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NOMENCLATURE 
 

 S t              The number of susceptible individuals at time t 

 E t             The number of exposed individuals at time t 

 I t            The number of infective individuals at time t 

 R t             The number of recovered individuals at time t 

0I                  Initial value of the infective class 

0S                 Initial value of the susceptible class 

maxI               The maximum (possible) number of the infective class  

S                 The number of susceptible individuals after the epidemic 

N                 The total size of the population 

r                   The rate of infection of the susceptible class per unit time 

                  The rate of infection of the susceptible class per unit time 

a                   The rate of removal of the infective class per unit time 

                  The rate at which the exposed become infective per unit time 

0R                 The basic reproduction number 

R                  The replacement number  

                  The contact number 

             The death rate. 
1 
is life expectancy 

ℝ2
           2-dimensional Euclidean space 

L             Average life expectancy 
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ABSTRACT 

This study employed the SIR and SEIR models to mathematically study and describe the 

epidemiology of measles in six states representing each of the geo-political zones of Nigeria.   

A dynamical system‘s long term behavior is of paramount biological importance. This behavior 

is known through the mechanism of stability analysis. This work established the necessary 

condition for the system to be stable. 

Qualitative analysis allowed the exploration of the dynamics of the disease without solving the 

systems. Important parameters with threshold values helped determine under what condition an 

epidemic is possible. For a wholly susceptible population, this parameter is the basic 

reproduction number while the replacement number is the threshold parameter for a population 

that is not wholly susceptible.  

Numerical simulations were done using MatLab 7.10.0.499 (R2010a) while Math Type 6.9 was 

used for writing the equations. The data used was obtained from the Surveillance Branch, 

Epidemiology Division, Nigeria Center for Disease Control, Federal Ministry of Health, Abuja.  

Although basic, the SIR model is insightful into the mechanism of measles vis-à-vis the 

constituting compartments but handicapped in adequately describing the incidence of measles in 

the regions studied. A closer representation of the biology of the disease vis-à-vis its evolution is 

captured by the SEIR model. Although, it is an improvement of the SIR model, without vital 

dynamics, it is inadequate in describing the measles incidence of the regions. However, the 

model with vital dynamics rescued the cyclic repetition observed in time series plot of measles 

incidence. Consequently, it is the model that is closest to the reality of the incidence data in spite 

of its inability to sustain the observed oscillations. 
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1.0     CHAPTER ONE 
 

1.1  INTRODUCTION 
 

Measles is an infectious (contagious) disease of the respiratory system. The virus causing 

measles belongs to the Paramyxoviridae family and genus Morbilivirus. This virus lives in the 

mucus in the nose and throat. According to the Centre for Disease Control (CDC), when an 

infected person sneezes or coughs, fluid droplets spray into the air. These droplets can get into 

other people‘s noses or throats when they breathe or put their fingers in the mouth or nose after 

touching an infected surface. Measles is particularly a human disease as it is not known to have 

an animal reservoir (Bradsher et al, 2006; WHO [42]). 

Measles is characterized by fever which reaches its maximum on the fourth day, cough, 

sneezing, running nose, conjunctivitis (red itchy eye), Koplik‘s spots (tiny white lesions on the 

inside of the cheek) and the measles rash which begins on the back of the ears before spreading 

to cover most of the body. The measles bulletin as reported by Bradsher et al (2006) posit that 

40% of the 3 million deaths among children each year is attributable to this vaccine preventable 

disease while the World Health Organization [42] reports that there were 158,000 measles deaths 

(mostly children) globally in 2011. This translates to about 430 deaths every day or 18 deaths 

every hour. 

Over the past one hundred years, mathematics has been used to understand and predict the spread 

of diseases, relating important public health questions to basic transmission parameters (Bakare 

et al 2012). Although the dynamics of disease appear to be very complex as observed by Lewis 

(2004), simple mathematical models can be used to understand features governing the outbreak 
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and persistence of an infectious disease as it provides a framework for data analysis and 

interpretation (See McLean and Anderson, 1988).  

Hethcote (2005) observed that in our days, any work related to an illness needs the use of 

mathematical models. Hinged on the advantage of mathematical models is that the results can be 

evaluated and compared to known data. This affords the opportunity to identify a model‘s 

strength and weakness. 

Given the above observation by Hethcote, this study focused on the study of the Kermack - 

Mckendrick SIR (Murray, 2002) model and the SEIR (Anderson and May, 1982; Trottier and 

Philippe, 2002) epidemiology models. The SIR model is a Susceptible-Infective-Removed (SIR) 

compartmental model. It assumes that a population can be divided into three mutually exclusive 

classes. Those who are vulnerable to the disease are in the susceptible class, those who can 

transmit the disease to others are in the infective class while those who are immune are in the 

recovered class (Glenn, 2005). The SEIR model, unlike the SIR has an extra compartment for 

those who have the virus but cannot yet transmit the disease to others. The SEIR model is 

considered with and without vital dynamics. 

A more detailed model will be a better description of a specific disease. It will however require 

more parameters. Given that data are often inaccurate and incomplete due to underreporting and 

misdiagnosis, a simple model may give better predictions (Brauer, 2004). It is to this end that the 

SIR and SEIR models were considered. 

This study explored the dynamics of an infectious disease as captured by the SIR and SEIR 

epidemiology models and then applied it to the available measles data of Nigeria. 
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1.2  WHY EPIDEMIOLOGICAL MODELING? 
 

According to the Encyclopedia and Dictionary of Medicine, Nursing and Allied Health, 

epidemiology is "the science concerned with the study of the factors determining and influencing 

the frequency and distribution of disease, injury and other health-related events and their causes 

in a defined population for the purpose of establishing programs to prevent and control their 

development and spread". Given that measles is conventionally thought of as belonging to the 

exclusive domain of medicine because it is a disease, why would mathematics attempt to usurp 

this established medical province?  

There is a sense in which Mathematical modeling can be described as the link that connects 

mathematics to other disciplines. Focusing on diseases and borrowing from Hethcote (2005), 

mathematical modeling has significant and profound contributions to make to the study and 

understanding of infectious diseases. These include but are not limited to: 

• Mathematical modeling allows an exploration of the effects of different assumptions and 

formulations 

• The model‘s behavior can be analyzed using mathematical methods and computer 

simulations 

• It can be used to compare diseases of different types or at different times or in different 

populations 

• Mathematical modeling is useful for theoretical evaluation, comparison and optimization 

of detection, prevention and control programs 

• It can be used to identify trends, and to make forecasts 

• Results can be evaluated and compared to empirical data. This helps identify a model‘s 

strength and weakness 
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• Models can also be extremely useful in giving reasoned estimates for the level of 

vaccination for the control of directly transmitted infectious diseases (Murray, 2002). 

For an in-depth discussion of the importance of mathematical epidemiological modeling, see 

Hethcote (2005). 

1.3  MEASLES TREND IN NIGERIA (1980 – 2011)  
 

The country experienced measles incidence in excess of 115,000 per annum in the first 7 years 

culminating in 1986 with a high of 182591 in 1984. A marked reduction followed with an 

upsurge every four years in excess of 106000. 

According to the WHO key facts [42], measles vaccination resulted in 71% drop in measles 

death between 2000 and 2011 worldwide. The corollary of the vaccination is that the incidence 

of the disease will decrease. However, it is to be noted that a significant effect of this vaccination 

efforts would only be felt from 2006 onwards with an all-time low of 704 in 2006 and a high of 

18843 in 2011 which is relatively insignificant when compared with the 1980 – 1986 period. It 

can thus be said that measles is currently endemic (always present) in Nigeria.  
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Figure 1.1     Measles trend in Nigeria (1980 - 2011). The data is available at 
http://www.who.int/entity/immunization_monitoring/data/incidence_series.xls  
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1.4  LITERATURE REVIEW 

 
 

One of the earliest written descriptions of measles as a disease according to the CDC was 

provided by Rhazes - a Persian physician in the 10
th
 century. He described the disease as "more 

dreaded than smallpox". According to the CDC, and Axton (1979), Francis Home, a Scottish 

physician demonstrated in 1757 that measles was caused by an infectious agent present in the 

blood of patients while Enders and Peebles isolated the virus that causes measles in 1954 at 

Boston, Massachusetts. 

Murray (2002) used the SIR model on the 1978 influenza epidemic in an English boarding 

school reported in the British medical journal, The Lancet. A best fit numerical technique was 

used directly on the equations of the system for comparison with the available data. Though 

Murray did not give an indication as to how the parameters were estimated, he concluded that the 

epidemic was severe since R/σ is not small. Keeling and Rohani (2008) however used the least 

squares procedure to estimate the parameters from the data and concluded that the model 

dynamics with the estimated parameters was in good agreement with the data. 

Raggett (1982) applied the SIR model and a comparative stochastic model to the 1665 – 1666 

outbreak of plague in the village of Eyam in England. Murray(2002), in reporting him, made the 

case that the comparison between the solutions from the deterministic model and the Eyam data 

was very good as it was better compared to the result obtained from the comparative stochastic 

model. The work showed how to determine the parameters from the available data and 

knowledge of the etiology of the disease.  
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Hirst et al (1977) constructed an engineering-economic model to simulate energy use on an 

annual national basis from 1970 to 2000. The aim was to provide an analytical tool that enables 

an evaluation of a variety of energy conservation policies and technological improvements vis-à-

vis how they impact on residential energy use and expenditures over time. The study concluded 

that the model developed performed very well given the model‘s outputs with historical data for 

1960 – 1974 and with other forecasts to 2000. 

Hethcote (2005), Asor and Ugwu (2011) credited Daniel Bernoulli, a physician with the earliest 

account of mathematical modeling of the spread of disease. Bernoulli formulated and solved a 

model for smallpox so as to evaluate the effectiveness of inoculation with the smallpox virus. 

According to Asor and Ugwu, Bernoulli's study showed that inoculation against smallpox would 

increase the life expectancy from 26 years 7 months to 29 years 9 months. 

 

That deterministic epidemiology modeling seems to have started in the 20
th
 century finds an echo 

in Hethcote (2005). He gave the example of Hamer who formulated and analyzed a discrete time 

model in 1906 in an attempt to understand the recurrence of measles epidemics and Ross who 

interested in the incidence and control of malaria, developed differential equations model for 

malaria as a host-vector disease in 1911. 

 

Scholars of Mathematical Modeling (Murray, 2002; Brauer, 2004; Hethcote, 2005) affirm the 

work of Kermack and McKendrick on epidemic models and the major influence it had on the 

development of epidemiological modeling scholarship. The classic SIR model owes its existence 

to Kermack and McKendrick.  

 

A modified SIR model was used to simulate infectious disease dynamics in Rivers State, Nigeria 

over a ten year period (2000 – 2009). This study, using a comprehensive epidemiological data 
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from the Federal Ministry of Health, analyzed the model and concluded that equilibrium analysis 

helps to investigate whether disease spread could attain pandemic level or it could be wiped out 

(Asor  and Ugwu,  2011). It is to be noted that the nature of the infectious disease(s) investigated 

was not explicitly given.  

 

Bakare et al (2012) used a deterministic, compartmental SEIR model to simulate the dynamics of 

the transmission of measles on a variable size population that is homogeneously mixing. The 

study addressed the stability of the disease-free and endemic equilibrium and carried out 

numerical simulation.  

 

Tuberculosis disease population dynamics was simulated based on the standard theory of SIR by 

Koriko O. and Yusuf T.T (2008). The work showed the disease free equilibrium to be stable 

while the stability of the endemic equilibrium is a function of the model parameter values. 

 

Apostolou Maria (2011) used the deterministic SIR and SEIR models with both constant and 

variable contact rate to simulate the dynamics of measles. Her comparative study focused on 

New York, Portsmouth and London. The simulation for New York compared well to the data 

while those for Portsmouth and London were not as good.  

 

Macdonald et al (2012) studied disease spread over a network using the SIR model. The study 

showed that the ability of a centrality measure to identify spreaders can be sensitive to the 

parameter and that given a  value above the epidemic threshold, eigenvector centrality performs 

very well.  

 

The A/H1N1 – 2009 virus pandemic was studied by Rodriguez-Meza (2012) using the SIR 

model and the available data for Mexico. The study showed that the parameters used are in 
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agreement with the ones obtained by fitting the Mexican data. Consequently, the study made 

predictions about the spatial and temporal behavior of the epidemic 

 

It is to be noted that this review of literature is not an exhaustive and definitive rendition of 

scholarship on epidemiology modeling given that the literature is extensive and growing steadily. 

1.5  STATEMENT OF THE PROBLEM 
 

On the one hand, although global incidence has been significantly reduced through vaccination, 

measles remains an important public health problem while on the other hand, the persistence of 

measles in many African countries points to the need to further investigate the dynamics of the 

disease epidemics in endemic areas (Grais et al, 2006).  

1.6  OBJECTIVES OF THE STUDY 
 

1. To analyze the Kermack-McKendrick model 

2. To describe measles dynamics (the evolution of measles with time) with the SIR and 

SEIR (with and without vital dynamics) models and examine the extent to which they 

describe the incident of measles as represented by the epidemiology data for the regions. 

3. To examine the long-term behaviour of the solutions 

4. To compare the numerical simulations of the models 
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1.7 SIGNIFICANCE OF THE STUDY 
 

1. It will add to the available literature in helping to understand the dynamics of measles 

2. Public health policy decision makers will have a tool for the evaluation of the 

effectiveness of control measures in the country 

1.8  LIMITATIONS OF THE STUDY 
 

1. According to WHO, disease incidence data usually represent only a fraction of the cases. 

This means that data are often incomplete and inaccurate because of under-reporting and 

misdiagnosis (Brauer, 2004). However, the collected data are useful in monitoring trends.  

2. It is to be noted that an epidemiological model is a simplification of reality.  

3. The absence of age-dependent population in the models as would be expected of measles 

is consequent on the lack of specific age-stratified data. 

4. The assumption of a homogenously  mixing  population  
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2.0      CHAPTER TWO 
 

This chapter presents the SIR and the SEIR models to be studied.  

2.1   THE KERMACK-MCKENDRICK MODEL 
 

The Kermack-McKendrick model (Murray, 2002) is a compartmental model with three basic 

classes.  These are: 

 Susceptible ( S ) 

 Infective ( I ) 

 Removed ( R ) 

As the schematic diagram below shows, this model is formulated in terms of the rates of flow of 

members of the population between compartments. There is a flow from S  to I  representing the 

rate of new infections and a flow out of I  representing the rate of recovery. Mathematically, 

these rates of change are described as derivatives with respect to time t (Brauer, 2004). The right 

hand side of equation (1.1) gives the evolution rules for each compartment. 

 

 

 

 

The susceptible are lost at a rate proportional to the number of Infective and Susceptible, rSI  

where 0r  is the rate of infection. The gain in the infective class is also at this rate while the 

rate at which the infective are lost to the Recovered class is aI where 0a  gives the removal rate 

of infective. 

   

rSI aI 
I S R 

 

Figure 0.1   A schematic diagram of the SIR model. The boxes give compartments. The arrows  

                       indicate the disease progression while the dotted lines indicate the interaction between  

                       the different compartments. 
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Hence the model is  

dS
rSI

dt

dI
rSI aI

dt

dR
aI

dt

 

 



  (1.1) 

 with initial conditions                   0 00 0,    0 0,    0 0S S I I R                           (1.2) 

The constant population size is built into the system. Adding the equations making up the system 

(1.1) yields                                   0
dS dI dR

dt dt dt
              

                          S t I t R t N         (1.3) 

Thus, upon determining  S t  and  I t ,  R t can be determined as      R t N S t I t    

We can then consider the coupled system  

 

dS
rSI

dt

dI
rSI aI

dt

 

 

  (1.4) 

With initial conditions     0 0    0 0,    0 0S S I I      (1.5) 
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According to the initial conditions:  

 The number of Susceptible at time 0t   is greater than zero. If otherwise, the disease cannot 

spread as there is no population to be infected. 

 The number of Infective at time 0t   is greater than zero. If it were zero, the disease is absent 

in the population and consequently there won't be any dynamics to study. 

 The number of Recovered is zero. At this initial time, no member of the population has 

recovered from the disease which is yet to be transmitted. 

2.2   ASSUMPTIONS OF THE MODEL 
 

The assumptions upon which this model is based are: 

i. The population size N  is constant  

ii. The population consists of susceptible, infective and the removed.  

iii. The incubation period of the disease is short enough to be negligible. An individual who 

contracts the disease becomes infective immediately. This translates to zero latent period.  

iv. The population is uniformly mixing 

v. The infection rate is constant and the infective recovers at a constant rate 

vi. After recovery, lifelong immunity is conferred. 
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2.3  THE SEIR MODELS 
 

The SEIR model is a compartmental model with four basic classes.  These are: 

 Susceptible ( S ) 

 Exposed  ( E ) 

 Infective ( I ) 

 Removed ( R ) 

The flow pattern of this model is similar to that of the SIR described earlier say for an additional 

compartment (Exposed) between the Susceptible and the Infective compartments. For this 

model, the Susceptible who contracts the virus progresses to the Exposed compartment. The 

exposed, though having the virus cannot infect until after a given latent period when they 

become infective. The period between the time of exposure and the onset of infectiousness is the 

latent period. The SEIR model better captures the biology of measles than the SIR model. Two 

types of this model are considered in this study: the model without vital dynamics (no birth and 

death) and with vital dynamics (birth and death).  

The constants r and a  in equations (1.6) and (1.7) are equivalent to r and a of the SIR model and 

are defined as such, 0    is the rate at which the exposed become infected and 0   is the 

death rate.  

 

 

 

 
Figure 0.2   A schematic diagram of the SEIR Model. The boxes give compartments. The arrows indicate 
                      progression of compartment members while the dotted lines indicate the interaction  
                      between the different compartments. is equal to zero for the model without vital dynamics. 
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The model without vital dynamics (Trottier and Philippe, 2002) is 

 

dS
rSI

dt

dE
rSI E

dt

dI
E aI

dt

dR
aI

dt





 

 

 



  (1.6) 

The model with vital dynamics (Anderson and May, 1982) is  

 

 

 

dS
N S rSI

dt

dE
rSI E

dt

dI
E a I

dt

dR
aI R

dt

 

 

 



  

  

  

 

  (1.7) 

 With initial conditions           0 0 00 0,   0 = 0,  0 0,    0 0S S E E I I R        (1.8) 

The notations for the SEIR model with and without vital dynamics were modified from the one 

in the original paper to suit the nomenclature adopted for this study. 

2.4  ASSUMPTIONS OF THE SEIR MODELS 
 

i. The population size N  is constant. For the model with vital dynamics, the net input by 

births is equal to the net mortality. 

ii. The population consists of susceptible, exposed, infective and the removed.  

iii. The population is uniformly mixing 

iv. The parameters ,  and a r   are constants 

v. After recovery, lifelong immunity is conferred. 
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3.0      CHAPTER THREE 

 

3.1  INTRODUCTION 
 

If a small group of infected individuals 0 0I  is introduced into the population of S0, will the 

infection spread or not assuming we know r and a? In other words, will there be an epidemic? 

The domain of interest is in the infection spreading. Hence the task at hand is to describe how the 

infection will spread with time in the population. Will the number of those infected increase 

continuously with time? At what rate will this increment be? If it will not increase continuously 

with time, when will it begin to decline? What is responsible for this decline? And to what extent 

will it decline? Will every member of the population contract the disease? 

3.2   QUALITATIVE ANALYSIS  
 

This is a tool that helps to visually establish the long term behavior of the trajectories (solution 

curves) and its interplay with the model's parameter value(s). In studying dynamical systems, the 

use of phase portrait offers an invaluable tool in understanding the system‘s dynamics without 

actually solving the associated Differential Equations.  Braeur (2006) demonstrated that general 

epidemic models (the SEIR inclusive) have the same asymptotic behaviour as the SIR model. 

Hence, it suffices to examine the SIR model qualitatively without loss of generalization.  

Theorem 1: (Existence and Uniqueness of Trajectories) 

Consider an autonomous system of differential equations in ℝ2  

       ,   ,  ,
dx dy

f x y g x y
dt dt

    (1.9) 

with initial conditions     0 0x 0   ,  y 0x y    (1.10) 
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 If the functions    ,  and g ,f x y x y  have continuous first derivatives with respect to both x and 

y on a region say R in the xy-plane, then, the autonomous system (1.9) has exactly one trajectory 

through each point  0, ox y  in the interior of R. 

This theorem implies that geometrically, only one trajectory can pass through a point. 

Consequently, trajectories cannot cross each other. 

3.2.1 EQUILIBRIUM POINT(S) 
 

The critical or equilibrium point(s) for (1.9) is a solution of the algebraic equations  

    , 0,   g , 0f x y x y    (1.11) 

If *x  and *y  be the solutions of(1.11), then we have    * * and x t x y t y   as constant 

solutions of(1.9). The constant solutions are called equilibrium solutions or fixed points and they 

represent degenerate trajectory (they do not evolve as t increases). Equilibrium points represent 

the points for which the variables do not change with time.  

Thus, using(1.4) and (1.11) yields     

 
* *

* * *

0

0

rS I

rS I aI

 

 
  (1.12) 

which upon simplifying yields    * *0,    0I S    (1.13) 

Thus, the line 0I 
 
(positive S-axis) represents the domain of the equilibrium points for the 

system. Negative numbers are not considered for population.  
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3.2.2 NULL CLINE  
 

A curve in the phase plane on which the direction of evolution of solution curves all point in a 

direction parallel to a coordinate axis defines a null cline. Null clines are isoclines with

 g , 0x y  , whose path cuts the vertical axis with zero slope and  , 0f x y  whose path cuts 

the horizontal axis with infinite slope. 

For the S (horizontal axis) null cline   

                         , 0        0f x y rSI                                (1.14) 

So that 0,   0S I      are solutions since 0r    

For the I (vertical axis) null cline 

                                       
   g , 0        0x y rS a I                            (1.15) 

So that ,  0
a

S I
r

      are solutions since 0r    

 

 

 

 

 

The use of equation (1.4) enables us to determine whether S and I are decreasing or increasing 

in each section of the figure above. Along the I axis, ,     0
dI

aI S
dt

    . I  is thus a 

A B

A 

C 

B

D

C

E 

D

F

E

S

C

I

S
𝑎

𝑟
 

Figure 3.1     The and null clines. 
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decreasing function so that  0I  and  0I  along this axis, every solution tends towards the 

origin along this line. This is seen in figure 3.2 below. In A,  0,     0
dS

I
dt

    . Thus, in A

 0S     S  is increasing. It follows that in F, S is decreasing. 

A similar consideration yields the figure below showing the flow direction of S and I in each 

section. The computer algebra system generated figure 3.3 was achieved using ‗pplane8’ 

program in conjunction with Matlab 7.10.0.499 (R2010a). It will also be used for the phase plane 

diagram. The program pplane 8 was accessed on 13/05/2013 from http://math.rice.edu/~dfield/.  
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D 

C

E 
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C
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S
𝑎

𝑟
 

S ' = - r S I    

I ' = r S I - a I

r = .3

a = 1/6
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Figure 3.2 The null clines for the system showing the  
                      flow direction for the different sections. 

Figure 3.3    A computer generated version of fig 3.2. The coloured lines indicate the  
                     null clines while the arrows indicate the flow direction for each sector. 
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3.2.3 PHASE PORTRAIT 

 
 

The phase-portrait for the autonomous system (1.9) is the geometrical representation of all its 

trajectories (solution curve) on the phase plane. This phase plane is a two-dimensional space 

with coordinates for the dependent variables x and y. Given that one may not display all the 

trajectories, but a sketch of it, it is standard practice to use phase portrait to denote a sketch of it  

(Glenn, 2005).  

The differential equation (relating the dependent variables) for the phase portrait for (1.9) is 

given by  

 
 

 

,

,

dy

dt
dx

dt

g x ydy

dx f x y
    (1.16) 

As t increases, we cannot tell the direction of evolution of the phase path from(1.16). This 

drawback is settled by considering the sign of  ,f x y and  g ,x y at any reference point as this 

gives the direction through that point. Theorem 1 above guarantees that adjacent paths have the 

same direction. 

The system representing the dynamics of the disease spread is  

 

dS
rSI

dt

dI
rSI aI

dt

 

 

  (1.17) 

Equation (1.17) cannot be solved for an explicit formula representing the solution. 

Using (1.16), (1.17) yields  
 r S a IdI

dS rSI





  so that the differential equation for the phase 

portrait is  
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 1
dI a

dS rS
    (1.18) 

which upon integration yields  

 log
a

I S S K
r

     (1.19) 

 logI S S K     (1.20) 

where 
a

r
   and K  is the arbitrary constant of integration.  

Equation (1.20) gives the family of curves constituting the phase portrait. 

 The null cline analysis of the previous section gives a visual representation of the flow of the 

susceptible and infective compartments. Given that the population of the different compartments 

of the models does not permit negative values, the domain of interest is the quadrant

0 ,   I 0S   . 

 

 

 

 

 

 

 

 

                                                           Figure 3.4 Phase portrait for the SIR system 
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Further result of interest. 

Using (1.2) to determine K  in(1.20), yields 

 
0 0 0logK I S S     (1.21) 

But  
0 0I S N                                 [from (1.2) and(1.3)] 

So that (1.20) becomes            0log logI S S N S                       (1.22) 

Setting S  as the limiting value of S as t  and 0I  as t  , (1.22)becomes 

   0log logN S S S           (1.23) 

This upon rearranging and exponentiation yields 

 0

N S

S S e 
 

 
 

    (1.24) 

  00,     since 0 and 0

N S

S S e 
 

 
 

   
 

Thus not everyone contracts the disease. This observation is in sync with observable real life 

scenario of epidemics where some people do not contract the disease yet they are not immune. 

Equation (1.23) is the final size equation. 
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3.2.4 ON ,  0R  AND R  
 

In epidemiology, a threshold quantity is a critical value of the quantity that must be reached or 

exceeded for a disease to remain endemic or for an epidemic to occur. Hethcote (2005) made the 

case for three distinct but related threshold quantities. These are the basic reproduction number 

(R0), contact number ( ) and the replacement number ( R ). The replacement number is also 

referred to as the effective reproduction number (Cintron-Arias A., et al, 2009; Brauer, 2006) 

The basic reproduction number R0 is the average number of secondary infections consequent on 

the introduction of an infective into a population that is entirely susceptible during the period of 

infectiousness (Murray, 2002; Hethcote, 2005; Bakare et al, 2012). This simply refers to the 

number of individuals which a single infective infects during the infectious period in a 

population of susceptible. Given that it determines the size and duration of epidemics, it is an 

important epidemiological quantity (Grais et al, 2006). The contact number   is the average 

number of adequate contacts of an infective during the infectious period. An adequate contact is 

an interaction with a susceptible which results in an infection while the replacement number (R) 

is the average number of susceptible infected by an infective during the period of infectiousness 

(Hethcote, 2005). R  may be thought of as the parallel quantity to 0R  for populations that are not 

wholly susceptible (Grais et al, 2006). 
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From (1.4) and (1.5) 

   0 0

0t

dI
rS a I

dt 

 
  

 
         (1.25) 

This represents the situation of the infective compartment at the initial stage. There are 3 possible 

direction of evolution: ' 0,  ' 0 and ' 0I I I    

For  
0

0
t

dI

dt 

 
 

 
 ,        0 0 0rS a I                      (1.26) 

                                                 0 00,    0rS a I     (1.27) 

                                                          
0 0,    or  1

a r
S S

r a
                                    (1.28) 

It follows that  

   For  0 0

0

0,       1
t

dI a r
S or S

dt r a

 
   

 
                             (1.29) 

   For    0 0

0

0,       1
t

dI a r
S or S

dt r a

 
   

 
                             (1.30) 

If it is assumed that everyone in the population is initially susceptible i.e. 0S N then,  
0 .

rN
R

a
  

There will be an epidemic if and only if 0 1R  and
 
a necessary condition for the disease to fizzle 

out of the population is 0 1R  . 
0

rN
R

a
 is the basic reproduction number while 0rS

R
a

  is the 

replacement number.  Observe that in a population that is not wholly susceptible, the 

replacement number becomes the threshold parameter of choice. Consequently, there will be an 

epidemic if 1R   (i.e. every infective infects more than one person on average), no epidemic if 

1R   (i.e. the disease will die out) while the disease will remain endemic if 1R    
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3.2.5  COMMENT ON QUALITATIVE ANALYSIS 
 

 

Without explicitly solving the system of differential equations(1.17), integrating the null cline 

analysis with the phase portrait gives an inkling of the long term behaviour of the trajectories 

(solution curves).  

What results can be elicited from the phase plane portrait of figure 3.4?  The line 
a

S
r

  divides 

the phase plot into two parts so that if 0S  is to its left, 0 1R   and 0S  to its right implies 0 1.R    

Thus, for any initial condition (1.2) with
0 0  1

a r
S or S

r a
  , the susceptible decreases as time 

progresses but does not get to zero [see (1.24)] while the infective initially increases from 0I , gets 

to a maximum at 
a

S
r

 and then decreases to zero. Observe that as the infective is increasing, the 

susceptible is decreasing and when 
a

S
r

  the infective compartment is neither increasing nor 

decreasing. Given that   0  for any 0I t I t   an epidemic occurs. If however,
0

a
S

r
  the 

possibility of an epidemic is ruled out as the infective population decreases from the onset. 
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3.3   STABILITY ANALYSIS 

 

 

  ,
rI rS

J S I
rI rS a

  
  

 
  (1.31) 

  
 *

* *

,0

*

*

,

0

0

S

rI rS
J S I

rI rS a

rS

rS a

  
  

 

 
  

 

  (1.32) 

If A be the Jacobian matrix, then, for the characteristic equation for the eigenvalues  ,  1,2i i   

of A, we have    2  det 0P trace A A        

So that           2 * 0rS a                                                                 (1.33) 

*

1 2     0,  rS a       

 
* *

2 20 if    and   0 if  a a
r r

S S       (1.34) 

It follows that the system will be stable whenever * a
S

r
  and unstable otherwise in the invariant 

region 0, 0S I     

From  figure 3.4 it is important to notice that solutions that begin from any point 
0

a
S

r
  does not 

get blown away as time evolves but rather stays close to the equilibrium point *S  while on the 

other hand solutions beginning from any point 0

a
S

r
  gets blown further away from the  

equilibrium point  as time progresses 
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3.4  REGIONAL MEASLES REPORTED CASES  

 

The figure below gives a visual representation of the incidence of measles in the regions under 

consideration for the period under study. 

Nigeria is a country with 36 states and a federal capital territory divided into 6 geo-political 

zones. For the purpose of this study, the state with the highest measles incidence in each zone 

was chosen as its representative. See appendix B for the breakdown of the spread of the 

incidence of the disease.   

 

                                Figure 3.5 The reported cases of measles in the regions  
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4.0      CHAPTER FOUR 
 

This concluding chapter presents the numerical simulation results for the three models 

considered in this study and discusses their import. It also gives an indication of possible areas of 

further exploration. 

4.1  NUMERICAL SIMULATION 

 

Otto and Denier (2005) observed that there are many problems which simply do not have 

analytical solutions or those whose exact solution is beyond our current state of knowledge. The 

models under consideration fall within the former category. In cases as this, it is prudent to resort 

to numerical integration schemes (Keeling and Rohani, 2008). 

To enhance appropriate comparison between the models and the measles epidemiological data, 

the models were simulated using the inbuilt numerical integrator ode45 of Matlab. This solver 

employs the Runge-Kutta 4 Dormand Prince algorithm. An invaluable insight into the 

mechanisms of the different Matlab ode solvers is available from Shampine and Reichelt (1997). 

For the numerical simulations, the table below gives the estimates of parameters used from 

literature.  

 

 

 

 

 

Parameter  Estimate  Source 

0R   18 Earn, 2004 

a   1
5

days
-1

 Lloyd & May, 1995 

   
1
8

days
-1

 Lloyd & May, 1995 

1L


   
53  WHO [42] 

Table 1  Epidemiology parameter values for measles from literature 
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4.2 SIMULATIONS FOR SIR MODEL 

The model (1.1) was used for the simulations of this section. The initial conditions together with 

the parameter values used are given below for each region. The first two figures for each region 

are the plots of the disease dynamics assuming a wholly susceptible population with the 

introduction of one infective. The choice of truncating the time of evolution for the plots of the 

dynamics for the different compartments was informed by the manifested steady form of the 

dynamics from about the 5
th
 week.  

The 3
rd

 and 4
th

 figures on the other hand captured the case of the population not being wholly 

susceptible. The extended time frame beyond the limits of the epidemiology data for these plots 

was to allow the computer simulation of the complete evolution of the disease dynamics 

The measles trend in Nigeria (figure 1.1) made the case for the prior long occurrence of the 

disease in the country so that the population of the regions cannot be wholly susceptible given 

that measles confers lifelong immunity. Following Earn (2004) 0I  was estimated as the number 

of cases in the first week times the infectious period as a proportion of the length of the week 

while 0 0.065S N .  

0R  0I  0S  r  a  

18 1 1N   0aR

N
 

1 171
5 5

 days weeks   

Table 2 Initial and parameter values used with the SIR model for a wholly susceptible  

                                population. Other values are given with the graphs below 

 

 

0R  0S  r  a  

18 0.065N  0aR

N
 

1 171
5 5

 days weeks   

  Table 3  Initial and parameter values used with the SIR model for a population  

                                 not wholly susceptible. Other values are given with the graphs below 
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4.2.1 BENUE 
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Figure 4.1 The SIR epidemic curve for  
                     Benue with N=5037998 and  
                     the values of table 2 

Figure 4.3   The SIR epidemic curve for Benue with 

                    N=5037998, and the  

                    values of table 3 
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Figure 4.4   The SIR susceptible curve for Benue with  
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4.2.2  DELTA 
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Figure 4.6   The SIR epidemic curve for   
                    Delta with N=4950985 and  
                    the values of table 2 

Figure 4.8  The SIR epidemic curve for Delta with  

                  N=4950985, and the values  

                       of table 3 

0 10 20 30 40 50 60
0

500

1000

1500

2000

2500

3000

3500

4000

time(weeks)

in
fe

c
ti
v
e
s

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

6

time(weeks)

n
u
m

b
e
r

 

 

susceptible

infective

removed

0 10 20 30 40 50 60
2.3

2.4

2.5

2.6

2.7

2.8

2.9

3

3.1

3.2

3.3
x 10

5

time(weeks)

s
u
s
c
e
p
ti
b
le

Figure 4.5 The SIR dynamics of the compartments for  
                     Delta with N=4950985 and the values of table 2 

Figure 4.7   The SIR susceptible curve for Delta with  

                    N=4950985,
 
and the values 

                    of table 3 
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4.2.3 IMO 
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Figure 4.10   The SIR epidemic curve for  
                      Imo with N=4753481 and  
                      the values of table 2 
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Figure 4.9 The SIR dynamics of the compartments for  
                      Imo with N=4753481 and the values of table 2 

Figure 4.12   The SIR epidemic curve for Imo with  

                      N=4753481,
 
and the values  

                            of table 3 

Figure 4.11  The SIR susceptible curve for Imo with  

                     N=4753481,
 
and the  

                     values of table 3 
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4.2.4 LAGOS 
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Figure 4.14   The SIR epidemic curve for  

                      Lagos with N=10888631 and  
                      the values of table 2 
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Figure 4.13 The SIR dynamics of the compartments for  
                      Lagos with N=10888631 and the values of table 2 

Figure 4.16 The epidemic curve for SIR model for         

                       Lagos with N=10888631, and  

                       the values of table 3 

Figure 4.15  The SIR susceptible curve for Lagos with  

                     N=10888631, and the values 

                     of table 3 
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4.2.5 SOKOTO 
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Figure 4.18 The SIR epidemic curve for  
                      Sokoto with N=4414410 and 
                      the values of table 2 
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Figure 4.17 The SIR dynamics of the compartments for  
                    Sokoto with N=4414410 and the values of table 2 

Figure 4.20  The SIR epidemic curve for Sokoto with  

                     N=4414410,
 
and the  

                     values of table 3 

Figure 4.19   The SIR susceptible curve for Sokoto with  

                      N=441441 and the values 

                      of table 3 
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4.2.6 YOBE 
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Figure 4.21  The SIR epidemic curve for   
                     Yobe with N=2853828 and  
                     the values of table 2 
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Figure 4.22 The SIR dynamics of the compartments for  
                     Yobe with N=2853828 and the values of table 2 

Figure 4.24   The SIR susceptible curve for Yobe with  

                      N=2853828, and the values  

                            of table 3 

Figure 4.23  The SIR epidemic curve for Yobe with  

                     N=2853828, and the  

                     values of table 3 
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4.3  COMMENT ON SIMULATIONS FOR SIR MODEL 
 

The first two graphs of this section for each region show a steep exponential growth curve for the 

infective population consequent on the assumption of a wholly susceptible population with only 

an infective. This is removed from the reality of the persistent presence of the disease in the 

population prior to 2012 so that not the whole population is susceptible. It is however insightful 

in showing that should the population be wholly susceptible, the intensity of the disease is 

expected to be severe given the steepness of the curve though the disease will not be in the 

population for a long time. This underscores the observation of Murray (2002) that though the 

SIR is a basic model, some highly relevant comments about epidemics can be made. 

This model together with the assumption of a not wholly susceptible population is an 

improvement of the previous. There is an observed delay before the evolution of the epidemic 

curves as can be seen in figures (4.3, 4.8, 4.11, 4.15, 4.20, 4.24) and the steepness observed in 

the previous simulations gave way to a gradual but steady exponential growth of the epidemic 

curve. Compared to the incidence of the disease in the regions, it fairs poorly in adequately 

describing the scenario. It is to be noted though that the epidemic curves are in agreement with 

the result of the qualitative analysis of chapter 2 i.e. the infective increases to a maximum and 

then declines to zero. 

It is pertinent to observe that the SIR and SEIR models without vital dynamics lacked the 

capacity to capture the observed seemingly cyclic repetition observed in infectious diseases. This 

is attributable to the susceptible compartment being continually depleted without a source of 

replenishment of its members. The consequence of this is that ―things therefore go as though 

only one epidemic were to be observed from only one wave of susceptible that ultimately goes to 

extinction‖ (Trottier and Philippe, 2002).  
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4.4 SIMULATIONS FOR SEIR (WITHOUT VITAL DYNAMICS) MODEL 

The model (1.6) was used for the simulations of this section. The initial conditions together with 

the parameter values used are given below for the regions. The first two figures for the regions 

are the plots of the disease dynamics assuming a wholly susceptible population with the 

introduction of one infective. The choice of truncating the time of evolution for these plots was 

informed by the manifested steady form of the dynamics from about the 12
th
 week.  

The 3
rd

 and 4
th
 plots are the dynamics for the case of the population not being wholly susceptible. 

The extended time frame beyond the limit of the epidemiology data was to allow the complete 

simulation of the evolution of the disease dynamics. 

The estimation of the infective and susceptible at time 0t   follows Earn (2004) i.e. 0I  was 

estimated as the number of cases in the first week times the infectious period as a proportion of 

the length of the week while 0 0.065S N . Lloyd and May (2006) gave an estimate of the 

exposed at time 0t   as 0aI


. See the paper for the justification of this estimate.  

 

 

     

0R  0I  0E
  0S  r     

a  

18 1 0aI

  
1N   0aR

N
 

1 171
8 8
days week 

  
1 171

5 5
 days weeks   

    Table 4  The initial and parameter values used with the SEIR model for a wholly susceptible  

                   population. Other values are given with the graphs below 

  

0R  0S  0E   r     
a  

18 0.065N  0aI

  
0aR

N
 

1 171
8 8
days week 

  
1 171

5 5
 days weeks   

Table 5 The initial and parameter values used with the SEIR model for a population not wholly  

                susceptible. Other values are given together with the graphs below 
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4.4.1 BENUE 
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Figure 4.26 The SEIR epidemic curve for Benue with      
                    N=5037998 and the values of table 4 

Figure 4.25 The SEIR dynamics of the compartments for  

             Benue with N=5037998 and the values of table 4 

Figure 4.27 The SEIR epidemic curve for Benue with  

N=5037998, and the values of table 5 
Figure 4.28 The SEIR susceptible curve for Benue with  

 N=5037998, and the values of table 5 
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4.4.2 DELTA 
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Figure 4.29 The SEIR epidemic curve for Delta with  
                    N=4950985 and the values of table 4 

Figure 4.30 The SEIR dynamics of the compartments for  
                   Delta with N=4950985 and the values of table 4 

Figure 4.32 The SEIR epidemic curve for Delta with 

N=4950985, and the values of table 5 

Figure 4.31 The SEIR susceptible curve for Delta with 

N=4950985, and the values of table 5 
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4.4.3 IMO 
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Figure 4.34 The SEIR epidemic curve for Imo with  

                    N=4753481 and the values of table 4 

Figure 4.33 The SEIR dynamics of the compartments for  
                 Imo with N=4753481 and the values of table 4 

 

Figure 4.35 The SEIR susceptible curve for Imo with 

N=4753481, and the values of table 5 
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Figure 4.36 The SEIR epidemic curve for  Imo with 

N=4753481, and the values of table 5 
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4.4.4 LAGOS 
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Figure 4.38 The SEIR epidemic curve for Lagos with  
                    N=10888631 and the values of table 4 

Figure 4.37 The SEIR dynamics of the compartments for  
            Lagos with N=10888631 and the values of table 4 

Figure 4.40 The SEIR epidemic curve for Lagos with  

 N=10888631, and the values of table 5 

Figure 4.39 The SEIR susceptible curve for Lagos with  

 N=10888631, and the values of table 5 
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4.4.5 SOKOTO 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.41 The SEIR epidemic curve for Sokoto with  

                    N=4414410 and the values of table 4 

Figure 4.42 The SEIR dynamics of the compartments for  

             Sokoto with N=4414410 and the values of table 4 

Figure 4.44 The SEIR epidemic curve for Sokoto with  

  N=4414410, and the values of table 5 
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Figure 4.43 The SEIR susceptible curve for Sokoto with 

N=4414410, and the values of table 5 
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4.4.6 YOBE 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.45 The SEIR epidemic curve for Yobe with  

                    N=2853828 and the values of table 4 

Figure 4.46  The SEIR dynamics of the compartments for  

                Yobe with N=2853828 and the values of table 4 

Figure 4.47 The SEIR epidemic curve for Yobe with  

 N=2853828, and the values of table 5 
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Figure 4.48 The SEIR susceptible curve for  Yobe with 

N=2853828, and the values of table 5 
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4.5  COMMENT ON SEIR (WITHOUT VITAL DYNAMICS) SIMULATIONS 
 

The assumption of a wholly susceptible population and model (1.6) with the parameters of table 

4 generated the first two graphs for the regions in section 4.4. Figures (4.25, 4.30, 4.34, 4.37, 

4.41, and 4.45) show the exposed and infective increasing steadily at the same rate as the 

susceptible gets depleted which in turn impinges on the emergence of the removed. Recall that 

this model posits that a person who contracts the disease is first exposed before becoming 

infective. This explains the observed initial simultaneous rise of the exposed and infective. A 

very small exposed period leads to dynamics close to the prediction of the SIR model.  As the 

exposed period increases, the spread of infection is slowed down and may completely be halted 

if too many individuals die before joining the infective compartment.  

The assumption of a not wholly susceptible population generated the second set of graphs i.e. 

figures (4.27, 4.28, 4.31, 4.32, 4.35, 4.36, 4.39, 4.40, 4.43, 4.44, 4.47 and 4.48). The first of this 

set is put together in figure 4.49 below. Observe that each region demonstrates a similar pattern 

albeit with different rates of evolution and maxima.  

Like the SIR model, this model‘s performance in adequately describing the incidence of measles 

in the regions is not close to the mark although it still agrees with an initial increase of the 

infective to a maximum and then its depletion as time evolves. 
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Figure 4.49  SEIR (no vital dynamics) infective curve for the regions 
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4.6  SIMULATIONS FOR SEIR (WITH VITAL DYNAMICS) MODEL 
 

The model (1.7) was used for these simulations. The initial conditions together with the 

parameter values used are given below for the regions. The replenishment of the susceptible as 

provided for by this model guarantees the possibility of a new phase of an infection as is readily 

observed for infectious diseases. Different time scales were used for the simulations.  

                Table 6   Initial and parameter values used with the SEIR model for a population not wholly susceptible.  

                                      Other values are given together with the graphs below 
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Figure 4.50 The epidemic curve for Benue with N=5037998, and the values of table 6 

0 5 10 15 20 25 30 35
0

2000

4000

6000

8000

10000

12000

in
f
e
c
t
iv

e

time(years)

0 5 10 15 20 25 30 35
0

0.5

1

1.5

2

2.5

3
x 10

5

in
f
e
c
t
iv

e

time(weeks)

International Journal of Scientific & Engineering Research 
ISSN 2229-5518 53

IJSER © 2019 
http://www.ijser.org

IJSER



54 
 

4.6.2 DELTA 
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Figure 4.51 The epidemic curve for  Delta with N=4950985, and the values of table 6 

Figure 4.52   The epidemic curve for Imo with N=4753481, and the values of table 6 
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4.6.4 LAGOS 

 

 

 

 

 

 

 

 

4.6.5 SOKOTO 

 

 

 

 

 

 

 

Figure 4.53 The epidemic curve for Lagos with N=10888631, and the values of table 6 

Figure 4.54 The epidemic curve for Sokoto with N=4414410, and the values of table 6 
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4.6.6  YOBE  

 

 

 

 

 

 

 

 

 

 

 

 

4.7  COMMENT ON SEIR (WITH VITAL DYNAMICS) SIMULATIONS 
 

The characteristic exponential rise, turnover and decline (Earn, 2004) describing epidemic curves 

are evident in the numerical simulations of the SIR and SEIR (without vital dynamics) models 

examined. These models, while addressing the dynamics of an infectious disease albeit with the 

unique preference for a single epidemic episode are blind to the seemingly cyclic features 

observed in the incidence of measles in the regions as represented by figure 3.5. Introducing vital 

dynamics into the model rescued the simulations from the single epidemic scenario.  

Figures (4.50 – 4.55) represent the simulation output of the attempt at this enterprise for the 

regions. Observe that there is a marked shift from the simulations generated in the previous 

sections. In the left pane (a weekly rendition) of the figures of this section, there is a second 

epidemic wave.  This thus begins to capture the cyclic repetition highlighted in the discussion of 

Figure 4.55 The epidemic curve for Yobe with N=2853828, and the values of table 6 
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section 4.3. The right pane (a longer time scale) however gives an improved sustained cyclic 

repetition. The output of both time scales damps out as time evolved as opposed to a sustained 

un-damped oscillation noticed in the available data.  

Given these considerations, the SEIR model with vital dynamics better represents the measles 

incidence data when compared with the earlier models examined.   

4.8  SENSITIVITY ANALYSIS 
 

Predictions or quantitative conclusions of a model are said to be sensitive to a parameter if a 

small change in the parameter causes a significant change in the outcome. A model is insensitive 

to a parameter if the outcomes are the same for a wide range of values of the parameter. Section 

3.2.4 of qualitative analysis addressed the issue of some important parameters and established 

the threshold values of the parameters.  

Sokoto is randomly chosen as the specimen region for the comparison of numerical simulations 

with the results obtained in the above mentioned section in the case of the basic reproduction 

number given that 0R  determines the size and duration of epidemics (Grais et al, 2006).  Though 

not shown in this work, the result is equally true for the other regions studied.  
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Figure 4.56   The epidemic curve for Sokoto with different  

                      values of   
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It is observed from figure 4.57 that as 0R  decreases, the epidemic curve shifts to the right and its 

maxima reduces. This is insightful given that it shows it takes longer for the expected evolution 

of the disease in the population and the number of infective is significantly reduced. Thus 

reduced 0R  imparts positively in ameliorating the severity of the disease. Figure 4.56 shows that 

0 1R   the epidemic curve takes a downward turn as opposed to the expected exponential 

growth, thus, nullifying the possibility of an epidemic in the population. The results that there 

can be no epidemic if 0 1R   and there will be an epidemic if 0 1R   is thus numerically validated.   

4.9  FOR FURTHER EXPLORATION 
 

This work employed the Kermack – McKendrick SIR model and the SEIR model with and 

without vital dynamics to study the dynamics of measles in six regions representing the 

geopolitical zones of Nigeria. It assumed a constant contact rate. In the discussions of section 

4.7, the output of the SEIR model with vital dynamics for both time scales damps out as time 

evolved as opposed to a sustained oscillation in the available data.   This can be tied to the 

constant contact rate. Consequently, it is suggested that the dynamics be studied with a variable 

contact rate.  

A non-constant population is closer home to the observed population dynamics given the 

continuous movement of people. Though, factoring this into the model will introduce more 

complexity, it is worth exploring.  

Measles is predominantly a childhood disease though it is known to afflict adults that are not 

immunized. This study focused on ordinary differential equation models thus precluding age-

related consideration. A partial differential equation (PDE) model affords the inclusion of age 

consideration. Thus, relevant data should be collected to facilitate an analysis with PDEs.  
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As pointed out (Grais et al, 2005; Keeling and Rohani, 2008 and Mostaco-Guidolin et al, 2009), 

the basic reproduction number is demographic sensitive although there is an established range 

for different infectious diseases. Region specific basic reproduction number and replacement 

number should be estimated using appropriate methods. This study did not engage in this 

exercise because it is beyond its scope. Reference (10 15 16 26 30 31 39) provide descriptions of 

different methods for their estimation.  

4.10  CONCLUSION 
 

The Kermack – McKendrick SIR model and the SEIR (with vital dynamics and without vital 

dynamics) models in relation to the Nigerian measles data were examined. Qualitative analysis 

allowed the exploration of the dynamics of the disease without explicitly solving the systems. 

Important parameters with threshold values helped determine under what condition an epidemic 

is possible. For a wholly susceptible population, this parameter is the basic reproduction number 

while the replacement number is the threshold parameter for a population that is not wholly 

susceptible.  

The long term behavior of a dynamical system is of paramount biological importance. This 

behavior is known through the mechanism of stability analysis. This work established the 

necessary condition for the system to be stable. 

Numerical simulations of the three models examined afforded the unique tool of exploring the 

significance of various parameters and parameter values and their interplay with the dynamics of 

measles. The significant difference between these simulations and the epidemiology data for the 

regions finds a plausible explanation in the notion of underreporting (Grais et al, 2006; Brauer, 

2004) characteristic of epidemiological data. 
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Although very basic, the SIR model is insightful into the mechanism of the disease vis-à-vis the 

constituting compartments but handicapped in adequately describing the incidence of measles in 

the regions studied. A closer representation of the biology of the disease vis-à-vis its evolution is 

captured by the SEIR model. Although it is an improvement of the SIR model, it is inadequate in 

describing the measles incidence of the regions without vital dynamics.. As the study showed, 

the model with vital dynamics rescued the cyclic repetition highlighted in the discussion of 

section 4.3. Consequently, the SEIR model with vital dynamics is closest to the reality of the 

incidence data in spite of its inability to sustain the observed oscillations. 

Some practical implications can be drawn from the fore-going analysis in reducing and/or 

eradicating measles incidence from the population. From the analysis of section 3.2.4, the 

necessary condition for measles to fizzle out of the population is 0 1R  for a wholly susceptible 

population or 1R   for a population not wholly susceptible. Focus will be on the latter as it 

indicates the severity with which the epidemic grows. To force the effective reproduction 

number below the threshold value of one, the following considerations hold. Recall that 0
r
a

R S   

 The rate of infection  r  of the susceptible class per unit time should be reduced. Militating 

against contacts with the infective by way of quarantining the infective is a good practice. 

Given the modes of infection by the measles virus, being more attentive to hygiene by way of 

washing hands upon touching surfaces that may be contaminated and avoiding crowded 

places reduces the risk and rate of infection.  

 Reducing the number of susceptible in the population is of significant importance. This is 

done readily by increasing the number of those who are immune by way of vaccination. As 

pointed out by Murray (2002), mass vaccination is the cheapest and most effective means of 
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disease control. The reality of vaccination against measles in Nigeria is not as high as one 

would expect it given that ―the current national measles vaccination coverage is 62% with a 

very wide variation in the country that has once achieved coverage of 80% with routine 

immunization‖ Adeboye et al (2011). The authors‘ work, while not sufficient to form a basis 

for the generalization (given that it was carried out in Bida, Niger State only) is indicative of 

its possibility and perhaps its likelihood.  
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APPENDIX  A 
 

 

 

 

 

 

 

 

 

 

The map was downloaded on 01/07/2013 from 

http://collections.infocollections.org/whocountry/index/assoc/s7928e/p08.jpg 
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APPENDIX B 
 

 

S/N State Zone Cases 

1 Abia 
S

o
u
th

 -
 E

as
t 95 

2 Anambra 180 

3 Ebonyi 69 

4 Imo 222 

5 Enugu 108 

Zonal Sub - Total 674 

6 Akwa Ibom 

S
o
u
th

 -
 S

o
u
th

 102 

7 Bayelsa 86 

8 Cross River 79 

9 Delta 177 

10 Edo 138 

11 Rivers 51 

Zonal Sub - Total 633 

12 Ekiti 

S
o
u
th

 -
 W

es
t 241 

13 Lagos 352 

14 Ogun 244 

15 Ondo 29 

16 Osun 74 

17 Oyo 162 

Zonal Sub - Total 1102 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

S/N State Zone Cases 

18 Adamawa 

N
o
rt

h
 -

  
E

as
t 

181 

19 Bauchi 24 

20 Borno 155 

21 Gombe 114 

22 Taraba 464 

23 Yobe 653 

Zonal Sub – total 1591 

24 Benue 

N
o
rt

h
 -

  
C

en
tr

al
 

355 

25 FCT 84 

26 Kogi 266 

27 Kwara 85 

28 Nasarawa 148 

29 Niger 285 

30 Plateau 142 

Zonal Sub – total 1365 

31 Jigawa 

N
o
rt

h
 -

 W
es

t 

144 

32 Kaduna 757 

33 Kano 152 

34 Katsina 231 

35 Kebbi 1985 

36 Sokoto 2332 

37 Zamfara 95 

Zonal Sub – total 5696 
 

 

 

 

 

 

 

 

 

 

Nigeria zonal measles incidence data (2012) 
The data is available from IDSR 003 database from the Surveillance Branch, Epidemiology Division, Nigeria 

Center for Disease Control, Federal Ministry of Health, Abuja. 

 

International Journal of Scientific & Engineering Research 
ISSN 2229-5518 69

IJSER © 2019 
http://www.ijser.org

IJSER



70 
 

 

 

 

 

 

 

 

 

 

 

Week Benue Delta Imo Lagos Sokoto Yobe 

5 9 4 2 7 34 19 

6 37 1 3 9 76 6 

7 2 3 0 12 43 33 

8 44 3 19 21 85 23 

9 16 14 10 0 162 15 

10 44 3 6 9 222 8 

11 15 3 3 17 186 11 

12 16 4 3 22 148 15 

13 11 6 2 12 133 46 

14 1 2 16 10 77 38 

15 1 5 5 10 141 28 

16 7 4 0 5 49 30 

17 16 3 6 13 38 27 

18 1 5 0 12 132 19 

19 16 5 6 13 27 30 

20 9 2 2 10 50 44 

21 3 2 5 5 165 37 

22 4 5 0 8 62 25 

23 0 4 6 4 26 34 

24 0 6 12 6 11 30 

25 2 3 6 0 18 19 

26 5 2 2 8 6 16 

27 11 0 2 0 13 8 

28 7 2 6 0 0 10 

29 0 1 6 5 3 4 

30 6 3 2 9 0 8 

31 18 5 1 12 0 9 

32 9 4 1 5 18 5 

33 0 2 4 18 0 4 

34 3 3 5 8 30 4 

35 2 6 4 4 4 10 

Year Nigeria 

1980 162106 

1981 129671 

1982 139785 
1983 136778 

1984 182591 

1985 161768 

1986 115743 
1987 77566 

1988 75908 

1989 33678 
1990 115682 

1991 44026 

1992 85965 

1993 54734 
1994 106081 

1995 12393 

1996 88675 
1997 21385 

1998 143098 

1999 217151 
2000 212183 

2001 168107 

2002 42007 

2003 141258 
2004 31521 

2005 110927 

2006 704 
2007 2613 

2008 9960 

2009 1272 
2010 8491 

2011 18843 

 The weekly measles incidence data for 

the 6 regions under study Nigeria annual measles incidence 

(1980 – 2011). 
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