-regulate GO:0006952 Defense response 6.10 3.7022e-7 
 

GO:0006955 Immune response 5.29 3.9511e-7 
 

GO:0050776 Regulation of immune resp. 8.36 4.6746e-7 
 

GO:0009607 Response to biotic stimulus 8.19 5.5312e-7 
 

GO:0046903 Secretion 5.81 6.1072e-7 

Down-regulate GO:0050853 B cell receptor signaling pathway 74.7 0.000312 
 

GO:0045719 Negative regulation of glycogen 
biosynthetic process 

318 0.003145 

 
GO:0070874 Negative regulation of glycogen 

metabolic process 
272 0.003668 

 
GO:0050851 Antigen receptor-mediated signaling 

pathway 
21.1 0.003839 

 
GO:0070092 Regulation of glucagon secretion 211 0.004714 
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    Figure 9: Protein-Protein Interaction Network 

 

 

 

  

 

 

 

 

 

Figure 10: PPI Network of Top 10 Hub Genes 
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Table 5: MCC Ranking of Top 10 Hub Genes 

 

 

3.4    Drug Interaction 

DGidb database was used to query the DEGs against the DrugBank to mine drugs that target 

genes that could be utilized for treatment against tuberculosis. A total of 187 drugs targeting 14 

DEGs were obtained from the process of the screening. Only the approved drugs that are used 

to treat a particular disease were selected (Appendix 1). Among them, each drug showed 

interactions with some of the target genes with NRG1 showing interaction with 45 drugs, CD19 

having 40 drug interactions, BLK showing interaction with 34 drugs, CACNA1I with 21 drug 

interactions, HPSE  with interactions with 17 drugs, ADM with 8 drugs interactions, DHRS9 have 

interactions with 7 drugs, CEACAM1 and BMX with 4 drugs interactions each, SERPING1 and 

PASK showed interactions with 2 drugs each, ATF3, LAP3 and CXCR5 have interaction with 1 

drugs each, other genes does not show any drug interaction.  all the identified drugs are 

inhibitors in their interaction type (Figure 11). 

  

Rank Gene Name MCC Score 
1 GBP5 99 

2 GBP1 86 

3 BATF2 73 

4 EPSTI1 48 

4 PARP9 48 

6 FCGR1B 30 

7 SERPING1 24 

7 LAP3 24 

9 ANKD22 14 
10 ETV7 12 
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Figure 11: Summary of Drugs Interactions with Target Genes  

 

3.5 RNA-Seq Datasets Analysis  

To validate the results and to assess the key genes more thoroughly, GEO2R was used to 

analysis 2 RNA-Seq datasets (GSE107991 and GSE107994), the results produced 316 DEGs 

including 280 upregulated and 36 downregulated, the volcano plot and Venn diagram are shown 

in figure 12 and figure 13 respectively. The GO and pathway enrichment analysis revealed 

enrichment in biological regulation, membrane and protein binding including innate immune 

response is the most enriched pathway (Figure 14 and 15) respectively. Through PPI 

construction and MCC ranking additional 10 hub genes were generated which include, IFIT3, 

STAT1, ISG15, OAS1, PARP9, GBP1, IFI35, IRF7, RTP4 and OASL (Figure 16 and Table 6) of 

which PARP9 and GBP1 were already in the 4 microarray datasets analysed. 
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Figure 12: Volcano plots of RNA-Seq Data. (a) represents the volcano plot for GSE107991, (b) 

is for GSE107994 (Red dots signify upregulated genes, blue dots for downregulated 

genes and black dots for not significant. 

     

 

 

 

 

 

 

Figure 13: Venn Diagram of DEGs common to the 2 RNA-Seq datasets. (a) represents Venn 

diagram of upregulated genes (b) is for the downregulated genes. 
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Figure 14: Gene Oncology Analysis of RNA-Seq Datasets. (a) Biological Process (BP) (b) 

Cellular Component (CC) (c) Molecular Functions (MF). 

 

 

 

 

 

 

Figure 15: KEGG Pathways of RNA-Seq Datasets (at FDR < 0.05 which signifies true 

enrichment) 

  

 

 

 

 

 

 

Figure 16: PPI Network of Top 10 Hub Genes for the RNA-Seq Datasets 

a b c 
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Table 6: MCC Ranking of Top 10 Hub Genes for RNA-Seq Datasets 

Rank Gene Name MCC Score 
1 IFIT3 7.015 

1 STAT1 7.015 

3 ISG15 7.015 

4 OAS1 7.015 

5 PARP9 7.015 

6 GBP1 7.015 

7 IFI35 7.015 

8 IRF7 7.015 

9 RTP4 7.015 
10 OASL 7.015 
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CHAPTER FOUR 

DISCUSSION 

This study included 4 microarray gene expression profile datasets and 2 RNA-Seq datasets as 

a validation cohort. All the included datasets are publicly available from the GEO database. All 

the datasets included active tuberculosis patients and healthy control groups in their samples, 

and they had more than 5 participants in each sample. The bioinformatics analysis was done to 

identify the molecular signature in Mtb which is the causative agent of tuberculosis.  

Tuberculosis has been one of the major concerns for public health worldwide because of its 

threat to health for many years, its drug resistance ability and it is one of the leading causes of 

mortality worldwide. Therefore, identification of the core genes in Mtb could be a good 

development in the early diagnosis and treatment of tuberculosis, help to overcome the drug 

resistance of tuberculosis and improve advancement in the development of vaccines and new 

drugs targeting the core genes responsible for tuberculosis.  

4.1 Summary of Key Findings 

The findings in this study agreed with many studies such as a study conducted by Shi et al., 

(2022) which reported GBP1 to be upregulated in tuberculosis patients (Shi et al., (2022). Yao 

et al., (2022); Ponnusamy and Arumugam, (2022) in their studies identified GBP5 protein levels 

as being significantly upregulated in tuberculosis patients than non-tuberculosis patients (Yao et 

al., 2022; Ponnusamy and Arumugam, 2022)). Chen et al., (2019) also confirmed GPB5 and 

GBP1 as part of the top 10 hub genes in their studies, however, it was stated to be 

downregulated in ATB (Chen et al., 2019). Guanylate binding proteins (GBPs) which include 

(GBP 1 – 7) belong to the GTPase subfamily, they are primarily induced by interferon gamma 

(IFN-γ). They are involved in numerous critical cellular processes, such as the activation of 

inflammasomes and innate immunity against a broad range of microbial pathogens (Li et al., 

2020). The high expression of GBP5 and GBP1 suggests that they may play a potential role as 

immune biomarkers for early detection and targeted TB treatment. 

This study also identified BATF2 (Basic Leucine Zipper Transcription Factor 2) as one of the top 

10 hub genes that are upregulated in ATB patients. In a blood transcriptomic study of pulmonary 

and extrapulmonary tuberculosis conducted by Roe et al., (2016), it was also reported that 

BAFT2 levels were elevated in ATB compared to uninfected healthy individuals (Roe et al., 

2016). BATF2 was also reported by Ponnusamy and Arumugam, (2022) to be upregulated and 
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one of the top 20 DEGs associated with Mtb (Ponnusamy and Arumugam, 2022).  BATF2 is a 

transcription factor that is part of the activator protein 1 (AP-1) family. It is expressed in 

mononuclear phagocytic cells in response to IFN-stimulated innate immunity using 

lipopolysaccharide or Mtb. BATF2 mediates downstream proinflammatory responses through its 

interaction with IFN regulatory factor 1 (IRF1); some of these responses are also identified as 

elements of the host response to Mtb (Murphy et al., 2013; Roy et al., 2015). This research 

project proposes that BATF2 can also provide a sensitive biomarker to differentiate healthy 

individuals from tuberculosis-infected patients. 

The findings of the drug interaction with the genes identified that Indomethacin and Celecoxib 

drugs, a nonsteroidal anti-inflammatory drug (NSAID) target ADM and CACNA1I genes 

respectively and Ibrutinib drug, an antineoplastic agent targets BMX gene. In a study published 

by Tonby et al., (2016), it was reported that Indomethacin downregulates the fraction of 

FOXP3+T regulatory cells specific to Mtb significantly and Mtb-specific cytokine responses in 

ATB patients (Tony et al., (2016). Naftalin et al., (2018) in their study suggested that Celecoxib 

(a COX-2 inhibitor) may help treat tuberculosis through a variety of mechanisms, such as 

enhancing intracellular tuberculosis drug levels through efflux pump inhibition and having 

various effects on inflammation and the immune system (Naftalin et al., 2018). Hu et al., (2020) 

in their study conducted on mice reported that Ibrutinib inhibited the growth of intracellular Mtb 

in human macrophages. Also, Ibrutinib treatment dramatically reduced p62 and increased LC3b 

proteins in Mtb-infected macrophages, according to mechanisms studies. They finally verified 

that the administration of ibrutinib considerably decreased the amount of Mtb in the spleen and 

mediastinal node of mice infected with Mtb (Hu et al., 2020). This research project suggests that 

the potential capacity of these drugs to treat tuberculosis can be further investigated to develop 

more and advanced treatments for tuberculosis. 
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CHAPTER FIVE 

CONCLUSION AND RECOMMENDATIONS  

5.1 Conclusion 

This study has employed genome-wide transcriptomic analysis to highlight the molecular 

signature, pathways, PPI and drug targets which are crucial for understanding tuberculosis 

disease and advancement in therapy. The findings have revealed that biological regulation, 

response to stimulus, membrane, endomembrane system, vesicle and protein binding, including 

regulation of innate immune response, positive regulation of immune response, response to 

biotic stimulus and innate immune response are common molecular signature in Mycobacterium 

tuberculosis. Further analysis also revealed involvement of paramethadione, negative regulation 

of glycogen biosynthetic process, negative regulation of glycogen metabolic process including 

C-X-C chemokine receptor activity, regulation of glucagon secretion, B cell receptor signaling 

pathway, antigen receptor-mediated signaling pathway, immune response-regulating cell 

surface receptor signaling pathway. It was discovered that GBP5, GBP1 and BATF2 were 

upregulated in active tuberculosis patients and they are at the top of the 10 hub genes an 

indication that high expression of GBP5 and GBP1 may play a crucial role in the pathogenesis 

of Mycobacterium tuberculosis which may be a biomarker for early diagnosis while SERPING1, 

LAP3, ADM, CACNA1I and BMX may be helpful in drugs development for the treatment of 

tuberculosis disease. 

5.2 Recommendations 

Based on the findings in this study, the following recommendations are therefore suggested both 

for clinical and academic applications for the early diagnosis and treatment of tuberculosis: 

Conducting further functional investigations, like overexpression or knockdown tests, to confirm 

the biological relevance of discovered genes. Analysing their effects on the spread of the 

disease, host response, and tuberculosis infection can add to the understanding of the disease 

mechanism. In addition, combining data from various omics platforms (genomics, 

transcriptomics, proteomics, and metabolomics) to obtain a thorough grasp of the molecular 

processes driving tuberculosis. This all-encompassing method can provide fresh perspectives 

on the dynamics of disease and possible treatment targets. Finally, investigating how the 

identified genes affect immune cell function, cytokine production, and overall immune regulation 

during infection can help in the early diagnosis and treatment of tuberculosis. 
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5.3 Limitations 

One of the limitations faced during this study is the availability of well-annotated, high-quality 

datasets for tuberculosis which may impact the robustness of the analysis. Another limitation 

faced is the fold change threshold, genes with subtle but biologically significant changes may be 

overlooked in differential expression analysis if arbitrary fold change thresholds are set. In 

addition, functional enrichment analysis depends on pre-existing annotations, which might not 

include all biological pathways or functions, thus leaving important information out. Furthermore, 

gene expression data-based drug target prediction may miss off-target effects and other 

subtleties in drug action. Lastly, independent datasets were analysed using GEO2R as a 

validation cohort. While this is good for validating the findings, further experimental validation 

methods such as western blotting or qRT-PCR are necessary to confirm the biological 

significance and functional relevance of the genes identified. 

5.4 Future Research 

To confirm and build upon present findings in this study, future research on tuberculosis may 

pursue several directions. Potential study avenues and experiments include the following: To 

use animal models (guinea pigs, mice, etc.) to evaluate the in vivo significance of the discovered 

genes and therapeutic targets. Examine their roles in host-pathogen interactions, the 

pathophysiology of tuberculosis, and the effectiveness of possible treatment candidates. In 

addition, to work with medical professionals to obtain clinical samples to validate the expression 

patterns of the genes identified in tuberculosis patients and establish a relationship between the 

degree of gene expression and the course of the disease, its severity, and the response to 

therapy. Lastly, to further investigate if the identified drugs in this study can be used to treat 

tuberculosis, to determine their effectiveness against M. tuberculosis and to evaluate their safety 

profile through both in vitro and in vivo experiments. 
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APPENDICES 

Appendix 1: List of Drugs in the DrugBank and their Interactions with the DEGs 

Gene Drug Disease Treated 
Interaction 

score 

SERPING1 C1 ESTERASE INHIBITOR  Hereditary angioedema 29.49 

CEACAM1 ARCITUMOMAB Diagnostic agent 9.83 

CACNA1I PARAMETHADIONE Anticonvulsants 2.80 

ATF3 

 
 

PROGESTERONE 

 
 

For reducing the risk of preterm birth for 
women with short cervix a mid-pregnancy, for 
prevention of preterm delivery, for 
symptomatic treatment of menopausal 
symptoms, neuroprotectant for stroke victims 

2.22 

 
 

CACNA1I ETHOSUXIMIDE Anticonvulsants 1.12 

BMX IBRUTINIB Antineoplastic agent 0.86 

CD19 BLINATUMOMAB Antineoplastic agent 0.84 

 
TAFASITAMAB Antineoplastic agent 0,73 

CACNA1I TRIMETHADIONE Anticonvulsants 0.70 

ADM 
 

PAROXETINE 
HYDROCHLORIDE, 
HEMIHYDRATE Antidepressant 

 
0.64 

 

HPSE ASTEMIZOLE Anti-Allergic Agents 0.53 

HPSE LABETALOL Antihypertensive Agents 0.49 

ADM INDOMETHACIN NSAID(Non-steroidal anti-inflammatory drugs) 0.42 

CEACAM1 TRETINOIN For treatment of acne 0.35 

HPSE THROMBIN Topical tissue sealant 0.28 

ADM 
INSULIN, REGULAR, 
HUMAN 

For the treatment of diabetic foot ulcers, 
antidiabetics  0.28 

NRG1 PROGESTIN Contraceptive 0.23 

NRG1 AFATINIB Antineoplastic agent 0.21 

NRG1 PERTUZUMAB Antineoplastic agent 0.18 
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NRG1 BUPIVACAINE 
Local, Anesthetics, neuralgia, analgesic, local 
anestethic  0.17 

CACNA1I ZONISAMIDE 
Anticonvulsant, antipsychotic agent, appetite 
suppressant 0.12 

CACNA1I PREGABALIN 
For treatment of restless legs syndrome, 
neuropathic pain, analgessic 0.10 

CACNA1I GABAPENTIN ENACARBIL For treatment of restless legs syndrome 0.10 

BLK IBRUTINIB Antineoplastic agent 0.10 

NRG1 LAPATINIB Antineoplastic agent 0.10 

HPSE 
 

TINZAPARIN SODIUM 
 

For treatment of cystic fibrosis, pelvic pain of 
bladder origin and interstitial cystitis, 
antithrombotic, anticoagulant, Anticoagulants  

0.10 
 

NRG1 ISOPROTERENOL Bronchodilator Agents; Cardiotonic Agents 0.09 

CACNA1I CELECOXIB NSAID 0.08 

CACNA1I VERAPAMIL Antihypertensive agent 0.07 

CACNA1I GABAPENTIN 
Analgesic, for the treatment of neuropathic 
pain 0.07 

NRG1 CETUXIMAB Antineoplastic agent 0.07 

NRG1 PANITUMUMAB Antineoplastic agent 0.06 

NRG1 NICOTINE POLACRILEX Central Nervous System Stimulants 0.06 

NRG1 COLCHICINE For treatment of gout 0.05 

NRG1 

 

PROGESTERONE 

 

For reducing the risk of preterm birth for 
women with short cervix a mid-pregnancy, for 
prevention of preterm delivery, for 
symptomatic treatment of menopausal 
symptoms, neuroprotectant for stroke victims 

0.04 

 

NRG1 TAMOXIFEN Hormonal, Antineoplastic Agents 0.04 

BLK ERLOTINIB Antineoplastic agent 0.03 

NRG1 VINCRISTINE Antineoplastic agent 0.03 
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NRG1 DEXAMETHASONE 
For the treatment of Meniere’s disease, 
glucocorticoid, an anti-inflammatory agent 0.03 

NRG1 ASPIRIN NSAID 0.03 

NRG1 CYTARABINE Antineoplastic agent 0.03 

BLK DASATINIB ANHYDROUS Antineoplastic agent 0.02 

BLK GEFITINIB Antineoplastic agent 0.02 

NRG1 ERLOTINIB Antineoplastic agent 0.02 

BLK SORAFENIB Antineoplastic agent 0.01 

NRG1 GEMCITABINE Antineoplastic agent 0.01 

NRG1 
 

PACLITAXEL 
 

For treatment of peripheral arterial disease 
(PAD), DMARD, anti-inflammatory agent, 
antineoplastic agent 

0.01 
 

  

 


	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	CHAPTER ONE
	INTRODUCTION
	1.1  Background of the Study
	1.2  Epidemiology of Mycobacterium tuberculosis
	1.3 Mycobacterium tuberculosis Species
	1.4 Molecular Signature of Mycobacterium tuberculosis
	1.5 Genome-Wide Transcriptomic Analysis of Mycobacterium tuberculosis
	1.6 Genomics and Discovery of Host Biomarkers
	1.7 Transcriptomics and Discovery of Host Biomarkers
	1.8 Functional Linkages in Mycobacterium tuberculosis
	1.9 Significance of the Study
	1.10 Scope and Objectives of the Study
	1.11 Organisation of the Study

	CHAPTER TWO
	METHODOLOGY
	2.1 Research Design
	2.2 Data Collection and Preparation
	2.3 Dataset Features
	2.4 Differentially Expressed Genes (DEGs) Analysis
	2.5 Functional Annotations and Pathway Analysis
	2.6 Protein-Protein Interaction (PPI) Network Construction
	2.7 Identification of Hub Genes
	2.8 Drug Interactions
	2.9 RNA-Seq Datasets

	CHAPTER THREE
	RESULTS
	3.1 Identification of DEGs
	3.2   Functional Enrichment Analysis
	3.3    Protein-Protein Interaction Network Construction
	3.4    Drug Interaction
	3.5 RNA-Seq Datasets Analysis

	CHAPTER FOUR
	DISCUSSION
	4.1 Summary of Key Findings

	CHAPTER FIVE
	CONCLUSION AND RECOMMENDATIONS
	5.1 Conclusion
	5.2 Recommendations
	5.3 Limitations
	5.4 Future Research

	ACKNOWLEDGEMENTS
	REFERENCES
	APPENDICES

