IJSER Home >> Journal >> IJSER
International Journal of Scientific and Engineering Research
ISSN Online 2229-5518
ISSN Print: 2229-5518 2    
Website: http://www.ijser.org
scirp IJSER >> Volume 1, Issue 2, November-2010
The Insulin Bio Code - Standard Deviation
Full Text(PDF, 3000)  PP.  
Author(s)
Lutvo Kuri
KEYWORDS
human insulin; bio code; standard deviation; genetics code; amino acids code;
ABSTRACT
This paper discusses cyberinformation studies of the amino acid composition of insulin, in particular the identification of scientific terminology that could describe this phenomenon, ie, the study of genetic information, as well as the relationship between the genetic language of proteins and theoretical aspect of this system and cybernetics. The result of this research show that there is a matrix code for insulin. It also shows that the coding system within the amino acidic language gives detailed information, not only on the amino acid "record", but also on its structure, configuration and its various shapes. The issue of the existence of an insulin code and coding of the individual structural elements of this protein are discussed. Answers to the following questions are sought. Does the matrix mechanism for biosynthesis of this protein function within the law of the general theory of information systems, and what is the significance of this for understanding the genetic language of insulin? What is the essence of existence and functioning of this language.
References
[1] K.C. Chou, Gene Cloning & Expression Technologies, Chapter 4 (Weinrer, P.W.,and Lu, Q., Eds.), Eaton Publishing, Westborough, MA (2002), pp. 57-70.

[2] K.C. Chou, Prediction of protein cellular attributes using pseudo amino acid composition PROTEINS: Structure, Function, and Genetics (Erratum: ibid., 2001, Vol.44,60) 43 (2001) 246-255.

[3] X. Xiao, S. Shao, Y. Ding, Z. Huang, Y. Huang, K. C. Chou, Using complexity measure factor to predict protein subcellular location, Amino Acids 28 (2005) 57-61.

[4] X. Xiao, S. Shao, Y. Ding, Z. Huang, X. Chen, K. C. Chou, Using cellular automata to generate Image representation for biological sequences, Amino Acids 28 (2005) 29-35.

[5] X. Xiao, S. Shao, Y. Ding, Z. Huang, X. Chen, K. C. Chou, An Application of Gene Comparative Image for Predicting the Effect on Replication Ratio by HBV Virus Gene Missense Mutation, Journal of Theoretical Biology 235 (2005) 555-565.

[6] X. Xiao, S. H. Shao, Z. D. Huang, K. C. Chou, Using pseudo amino acid composition to predict protein structural classes: approached with complexity measure factor, Journal of Computational Chemistry 27 (2006) 478-482.

[7] X. Xiao, S. H. Shao, Y. S. Ding, Z. D. Huang, K. C. Chou, Using cellular automata images and pseudo amino acid composition to predict protein sub-cellular location, Amino Acids 30 (2006) 49-54.

[8] K. C. Chou, Using amphiphilic pseudo amino acid composition to predict enzyme subfamily classes, Bioinformatics 21 (2005) 10-19.

[9] K. C. Chou, Y. D. Cai, Prediction of membrane protein types by incorporating amphipathic effects, Journal of Chemical Information and Modeling 45 (2005) 407-413.

[10] Z. P. Feng, Prediction of the subcellular location of prokaryotic proteins based on a new representation of the amino acid composition, Biopolymers 58 (2001) 491-499.

[11] Z. P. Feng, An overview on predicting the subcellular location of a protein, In Silico Biol 2 (2002) 291-303.

[12] M. Wang, J. Yang, Z. J. Xu, K. C. Chou, SLLE for predicting membrane protein types, Journal of Theoretical Biology 232 (2005) 7-15.

[13] S. Q. Wang, J. Yang, K. C. Chou, Using stacked generalization to predict membrane protein types based on pseudo amino acid composition, Journal of Theoretical Biology, in press (2006) doi:10.1016/j.jtbi.2006.1005.1006.

[14] M. Wang, J. Yang, G. P. Liu, Z. J. Xu, K. C. Chou, Weighted-support vector machines for predicting membrane protein types based on pseudo amino acid composition, Protein Engineering, Design, and Selection 17 (2004) 509-516.

[15] S. W. Zhang, Q. Pan, H. C. Zhang, Z. C. Shao, J. Y. Shi, Prediction protein homooligomer types by pseudo amino acid composition: Approached with an improved feature extraction and naive Bayes feature fusion, Amino Acids 30 (2006) 461-468.

[16] Y. Gao, S. H. Shao, X. Xiao, Y. S. Ding, Y. S. Huang, Z. D. Huang, K. C. Chou, Using pseudo amino acid composition to predict protein subcellular location: approached with Lyapunov index, Bessel function, and Chebyshev filter, Amino Acids 28 (2005) 373-376.

[17] Y. Z. Guo, M. Li, M. Lu, Z. Wen, K. Wang, G. Li, J. Wu, Classifying G proteincoupled receptors and nuclear receptors based on protein power spectrum from fast Fourier transform, Amino Acids 30 (2006) 397-402.

[18] H. Liu, M. Wang, K. C. Chou, Low-frequency Fourier spectrum for predicting membrane protein types, Biochem Biophys Res Commun 336 (2005) 737-739.

[19] K. C. Chou, Prediction of protein subcellular locations by incorporating quasisequence-order effect, Biochemical & Biophysical Research Communications 278 (2000) 477-483.

[20] K. C. Chou, A novel approach to predicting protein structural classes in a (20-1)-Damino acid composition space, Proteins: Structure, Function & Genetics 21 (1995) 319-344.

[21] K. C. Chou, C. T. Zhang, Predicting protein folding types by distance functions that make allowances for amino acid interactions, Journal of Biological Chemistry 269 (1994) 22014-22020.

[22] K. C. Chou, C. T. Zhang, Review: Prediction of protein structural classes, Critical Reviews in Biochemistry and Molecular Biology 30 (1995) 275-349.

[23] K. C. Chou, D. W. Elrod, Protein subcellular location prediction, Protein Engineering 12 (1999) 107-118.

[24] K. C. Chou, Review: Prediction of protein structural classes and subcellular locations, Current Protein and Peptide Science 1 (2000) 171-208.

[25] K. C. Chou, D. W. Elrod, Prediction of membrane protein types and subcellular locations, PROTEINS: Structure, Function, and Genetics 34 (1999) 137-153.

[26] K. C. Chou, D. W. Elrod, Prediction of enzyme family classes, Journal of Proteome Research 2 (2003) 183-190. [27] K. C. Chou, Y. D. Cai, Predicting enzyme family class in a hybridization space, Protein Science 13 (2004) 2857-2863.

[28] K. C. Chou, D. W. Elrod, Bioinformatical analysis of G-protein-coupled receptors, Journal of Proteome Research 1 (2002) 429-433.

[29] K. C. Chou, Prediction of G-protein-coupled receptor classes, Journal of Proteome Research 4 (2005) 1413-1418. [30] K. C. Chou, Y. D. Cai, Prediction of protease types in a hybridization space, Biochem. Biophys. Res. Comm. 339 (2006) 1015-1020.

[31] K. C. Chou, Y. D. Cai, Predicting protein-protein interactions from sequences in a hybridization space, Journal of Proteome Research 5 (2006) 316-322.

[32] K. C. Chou, Y. D. Cai, W. Z. Zhong, Predicting networking couples for metabolic pathways of Arabidopsis, EXCLI Journal 5 (2006) 55-65.

[33] K. C. Chou, Y. D. Cai, Predicting protein quaternary structure by pseudo amino acid composition, PROTEINS: Structure, Function, and Genetics 53 (2003) 282-289.

[34] L.Kuri􀂰, The digital language of amino acids. Amino Acids (2007) 653-661.

[35] L.Kuri􀂰, The Atomic Genetic Code. J. Comput Sci Biol 2 (2009) 101-116.

[36] L.Kuri􀂰, Mesure complexe des caracteristiques dynamiques de series temporelles “Journal de la Societe de statistique de Paris”- tome 127, No 2.1986.

[37] L.Kuri􀂰, The Insulin Bio Code - Zero Frenquencies, GJMR Vol. 10 Issue 1: 15 May 2010.

[38] L.Kuri􀂰, Molecular biocoding of insulin, Advances and Applications in Bioinformatics and Chemistry, Jul. 2010.p.45 – 58.

[39] L.Kuri􀂰, The Insulin Bio Code – Prima sequences, GJMR Vol. 1 Issue 1: 15 June 2010.

[40] L.Kuri􀂰, ATOMIC HEMOGLOBIN CODE, GJMR Volume 10 Issue 2, October 2010.

[41] L.Kuri􀂰, Language of Insulin Decoded:Discret code 1128, IJPBS JOURNAL, October 2010.

[42] L.Kuri􀂰, „Measures of Bio Insulin Frequencies“, IJCSET (Volume 1. Issue 4. December, 2010)

Untitled Page