
Design and Implementation of

Combinatorial Testing based Test suites for

Operating Systems used for Internet of

Things

 THESIS

Submitted in partial fulfillment of the requirements for the

 degree of

 DOCTOR OF PHILOSOPHY

 by

 ABHINANDAN H PATIL

 Under the Supervision of

 Prof. NEENA GOVEAS

 and Co-supervision of

 Prof. KRISHNAN RANGARAJAN

 BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI

 2019

International Journal of Scientific & Engineering Research
ISSN 2229-5518 1

IJSER © 2019
http://www.ijser.org

IJSER

BIRLA INSTITUTE OF TECHNOLOGY AND

SCIENCE, PILANI

Certificate

This is to certify that the thesis entitled ‘Design and Implementation

of Combinatorial Testing based Test Suites for Operating Systems

used for Internet of Things’ and submitted by ABHINANDAN H PATIL,

ID.No. 2013PHXF0408G for award of Ph.D. of the Institute embodies

original work done by him under our supervision.

 Signature of the Supervisor :

Name in capital letters : Prof. NEENA GOVEAS

Designation : PROFESSOR

 Date :

 Signature of the Co-supervisor :

Name in capital letters : Prof. KRISHNAN RANGARAJAN

Designation : PROFESSOR

Date :

International Journal of Scientific & Engineering Research
ISSN 2229-5518 2

IJSER © 2019
http://www.ijser.org

IJSER

Declaration

I, Abhinandan H Patil, declare that this thesis titled, ‘Design and

Implementation of Combinatorial Testing based Test Suites for Operating

Systems used for Internet of Things’ submitted by me under the

supervision of Prof. Neena Goveas and Prof. Krishnan Rangarajan is a

bonafide research work. I also declare that it has not been submitted

previously in part or in full to this University or any other University or

Institution for award of any degree.

 Signature of the student:

Name of the student: ABHINANDAN H PATIL

ID number of the student: 2013PHXF0408G

 Date:

International Journal of Scientific & Engineering Research
ISSN 2229-5518 3

IJSER © 2019
http://www.ijser.org

IJSER

iv

Abstract

Regression test suites are maintained by software system developers

to ensure that any new code development does not affect existing

functionalities. Such test suites need to be optimal in size so as to balance the

requirements of maximum coverage and minimum execution time. For

software with multiple input parameters and configurations, Combinatorial

Testing (CT) is a method which can be used to generate regression test suites.

Regression test selection, augmentation, prioritizing and pruning are

the areas in which significant amount of research work has already been done.

In spite of this, for most software systems, where multi parameters are

involved either in the configuration or in the input parameters of the

regression test suite the combinatorial testing is not explored. We explore the

combinatorial testing methodology and apply it to regression test suite of case

study operating system Contiki in this thesis.

Thesis starts with the test suite execution timing analysis.

Thesis then proposes an integrated test environment approach which

brings about a better integration of different tools which are available.

 The thesis continues with a demonstration of generating effective test

suite for multiparameter software using Advanced Combinatorial Testing for

Software (ACTS) Tool and its verification using Code Coverage Tools. The Thesis

details generation of the regression test suite using a methodology called as

CT based Regression Test Suite (CT-RTS). This is applied to a free software

called College Time Table (CTT).

 To demonstrate the advantages of use of CT-RTS the Thesis then does

a detailed study of Contiki, an IoT Operating System. The Internet of Things

technology deals with connecting devices, called as things, to Internet via

standardized networking protocols. The networking protocol is part of the

Operating System (OS) deployed on the nodes or motes of Internet of Things.

In addition to networking capabilities, the OS needs to meet the requirements

of extended battery life, memory constraints etc.. Since it is an evolving piece

of software, the testing of the OS has to be thorough and streamlined. Details

of the existing regression test suite of Contiki is presented. The Thesis lists

International Journal of Scientific & Engineering Research
ISSN 2229-5518 4

IJSER © 2019
http://www.ijser.org

IJSER

v

some of the limitations of the existing regression test suite by studying the

code coverage.

To overcome these limitations, the Thesis proposes two methods for

generation of test suite using CT-RTS: One is to augment the existing test suite.

Second mechanism is to create a new test suite.

The Thesis shows the effectiveness of the CT-RTS by applying it to

Contiki Operating System and its Cooja simulator. The utility of the CT-RTS has

been demonstrated by solving a research problem in the area of Regression

test suite creation. The CT-RTS used to create a functional Regression test suite

creation mechanism which can be used for large multiparameter software.

 The Thesis shows that it is possible to take a more rigorous approach

to the problem of Regression test suite creation using the CT-RTS approach.

The Thesis makes the following research contributions.

1. Study of generic regression test suite is done in this phase.

Regression test suite execution timing analysis methodologies are studied

using the statistical approach.

2. An integrated test environment approach for combinatorial testing

is proposed. It is a centralized approach which reduces the number of tools

and duplicated functionality leading to better integration of different tools

making maintenance of the test setup simple.

3. Thesis demonstrates generation of a regression test suite for a multi

parameter software using a proposed methodology called CT-RTS. The

effectiveness of the test suite is verified using the traditional code coverage

metrics.

4. Thesis proposes the test design methodology for Internet of Things

operating systems. Extraction of parameters by studying the existing

regression test suite, the execution and use of the software is demonstrated.

5. CT-RTS approach is applied to generate regression test suites for the

Contiki OS and Cooja simulator. Comparison of the effectiveness of the existing

test suites, re-architectured test suites and new test suite designed using CT-

RTS is done.

 6. The Thesis proposes a mechanism for automation of test scripts

generation. This has been successfully used to generate functional test suites

for Contiki OS and Cooja simulator.

International Journal of Scientific & Engineering Research
ISSN 2229-5518 5

IJSER © 2019
http://www.ijser.org

IJSER

vi

7. Residual test coverage algorithm is enhanced for prioritization of the

regression test suite using the code coverage and execution time as the input

parameter. Further, black box approach to test suite prioritization using

statistical techniques is proposed.

International Journal of Scientific & Engineering Research
ISSN 2229-5518 6

IJSER © 2019
http://www.ijser.org

IJSER

vii

Acknowledgements

Grateful to God, My Family members, Well wishers and My Teachers in that

order.

Abhinandan H. Patil

.

International Journal of Scientific & Engineering Research
ISSN 2229-5518 7

IJSER © 2019
http://www.ijser.org

IJSER

viii

Contents

Certificate ... 2

Declaration .. 3

Abstract ... iv

Acknowledgements .. vii

Contents .. viii

List of Figures.. xv

List of tables .. xvi

Abbreviations ... xvii

1 Introduction ... 19

1.1 Background .. 19

1.1.1 IoT Operating Systems ... 19

1.1.2 Testing for IoT Operating Systems ... 19

1.1.3 Regression testing .. 20

1.2 Motivation .. 20

1.3 Problem statement .. 21

Objective 1: Study of Regression test suites in general 21

Objective 2: Design and implementation of combinatorial testing

based test suites for internet of things operating system and its simulators

.. 21

Objective 3: Measuring the effectiveness of designed test suites using

the traditional coverage techniques like code coverage 22

Objective 4: Automation of test scripts generation from combinatorial

testing design model and analyzing coverage to refine the combinatorial

testing design model .. 22

Objective 5: Propose an integrated test environment for

combinatorial testing ... 22

1.4 Research goals .. 22

International Journal of Scientific & Engineering Research
ISSN 2229-5518 8

IJSER © 2019
http://www.ijser.org

IJSER

ix

Research goal 1: ... 22

Research goal 2: ... 23

Research goal 3: ... 23

Research goal 4: ... 23

Research goal 5: ... 23

Research goal 6: ... 23

1.5 Solution Approach .. 23

1.6 Publications .. 24

1.7 Research Contributions .. 25

1.8 Thesis outline ... 26

Chapter 2 – Literature Survey .. 26

Chapter 3 - Regression Test Suite Execution Time Analysis using

Statistical Techniques .. 26

Chapter 4 - Integrated Test Environment for Combinatorial Testing 26

Chapter 5 - CT-RTS: Advanced Combinatorial Testing for Software

Regression Testing ... 27

Chapter 6 –CT-RTS: Generating Effective Test Suite for Multiparameter

Software using ACTS Tool and its Verification using Code Coverage Tools

.. 27

Chapter 7 - Re-architecture of Contiki and Cooja Regression Test Suites

using Combinatorial Testing Approach .. 27

Chapter 8 - Test Suite Design Methodology using Combinatorial

Approach for Internet of Things Operating Systems 27

Chapter 9 – CT-RTS: Contiki and Cooja Regression Test Suites Design

and Implementation using Combinatorial Testing 28

Chapter 10- CT-RTS: Combinatorial Testing based Regression Test

Suite: Functional Test Case Generator for Contiki and Cooja 28

Chapter 11 - Regression Test Suite Prioritization using Residual Test

Coverage Algorithm and Statistical Techniques 28

Chapter 12 – Conclusion .. 28

International Journal of Scientific & Engineering Research
ISSN 2229-5518 9

IJSER © 2019
http://www.ijser.org

IJSER

x

2 Literature Survey ... 29

2.1 Properties and Characteristics of IoT Operating Systems 29

2.2 Importance of Regression Testing.. 31

2.3 Combinatorial techniques based approaches to Software Testing . 31

2.4 The need of Combinatorial based testing techniques for IoT OS 31

2.5 Use of Combinatorial technique based tools 32

2.6 Software Test Coverage and its relevance to the design of Regression

test suites ... 33

2.6.1 CodeCover ... 33

2.6.2 OpenClover .. 33

2.7 Gaps in Existing Research ... 34

3 Regression Test Suite Execution Time Analysis using Statistical Techniques

.. 36

3.1 Introduction .. 36

3.2 Functional Simulator Tools ... 37

3.3 Java Functional Simulator Tools ... 38

3.4 Java Hotspot VM Options ... 39

3.5 Test Case and Test Execution Time Observations 39

3.6 Statistical Techniques for Execution Time Analysis 39

3.7 Limitations of Statistical Techniques .. 42

3.8 Advantages of Statistical Approach ... 43

3.9 Conclusion .. 43

4 Integrated Test Environment for Combinatorial Testing 44

4.1 Introduction .. 44

4.2 Overview of Integrated Test Environment 45

4.3 Test Model Generator .. 46

4.4 Test Generator ... 47

4.5 Test Management Tool .. 47

International Journal of Scientific & Engineering Research
ISSN 2229-5518 10

IJSER © 2019
http://www.ijser.org

IJSER

xi

4.6 Selection and Prioritization Tool .. 48

4.7 Defect Tracking Tool ... 49

4.8 Analysis ... 49

4.9 Model Checking Tool .. 50

4.10 Conclusion .. 50

5 CT-RTS: Combinatorial Testing based Software Regression Suite 51

5.1 Introduction .. 51

5.2 CT-RTS: Readily Executable Test Cases .. 53

5.3 CT-RTS: Functional Test Case Generation .. 53

5.4 Conclusion .. 53

6 CT-RTS: Generating Regression Test Suite for Multiparameter Software

and its Verification using Code Coverage Tools. .. 54

6.1 Introduction .. 54

6.2 Brief Literature Survey of CT .. 55

6.3 ACTS Tool .. 56

6.4 Open Clover .. 56

6.5 College Time Table ... 57

6.6 CT-RTS: Generating The Test Cases and Gathering Coverage Data . 58

6.6.1 ACTS Tool Usage for Generating The Test Cases 59

6.7 Results and Results Analysis ... 61

6.8 Conclusion .. 63

7 Re-architecture of Contiki and Cooja Regression Test Suites using

Combinatorial Testing Approach ... 64

7.1 Introduction .. 64

7.2 Contiki Testing Environment .. 65

7.3 Combinatorial Testing .. 65

7.4 CodeCover Tool Usage ... 66

7.5 Results .. 67

International Journal of Scientific & Engineering Research
ISSN 2229-5518 11

IJSER © 2019
http://www.ijser.org

IJSER

xii

7.6 Conclusion .. 67

8 Test Suite Design Methodology using Combinatorial Approach for

Internet of Things Operating Systems ... 68

8.1 Introduction .. 68

8.2 Typical Workflow for Baselining the regression Test Suite 68

8.3 Process of Redesigning the Regression Test Suite if it Already Exists

.. 69

8.3.1 Contiki Specific Details .. 70

8.4 Process of Designing the Regression Test Suite if it Does Not Exist 71

8.5 Contiki Specific Environment Changes to be Done 71

8.6 Conclusion .. 73

9. CT-RTS: Contiki and Cooja Regression Test Suites Design and

Implementation using Combinatorial Testing ... 74

9.1 Introduction .. 74

9.2 Background ... 74

9.2.1 Existing regression test suite ... 75

9.2.2 ACTS tool for generating combinatorial test design 76

9.2.3 Code coverage using OpenClover ... 76

9.3 Re-engineering the base test suite .. 77

9.4 Test design using ACTS tool for re-engineered test suite 79

9.5 Auto generation of test cases .. 80

9.6 Test design for Cooja test suite using ACTS tool 84

9.7 Code coverage data gathering process .. 84

9.8 Results .. 85

9.9 Results analysis ... 91

9.10 Supplementary material ... 93

9.11 Conclusion .. 93

10. Combinatorial Testing based Functional Test Case Generator for Contiki

Operating System and Cooja Simulator ... 94

International Journal of Scientific & Engineering Research
ISSN 2229-5518 12

IJSER © 2019
http://www.ijser.org

IJSER

xiii

10.1 Introduction.. 94

10.2 Combinatorial testing and NIST ACTS tool 96

10.3 Contiki the IoT operating system ... 96

10.4 Cooja simulator .. 98

10.5 Regression test suite of Contiki Operating System 98

10.6 Requirements for FTCGCC .. 99

10.7 High level design of FTCGCC ... 100

10.8 Software implementation .. 101

10.8.1 Java’s regexp parser .. 103

10.8.2 Java Document Object Model Parser 103

10.8.3 Data structures and functions ... 104

10.9 FTCGCC usage in Contiki environment ... 104

10.10 Conclusion .. 105

11 Regression Test Suite Prioritization using Residual Test Coverage

Algorithm and Statistical Techniques .. 106

11.1 Introduction.. 106

11.2 Test Coverage Algorithm for White Box Testing 106

11.3 Residual Test Coverage Algorithm enhancements for White Box

Testing .. 108

11.4 Statistical Approach for Prioritization of Test Cases for Black Box

Testers. ... 110

11.5 Coverage Tools: CodeCover a case study 111

11.6 Process Flow for Collecting Metrics of Choice 112

11.7 Advantages of Test Suite Prioritization .. 112

11.7 Conclusion .. 113

12. Conclusion .. 114

12.1 Introduction: The research problem .. 114

12.1.1 Summary of results ... 114

International Journal of Scientific & Engineering Research
ISSN 2229-5518 13

IJSER © 2019
http://www.ijser.org

IJSER

xiv

12.2 Conclusions... 115

12.2 Future work .. 116

Appendix A: ACTs Generated Test Design for Contiki Operating System.

.. 117

Appendix B: Code Coverage Data Gathered for Existing Test Suite of Contiki

and Cooja using CodeCover ... 120

Appendix C: Tweaking of Ant build.xml for Gathering The Coverage Data

with CodeCover .. 121

APPENDIX D: ACTS Test Design Input for Re-engineered Test Suite 124

APPENDIX E: ACTS Test Design for Cooja Test Suite 127

Appendix F: Code for Auto Generating csc Files. 130

Appendix G: Candidate’s Biography ... 151

Appendix H: Publications of The Candidate ... 152

Publications from Thesis .. 152

Other Publications .. 153

Appendix I: Supervisors Biodata .. 154

Appendix J: Co-Supervisors Biodata ... 155

References .. 168

International Journal of Scientific & Engineering Research
ISSN 2229-5518 14

IJSER © 2019
http://www.ijser.org

IJSER

xv

List of Figures

Figure 1. Generic Test Setup Involving Simulator Tools in Network 37

Figure 2. Generic Framework of Simulator Tools Explained. 38

Figure 3. Normal Distribution Curve of Hypothetical Test Suite................ 40

Figure 4. Normal Distribution Curves for the Same Test Suite on Two

Different Setups. .. 41

Figure 5 Integrated test environment entities. .. 46

Figure 6. Process flow diagram for CT-RTS .. 52

Figure 7. Process flow diagram for generating the ACTS test suite for CTT

software and measuring the coverage .. 59

Figure 8. ACTS tool populated data for CTT ... 60

Figure 10. OpenClover output window at the project level 62

Figure 10. Open Clover output window granular level 62

Figure 11. Typical work flow for base lining the test suite 69

Figure 12. Process of base lining the test suite if it already exists............. 70

Figure 13 Process of baselining the test suite if it does not exist 73

Figure 14 Process of gathering code coverage for CT 79

Figure 15. Functional test case auto generation tool 80

Figure 16. Test case auto generation process .. 81

Figure 17. Sample input text file for the tool ... 82

Figure 18. Sample output XML file ... 83

Figure 19 Cooja and Open Clover interaction .. 84

Figure 20. Test environment change for Clover data gathering 85

Figure 21 Reading the treemap .. 88

Figure 22 Class coverage distribution in simulator for three suites A, B and

C respectively. .. 89

Figure 23. Tree maps of code coverage in simulator for three suites A, B and

C respectively ... 90

Figure 24. Source code analysis of simulator with LOCMetrics 91

Figure 25. Code metrics of Cooja code base .. 91

Figure 26. Generic structure of csc file .. 102

Figure 27. Process flow for collecting the metrics of choice 112

International Journal of Scientific & Engineering Research
ISSN 2229-5518 15

IJSER © 2019
http://www.ijser.org

IJSER

xvi

List of tables

Table 1. Execution time of the test suite for various JVMs and OSs.......... 39

Table 2. Tabulation table for co-efficients of correlation 42

Table 3. Test generator tools ... 47

Table 4. Test management tools .. 48

Table 5 Defect tracking tools.. 49

Table 6. Parameter and their values in ACTS for CTT software 58

Table 7. Clover coverage data for CTT software .. 61

Table 8. Input parameters for the ACTs tool .. 66

Table 9 Test suites and their description ... 75

Table 10. Code coverage in simulator for test suite A 86

Table 11. Code coverage in simulator packages for Test Suite B 86

Table 12. Code Coverage in simulator package for Test suite C. 87

Table 13. Various existing test case autogeneration tool 95

Table 14. Node operating system .. 96

Table 15. IoT layers and protocols ... 97

Table 16. Stages and functionality of FTCGCC ... 100

Table 17. Important data structures and functions 104

Table 18. Table for calculating the new metric .. 110

Table 19. Traceability from research problems to the outcomes 114

International Journal of Scientific & Engineering Research
ISSN 2229-5518 16

IJSER © 2019
http://www.ijser.org

IJSER

xvii

Abbreviations

ACTS Advanced Combinatorial Testing for Software
AST Applied Statistical Techniques
CCM Combinatorial Coverage Measurement
CT Combinatorial Testing
CT-RTS Combinatorial Testing based Regression Test

Suite
IoT Internet of Things

JVM Java Virtual Machine
NIST National Institute of Standards and Technology
NuSMV New Symbolic Model Verifier
RTCA Residual Test Coverage Algorithm
RTS Regression Test Suites
ST Statistical Techniques

International Journal of Scientific & Engineering Research
ISSN 2229-5518 17

IJSER © 2019
http://www.ijser.org

IJSER

xviii

International Journal of Scientific & Engineering Research
ISSN 2229-5518 18

IJSER © 2019
http://www.ijser.org

IJSER

19

1 Introduction

1.1 Background

The term "Internet of Things" was first proposed by Kevin Ashton in 1999

[1] to describe a system where the Internet is connected to the physical world

via ubiquitous sensors. The concept emerged in the context of the

developments at the MIT Auto-ID Center on identification technologies. The

Internet of Things (IoT) [2] is the network of physical objects that contain

embedded technology to communicate and sense or interact with their

internal states or the external environment [3].

 From the technical point of view, it is about connecting new devices, called

objects or things, and investigating the issues related to connecting these

objects with the network in order to develop exploitable applications. To tackle

these issues, it is important to understand the Operating Systems which are

being developed for IoT and to ensure that all the software works as designed

on all the objects. Since the software is evolving and dynamic, one of the

critical requirements, is to have an effective regression test suite.

1.1.1 IoT Operating Systems

IoT Operating Systems consists of Operating systems designed for resource

constrained devices which need to be networked. This networking is done

using the IP based networking [4]. Several IoT OS’s have been developed and

many implementations have been successfully demonstrated like Contiki OS

which has been used for intruder detection [5] etc.

1.1.2 Testing for IoT Operating Systems

Theoretical foundations for study of software testing has been well

established [6]. We start with a study of testing approaches which will work

when dealing with IoT OS. There are several challenges when dealing with IoT

OSs. One of them is the diversity of the devices in which the OS will be

executing. For example, OS like Contiki, RIOT etc. have now been put forward

as possible candidates for installation in various processors/devices like MicaZ,

International Journal of Scientific & Engineering Research
ISSN 2229-5518 19

IJSER © 2019
http://www.ijser.org

IJSER

20

Exp5438, z1, wismote, sky, esb, etc. [7]. These have very different processors,

radios, storage capacity etc. This makes testing of any working property

difficult as every combination of these parameters need to tested.

An operating system, additionally, is also an evolving piece of software.

Developers design regression test suites to make the process of incorporating

changes in the code base trouble free. These regression suites have to play a

conflicting role of being comprehensive versus being compact enough to run

in the smallest possible time. The duration of these executions are often less

than one night to ensure that the development work is not hindered.

1.1.3 Regression testing

The word regress means to return to a previous, usually worse, state.

Regression testing refers to that portion of the test cycle in which a program is

tested to ensure that not only does the newly added or modified code behaves

correctly, but also that code carried over unchanged from the previous version

continues to behave correctly. Thus regression testing is useful, and needed,

whenever a new version of a program is obtained by modifying an existing

version [8] [9].

1.2 Motivation

Regression test suites have been studied over various aspects such as

reduction, prioritization, pruning and augmentation for decades. However,

very few attempts have been made to design or re-engineer regression test

suites for large miltiparameter software using methodical approaches. There

exists a way to re-engineer or design the regression test suites using a

Combinatorial approach. The tools provided by National Institute of Standards

and Technology are very useful for this. In this Thesis the Contiki Operating

System being developed for the Internet of Things is used as case study.

Contiki Oprating System has a regression test suite which is made publically

available for study. Using this test suite and its measured bench marked

coverage data as a base test suite, a study can be done on any re-engineered

or fresh test suite. This can help in ascertaing whether the new test suite is

indeed effective.

International Journal of Scientific & Engineering Research
ISSN 2229-5518 20

IJSER © 2019
http://www.ijser.org

IJSER

21

Automation of the functional test script generation can make the process

of executing a test suite easier. This has not been done for the Contiki

Operating System. The test design tools output generic test design, the

mapping of generic test case design to actual functional test cases needs to be

done.

 When the test suite is designed from scratch, the input parameter model

refining can be concluded at the required level of code coverage. It is possible

to use statistical techniques to develop a mechanism for the same. This Thesis

addresses the motivations explained above and documents the same.

1.3 Problem statement

This Thesis studies the application of combinatorial testing to regression

test suite of operating system used for internet of things. Following problem

statements are addressed in the Thesis.

Objective 1: Study of Regression test suites in general

Before studying the regression test suites of operating systems used for

internet of things, generic study of regression test suites should be done.

Important problems like regression execution time analysis and regression test

suite prioritization using well defined algorithms are to be explored.

Objective 2: Design and implementation of combinatorial

testing based test suites for internet of things operating

system and its simulators

The combinatorial testing should be applied to regression test suite of one

of the open source operating system such as Contiki and its simulator Cooja to

either re-engineer the existing test suite or for freshly designing the regression

test suite

International Journal of Scientific & Engineering Research
ISSN 2229-5518 21

IJSER © 2019
http://www.ijser.org

IJSER

22

Objective 3: Measuring the effectiveness of designed test

suites using the traditional coverage techniques like code

coverage

The effectiveness of the re-engineered test suite or freshly designed test

suite should be ascertained using the traditional metrices such as code

coverage. The coverage data confirms the effectiveness of combinatorial test

suite.

Objective 4: Automation of test scripts generation from

combinatorial testing design model and analyzing coverage to

refine the combinatorial testing design model

Where-ever possible automation of test script generation should be

explored for combinatorial testing. The repetitive error prone manual test

scripting should be replaced with the automation. The analysis of the code

coverage should be done and the input parameters modeling should be refined

iteratively to achieve the desired coverage in internet of things operating

system or its simulator.

Objective 5: Propose an integrated test environment for

combinatorial testing

An integrated test environment that uses the combinatorial testing should

be proposed. The proposal should have the tools and techniques that should

be used for specific blocks of the integrated test environment. Both

commercial and open source tools should be explored for the objective 5.

1.4 Research goals

 This research focuses on application of combinatorial testing to internet of

things operating system and its simulator. Following are the goals of research.

Research goal 1:

Analysis of execution time of regression test suite.

International Journal of Scientific & Engineering Research
ISSN 2229-5518 22

IJSER © 2019
http://www.ijser.org

IJSER

23

Research goal 2:

Re-engineering the regression test suite or fresh design and

implementation of combinatorial testing based regression test suite for Contiki

and its simulator Cooja.

Research goal 3:

Quantification of effectiveness of the re-engineered or freshly designed

regression test suite using the metrics code coverage.

Research goal 4:

Exploration of automation of test script generation from generic test

design output generated using the combinatorial testing and mapping to

actual functional test cases. Usage of code coverage data to refine the input

parameter modeling in iterative manner.

Research goal 5:

Integrated test environment should be proposed for combinatorial testing.

Research goal 6:

Study atleast one regression test suite prioritization algorithm.

1.5 Solution Approach

Before we provide details of our approach, we list the requirements for an

ideal Regression test suite for an IoT OS. One of the desirable properties of a

Regression test suite is to have execution time which is small. This is around

twelve hours or overnight typically for a software under development.

Another desirable property is to have maximum code coverage.

We propose a comprehensive methodology to automate generation of a

functional Regression test suite. We model the effectiveness of the Regression

test suite by using code coverage as the measure. This ability has enabled us

International Journal of Scientific & Engineering Research
ISSN 2229-5518 23

IJSER © 2019
http://www.ijser.org

IJSER

24

to apply our methodology and study three large multiparameter software.

These are software which have been made freely available for research.

1.6 Publications

PAPER A: "Regression Test Suite Execution Time Analysis using Statistical

Techniques" published in, International Journal of Education and Management

Engineering(IJEME),2016, Vol.6, No.3, pp.33-41, 2016.DOI:

10.5815/ijeme.2016.03.04

PAPER B: "Integrated test environment for combinatorial testing"published in

Advance Computing Conference (IACC), 2015 IEEE International,2015,doi:

10.1109/IADCC.2015.7154802

PAPER C: "Re-architecture of Contiki and Cooja Regression Test Suites using

Combinatorial Testing Approach" published in ACM SIGSOFT SEN,

2015,Volume 40 Issue 2,pp 1-3,doi:10.1145/2735399.2735413

PAPER D: "Test Suite Design Methodology Using Combinatorial Approach for

Internet of Things Operating Systems" published in Journal of Software

Engineering and Applications,2015, 8, 303-312. doi: 10.4236/jsea.2015.87031

PAPER E: “Generating Effective Test Suite for Multiparameter Software using

ACTS Tool and its Verification using Code Coverage Tools”, 2018, IJSER, Volume

9, Issue 8.

PAPER F: "An Attempt to Design and Implement Contiki and Cooja Regression

Test Suites by Using Combinatorial Testing”, Published in IJSER, Jan 2019.

PAPER G: “Functional Test Case Generator for Contiki and Cooja”, Published in

IJSER, Jan 2019.

PAPER H: "Regression Test Suite Prioritization using Residual Test Coverage

Algorithm and Statistical Techniques" published in, International Journal of

Education and Management Engineering(IJEME),2016,Vol.6, No.5, pp.32-39,

2016.DOI: 10.5815/ijeme.2016.05.04

International Journal of Scientific & Engineering Research
ISSN 2229-5518 24

IJSER © 2019
http://www.ijser.org

IJSER

25

1.7 Research Contributions

This Thesis studies problem statements and research goals mentioned in

the previous sections and the same are documented as research papers. The

subsequent section, Thesis outline, elaborates more on this.

PAPER A: Analyzes the regression test suite execution time of generic

regression test suite. This addresses the research goal 1 and forms the chapter

3 of the Thesis.

PAPER B: Proposes the integrated test environment of the combinatorial

testing. This address the research goal 5 and forms the chapter 4 of the thesis

PAPER C: Demonstrates how the re-architecturing should be done for case

study Operating System Contiki and its simulator Cooja. This addresses the

research goal 2 and forms the chapter 7 of the thesis.

PAPER D: Demonstrates the combinatorial testing based methodology for IoT

Opertaing systems is in general. It addresses the research goal 2 and forms the

chapter 5.

PAPER E: Explains the effectiveness of CT on a multi parameter software. It

addresses the research goal 2 and forms the chapter 6.

PAPER F: Explains the approach of redesigning the regression test suite of

Contiki and Cooja simulator test suite using combinatorial testing approach.

This addresses the research goal 2, 3 and 4. It forms the chapter 8 of the Thesis.

PAPER G: Explains in detail the function test case generator created for Contiki

and Cooja. This address the goal 4 specifically and forms the chapter 10.

International Journal of Scientific & Engineering Research
ISSN 2229-5518 25

IJSER © 2019
http://www.ijser.org

IJSER

26

PAPER H: Analyzes the test suite prioritization algorithm namely Residual test

coverage algorithm and enhances the algorithm. This addresses the research

goal 1 and forms the chapter 11 of the Thesis.

1.8 Thesis outline

The outline of the rest of Thesis is as follows:

Chapter 2 – Literature Survey

This chapter provides a survey of relevant work on regression test suite

creation for multiparameter software. Related work from the following fields

is reviewed: Combinatorial testing, code coverage, tools available for test suite

creation using combinatorial testing and tools for code coverage

measurement. After that, IoT operating system.

 Introduction to Software Test Coverage and its relevance to the design of

Regression test suites is reviewed.

 Chapter 3 - Regression Test Suite Execution Time Analysis

using Statistical Techniques

In this chapter statistical parameters such as probability distribution

function and correlation coefficient of regression test suite are studied. These

statistical parameters will be of help while interpolating or extrapolating the

test execution time of any test suite.

Chapter 4 - Integrated Test Environment for Combinatorial

Testing

In this chapter an integrated test environment for combinatorial testing is

explored. Integrated test environment approach brings better integration of

different tools for CT. It is a centralized approach which reduces the number

of tools and duplicated functionality.

International Journal of Scientific & Engineering Research
ISSN 2229-5518 26

IJSER © 2019
http://www.ijser.org

IJSER

27

Chapter 5 - CT-RTS: Advanced Combinatorial Testing for

Software Regression Testing

This chapter explains CT-RTS approach. This chapter discusses CT-RTS

approach where the effectiveness of the test design generated from the ACTS

output is ascertained using the code coverage tools with respect to traditional

coverage metrices.

Chapter 6 –CT-RTS: Generating Effective Test Suite for

Multiparameter Software using ACTS Tool and its Verification

using Code Coverage Tools

This chapter explains how ACTS tool can be used to generate effective test

suite for multiparameter software. The effectiveness of the CT-RTS generated

test suite is cross verified using the traditional code coverage metrics.

Chapter 7 - Re-architecture of Contiki and Cooja Regression

Test Suites using Combinatorial Testing Approach

This chapter proposes the re-architecture of Contiki and Cooja Regression

test suites using combinatorial testing approach. Contiki testing environment,

combinatorial testing, code cover tool usage and initial results of code

coverage of base Contiki and Cooja regression test suites are discussed.

Chapter 8 - Test Suite Design Methodology using

Combinatorial Approach for Internet of Things Operating

Systems

In this chapter proposes test suite design methodology using combinatorial

testing approach for internet of things operating systems. The typical work

flow of base-lining the test suites is discussed to begin with. This chapter then

discusses the redesigning the test suite if it already exists for the cases of

inadequate coverage. It further discusses the case when the regression test

suite is missing. The chapter also discusses Contiki specific environment

changes needed for gathering the coverage data.

International Journal of Scientific & Engineering Research
ISSN 2229-5518 27

IJSER © 2019
http://www.ijser.org

IJSER

28

Chapter 9 – CT-RTS: Contiki and Cooja Regression Test Suites

Design and Implementation using Combinatorial Testing

In this chapter design and implementation of combinatorial testing based

test suites for case study operating system Contiki and its simulator Cooja is

studied. Chapter starts with the base regression test suite and then introduces

the re-engineered test suite and the Cooja test suite which is created from

scratch. The process of re-engineering is discussed in detail. The process of

auto generation of the test cases is discussed in detail.

Chapter 10- CT-RTS: Combinatorial Testing based Regression

Test Suite: Functional Test Case Generator for Contiki and

Cooja

This chapter discusses the requirements, high level design, software

implementation and usage details of the Functional test case generator for

Contiki and Cooja.

Chapter 11 - Regression Test Suite Prioritization using Residual

Test Coverage Algorithm and Statistical Techniques

In this chapter we study regression test suite prioritization using the

residual test coverage algorithm. Our proposed algorithm is presented in this

chapter. Our algorithm uses the test coverage and test execution time as

parameters for breaking any tie which occurs among the candidate test cases

for execution. Our approach helps in prioritizing the test cases when the

number of test cases is very large. A black box approach to test suite

prioritization is also presented in this chapter.

Chapter 12 – Conclusion

This chapter concludes the Thesis. It maps the research problems and

research goals to individual chapters of the Thesis.

International Journal of Scientific & Engineering Research
ISSN 2229-5518 28

IJSER © 2019
http://www.ijser.org

IJSER

29

2 Literature Survey

Literature survey contains six sections.

Properties and characteristic of IoT operating systems are studied to begin

with. Then study of the importance of regression testing is explored. Study of

the combinatorial technique based approach to software testing is explored.

Study of the need for combinatorial testing for IoT Operating System is done.

The tools which can be used for combinatorial testing are studied. The last part

is software test coverage and its relevance to the design of regression test

suites.

2.1 Properties and Characteristics of IoT Operating

Systems

Significant research effort in the field of IoT Operating Systems has been

directed towards creating software with minimum device resource

requirement. This is particularly important as these OS will in future be used in

diverse devices . Some popular IoT OS and their details are listed below.

Contiki is an open source, portable, multi-tasking operating system for

memory-constrained networked embedded systems developed by Adam

Dunkels at the Networked Embedded Systems group at the Swedish Institute

of Computer Science [2]. Contiki is designed for embedded systems with small

amounts of memory. A typical Contiki configuration is 2 kilobytes of RAM and

40 kilobytes of ROM. Contiki consists of an event-driven kernel on top of which

application programs are dynamically loaded and unloaded at runtime. Contiki

processes use light-weight protothreads that provide a linear, thread-like

programming style on top of the event-driven kernel. Contiki also supports

per-process optional preemptive multi-threading, interprocess

communication using message passing through events, as well as an optional

GUI subsystem with either direct graphic support or locally connected

terminals or networked virtual display with VNC or over Telnet. Contiki

International Journal of Scientific & Engineering Research
ISSN 2229-5518 29

IJSER © 2019
http://www.ijser.org

IJSER

30

contains two communication stacks:uIP and Rime. uIP is a small RFC-compliant

TCP/IP stack that makes it possible for Contiki to communicate over the

Internet. Rime is a lightweight communication stack designed for low-power

radios. Rime provides a wide range of communication primitives, from best-

effort local area broadcast, to reliable multi-hop bulk data flooding. Contiki

runs on a variety of platforms ranging from embedded microcontrollers such

as the MSP430 and the AVR to PC. Code footprint is of the order of kilobytes

and memory usage can be configured to be as low as tens of bytes. Contiki is

written in the C programming language. Contiki is freely available as open

source code under a BSD-style license.

TinyOS is an open source, BSD-licensed operating system designed for low-

power wireless devices, such as those used in sensor networks, ubiquitous

computing, personal area networks, smart buildings, and smart meters [10].

Worldwide community from academia and industry use, develop, and support

this operating system as well as its associated tools [11]. TinyOS is a tiny (fewer

than 400 bytes), flexible operating system built from a set of reusable

components that are assembled into an application specific system. TinyOS

supports an event-driven concurrency model based on split-phase interfaces,

asynchronous events, and deferred computation called tasks. TinyOS has been

under development for several years and is currently in its third generation

involving several iterations of hardware, radio stacks, and programming tools.

Over one hundred groups worldwide use it, including several companies within

their products.

RIOT is an operating system designed for the particular requirements of

Internet of Things (IoT) scenarios. These requirements comprise a low memory

footprint, high energy efficiency, real-time capabilities, a modular and

configurable communication stack, and support for a wide range of low-power

devices. RIOT provides a microkernel, utilities like cryptographic libraries, data

structures (bloom filters, hash tables, priority queues), or a shell, different

network stacks, and support for various microcontrollers, radio drivers,

sensors, and configurations for entire platforms, e.g. TelosB or STM32

Discovery Boards [12].

International Journal of Scientific & Engineering Research
ISSN 2229-5518 30

IJSER © 2019
http://www.ijser.org

IJSER

31

2.2 Importance of Regression Testing

Developers have to ensure that the system that is being developed is

stable. This is especially true for the networking part as any problems in this

could cause the entire system to collapse. Developers of the Contiki OS have

made a lot of effort to make the system really stable, particularly the wireless

IPv6 mesh networking. They have set up a regression testing framework that

kicks in on every commit and runs the system on 9 different emulated

hardware platforms with 4 different CPUs and on more than 1000 emulated

wireless network nodes. This has resulted in the finding of several hard-to-find

bugs deep in the network stack that show up as the envelope on system

performance is pushed up. Several parts of the IPv6 stack has also been

rewritten to make the code easier to follow and for everything to work better.

2.3 Combinatorial techniques based approaches to

Software Testing

National Institute of Standards and Technology (NIST) published a widely

cited report in 2003, which estimated that the inadequate testing costs the US

economy dollar 59.5 billion every year, even though significant development

budget goes towards testing in a typical software development cycle. The

estimate of the same figure for all the software developed across the globe will

be alarming. In this context, testing becomes important as a research topic.

Various methodologies exist for testing any given product. NIST has pioneered

the field of testing called combinatorial testing. The experience of NIST is

documented in combinatorial testing manual publicly available on NIST

website [13]. The latest survey [14] summarizes the interest and usage of

Combinatorial testing by the Industry and Research communities.

2.4 The need of Combinatorial based testing techniques

for IoT OS

There is a renewed emphasis on design of robust IoT OS to ensure that the

diverse hardware and applications based on them run smoothly. Regression

test suites and their redesign using Combinatorial techniques provide a good

International Journal of Scientific & Engineering Research
ISSN 2229-5518 31

IJSER © 2019
http://www.ijser.org

IJSER

32

first step in making IoT OS stable. Study of other aspects of testing and looking

at issues such as code coverage done during the testing process is what will

lead us to better designed test suites. Researchers have studied varous aspects

of testing. These attempts are far from complete in the face of continuous

growth in complexity and variety of devices and applications. There is a need

to study these topics together for a better understanding of test suite

development for IoT OS.

2.5 Use of Combinatorial technique based tools

A variety of software tools are available to assist with combinatorial testing

projects. Various methodologies of Combinatorial testing exist in practice

namely configuration based testing, input variable method of testing [15] and

model based testing [16]. P.V Paolo Arcaini et. al. have done study on how

testing can be applied to constrained environments [17]. A study of an

industrial problem has been done by M. F Johansen et al [18]. Combinatorial

testing has been applied to industry suite with success [15]

Here we summarize a set of tools made available by the NIST ACTS project.

• ACTS covering array generator produces compact arrays that will
cover 2-way through 6-way combinations [19].

• Coverage measurement tool produces a comprehensive set of data on
the combinatorial coverage of an existing set of tests [20].

The ACTS covering array generator is faster and produces smaller test

arrays than others, based on comparisons done in 2009. The ACTS tool itself

has been tested using ACTS [21]. Raghu Kacker et al have presented papers in

leading forums for CCM tool [22] [23].

.

International Journal of Scientific & Engineering Research
ISSN 2229-5518 32

IJSER © 2019
http://www.ijser.org

IJSER

33

2.6 Software Test Coverage and its relevance to the

design of Regression test suites

Code coverage is one of the quantitative measures to judge if the execution

of a test set has been adequate. A variety of measures have been developed

to gauge the degree of test coverage. Some of the coverage metrics are:

Statement coverage: This gives the quantitative measure of how many

statements are covered and how many statements are missed as part of

coverage activity. Decision or branch coverage: This gives the quantitative

measure of how many branches of each control structure are covered.

Condition coverage: This is also called predicate coverage. The condition

coverage gives the quantitative measurement of how many Boolean

expressions in the code are evaluated to both true and false.

2.6.1 CodeCover

CodeCover is an open source tool meant for gathering the coverage data. It is

developed in 2007 at University of Stuttgart, Germany. Code cover gives the

statement coverage, branch coverage and condition coverages. Code cover

supports the languages such as Java and Cobol although it can be extended for

any programming language. Codecover supports the platforms such as Linux,

windows and Mac OS. The tool can be used in command line, Ant integration

or Eclipse mode.

2.6.2 OpenClover

OpenClover is open source tool for code coverage available since April 2017.

OpenClover is platform independent making it suitable for operating systems

such as Linux, Windows and MacOS. Clover combines the coverage and

metrices to give the Total Percentage of Coverage (TPC) which highlights the

risky code. OpenClover can be used in command line, Ant integration or Eclipse

mode.

Clover and CodeCover are tools which have been used for measuring code

coverage in Java code [24] [25].

International Journal of Scientific & Engineering Research
ISSN 2229-5518 33

IJSER © 2019
http://www.ijser.org

IJSER

34

2.7 Gaps in Existing Research

Key open research issues include the following:

• Regression test suites are designed to gain confidence in the testing
process. A regression test suite ensures that there are no unintended
side effects of code changes. A comprehensive Regression test suite
would include exhaustive tests which cover every scenario possible.
This also means impractical size and execution time. Research has been
already done to keep the Regression test suite size practical [23].
Regression Test Selection (RTS) has been studied exhaustively [26].
Efforts have been done at NIST [27] to demonstrate that the test design
if done using Combinatorial test design tools such as ACTS, it is possible
to optimize the test suite while retaining effectiveness. Use of
Combinatorial approach in redesigning the test suites for IoT Operating
Systems when the test suite already exists has not been done earlier.
Redesigning the Regression test suite of IoT OS such as Contiki has been
done as part of this thesis.

• No study has been done on how to design the test suite for the IoT
Operating Systems using Combinatorial approach when the Regression
test suite does not exist. Operating Systems such as RIOT, TinyOs, Arch
Linux do not have Regression test suite made available publically. In
this thesis we develop a methodology which can be used to design a
Regression test suite using our ACTS-RT approach.

• There is no systematic study which shows the effect of systematic
Combinatorial testing approach over non combinatorial testing
process. In this work we propose a formal testing process: generation
of a test design document and mapping of test cases to actual
functional test case. The test suite designed thus will be used to
measure the effectiveness in terms of size and effectiveness.
Effectiveness parameter used in this work is code coverage.

The objectives of our proposed research are to:

Objective 1: Study of regression test suites of operating systems used for

internet of things operating systems. Characterize them using execution time

analysis and code coverage.

International Journal of Scientific & Engineering Research
ISSN 2229-5518 34

IJSER © 2019
http://www.ijser.org

IJSER

35

Objective 2: Develop a methodology for creation of combinatorial testing

based regression test suite. The generated test suite can be applied to either

re-engineer the existing test suite or for freshly designing the regression test

suite. The effectiveness of designed test suites can be measured using code

coverage

Objective 3: Demonstrate the methodology by applying it to

multiparameter software. This will study the reaearch domain of Internet of

Things operating systems.

Objective 4: Automation of functional test scripts generation from

combinatorial testing design model and analyzing coverage to refine the

combinatorial testing design model. Propose an integrated test environment

for multiparameter software.

International Journal of Scientific & Engineering Research
ISSN 2229-5518 35

IJSER © 2019
http://www.ijser.org

IJSER

36

3 Regression Test Suite Execution

Time Analysis using Statistical

Techniques

3.1 Introduction

In this chapter we detail our work on the execution time analysis using

statistical techniques. We start by discussing the need for studying the

regression test execution time and then move on to sections which discuss

how the execution time analysis can be performed.

When there is scarcity of resources, test suite execution time reduction is

important. After generating test design using combinatorial approach and

after applying test case selection, test suite minimization and prioritization,

further the test execution time reduction needs to be investigated. Statistical

techniques are effective in analyzing and reduction of the test execution time.

When there is a need to augment the test suite, statistical techniques help in

estimation of the execution time using extrapolation. Statistical techniques

can also aid in choosing the best test setup in terms of Operating System, tools

and Java virtual machine combination for a Java based test setup. Statistical

techniques are one-time activies and the results are valid unless there is

change in one of the layers of the test setup. Activities detailed in this chapter

are carried out during the test setup planning and maintenance phase.

In this chapter we discuss about how statistical techniques can be applied to

further analyze and reduce the test execution time at the test case level and

test suite where possible. It may appear that the techniques themselves can

be an overhead. But these activities will not be carried out during each

execution of the test case. These are often upfront activities which the test

team can carry out so that they have best hardware, best Java Virtual Macine

(JVM) and best OS combination.

International Journal of Scientific & Engineering Research
ISSN 2229-5518 36

IJSER © 2019
http://www.ijser.org

IJSER

37

3.2 Functional Simulator Tools

Functional simulator tools are used in both wired and wireless networks to

test the product code. Test teams use automation and simulator tools often

together. For many IoT Operating Systems there is a parallel development of

simulator tools. Some of the advantages of having a simulator are:

• Test setup hardware costs can be high.
• The hardware availability may lag the software development cycle.
• The test up is scalable when simulator tools are employed.
• Product code debugging becomes easy with the simulators.
• It may not be possible to simulate some scenarios using hardware

in real setup.
• Test setup using simulator is easy which makes test setup more

flexible.
The above mentioned advantages list is brief. The simulator running on the

host makes the product code believe as if it is running in real environment. The

product code often resides on the same machine if it is host based testing and

runs on a different machine if it is distributed testing. In distributed

environment the connection can be TCP/IP based or the operating system will

be distributed. Figure 1 shows the generic test setup.

 Figure 1. Generic Test Setup Involving Simulator Tools in Network

International Journal of Scientific & Engineering Research
ISSN 2229-5518 37

IJSER © 2019
http://www.ijser.org

IJSER

38

3.3 Java Functional Simulator Tools

For a Java based System Under Test (SUT), Figure 2 gives a possible setup of

the system from the tool’s side. One of the aims of analysis is to study the test

execution time and find mechanisms to reduce the execution time.

 Figure 2. Generic Framework of Simulator Tools Explained.

As can be seen the Figure 2, there are multiple layers in the tools side. The test

execution time is function of the execution in each layer. The total execution

time of the test case will be a function of all three execution times f(x ,y ,z),

here x is the time to execute the code of the test case. The component y is due

to the time required for test tool and z is the time required for execution on

the hardware. In several tools, these components are plug-and-play. For

example, a version of the test suite with the particular version of the tool can

run on various versions of the JVM(Such as Java 1.5,1.6,1.7 or 1.8) and various

International Journal of Scientific & Engineering Research
ISSN 2229-5518 38

IJSER © 2019
http://www.ijser.org

IJSER

39

versions of the OS(Ubuntu, RHEL or any other flavor of Linux). Statistical

techniques can be employed to choose various combination of the layers. For

a given version of the JVM, it is possible to employ hotspots and fine tune the

tool.

3.4 Java Hotspot VM Options

Java gives the options to fine tune the JVM. The broad categories are as

follows.

• Behavioral options of the virtual machine.
• Garbage collection options.
• Virtual machine fine tuning options.
• Debugging options.

The above mentioned options will make the JVM behave in a particular

manner depending upon the command line options. A set of command line

options can be chosen and then employed for further evaluation of

performance.

3.5 Test Case and Test Execution Time Observations

Test case executed on particular setup of: tool, JVM, OS and hardware, will

have different execution time each time it is executed. The JVM and OS

introduce randomness in the test execution time. This implies that a

straightforward prediction and calculation of test execution time is not

possible. There is a need to develop Statistical techniques which can help in

estimation of execution time.

3.6 Statistical Techniques for Execution Time Analysis

In this section we discuss applied statistical techniques. If there are three

versions/variations of OS viz. OS1, OS2, and OS3 and three JVMs viz. JVM1,

JVM2 and JVM3 and we want to compare, the table could look like as follows.

Table 1. Execution time of the test suite for various JVMs and OSs

Total test suite execution time JVM1 JVM2 JVM3

OS1

International Journal of Scientific & Engineering Research
ISSN 2229-5518 39

IJSER © 2019
http://www.ijser.org

IJSER

40

OS2

OS3

This is the coarse level analysis to come up with the best {JVM, OS}

combination for a given test suite and hardware.

Since the given same test case gives different test execution time during

different trials, it is best to execute the test suite multiple times and come up

with the mean and standard deviations of the consolidated observations.

Now let us look at the observations at test suite level. If the best test case

finishes the execution in 20 units of time and worst test case takes 80 units of

time and if the test suite has certain mean and standard deviation we could

plot the same using any mathematical tool. The graph could look like as in

Figure 3. The Gaussian curve or normal curve can be explained as follows. The

execution time of the test case in a given test suite is random variable taking

continuous values in the given range. Further for very large test suite this will

be smooth curve with inverted bell shape.

 Figure 3. Normal Distribution Curve of Hypothetical Test Suite

If we plot the same curve for two different cases of table 1, the Figure could

look as in Figure 4. Let us compare the two graphs in the Figure 4.

International Journal of Scientific & Engineering Research
ISSN 2229-5518 40

IJSER © 2019
http://www.ijser.org

IJSER

41

Figure 4. Normal Distribution Curves for the Same Test Suite on Two Different Setups.

These two figures are drawn with the help of MATLAB for hypothetical test

setups with same mean execution time but with different standard deviation.

As can be seen from the figure, the {OS2, JVM2, HW2} is more predictable with

respect to test execution time. Further, the shape of the curve is Gaussian since

the execution time due to OS and JVM makes the test execution time for a

given test case random. This random value takes the continuous values and

not discrete values leading to continuous distribution. In summary, we prefer

that {OS, JVM, HW} combination which has least mean and least standard

deviation.

Once we deduce the particular combination {OS, JVM, HW} as best

combination, we could check the test suite execution time with various sets of

command line options. Simply put choose the best set of command line

options for a given {OS, JVM, HW} combination.

Coefficient of correlation between various parameters of a given command

line option with test suite execution time tells which particular parameter

within the given set of command line is influencing the execution time.

Numeric options are set with -XX:<option>=<number>. Numbers can

include 'm' or 'M' for megabytes, 'k' or 'K' for kilobytes, and 'g' or 'G' for

gigabytes (for example, 32k is the same as 32768).

International Journal of Scientific & Engineering Research
ISSN 2229-5518 41

IJSER © 2019
http://www.ijser.org

IJSER

42

 Table 2. Tabulation table for co-efficients of correlation

SI No -XX

Numeric

option value

Test

case

execution

time

 x X=

x-�̅�

y Y=y

-�̅�

𝑋2 𝑌2 XY

1

2

.

.

.
N

Coefficient of correlation =
∑ 𝑋𝑌

√∑ 𝑋2𝑌2
 (4)

This way of computing the coefficient of correlation may be tedious and

further in JVM changing one parameter at a time may have some other side

effects on total execution time of test case.

Going back to Gaussian curves, once we get the characteristic μ and σ of a

given curve, i.e. characteristics of given setup for given test suite, the

extrapolation of test suite time during test suite augmentation when the test

cases get added or interpolation during pruning is not difficult.

3.7 Limitations of Statistical Techniques

In some cases the tool, JVM and OS are tightly coupled for a given test

setup. These techniques will not be of any use in such situations. For example,

in the Contiki operating system used for IoT, the environment is Ubuntu like

operating system. The Contiki in simulated environment comes with its own

tool chain dependencies. Further the COOJA, official simulator of Contiki talks

with Contiki using Java Native Interface (JNI). These are done with reason. The

Contiki team wanted to have as user friendly environment as possible.

However, when the tool setup employs plug and play architecture, the

techniques can be of help.

When two setups are very different for example when the tool is migrated

from old IRIX machines to latest RHEL machines, the latest machine will be

International Journal of Scientific & Engineering Research
ISSN 2229-5518 42

IJSER © 2019
http://www.ijser.org

IJSER

43

clear winner because of the latest hardware, OS and JVM combination. There

will be no need of these techniques.

Further, if the product code has internal timers based finite state machines,

the approaches mentioned may not add much value.

3.8 Advantages of Statistical Approach

Test setups employing plug and play architecture and comprising of tools,

OS and hardware can make use of the statistical techniques mentioned in this

chapter. Test suites will have quantified statistical attributes with them making

timing analysis simple. This makes the process of timing analysis convenient

during the extrapolation and interpolation. The techniques can be employed

during the augmentation and pruning of the test suites.

3.9 Conclusion

The statistical approaches mentioned in this chapter come with their own

merits and drawbacks. As high-lighted in the draw back section, when the test

setups use tightly coupled tools, OS and hardware cannot make use the

techniques mentioned in this chapter. How ever, the test setups which employ

plug and play architectures can immensely benefit with the statistical

techniques mentioned in this chapter.

International Journal of Scientific & Engineering Research
ISSN 2229-5518 43

IJSER © 2019
http://www.ijser.org

IJSER

44

4 Integrated Test Environment for

Combinatorial Testing

4.1 Introduction

In this chapter we present our proposed integrated test environment for

combinatorial testing and its realization at a conceptual level. In this chapter

we discus the entities that make up the integrated test environment and their

interactions, highlighting the combinatorial aspects. Both manual and

automated test environments can make use of the proposed environment.

Test tools made available by researchers and commercial tool vendors need to

be integrated to implement the environment.

A report published in 2003 by National Institute of Standards and

Technology (NIST) estimates that the inadequate testing costs US economy

$59.5 billion every year. If we sum up the costs due to improper testing of all

the software developed across the globe, the cost will be alarming. This is the

fact in spite of significant budget investment for software testing by typical

software development cycle. In this light, new approaches are being used by

the software professionals and researchers to reduce the cost due to poor

quality of software. One of the possible approaches is combinatorial testing

(CT). CT is pioneered by National Institute of Standards and Technology (NIST)

[28]. NIST has created a bunch of tools which have been instrumental in

adoption of CT. These tools can be combined with the commercial tools such

as HP’s quality center and research tools such as NuSMV to generate an

integrated test environment for combinatorial testing.

An integrated test environment simplifies and streamlines the end to end

testing process. The advantage of using an integrated test environment are

many. It makes the creation of test cases, execution and evaluation simple

without bringing up the individual tools separately.

The idea is to keep the integrated test environment as generic as possible

while maintaining the interoperability between the tools. The individual

entities are interconnected in the integrated test environment in a plug-and-

play fashion.

International Journal of Scientific & Engineering Research
ISSN 2229-5518 44

IJSER © 2019
http://www.ijser.org

IJSER

45

The steps involved in the realization of integrated test environment are as

follows: search for commercially available tools and open source software

tools, understanding the basic problems and approaches used for integrating

the tools. Appropriate choice of the tools can vary depending upon nature and

budget of the project. The current generation integrated test tool environment

concepts are improvements over predecessors. Organizations are trying to

automate the test process as far as possible since it eliminates the human

error. Further, automation enables shorter for example nightly execution of

the test suite.

While some of the previously published work on integrated test

environment cater to specific domain (such as telecom), the concepts

presented in this chapter are generic in nature which can be adopted for

specific domain with minor tweaking. The core contribution of this chapter is

proposing an integrated test environment, bringing together the different

tools that are required for performing CT efficiently. In this environment some

of the tools like defect analysis is CT specific, while tools for Test Management

which are generic and well established, additional features that may be

required from CT perspective are identified in this chapter. While the literature

on integrated test environment is decade old, the integration of combinatorial

aspect to integrated test environment has not yet been studied.

Integrated test environments have following benefits [29]:

• Better integration of different tools.

• Centralized approach.

• Less duplicated functionality.

• Reduced number of tools.

• Fewer dependencies.

• Simplified maintenance.
An integrated test environment can help immensely in the test driven

development projects.

4.2 Overview of Integrated Test Environment

Figure 5. depicts a view of the integrated test environment being proposed

in this thesis. The test model generator derives the test model from

requirements and requirement changes. The output of the test model

generator is the test model which is the input to the test generator. The test

suite and test case generated by the test generator act as input to the test

management tool.

International Journal of Scientific & Engineering Research
ISSN 2229-5518 45

IJSER © 2019
http://www.ijser.org

IJSER

46

 Figure 5 Integrated test environment entities.

At the heart of the integrated test environment lies the test management

tool (such as HP’s quality center) whose inputs are the test cases and test suite

generated by the test generators (such as Advanced Combinatorial Testing for

Software). The test management tool drives the System Under Test (SUT).

Selection and prioritizing tool prioritizes the test cases based on various

parameters including the combinatorial specific criteria. These selected and

prioritized test cases are executed to note down the bugs which are fed into

the defect tracking tool. The defects are analyzed to suggest the changes in the

model if need be. This could lead to new test model. Model checking tool (such

as NuSMV) can be used to ascertain the correctness of the model.

4.3 Test Model Generator

Test model generator generates the test model from requirements and

requirements change. The Combinatorial Test Design Model (CTD) model

consists of the parameters, their values, and constraints existing among the

various parameters and values. Model generation is the first phase of CT and

International Journal of Scientific & Engineering Research
ISSN 2229-5518 46

IJSER © 2019
http://www.ijser.org

IJSER

47

the model is the key input for test case generation. Hence deriving the

combinatorial test design model is an important prerequisite for CT. In

practical situations, the models are derived by test designers using their

understanding of the software and their testing skills.

4.4 Test Generator

Test generator is that component of the integrated test environment which

generates the test suite and test cases from the test model. For

multiparameter software we find ACTS tool from the NIST can be used as the

test generator.

 ACTS covering array generator generates the compact array that will cover

2-way through 6 way combinations. Output of the ACTS tool is an excel spread

sheet. The test management tool can read this excel sheet to populate the test

case data base and create the required indices for test case selection based on

combinations/interactions. There are other test generation tools whch are

listed in the references.

Table 3. Test generator tools

Product Creator License

ACTS NIST Free

Hexawise Hexawise Free and Commercial

Allpairs Satisfice Free, GPL

4.5 Test Management Tool

Test management tools are used to plan testing activities and report the

status of quality assurance activities. Tools from different vendors have varying

approaches to testing and thus have different set of features. These tools are

used to maintain and plan manual testing, run or gather execution data from

automated tests, manage multiple environments and to enter information

about found defects. Test management tools offer the prospect of

International Journal of Scientific & Engineering Research
ISSN 2229-5518 47

IJSER © 2019
http://www.ijser.org

IJSER

48

streamlining the testing process and allow quick access to data analysis,

collaborative tools and easy communication across multiple project teams.

Many test management tools incorporate requirements management

capabilities to streamline test case design from the requirements. Tracking of

defects and project tasks are done within one application to further simplify

the testing. We list a few test management tools in Table 5.

Table 4. Test management tools

Product Creator License

HP’s Quality
Center

Hewlett packard Proprietary

IBM Rational

Quality
Manager

IBM Proprietary

Test Link Team Test GNU GPL

A study of these tools and usage reveal that for an ideal test suite, inclusion

of some of the following combinatorial test specific features will be desirable:

• Being able to select testcase(s) covering a particular 2-way or higher
order combination(s),

• Storing history of test effectiveness for different combinations used.

• Showing incremental combination coverage between selected test
cases.

4.6 Selection and Prioritization Tool

The objective of selecting the test cases for regression is to run a reduced

and relevant set of test cases and the objective of prioritization is to run the

selected test cases in the right order, so that bugs are captured early. For

effective testing, prioritization is an essential activity, especially when there

are a large number of test cases. The Test Selection and Prioritization tool can

be augmented as a plug-in to the test management tool. The factors that can

be considered for prioritization are combinatorial coverage criteria, bug

history from previous runs, effort and time required for setting up and running

the test cases. Coverage can be based on traditional coverage such as code

coverage (such as CodeCover for Java projects) or more relevant combinatorial

coverage using Combinatorial Coverage Measurement (CCM) tool for

combinatorial testing. A cost based 2-way interaction coverage criterion has

International Journal of Scientific & Engineering Research
ISSN 2229-5518 48

IJSER © 2019
http://www.ijser.org

IJSER

49

been used to prioritize the test cases. Greedy algorithm generates prioritized

test cases based on combinatorial coverage taking user specified weights into

account. Regression test suites have been prioritized by combinatorial

interactions among test cases. Output of the selection and prioritizing tool is

an input for the test execution engine.

4.7 Defect Tracking Tool

The defect tracking tool or bug tracking tool is an application that can be

used to track defects or bugs. The logging of the bugs can be done by the

testers or by the end users, depending upon whether the defect was found

during testing or use. There can also be a more formal process used by the

organization to log the bugs on behalf of the end users. Defect tracking tool

tracks the defects and its state from discovery till they get fixed, verified and

closed. The defects raised in the defect tracking tool get assigned to the

maintenance team for fixing. The assigned technical authority does a detailed

analysis of the reported defect before working out the fix. Table 6 lists a few

popular defect tracking tools.

Table 5 Defect tracking tools

Client -
Server

Open

Source
Bug Zilla, Apache Blood hound

Proprietary Test track, FogBugz

Distributed Fossil

Hosted Source Forge, Github, Google code

4.8 Analysis

Input for analysis is the defect details from the defect tracking tool. The

analysis is a complex activity and presently there are no automated tools

available. The output of analysis should help in localizing the faults and working

out a fix for them. In CT perspective, fault localization is essentially identifying

the failure inducing combination (2 way / higher orders). There are systematic

approaches reported in the literature like adaptive, non adaptive and machine

learning methods. Delta debugging is an adaptive divide–and-conquer

technique to locate interaction faults. A non-adaptive method proposed

International Journal of Scientific & Engineering Research
ISSN 2229-5518 49

IJSER © 2019
http://www.ijser.org

IJSER

50

extends the covering array to the locating array to detect and locate

interaction faults. Suspiciousness of tuple and suspiciousness of the

environment of a tuple is considered to rank the possible tuples and generate

the test configurations. A machine learning method to identify failure inducing

combinations from a combinatorial testing constructs a classified tree to

analyze the covering arrays and detect potential faulty combinations.

In general, all these methods require the tester to analyze and rerun some

additional test cases to decide and localize the faulty combinations. For this

task, the tester can use combinatorial criteria for further test selection. These

features can be supported directly as a plugin into the test management tool

or as part of the standalone selection tool.

4.9 Model Checking Tool

One of the most effective ways to produce test oracles is to use a model of

the system under test, and generate complete tests, including both input data

and expected results, directly from the model [27].Tools such as NuSMV (Nu

Symbolic Model Verifier) can be used for this purpose. NuSMV was developed

by Carnegie Mellon University, University of Genova and University of Trento.

NuSMV can be installed on Unix/Linux or Windows systems. As long as the

system has formal or semiformal specifications of the system under test, the

NuSMV can be used.

4.10 Conclusion

In this chapter we presented generic frame work for an integrated test

environment which can be adapted to specific domain with minor

modification. The integration of combinatorial testing brings in the advantages

of combinatorial testing to traditional testing approach. The concept and ideas

presented in this chapter can be implemented to demonstrate a prototype -a

proof of concept. Also the integrated test environment can be refined in a

domain specific way such as domains where combinatorial testing is

extensively used.

International Journal of Scientific & Engineering Research
ISSN 2229-5518 50

IJSER © 2019
http://www.ijser.org

IJSER

51

5 CT-RTS: Combinatorial Testing

based Software Regression Suite

5.1 Introduction

 In this chapter we give the details of our proposed approach called

Combinatorial Testing based Regression Test Suite (CT-RTS). The proposed

approach, which can be used for multiparameter software, generates a

regression test suite for a System Under Test (SUT) using the NIST-ACTS tool.

The effectiveness of the generated test suite is ascertained using the code

coverage tools.

 Figure 6. depicts the process flow diagram for the CT-RTS. First the

system under test needs to be studied before modeling the test input for the

ACTS tool. The test model is essentially collection of parameters and

parameter values along with the constraints and relations between the

parameter values. The ACTS tool uses the test input or test model to generate

the test design. The test design is essentially collection of rows. Each row is

test case.

 In few cases the test cases are readily executable as in case of Graphical

User Interface SUTs. In other cases, the test cases are not readily executable.

Therefore, intermediate steps are required to convert these ACTS generated

test cases into executable test cases. In this Thesis, we refer these executable

test cases as “functional test cases”.

 The process of functional test case generation is tightly coupled with

the target test environment. Simply put, the functional test case generation is

case specific.

 This Thesis applies the CT-RTS approach to two kinds of software

1. When the ACTS output test cases are readily executable
2. When the ACTS output test cases are converted to functional test

cases.

International Journal of Scientific & Engineering Research
ISSN 2229-5518 51

IJSER © 2019
http://www.ijser.org

IJSER

52

 Figure 6. Process flow diagram for CT-RTS

International Journal of Scientific & Engineering Research
ISSN 2229-5518 52

IJSER © 2019
http://www.ijser.org

IJSER

53

5.2 CT-RTS: Readily Executable Test Cases

 As mentioned in the previous section, this is the case when the ACTS

output test cases can be readily executed on the SUT. College Time Table which

is a multi parameter software used as SUT and the findings are documented in

the chapter 7 titled, “Generating Effective Test Suite for Multiparameter

Software using ACTS Tool and its Verification using Code Coverage Tools”.

5.3 CT-RTS: Functional Test Case Generation

 This is the case when the ACTS output test cases need to be converted

to executable test cases using the intermediate step. The executable test cases

are called functional test cases. IoT operating system Contiki and its Java

simulator tool Cooja are used as the SUT and the findings are documented in

the chapter 10 and chapter 11.

5.4 Conclusion

 This chapter introduces the CT-RTS approach where the ACTS

generated test cases are executed on the target SUT and the effectiveness of

the generated regression test suite is ascertained using the code coverage

tools with respect to code coverage metrics. Two cases are discussed when the

test cases are readily executable and the case when the intermediate step is

required to generate the functional test cases. This chapter acts as the

foundation for the chapter 7 and chapter 10.

International Journal of Scientific & Engineering Research
ISSN 2229-5518 53

IJSER © 2019
http://www.ijser.org

IJSER

54

6 CT-RTS: Generating Regression Test

Suite for Multiparameter Software

and its Verification using Code

Coverage Tools.

6.1 Introduction

Combinatorial testing is a practical method to test software with multiple input

parameters. National Institute of Standards and Technology has developed

tools which aid combinatorial testing. ACTS is one such tool which is freely

available to users. In spite of this, very few software being developed are being

tested systematically. In this chapter we explore the effectiveness and

suitability of ACTS tool to test software which has a multiparameter input. We

chose a Java based software, College Time Table, a software which involves

multiparameter input, as system under test. We could achieve 90% coverage

of instructions, line, method and 100% class coverage with practical time and

effort with ACTS tool. The process involved in getting above mentioned results

is documented in this chapter.

Empirical data generated with the code coverage confirms the effectiveness of

ACTS generated test suite for a simple project. In a typical Software

Development Life Cycle (SDLC) 50-80% budget goes towards testing. In spite of

this, 2003 National Institute of Standards and Technology (NIST) report

estimated a loss of 59.5 billion dollars to US economy due to inadequate

testing [13]. In this light, software testing becomes critical. This is all the more

critical as developers use pre-existing code which are now available as part of

open source projects.

Several approaches exist to enable testing. One such field of testing is

Combinatorial Testing (CT). A report by Nie indicates that CT is widely adopted

by industry and researchers alike [14]. Exhaustive testing of all the possible

combination of inputs and execution paths is a laborious task involving

impractical man hours. CT is a method that can reduce cost and increase the

International Journal of Scientific & Engineering Research
ISSN 2229-5518 54

IJSER © 2019
http://www.ijser.org

IJSER

55

effectiveness of testing. Pairwise testing is already in practice where 2-way

combination of parameters is tested. However, as per NIST two way testing

misses 10% to 40% or more system bugs [13]. Therefore higher level inter-

action testing is critical. New algorithms have made 4 way to 6 way testing

possible. Some of the rare combination of inputs trigger the failures that would

have escaped previous testing or extensive use. Such failures are known as

interaction failures. Traditional pairwise testing targets the 2-way interaction

failures and has been in practice for quite some time. Till recently most tools

would take impractically long time for generating the 3-way through 5-way

arrays as the array generation process is mathematically complex. But the

development of new algorithms recently has made the 3-way through 5-way

array generation possible [3]. Two forms of combinatorial testing is possible:

Configuration based combinatorial testing and Input parameter based

combinatorial testing. A combination of both can also be used. Variety of

software tools are available to assist CT. NIST has developed tools for this

purpose. They are

1) Automated Combinatorial Testing of Software (ACTS).

2) Combinatorial Coverage Measurement (CCM) tool.

3) Sequence Covering Array Generator.

In this chapter we present our proposed approach called ACTS-RT. In the we

take ACTS tool [19] and develop a mechanism for its usage and show its

effectiveness for the purpose of CT. CCM tool is useful for measuring the

combinatorial coverage [20]. Sequence covering array generator is useful

when sequences are involved.

We successfully used our ACTS-RT on a Java based software, College

Timetable, which is free and available on Source-Forge.

6.2 Brief Literature Survey of CT

Much work has been done on estimating the fault detection effectiveness of

CT [22]. The basic assumption of the CT is faults are deterministic in that failure

triggering combination of input values always produce failures if it is present

in the input. There much study being done on the tools and usage of CCM [23].

M F Johansen has used CCM to test soft-ware of industrial size in his PhD Thesis

[18]. M F Johansen describes product line testing, which is the strategic testing

of the product line to gain confidence for any configuration of it. CT has also

International Journal of Scientific & Engineering Research
ISSN 2229-5518 55

IJSER © 2019
http://www.ijser.org

IJSER

56

been applied to industrial test suites [30]. Laleh et al. talk about input space

modeling methodology, before applying CT to a system, the input space must

be modeled [15]. CT approach is unique in each paper and is evident from few

papers [16], [17]. P. Amman et al. talk about how to combine model checkers

with specification based mutation to generate the test cases from formal

software specification. Paolo et al. talk about validation of model and test tool

generated test suites [17].

6.3 ACTS Tool

ACTS tool is a test generation tool. It generates t-way combinatorial tests sets.

The “t” in t-way can range from 1 through 6. A system in ACTS tool is specified

by a set of parameters and their values. Given any t parameters (out of all the

parameters) of system, every combination of values of these t parameters is

covered by atleast one test in the test set.

 ACTS makes use of several algorithms for the test generation. The algorithms

include IPOG, IPOG-D, IPOG-F and IPOG-F2. IPOG-D is preferred for larger

systems while IPOG, IPOG-F, IPOG-F2 work best for moderate size system.

6.4 Open Clover

OpenClover is an open source code coverage tool [24]. Code coverage is a

quantitative data about code covered as a part of test execution. It shows

which part of the code is tested and which is not tested. Typically, tester does

the code coverage in an iterative manner till the required criteria is met. Code

coverage is done for the following reason:

• To know whether testing is adequate.

• To maintain the quality of code.

There exist three types of coverage tools. They are:

• Source code instrumentation tools

• Byte code instrumentation tools

• Runtime information collecting tools.

 Clover uses the source code instrumenting as the source code instrumenting

produces more accurate results. Types of coverage measured by various tools

are:

• Statement coverage

International Journal of Scientific & Engineering Research
ISSN 2229-5518 56

IJSER © 2019
http://www.ijser.org

IJSER

57

• Branch coverage

• Method coverage.

Clover combines the above mentioned criteria viz. statement coverage, branch

coverage and method coverage criteria to arrive at Total Percentage of

Coverage (TPC).

TPC is calculated as follows:

TPC = (BT + BF + SC + MC)/(2 × B + S + M) × 100%

where

BT: Branches that evaluated to "true" at least once

BF: Branches that evaluated to "false" at least once

SC: Statements covered

MC: Methods entered

B: Total number of branches

S: Total number of statements

 M: Total number of methods

Clover actually sees the real code structure and uses the source code

instrumentation. Only line coverage is possible with byte code instrumentation

tools. However, statement coverage is possible with Clover as it uses the

source code instrumentation.

6.5 College Time Table

College Time Table (CTT) software is a simple Java based tool for generating

small sized school or college time table [31]. CTT utility collects the information

on the fly without expecting the details such as number of teachers, their

name, subjects etc.

We have picked CTT for demonstrating the ACTS tool usage since it has a:

1) Practical sized code

2) Combinations of parameters are used as input and therefore it is a

suitable software to demonstrate the functionality of ACTS.

3) We wanted to demonstrate the applicability of the method proposed

by us on a software which we had not much detailed knowledge about.

International Journal of Scientific & Engineering Research
ISSN 2229-5518 57

IJSER © 2019
http://www.ijser.org

IJSER

58

6.6 CT-RTS: Generating The Test Cases and Gathering

Coverage Data

 Table 6. Parameter and their values in ACTS for CTT software

Parameter Parameter values

File_Operation

New_Time_Table, Save_Time_Table,

Save_Time_Table_As, Load_Time_Table,

Null

Print_Operation

Print_Current, Print_All_Individuals,

Print_All_Classes, Print_Master_Table

Load_Demo_Time_Table Demo_Time_Table, Null

Time_Table_Operation

Printer, Global_Counts,

Remove_Gaps_Doubles, Freeze_Cell,

Multi_Freeze, Clear_Freeze,

Find, Next_Find, Find_And_Replace,

Wizard-01, Insert_Row, Swap_Time_Table,

Wizard-02, Delete_Row

Constraints:

(File_Operation != "Null") => (Load_Demo_Time_Table == "Null")

(Load_Demo_Time_Table != "Null") => (File_Operation == "Null")

ACTS tool needed for this work was downloaded from the NIST website. CTT

software which involves multiple input parameters and their combinations

was taken from the github. The target SUT (CTT in this case) was imported in

Integrated Development Environment (IDE) which was Eclipse. Once chosen

SUT is imported, next step is installation of the code coverage plugin tool.

OpenClover plugins are available for many popular IDEs. The SUT (CTT) is

instrumented and built. Next step is to launch the SUT as usual.

International Journal of Scientific & Engineering Research
ISSN 2229-5518 58

IJSER © 2019
http://www.ijser.org

IJSER

59

Figure 7. Process flow diagram for generating the ACTS test suite for CTT software and measuring

the coverage

6.6.1 ACTS Tool Usage for Generating The Test Cases

ACTS tool comes with user guide. User guide contains information on how the

tool needs to be used. ACTS tool was launched. The parameters and parameter

International Journal of Scientific & Engineering Research
ISSN 2229-5518 59

IJSER © 2019
http://www.ijser.org

IJSER

60

values along with relations and constraints if any need to be populated in

system under ACTS tool.

 Figure 8. ACTS tool populated data for CTT

Once these are populated the system can be built. Building the system is

making ACTS tool generate the test cases. Each row of the output is one test

case. To begin with certain combination of parameter and parameter values

can be chosen along with constraints and relations. All the test cases in ACTS

tool can be run. At the end of run of all the test cases, Clover would have

collected the data in the background. The open Clover data can be exported in

various output forms. In this case html format was chosen. From the output

one can infer the data such as:

International Journal of Scientific & Engineering Research
ISSN 2229-5518 60

IJSER © 2019
http://www.ijser.org

IJSER

61

• Instruction coverage

• Branch coverage

• Condition coverage

• Line coverage

• Method coverage

• Class coverage

If the required criteria of code coverage is not met, the parameter modeling

the ACTS tool can be revisited and refined. It is an iterative process and can be

repeated till the required coverage criteria is met.

 Figure 7. summarizes the steps mentioned for this work.

 Table 6. gives the final set of parameter and parameter values along with

constraints chosen for this work. The iterative work was concluded for 90%

instruction coverage. Results section discusses the results in detail.

Although the steps mentioned in section 5 and subsection 5.1 are specific for

a given software (CTT), for a given IDE (Eclipse) and code coverage tool

(OpenClover), the steps involved are generic in nature and can be used for

other soft-ware where combinations are involved.

Following configuration was chosen:

• Algorithm used: IPOG

• Strength chosen: 2

• Mode chosen: Scratch

• Constraint handling: CSP Solver

ACTS output statistics are as follows:

• Number of test cases: 71

• Number of covered combinations: 188

For the above mentioned configuration, ACTS took mere 0.094 seconds to

generate the output to be exported in various formats.

6.7 Results and Results Analysis

Table 7 summarizes the results of test execution for CTT project.

 Table 7. Clover coverage data for CTT software

 CTT Project

Entity Total Missed Covered

Instructions 13483 1080 91%

International Journal of Scientific & Engineering Research
ISSN 2229-5518 61

IJSER © 2019
http://www.ijser.org

IJSER

62

Branches 784 195 75%

Lines 2383 239 90%

Methods 343 40 89%

Classes 89 0 100%

 Figure 9. OpenClover output window at the project level

 Figure 10. Open Clover output window granular level

Appendix B gives the visual output for the table. Detailed logs are kept in

Google docs repository [32] and they act as supplementary information. As can

be seen from the Table 2, class coverage was 100% while lines, instruction and

method coverage was around 90%. Branch coverage was around 75% for the

International Journal of Scientific & Engineering Research
ISSN 2229-5518 62

IJSER © 2019
http://www.ijser.org

IJSER

63

70 test cases. Further, only success path in the code was tested and the error

scenarios were not explored. In addition, some dead code existed in the CTT

project. As mentioned earlier, since the vital entities were around 90% (Except

branch coverage), the refining of parameter model in the ACTS was concluded.

6.8 Conclusion

In this chapter we present an implementation of use of combinatorial testing

based tool for generation of test suite. We have proposed ACTS-RT a method

for generating Regression test suite. The proposed method uses tools provided

by NIST, ACTS and OpenClover. We use Clover a tool for for measuring the code

coverage. We document the findings of generating test suite for multi

parameter software and its verification using code coverage tools. We use as

a SUT a multiparameter Java based soft-ware. We find that the

implementation can be used on any mutiparameter software. The

effectiveness of the ACTS tool generated test suite is cross verified with

traditional metrics code coverage. The documented process in this chapter

could achieve 90% coverage for the vital entities of coverage metrics with

practical time and effort. The process documented in this chapter could be

effectively used for any softwares which involve combinations of input

parameters. Since several free software are used by users with their

modifications incorporates, the method detailed in this work provides an

effective way of testing.

International Journal of Scientific & Engineering Research
ISSN 2229-5518 63

IJSER © 2019
http://www.ijser.org

IJSER

64

7 Re-architecture of Contiki and

Cooja Regression Test Suites using

Combinatorial Testing Approach

7.1 Introduction

In this chapter, we describe how combinatorial testing can be applied to

re-architecture Contiki and Cooja regression test suites. Contiki is the popular

and widely accepted internet of things operating system. Combinatorial

testing was pioneered by National Institute of Standards and Technology.

National Institute of Standards and Technology offers a set of tools to public.

One such tool is Automated Combinatorial Testing for Software. We describe

how Automated Combinatorial Testing for Software can be used to generate a

complete test suite for Contiki and Cooja. Coverage of base test suite is

gathered using CodeCover, a code coverage tool for Java. The low percentage

of coverage in Cooja indicated the need for a redesign of test suite. Once the

base regression test suite is modified using Combinatorial Testing approach, it

can be the new base regression test suite.

Contiki is a popular internet of things operating system with a built-in Cooja

(written in java) simulator. The latest Contiki operating system, ‘version 2.7’

has enhanced the regression test suite in latest version of Contiki. However,

there is scope for improving the test suite further. In this regard, the test suite

will be designed using Automated Combinatorial Testing for Software (ACTS).

Each test case generated will be mapped to actual test cases to be executed in

the Cooja environment of Contiki. Contiki supports various hardware platforms

and a subset of those in simulation mode [33].

When the existing regression test suite was being studied it was observed

that, the test cases are concentrated around a few motes and not evenly

distributed across motes. If the test design is done using ACTS for the

configuration testing as described in the text book and manual of

combinatorial testing the test cases will be distributed evenly across the mote

types (hardware).

International Journal of Scientific & Engineering Research
ISSN 2229-5518 64

IJSER © 2019
http://www.ijser.org

IJSER

65

We instrumented Cooja using CodeCover to gather the coverage data with

the base test suite. The coverage in Cooja, which is an indicator of the

effectiveness of the test suite, was less than 20%. The low coverage however

can be explained by the non-GUI (Graphical User Interface) mode of the Cooja

in regression test case execution. Low percentage of coverage re-enforced the

need for a different test strategy to test the Contiki operating system.

7.2 Contiki Testing Environment

Contiki gives an user friendly environment for testing the delta

development on the operating system in the form of instant Contiki. The

VMWare Player can be used to launch Ubuntu-like environment, which comes

with the tool chain for developing the Contiki modules. Contiki can be built for

multiple target platforms using the appropriate make file arguments. Contiki

supports several mote types in simulation mode. The Cooja simulator talks to

the compiled modules of Contiki using the Java Native Interface (JNI).

The existing regression test suite is comprised of many csc files in

regression testing folder of Contiki. These are basically xml files

understandable by Cooja. The csc files are designed for a given mote type or

several mote types. Eighty three test cases of this type can be found in the

regression test folder. Although the Cooja environment supports various

hardware platforms in simulation mode the test cases are concentrated

around a few mote types. This is not a good test design.

7.3 Combinatorial Testing

If papers submitted in various forums are any indication, combinatorial

testing has recently gained the acceptance among the researchers and

industry as per Nie survey [14]. NIST has been supporting and guiding the

combinatorial testing activity.

ACTS and CCM (Combinatorial Coverage Measurement) tools are used in

our proposed method. ACTS makes use of various algorithms to generate the

test suites for the end user. In our study covering array generated by ACTS

served as the test case design document.

It is observed that the ACTS generated sequence array evenly distributes

the test cases across mote types. Further, the following configuration is used

as input to the ACTS tool.

International Journal of Scientific & Engineering Research
ISSN 2229-5518 65

IJSER © 2019
http://www.ijser.org

IJSER

66

The table 8 gives the parameters and parameter values which are the

inputs to the ACTS tool for Contiki regression test suites. The ACTS tool can be

used in the GUI and non-GUI mode. Population of the parameter type and

values in the ACTS tool is documented in the manual [2].The values could be

populated in the GUI or can be supplied as text file.

The following configuration is used in the ACTS tool:

Degree of interaction coverage: 2 ,Number of parameters: 9, Maximum

number of values per parameter: 10

Table 8. Input parameters for the ACTs tool

Parameters Parameter values

Platform Exp5438, z1, wismote, micaz, sky,

jcreate,, sentilla-usb, esb, native, cooja

base Multithreading, coffee, checkpointing

Rime collect, rucb, deluge, runicast, trickle,

mesh

NetPerformance NetPerf, NetPerf-lpp, NetPerf-cxmac

collect shell-collect, shell-collect-lossy

ipv4 telnet-ping, webserver

ipv6 ipv6-udp, udp-fragmentation, unicast-

fragmentation, ipv6-rpl-collect

RPL up-root, root-reboot, large-network,

upanddownroutes, temporaryrootloss,

randomrearrngement, rpl-dao

ipv6apps servreg-hack, coap

7.4 CodeCover Tool Usage

The paper on CodeCover [25] explains the versatility of CodeCover for

various coverage needs of Java software. The source code instrumenting tool

was used to instrument Cooja. The ant build.xml was modified appropriately

to instrument the Cooja tool source code. Since the regression test suites were

meant for Contiki and Cooja both, the coverage metrics of the Cooja tells the

effectiveness of the existing test suite. The regression test suite was run as

usual while CodeCover collected the data in the background. Since the

regression test cases are executed in batch mode, the Java Virtual Machine

International Journal of Scientific & Engineering Research
ISSN 2229-5518 66

IJSER © 2019
http://www.ijser.org

IJSER

67

(JVM) exits each time creating separate clf (coverage log file) for each of the

test case. The Eclipse mode of testing was unsuitable for the existing test

suites. Ant mode of instrumentation was apt as the Cooja already had the

build.xml file. Since the tool created many clf files, the task at hand was getting

the consolidated picture of the coverage. The command line utilities helped to

achieve the intended task.

The following sequence of operation is carried out:

• Analyzing the clf files.

• Merging the sessions.

• Generating the report.

The generated report in hierarchical html format is as shown in the figure

below.

It is observed that, the overall coverage was less than 20% for the base

regression test suite.

7.5 Results

• The coverage in Cooja is less than 20% for the base test suite of Contiki.

• The ACTS tool generated test cases are more evenly distributed across

motes and functionality wise.

7.6 Conclusion

Each of the test cases generated as covering array in the output of the ACTs

tool can be mapped to the actual test case of Contiki. This means writing the

test cases in csc format for the Contiki operating system. Further the coverage

data can be gathered using the CodeCover.

International Journal of Scientific & Engineering Research
ISSN 2229-5518 67

IJSER © 2019
http://www.ijser.org

IJSER

68

 8 Test Suite Design Methodology

using Combinatorial Approach for

Internet of Things Operating Systems

8.1 Introduction

In this chapter we describe how the test design can be done by using the

Combinatorial Testing approach for internet of things operating systems.

Contiki operating system is taken as a case study but we discuss what can be

the approach for RIOT and Tiny OS operating systems. We discuss how the

combinatorial coverage measurement can be gathered in addition to the

traditional metrics code coverage. The test design generated by using

Advanced Combinatorial Testing for Software is analyzed for Contiki operating

system. We elaborate the code coverage gathering technique for Contiki

simulator which happens to be in Java. We explain the usage of Combinatorial

Coverage Measurement tool. Although we have explained the test design

methodology for internet of things operating systems, the approach explained

can be followed for other open source software.

Our previous chapter touches upon the test design using combinatorial

testing approach for Contiki operating system [34]. In this chapter we intend

to extend the concept and explain what can be done for the Internet of Things

(IoT) operating systems which do not have standard regression test suites viz.

RIOT and Tiny OS. We analyze the Advanced Combinatorial Testing for

Software (ACTS) generated test suite design and explain how the traditional

effective metrics, code coverage can be gathered in addition to more relevant

combinatorial coverage measurements using combinatorial coverage

measurement tool (CCM).

8.2 Typical Workflow for Baselining the regression Test

Suite

Figure 11. depicts the typical flow of work when we want to ascertain the

effectiveness of the test suite using combinatorial approach. First step is

choosing the operating system for Internet of Things. Then traverse through

International Journal of Scientific & Engineering Research
ISSN 2229-5518 68

IJSER © 2019
http://www.ijser.org

IJSER

69

the source code of the open source code base folders to see if the test suite

exists. If it exists gather the coverage data using the code coverage tools.

If the gathered data indicates inadequate test suite, redesign the test suite

using the combinatorial approach and gather the data. If the coverage data is

less, it calls for re-visiting the test design. Base line the test suite once the

adequate test criterion is met.

As can be seen from the diagram it can be iterative process. We document

the process that was used for case study operating system in further sections.

We describe the approach to be followed when the test suite already exists

and when it does not. Section 3 is for the case when the base test suite already

exists and Section 4 is for the case when the test suite does not exist.

Figure 11. Typical work flow for base lining the test suite

8.3 Process of Redesigning the Regression Test Suite if it

Already Exists

Figure 12 depicts the process in the case when test suite already exists. This

section is for the case when the base lined test suite already exists as in the

case of Contiki operating system version 2.7. We can use the either parameter

based re-design or configuration based re-design as explained in the book and

manual or combination of both. The coverage can be gathered using CCM and

traditional coverage tools such as CodeCover. We did preliminary investigation

International Journal of Scientific & Engineering Research
ISSN 2229-5518 69

IJSER © 2019
http://www.ijser.org

IJSER

70

using freely available tool CodeCover for the existing test suite. The coverage

was less than 20%. Appendix B gives the data gathered using the CodeCover.

Then we visited the existing test suite to know the reason for low coverage.

Few areas of improvements were observed in the existing test suite.

• No formal test design document existed.

• It appears that the test cases were concentrated around few mote

types (hardware or configurations in the context of combinatorial testing).

We went through the whole regression test suite to extract the

configurations supported and input parameters being used. We came up with

Table 1 to be populated in the ACTS test model. When the ACTS was populated

using these set of values, the generated test design document is as shown in

Appendix A.

Figure 12. Process of base lining the test suite if it already exists

8.3.1 Contiki Specific Details

Contiki is open source operating system widely used and accepted for

Internet of Things. It has base-lined regression test suite for version 2.7. Contiki

gives the user friendly operating system in the form of instant Contiki which

has Ubuntu like the feel with the tool chains to make the iterative development

easy. The developers can use the instant Contiki to test the patches and testers

can use the same environment for ascertaining the reliability of the operating

system without procuring the hardware for all the mote types.

International Journal of Scientific & Engineering Research
ISSN 2229-5518 70

IJSER © 2019
http://www.ijser.org

IJSER

71

Contiki gives the simulator which is called Cooja. The Cooja simulator talks

to the Contiki using Java Native Interface (JNI). The test cases are called csc

files which are understandable by Cooja. We found Eighty three test cases of

this type in the regression folder. However, these test cases were concentrated

around few mote types.

As already mentioned, Appendix A gives the test design generated using

ACTS for Table 1 input. Let us visit the column 2 of the design. We can see that

the generated test cases are spread across the mote (hardware) types. Further,

the generated test design takes care of the input parameters as well for the

test cases.

Now the task at hand is mapping these generated test cases to functional

test cases (xml files called csc) which are understandable by Cooja and

gathering the coverage data again. The coverage data should improve in

principle. We are working on this.

8.4 Process of Designing the Regression Test Suite if it

Does Not Exist

Figure 13 depicts the case when test suite does not exist. This process is

more suited for operating systems which do not have standard regression test

suite viz. RIOT and TinyOS. Since the functional specification and test design

are both missing in case of these operating systems, we will have to come up

with the functional specification document first. This will be our understanding

of the functionality that these operating systems support. Once the

functionality of these operating systems is understood we will have to come

up with the test design. Configuration to be supported and input parameters

to be supplied for each test case will act as starting point for populating the

ACTS test model. Once test design is generated, we will have to understand

the test environment for these operating systems and the test design need to

be mapped to functional test cases to be executed for gathering the coverage

data. The CCM coverage will not be appropriate as the test cases generated

using ACTS tool will always give 100% combinatorial coverage. Traditional

coverage such as code coverage may be handy.

8.5 Contiki Specific Environment Changes to be Done

International Journal of Scientific & Engineering Research
ISSN 2229-5518 71

IJSER © 2019
http://www.ijser.org

IJSER

72

In this section we document the changes that we did in the Contiki

environment for the tasks at hand. Since we get implementation specific for

case study operating system, this section can be conveniently skipped by the

readers who are not interested in specific details for given operating system.

1. Log in as user in the instant Contiki environment.

2. Search for the .travis. yml

3. Add the build type you are interested in:

- BUILD_TYPE = “ipv6-apps”

- BUILD_TYPE = “CT”

-BUILD_TYPE = “compile-8051-ports”

4. Under the directory../contiki-2.7/regression-tests create a folder 02-CT

5. Under contiki-2.7/regression-tests/02-CT directory create *.csc files

you are interested in viz.

01-custom.csc 02-custom.csc

6. The Make file should look like include../Makefile. simulation-test

7. Create a 01-custom.csc file in the Cooja tool. Use the test script editor

to create a java script which will be essential while running the test case from

command line using the makefile.

International Journal of Scientific & Engineering Research
ISSN 2229-5518 72

IJSER © 2019
http://www.ijser.org

IJSER

73

Figure 13 Process of baselining the test suite if it does not exist

8. Modify the build.xml suitably as explained in Appendix C.

9. Run the regression test suite as usual.

10. Test run will create many *.clf files.

11. Create a script for analyze, merge and generate report.

8.6 Conclusion

In this chapter we presented the approaches that could be employed for

designing the regression test suite using combinatorial approach. We

explained how the bench marking of the regression test suite could be done

using the traditional approaches such as code coverage in addition to coverage

gathered using combinatorial coverage measurement tools.

International Journal of Scientific & Engineering Research
ISSN 2229-5518 73

IJSER © 2019
http://www.ijser.org

IJSER

74

 9. CT-RTS: Contiki and Cooja

Regression Test Suites Design and

Implementation using Combinatorial

Testing

9.1 Introduction

This chapter we propose a mechanism of augmenting existing regression

test suite by additional tests generated from a combinatorial approach. We

then use our approach on to build a practical and reliable regression test suite

for Contiki OS.

9.2 Background

 Contiki is a widely accepted Internet of Things operating system which is

suited for memory and resource constrained devices. Contiki is open source

software with a substantial user community. Contiki software comes with

Instant Contiki which is an user friendly environment for testing. Using

VMWare the Instant Contiki can be launched in a desktop environment. The

Ubuntu based environment comes with tool chain dependencies which helps

in making incremental changes to the operating system easy. Contiki can be

built for various target platforms by tweaking the make file. Contiki supports

several hardware platforms. The Instant Contiki has built in Java Simulator tool

called Cooja which talks to the Contiki using the Java Native Interface (JNI).

Cooja has standard regression test suite in the regression test folder which

are basically XML files with csc extension. These csc files are understandable

by Cooja. The XML files have information of configuration and arrangement of

mote type along with scenario specific java script embedded in them. Although

Contiki supports the various hardware platforms, the regression test suite

doesn’t reflect it. The test cases are concentrated around few mote types.

International Journal of Scientific & Engineering Research
ISSN 2229-5518 74

IJSER © 2019
http://www.ijser.org

IJSER

75

When we did preliminary investigation, we noticed scope for improving the

test suite. Two additional test suites were planned. These additional test suites

are called reengineered test suite and Cooja test suite respectively.

Table 9. gives more details about the test suites.

Table 9 Test suites and their description

Test suite System under
test

Additional comments

Base test suite Mainly Contiki This can be found in
Regression folder. This is
referred as “Test suite A” in
this chapter.

Re-
engineered
test suite

Mainly Contiki This suite is created by
picking additional test
cases from ACTS. This test
suite is referred as “Test
suite B”.

Cooja test
suite

Mainly Cooja
simulator

This test suite is created
from scratch using ACTS.
This test suite is referred as
“Test suite C”

We wanted to quantify the effectiveness of test suites by gathering the

coverage data in operating system and its simulator for the cases A, B and in

simulator in case C. However, there are no open source or proprietary code

coverage tools for software written in C language for all the target platforms

supported by Contiki. Further, Contiki is a hard real time operating system. C

code coverage tools add the overhead in the form of probes or traces making

the test cases to fail. We explored J Test Pro [35] and G Cover [36]. They do

not meet the requirement as the supported hardware platforms are different

from the supported hardware platforms of Contiki or they make use of

proprietary compilers. Therefore we decided to get the indirect measure of

coverage in simulator for case test suites A and B. For test suite C since the

system under test is simulator the coverage was gathered directly on the

simulator written in Java.

9.2.1 Existing regression test suite

Unlike other IoT operating systems viz. RIOT [12] and Tiny OS [10], Contiki

operating system comes with the standard regression test suite which we refer

International Journal of Scientific & Engineering Research
ISSN 2229-5518 75

IJSER © 2019
http://www.ijser.org

IJSER

76

as base regression test suite. The base regression test suite containing 64 test

cases are used for regression testing of Contiki. We did the initial analysis of

the regression test suite and found that the test cases were not evenly

distributed across hardware platforms supported.

The lack of testing across hardware platforms is serious issue because this

is an OS on which many applications are planned. A lack of well tested code

results in applications not working due to problems in the OS.

Further there is no requirement specification document for the Contiki

Operating system and the test design document is unavailable. In such case,

the existing regression test suite was starting point to understand the

functionalities supported by the Operating system.

9.2.2 ACTS tool for generating combinatorial test design

In this work we use NIST ACTS tool for generating the test design. We

applied the ACTS tool to generate the test cases for Cooja. Our preliminary

analysis showed that the ACTS generated test cases were evenly distributed

around hardware configurations. The input that needs to be supplied to the

ACTs tool is given in Appendix A. These are the parameters and parameter

values of Cooja along with constraints that needs to be supplied to ACTS tool.

ACTS generates its output in a series of rows. Each row represents a test case.

These test cases are then mapped to the functional test cases, these can be

actually executed in the test environment.

9.2.3 Code coverage using OpenClover

Code coverage gives a quantitative measurement of how well the test cases

are testing the software. Various Java coverage tools exist today. The coverage

tools employ either source code or byte code instrumentation for gathering

the coverage data. Instrumentation is a process where a tool inserts additional

hooks into the codebase which it later uses for gathering the data. The

coverage was meant for both the Contiki operating system and its simulator

Cooja, here we show the coverage data on Cooja. For Cooja, build.xml already

exists. Therefore, the ideal candidates for our study were CodeCover and

Clover [24].

The regression test cases are written such that the Java Virtual Machine

(JVM) comes up and terminates for each test case. The coverage tool

CodeCover when used will generate the coverage log file per session of the

International Journal of Scientific & Engineering Research
ISSN 2229-5518 76

IJSER © 2019
http://www.ijser.org

IJSER

77

run. This means if there are hundred test cases, there will be hundred coverage

log files (CLFs). To get the consolidated view at the regression test suite level

these sessions have to be merged. The merging of hundreds of sessions is

ineffective in CodeCover. We find that Clover can do the merging in an

effective manner. Clover is open source software effective April 2017. Clover

augments the database file for various sessions automatically. This means

there is no need to merge the sessions either manually or through the shell

scripts. We used the Clover Java code coverage tool for gathering the coverage

data. The build.xml was modified appropriately for the activity of code

coverage gathering.

9.3 Re-engineering the base test suite

For the software under study two scenarios exist.

• The software has the standard regression test suite with it.
• The base regression test suite missing.

For the first case the missing test cases can be generated using the CCM

tool. The other approach is to design the test suite using the ACTs and augment

the missing test cases to the regression test suite by finding the missing test

cases from the regression test suite. In the second case the design will be using

ACTs and choosing the appropriate number of test cases as per the coverage

needs.

In this section we show how the inadequacy of the coverage data can be

addressed by re-engineering the regression test suite.

We generated the test design using the ACTs tool of NIST. The ACTs tool

distributed the test cases evenly around the mote types. The test cases of

Contiki and Cooja are in *.csc format which are basically xml files

understandable by Cooja. The *.csc files are scenario specific and typically few

hundreds of lines in length. In our earlier work we generated the design using

ACTs tool the test design suggested even distribution of test cases around

micaz, esb, wizmote and z1 mote types in addition to sky and contikimotetype.

Figure 14. depicts the idea of gathering the bench mark code coverage

data. The code coverage data of the baselined regression test suite is

compared with the re-engineered test suite code coverage data.

International Journal of Scientific & Engineering Research
ISSN 2229-5518 77

IJSER © 2019
http://www.ijser.org

IJSER

78

We have described the ACTs design with all the parameters taken at a time

[18]. The implementation of such test cases is impractical and therefore two

parameters were taken at a time. Appropriate constraints were introduced in

the ACTs design to make it possible.

The test design was implemented using the NIST ACTs tool. The input

parameters were decided after going through the base regression test suite.

The ACTs tool suggested two hundred and eighty nine test cases.

The functional test cases build the firmware from the *.c files in examples

directory and copy them in motes for a given scenario.

For example:

1) example-runicast.c in directory /home/user/contiki-
2.7/examples/rime is successfully building for all target types viz. sky,
esb, exp5438, z1, wismote and micaz.

2) The same behavior as in 1) is expected from example-trickle.c in
directory /home/user/contiki-2.7/ examples/rime. However, the
build that is 'make command' is successful for sky,esb,z1 and wismote
but make command is failing for exp5438 and micaz.

The behavior in 1) and 2) is external to the test cases that we are

implementing. Meaning the test cases depend upon the successful build for all

the target types.

What this means is we will not be able to implement all the test cases from

ACTs design. Further, we wanted to restrict the number of test cases to

reasonable count say 100. This is for a reason. If all the 289 suggested test

cases of ACTs are implemented and included in the regression it would mean

• Test all approach
• Very long execution cycles given the time taken to
execute the test cases in Contiki and Cooja environment.

International Journal of Scientific & Engineering Research
ISSN 2229-5518 78

IJSER © 2019
http://www.ijser.org

IJSER

79

Figure 14 Process of gathering code coverage for CT

9.4 Test design using ACTS tool for re-engineered test

suite

The ACTs suggested test cases were super set of the base regression test

suite test cases. Since the base regression test suite already had sixty four test

cases, additional thirty five test cases from the ACTs design were implemented

using the auto generation. Essentially we have two test suites:

• Base regression test suite that comes with Contiki
which has 64 test cases.
• Modified regression test suite with ninety nine test
cases taken from ACTs design. Out of ninety nine test cases,
thirty five test cases are new and remaining 64 test cases are

International Journal of Scientific & Engineering Research
ISSN 2229-5518 79

IJSER © 2019
http://www.ijser.org

IJSER

80

same as that of base regression test suite.

9.5 Auto generation of test cases

As mentioned in the section three, thirty five additional test cases were

introduced to the base regression test suite. Since the functional test cases

exceed hundred lines of xml code, additional thirty five test cases translate into

more than three thousand lines of xml code. Since the effort was substantial,

auto generation of test cases was explored. The idea is to take the human

readable text file and auto generate the functional test cases. The functional

test cases have mote arrangement specific information along with scenario

specific java script. The mote and mote arrangement information was auto

generated using the tool that we developed. Scenario specific java scripts were

introduced manually.

Figure 15. Functional test case auto generation tool

Figure 16 below shows the process used for auto generation of the test

cases. Each stage output acts like input to the stage next to it. To begin with

we developed tool which is eight seventy eight lines of code. The code was

written in Java and reuses the Cooja code at several places for the generic

engine. The generic engine was coded first. The engine needed drivers to drive

it. The RegEx package is used to parse the input text file. The parsed

information is used to populate the internal data structures of the tool. The

driver then uses this data to drive the generic engine. In summary, the input

text file contains all the configuration information of mote types readily

embedded in it. The output files will be csc XML files which will have the

configuration information needed for the test cases. The scenario specific java

script is then embedded manually in the test case to complete it. The XML line

International Journal of Scientific & Engineering Research
ISSN 2229-5518 80

IJSER © 2019
http://www.ijser.org

IJSER

81

count for the activity was in excess of three thousand and five hundred for the

activity.

Figure 16. Test case auto generation process

International Journal of Scientific & Engineering Research
ISSN 2229-5518 81

IJSER © 2019
http://www.ijser.org

IJSER

82

Figure 17. Sample input text file for the tool

Figure 17. shows the sample input text file which will be accepted by the

tool. The parser is written such that any number of cscs could be generated in

one run. The logical blocks for the individual test cases are called records and

each line within the record is field. The engine is called generic since the engine

works for any number of mote types and motes. The code written for this work

can be found in git hub [37].

Figure 18 below shows the sample output xml file generated using the tool.

As can be seen from the generated xml the xml is complete in all aspects except

for the scenario specific java script. Since the generation of scenario specific

information cannot be automated, the process of inserting the java script is

manual.

In our case the test case generation was a two pass mechanism. The

skeletons of the XMLs were generated in first pass and the java script was

inserted in second pass resulting in the complete test cases ready to be

executed in Cooja environment. The advantages of automation is basically

eliminating the manual work and elimination of human errors while coding the

individual lines of XML.

International Journal of Scientific & Engineering Research
ISSN 2229-5518 82

IJSER © 2019
http://www.ijser.org

IJSER

83

Figure 18. Sample output XML file

International Journal of Scientific & Engineering Research
ISSN 2229-5518 83

IJSER © 2019
http://www.ijser.org

IJSER

84

9.6 Test design for Cooja test suite using ACTS tool

Since the test suite was to be created from scratch, the functionality of

Cooja was studied to begin with. This was the starting point. To keep the test

cases count reasonable, the input parameter modelling was done in such a way

that the main model was broken down into 4 sub models. The models are

documented in Appendix B for reference. These input parameters were then

supplied as inputs for ACTs to generate the test cases.

9.7 Code coverage data gathering process

Figure 14 depicts the process flow for gathering the coverage data prior

and post CT. It depicts the comparison to be done. The coverage data of base

regression suite is the reference point. The Figure 19 shows how the Clover

interacts with the Cooja to generate the output files for inference. Code

Coverage gathering process shows the changes to be done to the test

environment for gathering the required code coverage data. The build.xml

needs to be modified appropriately to incorporate the Clover in Cooja

environment.

Figure 19 Cooja and Open Clover interaction

International Journal of Scientific & Engineering Research
ISSN 2229-5518 84

IJSER © 2019
http://www.ijser.org

IJSER

85

Figure 20. Test environment change for Clover data gathering

9.8 Results

Table 10, Table 11 and Table 12 gives the comparison of code coverage in

the simulator for various java packages. TPC is the total percentage of coverage

at the simulator level. This is as per the internal calculation of the coverage

tool employed for gathering the coverage. Section 9 elaborates on how the

TPC is calculated in the clover.

International Journal of Scientific & Engineering Research
ISSN 2229-5518 85

IJSER © 2019
http://www.ijser.org

IJSER

86

Table 10. Code coverage in simulator for test suite A

Java package
Test

 suite A

Cooja.plugins.analyzers 0%

Cooja.plugins.skin 0%

Cooja.positioners 0%

contikimote.interfaces 3%

cooja.util 6.50%

cooja.motes 6.60%

cooja.plugins 6.60%

cooja.dialogs 7.30%

cooja.contikimotes 17.90%

cooja.interfaces 20.80%

se.sics.cooja 33%

cooja.radiomediums 43.60%

cooja.emulatedmotes 1.70%

TPC 13.6%

 Table 11. Code coverage in simulator packages for Test Suite B

Java package
Test

 suite B

Cooja.plugins.analyzers 0%

Cooja.plugins.skin 0%

Cooja.positioners 0%

contikimote.interfaces 3%

cooja.util 6.50%

cooja.motes 6.60%

cooja.plugins 6.90%

cooja.dialogs 7.70%

cooja.contikimotes 19.70%

cooja.interfaces 20.80%

se.sics.cooja 34.60%

cooja.radiomediums 44%

cooja.emulatedmotes 53.80%

International Journal of Scientific & Engineering Research
ISSN 2229-5518 86

IJSER © 2019
http://www.ijser.org

IJSER

87

TPC 14.70%

 Table 12. Code Coverage in simulator package for Test suite C.

Java package
Test

 suite C

Cooja.plugins.analyzers 77.80%

Cooja.plugins.skin 72.50%

Cooja.positioners 87.40%

contikimote.interfaces 52%

cooja.util 53.70%

cooja.motes 58.60%

cooja.plugins 72.50%

cooja.dialogs 69.80%

cooja.contikimotes 64.20%

cooja.interfaces 69.30%

se.sics.cooja 77%

cooja.radiomediums 60.70%

cooja.emulatedmotes 54.70%

TPC 70.50%

 Figure 22. shows that the coverage at the package level alone will not

suffice. We would be further interested in knowing whether the testing at class

level is adequate and how many classes have given percentage of coverage.

Figure 9. is to aid such analysis. An ideal test output would have all the classes

represented in the extreme right bar of the chart. The three bar charts are for

test suite A, B and C respectively. As can be seen from the charts for the test

suite C, the bars on the right are taller. Which indicates the testing in simulator

was more adequate in test suite C than in A and B.

 Figure 23. is tree map for the test suites A, B and C. The convention used

for the tree maps is as follows:

• Deep red no coverage.

• Pale green full coverage

• Yellow lies between red and green

International Journal of Scientific & Engineering Research
ISSN 2229-5518 87

IJSER © 2019
http://www.ijser.org

IJSER

88

• Square size indicates the complexity of the code.

Figure 21 Reading the treemap

International Journal of Scientific & Engineering Research
ISSN 2229-5518 88

IJSER © 2019
http://www.ijser.org

IJSER

89

 Figure 22 Class coverage distribution in simulator for three suites A, B and C respectively.

International Journal of Scientific & Engineering Research
ISSN 2229-5518 89

IJSER © 2019
http://www.ijser.org

IJSER

90

Figure 23. Tree maps of code coverage in simulator for three suites A, B and C respectively

International Journal of Scientific & Engineering Research
ISSN 2229-5518 90

IJSER © 2019
http://www.ijser.org

IJSER

91

9.9 Results analysis

Figure 24. Source code analysis of simulator with LOCMetrics

Figure 25. Code metrics of Cooja code base

We saw Total Percentage of Coverage (TPC) of around 13.6% for test suite

A and 14.7% for test suite B. This low percentage of coverage needs to be

explained to begin with. We analyzed the code of Cooja and noticed that the

major packages are plugins, cooja package and dialogs. Cooja supports two

modes of execution viz. Graphical User Interface (GUI) mode and non GUI

mode. The Regression test suite environment is written such that the Cooja

runs in non GUI mode. The packages plugins, cooja package and dialogs have

significant code meant for GUI. In such cases achieving high TPC is not possible

with test suites A and B.

Further CT in test suite B is meant to test various configuration

combinations. The Cooja code is written such that the firmware file is built

externally (The *.C files in examples directory are compiled) and loaded into

International Journal of Scientific & Engineering Research
ISSN 2229-5518 91

IJSER © 2019
http://www.ijser.org

IJSER

92

mote types. This logic is mainly in the files

se.sics.cooja.Contikimote.ContikiMoteType and se.sics.cooja.Simulation.

Therefore inspite of adding the CT test cases to test various hardware

configurations we didn’t see the increase in code coverage of simulator.

We basically have three test suites:

1) Base test suite with 64 test cases. This is test suite A.

2) Re engineered test suite with base 64 + 35 ACTs test cases. This is test

suite B.

3) Cooja test suite designed from scratch. This is test suite C.

 We saw a marginal jump of 1.1% in TPC between test suite A and test suite

B. Where TPC is calculated as follows in Clover:

TPC = (BT + BF + SC + MC)/(2*B + S + M) * 100%

where

BT - branches that evaluated to "true" at least once

BF - branches that evaluated to "false" at least once

SC - statements covered

MC - methods entered

B - total number of branches

S - total number of statements

M - total number of methods

As we have the B, S and M numbers from the clover output, total jump in

(BT+BF+SC+MC) is 312 for 35 added test cases.

Further, each package responded in different way for the 35 added test

cases. For example, the emulated motes package registered a jump of 52.1%

for additional 35 test cases of test suite of B.

International Journal of Scientific & Engineering Research
ISSN 2229-5518 92

IJSER © 2019
http://www.ijser.org

IJSER

93

The low TPC is attributed to the way the Cooja runs in the regression mode.

In regression, Cooja runs in non GUI mode and significant chunk of the code in

Cooja is for GUI.

Further, the code of the Cooja is such that, for various emulated

configurations of CT, the firmware is built externally and loaded into mote

types. Rest of the code is common for various mote types. With such type of

tool, the TPC increase will be low but that will not be a direct measure of

effectiveness of CT of test suite B.

For test suite C, system under test is the simulator i.e Cooja. In this mode

the intention is to test the simulator thoroughly. The test suite C runs the

simulator in both modes GUI and non GUI. The test cases of ACTs output are

executed manually. For test suite C, we mainly concentrated on success path

test cases. Few critical failure path test cases were executed. A quick look at

the Cooja code reveals 237 catch blocks of Java code. These correspond to 237

failure scenarios. We did not hit all the failure paths. We decided to conclude

the refining of input parameter modelling at 70% coverage.

9.10 Supplementary material

Clover output of the test executions are kept in the repository and can be

accessed online [32].

9.11 Conclusion

The base regression test suite of Contiki and Cooja was redesigned using

the combinatorial approach. Auto generation of functional test cases was

explored and test cases were generated and added to the base regression test

suite. We found that the increase in coverage of the simulator was marginal

for the reengineered test suite because of the execution mode of simulator

and simulator code structure. However, for the test suite which was

specifically designed using CT with simulator as the system under test showed

substantial increase in the simulator coverage.

International Journal of Scientific & Engineering Research
ISSN 2229-5518 93

IJSER © 2019
http://www.ijser.org

IJSER

94

10. Combinatorial Testing based

Functional Test Case Generator for

Contiki Operating System and Cooja

Simulator

10.1 Introduction

Evolving multi-parameter, multi-configuration systems require regression test

suite that can be customized. This is in terms of run time. Run time can be

customized by generating the combinations using combinatorial techniques.

For systems like Contiki operating system, the test cases need to be executed

in its simulator Cooja. Executing test cases in a simulator requires functional

test cases to be generated from the combinatorial parameter combinations

obtained. In this work we present a methodology to generate the functional

test cases. We present Functional Test Case Generator for Contiki and Cooja

(FTCGCC), which is a tool developed using our methodology. We demonstrate

use of our tool by generating customizable regression test suite for Contiki and

Cooja using code coverage as criteria. FTCGCC is developed for the test case

generation when target System Under Test is IoT operating system Contiki and

its simulator Cooja. We find that our tool generates all the test cases. FTCGCC

generates the cases which are readily executable in the Contiki and Cooja

environment. Further, the approach mentioned can be used in other cases

where the simulators are involved which accept the XML based test cases. The

design of the FTCGCC can be reused for other simulators. The FTCGCC test case

generator engine is generic in nature.Combinatorial testing (CT) is field of

testing which is in practice both in the industry and research [1]. When the

System Under Test (SUT) has combination of configurations or input

parameters, CT can be used to reduce the number of regression test cases

needed [2] [3]. National Institute of Standards and Technology (NIST) gives the

tools which aid in performing combinatorial testing. Advanced Combinatorial

Testing for Software (ACTS) is one such tool [4]. ACTS tooltakes the input

parameter and input parameter modeling and generates the test design

International Journal of Scientific & Engineering Research
ISSN 2229-5518 94

IJSER © 2019
http://www.ijser.org

IJSER

95

document which is in the form of rows. Each row is independent test case. For

the cases when the test cases are readily executable as in the case of Graphical

User Interface (GUI) applications, no intermediate step is required. However,

when the test environment expects the test cases in a particular format,

intermediate processing is required. For the System Under Test (SUT) as

Contiki operating system and its simulator Cooja, the test design contains the

test cases which are not readily executable in the SUT test environment.

Manual generation of functional test cases is a tedious and error prone task.

In this work we present our tool, Functional Test Case Generator which can be

used for auto-generation of functional test cases. We demonstrate the

successful application of our tool to generate the functional test cases for the

Contiki operating system. The novelty of the FTCGCC is that it is a tool

developed for the specific requirements of the test case generation for Contiki

and Cooja. We evaluated few generic purpose test case generators such as IBM

ATG, TCGTool, Randoop, Automatic Testing Platform, Conformiq. These are

generic purpose tools. These tools generate the test cases either on the basis

of code or requirement. However, they do not meet the requirements of

functional test case generation for Contiki and Cooja. We therefore had to

develop the FTCGCC from scratch for this work. The FTCGCC takes the text file

as input and generates the test cases which are readily executable in Contiki

and Cooja based test environment as explained in the subsequent sections of

this work. In this work we give the details of the high level design and software

implementation of the tool in further sections. The usage of the tool and final

results of the test case execution are also documented.

Table 13. Various existing test case autogeneration tool

Test case

generator

Owner Remarks

IBM ATG IBM Model Based Testing tool

TCGTool SourceForge Test Case generation from

finite state machines.

Randoop University of

Washinton

Junit test case generator

Automatic

Testing Platform

SourceForge Useful for the web applications

on the client side

Conformiq Conformiq Test case generation from

graphical model.

Blueprint Blueprintsys Test case generation from

requirements.

International Journal of Scientific & Engineering Research
ISSN 2229-5518 95

IJSER © 2019
http://www.ijser.org

IJSER

96

10.2 Combinatorial testing and NIST ACTS tool

For real world software, the number of input parameters and their

combinations can be very large making it impractical to develop test cases

covering all the combinations of the input parameters. Combinatorial testing

addresses this issue partially [2]. NIST offers ACTS covering array generator

produces compact arrays covering 2-way to 6-way combinations.

We use the ACTS tool to generate the required combinations to generate a

regression test suite. We use as SUT the Contiki operating system and its Cooja

simulator. In Section III and IV we explain the details of the SUT chosen and the

challenges in developing a practical regression test suite. Subsequent sections

explain more about the ACTS tool usage and the details of our proposed tool

for auto generation of the test cases from the ACTS output.

10.3 Contiki the IoT operating system

Internet of Things (IoT) comprises of things or devices with unique

identities that are connected to the internet. The choice of the operating

system for the device depends on the purpose of the node. A typical IoT

network comprises of expensive nodes and inexpensive nodes. Inexpensive

nodes just collect and forward the data to the nearest expensive node.

Expensive nodes on the other hand do have few analytics capabilities in

addition to the functionalities possessed by the inexpensive nodes. A generic

IoT device supports Connectivity, Processor, Audio/Video interfaces, I/O

interfaces for sensors and actuators, Memory interfaces and Storage

interfaces.

Table 14. Node operating system

Node type Example operating system

Inexpensive node Contiki, RIOT and Tiny OS

International Journal of Scientific & Engineering Research
ISSN 2229-5518 96

IJSER © 2019
http://www.ijser.org

IJSER

97

Expensive node Arch Linux, Amazon

FreeRTOS, Android Things,

Rasbian Linux etc

The Operating system will have all these constraints into consideration while

being developed. In addition the IoT operating system needs to support the

protocols desired. The IoT protocol stack contains mainly four layers:

i. Link layer

ii. Network layer

iii. Transport layer

iv. Application layer

Table 15. IoT layers and protocols

Layer Protocol examples

Link layer Ethernet, Zig bee, Wi-Fi, Wi-

max or long range communication

protocol such as 3G/LTE/5G etc.

Network layer IPV4, IPV6, 6 LOW PAN

Transport layer TCP or UDP

Application layer HTTP, COAP, Websockets,

MQTT, XMPP or AMQP

Contiki, as the device layer OS, supports the protocols mentioned above.

Contiki has the functionality implementation for all the above mentioned

protocols. To test the protocol functionality a regression test suite needs to

contain the corresponding test cases. Contiki operating system needs be

tested to ensure that all the claimed platforms are supported by the Contiki

operating system. Contiki supports platforms such as Exp5438, z1, wismote,

micaz, sky, sentilla-usb and esb among others. In addition, there needs to be

test cases to for the other functionality such as file system support etc.

International Journal of Scientific & Engineering Research
ISSN 2229-5518 97

IJSER © 2019
http://www.ijser.org

IJSER

98

10.4 Cooja simulator

The Cooja simulator in its current form was designed and developed by

Fredrik Osterlind. Since then it has evolved by many contributors. The acronym

Cooja is derived from Contiki Operating System Java Simulator. Originally the

Contiki was developed for resource constrained Wireless Sensor Network

(WSN) nodes [6]. The main goal of the Cooja simulator is extensibility. Cooja

achieves it using the interfaces and plugins.

Interfaces is for node property such as

• Position of the node

• Button

• Radio transmitter

On the other hand plugin is used for interacting with simulation such as

• To control simulation speed

• To watch all network traffic between the simulated nodes

Since Cooja simulator supports several different simulation environments

at a same time simulation of HetNets (Heterogeneous Networks) is possible.

The advantage of using the Java is that the Java supports JNI (Java Native

Interface) using which the simulator can talk to real Contiki operating systems.

The test cases of the Contiki/Cooja are in the form of XML files. These files

have *.csc extensions. The test cases typically compile the firmware in the *.c

format and embed the firm ware in the Simulator. The firmware compiled

depends on the target platform. In this work we focus on the XML files with

*.csc extension and their auto-generation for the task at hand.

10.5 Regression test suite of Contiki Operating System

We explored the publically available regression test suite of the Internet of

Things (IoT) operating system Contiki [7] and noticed various combination of

configuration and input parameters. Contiki supports various hardware

configuration like mote types, its communication devices etc. [33]. Further,

we noticed that the test cases were concentrated around few hardware (mote)

types in the test suite [34].

Initial design of the test suite using ACTS distributed the test cases evenly

around mote types. We needed the step which would convert the test cases

International Journal of Scientific & Engineering Research
ISSN 2229-5518 98

IJSER © 2019
http://www.ijser.org

IJSER

99

output by the ACTS to functional test cases. The base regression test suite of

Contiki and Cooja consisted of 64 test cases. We wanted to add the additional

test cases to the base regression test suite to see how the code coverage varies

with the additional test cases with code coverage tools [24]. The design was

done in the ACTS tool. ACTS tool generated 289 test cases. We noticed that the

289 test cases were super-set of the base regression test suite. Since the

execution time needs to be over-night, we decided to limit the test cases to

99. Additional 35 test cases need to be added.

There exist two types of scenarios as depicted in the Figure 7. when ACTS tool

is involved.

• When the test cases are readily executable on the target SUT as in case

of GUI SUT

• When the test cases in the ACTS design need to be converted into

executable test cases called functional test cases using the intermediate step.

The former case is explored in detail and is documented in the chapter 7. The

latter is investigated in this paper.

Since each test case requires more than 100 lines of XML code, for the

additional 35 test cases, straight calculation gives more than 3500 lines of XML

code. In addition, manually coding further means that the process could be

error prone. Automation of the functional test case generation has resulted in

development of Functional Test Case Generator for Contiki and Cooja

(FTCGCC). The idea is the tool should take as an input the human readable text

file and should generate the XML files understandable by the Cooja simulator.

Figure 15. gives the functionality at a high-level.

10.6 Requirements for FTCGCC

High level requirements for the tool are as follows:

1. The FTCGCC should take the text file and generate the XML files

which are in the *.csc format understandable by Cooja simulator

2. The text file consists of records separated by special characters

“(“ and “)”

3. Each record maps to individual test case.

International Journal of Scientific & Engineering Research
ISSN 2229-5518 99

IJSER © 2019
http://www.ijser.org

IJSER

100

4. Each line in the record separated by special character “{“ and

“}” called field within the test case, should map to a logical block of the

test case.

5. The input text file could contain any number of records and any

number of fields within the records. The parser should be generic

enough to handle this.

10.7 High level design of FTCGCC

The tool is designed such that it takes the input text file consisting of

records and fields. The field and field values are separated by special character

“,”. If the input file consists of N records, the FTCGCC outputs N test cases. The

test case creation is two pass mechanism:

• In the first pass, complete test case except the JavaScript is created

using the FTCGCC.

• Since the JavaScript is scenario specific, it should be coded manually. In

the second pass, the JavaScript is embedded manually in the test case created

in the first pass.

Figure 16. gives the blocks involved in the design of the FTCGCC. First the

input file is split using the Java’s regexp package. This step splits the input file

in the form of records and fields. Each record maps to one test case and each

field within the record maps to logical block within the test case. Next, the data

structures within the tool are populated as per the parsed input file. These

data structures act as driver data. The driver drives the generic engine which

is meant for generating the XML files. The Cooja code is reused heavily in the

generic engine.

As can be seen from the block diagram, the output of one block drives the

next. Or in other words, the output of one stage is input to the next stage.

Table 16. Stages and functionality of FTCGCC

Stage Description
Stage 1 Creation of input file to

FTCGCC

Stage 2 FTCGCC creates records
and fields using the Java
regexp package

Stage 3 FTCGCC populates the vital
data structures which act
as driver data

International Journal of Scientific & Engineering Research
ISSN 2229-5518 100

IJSER © 2019
http://www.ijser.org

IJSER

101

Stage 4 FTCGCC drives the generic
engine using the driver
data of stage 3.

Stage 5 FTCGCC outputs the
skeleton XML files in *.csc
format.

Stage 6 The scenario specific
JavaScript is embedded in
the XML

Stage 7 Fully functional test cases
are ready

10.8 Software implementation

To design a tool with the requirements mentioned in the requirement

section, we had to analyze all the existing *.csc files of the Contiki and Cooja.

We came up with the generic *.csc template as depicted in Figure 27. We

noticed the vital entities that drive the simulator of the Contiki. We came up

with the template input file to be supplied to the tool and the same is depicted

in Figure 18.

International Journal of Scientific & Engineering Research
ISSN 2229-5518 101

IJSER © 2019
http://www.ijser.org

IJSER

102

 Figure 26. Generic structure of csc file

The csc which stands for the Cooja simulation configuration file contains

the simulation configuration information understandable by the Cooja

simulator. The simulation configuration mainly contains blocks that can be

classified in the following categories

i) Simulation

ii) Plugins

iii) Scenario specific JavaScript

Simulation block contains radio medium information with mote type (along

with firmware information) and mote information. Mote type and mote

information is repeatable block.

International Journal of Scientific & Engineering Research
ISSN 2229-5518 102

IJSER © 2019
http://www.ijser.org

IJSER

103

10.8.1 Java’s regexp parser

The java.util.regex package deals with the sophisticated pattern matching

operations. Regular expression is a string of characters describing character

sequences. Regular expression also called pattern can be set of characters,

wildcard character combinations along with various quantifiers.

Regexp is a powerful package for text processing. Particularly, following

operations can be done very easily with the help of Regexp

• Text processing
• Text manipulation
• Tokenisation

The input file was designed such that:

• Each record which maps to test case starts with special
character “(“ and ends with “)”
• Each field which maps to logical block in the test case
starts with special character “{“ and ends with “}”
• Field name and field values are separated by special
character “,”
• We created the patterns for each of the unique
character sequences mentioned above and we split the
character sequences accordingly.

10.8.2 Java Document Object Model Parser

FTCGCC integrates third party software Java Document Object Model

(JDOM). JDOM was created by Jason Hunter and Brett. JDOM is a method of

representing XML document for easy reading/writing and manipulation. JDOM

is an open source initiative with Apache style license. JDOM integrates with

Document Object Model (DOM) and Simple API for XML (SAX).

JDOM salient features include

• It is light weight
• It can represent full document
• It supports document modification
• It is easy to use

FTCGCC imports Application Programming Interfaces (APIs) of following

four classes

• org.jdom.Document
• org.jdom.Element
• org.jdom.output.XMLOutputter
• org.jdom.output.Format

International Journal of Scientific & Engineering Research
ISSN 2229-5518 103

IJSER © 2019
http://www.ijser.org

IJSER

104

10.8.3 Data structures and functions

Java’s ArrayList can dynamically grow or shrink and is a variable length

array of object references. Vector is similar to ArrayList, but is synchronized.

Table 14. gives the important data structures and functions. Description

column details the intended functionality.

 Table 17. Important data structures and functions

Entity Description
private Vector<Mote> motes Stores the motes in

Vector

private Vector<MoteType> moteTypes Stores the
moteTypes in
Vector

public static ArrayList<Element> config Stores the XML
elements in
ArrayList

public MoteType[] getMoteTypes() Returns all mote
types in simulation

public MoteType getMoteType(String
identifier)

Returns mote type
with given
identifier.

public Collection<Element> getConfigXML() Returns the
current simulation
config represented
by XML elements.

public boolean setConfigXML() Sets the current
simulation config
depending on the
given configuration

public void saveSimulationConfig(File file) Saves the
Simulation Config
as an XML

10.9 FTCGCC usage in Contiki environment

The tool usage is summarized in the following steps.

1) Go to the github

https://github.com/Abhinandan1414/CoojaTestCaseGeneration",

download the content

2) Create an input file with the syntax which adheres to syntax of

"GenTest.txt"

3) Set the CLASSPATH to $CLASSPATH:cooja.jar:.

4) Copy the artifacts to directory of your setup

International Journal of Scientific & Engineering Research
ISSN 2229-5518 104

IJSER © 2019
http://www.ijser.org

IJSER

105

5) Create directory lib and copy jdom.jar jsyntaxpane.jar log4j.jar

JDOM_LICENSE JSYNTAXPANE_LICENSE LOG4J_LICENSE

6) Then compile the GenTestcsc.java

7) Run GenTestcsc

We successfully used the tool FTCGCC for generating additional test cases to

be added to the base regression test suite of Contiki and Cooja and saved

approximately 100 lines of XML coding per test case. Since we added additional

35 test cases, we saved approximately 3500 lines of XML code. A sample XML

file generated is depicted in the Figure 6.

Complete code to be used along with the usage details is in Git hub repository

[37]. Final logs of the test cases are kept in the Google docs repository [32].

10.10 Conclusion

In this work we present our tool Functional Test Case Generator for Contiki and

Cooja. We have successfully used the tool to generate functional test cases.

We looked at the augmentation of the existing regression test suite. Using our

tool, a user could customize the number of test cases which are added to the

existing regression test suite. This will result in a customized generation with

the requirement of code coverage, execution time etc. Use of our proposed

tool will reduce the manual effort of manual coding needed for the functional

test case generation.

International Journal of Scientific & Engineering Research
ISSN 2229-5518 105

IJSER © 2019
http://www.ijser.org

IJSER

106

11 Regression Test Suite

Prioritization using Residual Test

Coverage Algorithm and Statistical

Techniques

11.1 Introduction

In this chapter test suite prioritization using residual coverage algorithm for

white box testing is discussed. For black box testing a new statistical technique

is introduced in this chapter. A mechanism to solve the breaking of tie in

residual test coverage algorithm is also presented in this chapter. Further new

metric is introduced for prioritizing in the black box testing.

In a typical development cycle software professional works in multiple

capacities. Missing exposure to either development or testing is partial view of

the development life cycle [8]. The tester without the development cycle

knowledge can be risk during the white box testing and developer without

testing knowledge means quality compromise.

Regression test selection, minimization and prioritization are the main

topics of research in several papers. There are two main types of coverage.

• Requirement coverage: In this approach test cases to requirement
tracing happens to ensure that all the requirements are covered
and requirement specification document serves as test oracle.

• Code coverage: In this approach statement coverage, branch
coverage and loop coverage are measured to ensure that testing
has not missed executing the code.

We use code coverage as a measurement criteria both for white box and

black box testing.

11.2 Test Coverage Algorithm for White Box Testing

 For a given software to be tested, consider P to be the product code before
bug fixes and enhancement and P’ the product code after the modification. The
corresponding test suites are denoted by T and T’ respectively. Now, one way

International Journal of Scientific & Engineering Research
ISSN 2229-5518 106

IJSER © 2019
http://www.ijser.org

IJSER

107

to visualize T is as collection of obsolete, redundant and valid test cases. In
other words T is collection of {obsolete, redundant, valid} test cases. The T’ will
encompass {valid, newly added test cases}.

 There are different schools of thoughts when it comes to selecting regression
tests between successive releases. Each with their own set of advocates. As
Aditya P. Mathur aptly classifies [8], the philosophy for each of these categories
is very different. The categories are:

• Test all: Brute force method with long execution cycles. Most widely
used technique in the commercial world combined with automation of
regression testing

• Random selection: Sampling of the test cases. Better than no regression
testing at all. Test cases are picked from the test suite except obsolete
test cases randomly.

• Selecting modification traversing tests: Assumes the tester to have the
knowhow of the complete product code. Better than test all and
random selection process. Usually the testers classify the test cases in
buckets where they put related test cases in a given bucket. Depending
upon how the test cases are chosen this mode of testing may or may
not yield good results.

• Test minimization: Pruning of the test suite by dropping the test cases
with similar product trace code as they are redundant. This results in
new reduced size of the regression test suite.

• Test Prioritization: Assumes that the test cases can be ranked on the
basis of certain criteria.

It is the last school of thought which is the focus of this chapter. Regression test
suite prioritization is necessary when there is crunch of resources and time.

Large organizations may choose to use the combination of all the approaches
mentioned above. Large execution cycle may mean drain on resources and
time and therefore good amount of research has gone in optimizing the
regression test suites.

The remaining sections of the chapter can be broadly classified into the
following sections.

• Residual test coverage algorithm enhancements for regression test
suite prioritization using white box testing.

• Statistical techniques for regression test suite prioritization using black
box testing.

• Process flow at the implementation level which can aid the above two
processes.

International Journal of Scientific & Engineering Research
ISSN 2229-5518 107

IJSER © 2019
http://www.ijser.org

IJSER

108

• Case study of coverage tool to explain how metrics of choice can be
extracted.

If the current test suite is visualized as the collection of {obsolete,

redundant, valid test cases}, the test suite for new version will be {valid test

cases, newly added test cases}. The newly added test cases either cover newly

added functionality or they cover modified functionality. In this case some of

the valid test cases may become redundant or obsolete. If the removed

functionality is added back the obsolete test cases may become valid test

cases. The new test cases go through the review process depending upon

review process in place. The newly added test cases always go through review

process and are always executed. The remaining test cases need to be

prioritized. Modified test cases can be considered as new test cases. Between

successive releases the historical data needs to be preserved. The coverage

data and execution time becomes the reference data for new build of the

product. The newly added test cases are always executed and ranking them

among themselves adds little value. The test execution will be newly added

test cases followed by prioritized test cases. Since the newly added test cases

will be far less compared to valid test cases taken from previous releases the

approaches mentioned in this chapter should work in practical setup. There is

no real gain in ranking the newly added test cases as they are mandatorily

executed.

11.3 Residual Test Coverage Algorithm enhancements

for White Box Testing

Here we present an algorithm for breaking the tie which is required when

dealing with large multiparameter software.

We modify the residual test coverage algorithm to ensure that the random test

selection process is not used. Here, newly introduced parameters are in italics

and modified algorithm looks as follows.

Algorithm for prioritizing the regression test suite post modification.

Input T’: Set of regression tests for the modified program P’.

 entitiesCov: Set of entities in P covered by tests in T’.

 cov: Coverage vector such that for each test t Ɛ T’, cov(t) is the set of
entities covered by executing P against t.

International Journal of Scientific & Engineering Research
ISSN 2229-5518 108

IJSER © 2019
http://www.ijser.org

IJSER

109

 executionTime: executionTime(t) is the time taken by the test case t Ɛ T’
to complete the execution.

 linesOfCodeTraced: linesOfCodeTraced(t) is the total lines of product
code covered by the test case t Ɛ T’ during execution.

Output PrT: A sequence of prioritized test cases such that

(a) each test case belongs to T’

 (b) each test in T’ appears exactly once in PrT, and

(c) tests in PrT are arranged in the ascending order of cost.

Step 1: X’ = T’. Find t Ɛ X’ such that │cov(t)│≥ │cov(u)│for all u Ɛ X’, u ≠ t.

Step 2: Set PrT = <t>, X’ = X’\{t}. Update entitiesCov by removing from it all
entities covered by t. Thus entitiesCov=entitiesCov\cov(t).

Step 3: Repeat the following steps while X’ ≠ Φ and entityCov ≠ Φ.

 Step 3.1 Compute the residual coverage for each test t Ɛ T’. resCov(t) =
│entitiesCov \ (cov(t) ∩entitiesCov │. resCov(t) indicates the count of currently
uncovered entities that will remain uncovered after having executed P against
t.

 Step 3.2 Find test t Ɛ X’ such that resCov(t) ≤ resCov(u), for all u Ɛ X’, u ≠ t. If
two or more such tests exist then first compare │cov(t)│, if there is tie again
look for executionTime(t) and linesOfCodeTraced(t) and select the one with
high │cov(t)│, linesOfCodeTraced(t) and least executionTime(t).

 Step 3.3 Update the prioritized sequence, set of tests remaining to be
examined, and entities yet to be covered by tests in PrT. PrT = append(PrT, t),
X’=X’\{t}, and entitiesCov = entitiesCov\cov(t).

Step 4: Append to PrT any remaining tests n X’. All remaining tests have the
same residual coverage which equals │entitiesCov│. Hence these tests are tied.
Now follow exactly what was done in step3.2. That is when two or more tests
tie look for test case with higher value of │cov(t) │and linesOfCodeTraced(t) and
least executionTime(t).

End of Algorithm

International Journal of Scientific & Engineering Research
ISSN 2229-5518 109

IJSER © 2019
http://www.ijser.org

IJSER

110

 In the proposed algotirhm, to begin with, we start with test case that covers
maximum entities. Then we choose the test case which will run the maximum
uncovered entities that are not already covered by previously run test cases.
The second step is repeated till there are no more unique entities to be
covered. When we encounter two or more test cases with the same cost, we
choose the test case that will cover maximum entities with high loc trace and
least execution time. Once all the entities are covered, we choose the test cases
with the same criteria, high entities coverage, least execution time and high loc
trace. The logic is, choose the test case that covers maximum entities, traces
more loc in least time.

This is a methodology which comes under white box testing. In an ideal
situation, a tester carries out the testing with a member of the of the team of
developers.

11.4 Statistical Approach for Prioritization of Test Cases

for Black Box Testers.

The approach mentioned in the Section 4.2 involves product code

dissection at class function level. This requires an understanding of the code

being handled. In situations where there is lack of time for understanding and

implementing a white box algorithms, black box techniques can be used. As

will be explained in further sections, this can be done with probes in the test

cases and tweaking of the tool used for gathering the code coverage data.

Please have look at the table below.

Table 18. Table for calculating the new metric

Test

case

number

Number

of lines of

code in the

test case

(LOCTesti)

Number of

lines of code

traced in the

product

code(LOCProdi)

Execution

time (ᴛi)

New

metric

(Nmi)

1

2

.

.

n

Effectiveness of total test suite = ∑ Nmii=n
i=1

International Journal of Scientific & Engineering Research
ISSN 2229-5518 110

IJSER © 2019
http://www.ijser.org

IJSER

111

Effectiveness of test suite per test case =
∑ Nmii=n

i=1

n

Where Nmi =
LOCProdi

(LOCTesti X ᴛi)

Here we are using the logic that the test case which traces maximum lines of
product code with least number of lines in itself in least amount of time is
efficient. We sum up the numbers Nmi short for New Metric to get the picture
at the test suite level.

However the above explained logic assumes there are no redundant test

cases in test suite.

11.5 Coverage Tools: CodeCover a case study

 Since we have used the terms such as product lines of code traversed and

lines of the code in the test case we need a tool to measure the same. The

obvious choice is code coverage tools. There are plenty of coverage tools for

code coverage. The choice of tool for particular project depends upon various

criteria. We find that the tool CodeCover is most suited tool for Java projects

since it comes with EPL license and most importantly, it is open source

software. It is backed by a team of developers who support the tool usage and

deal with any issues. The tool can be extended and tweaked as per the needs

of particular project. CodeCover gives various metrics such as statement

coverage, branch coverage, loop coverage, MC/DC coverage etc at test case

level as well as test suite level. There are provisions to call the Application

Programmers Interface (APIs) of this tool from outside. The flexibility to call

the APIs from external environment can mean a lot to implement the topics

explained in this chapter.

 In further sections we explain how the APIs could be called from test

setup to gather the required data and how it can be combined with other

parameter of interest viz. execution time.

 The CodeCover already supports two languages as diverse as Java and

Cobol. This is being mentioned for reason. That is tweaking of the tool is not

effort intensive.

International Journal of Scientific & Engineering Research
ISSN 2229-5518 111

IJSER © 2019
http://www.ijser.org

IJSER

112

11.6 Process Flow for Collecting Metrics of Choice

Figure 27. Process flow for collecting the metrics of choice

Figure 27. details how the product code traced and execution time of the

test cases are collected while gathering the metrics of choice.

11.7 Advantages of Test Suite Prioritization

The advantages of spending effort in test suite prioritization are best seen

in projects which maintains thousands of test cases. Further, depending upon

the system, it could take few days to execute the test cases. These kinds of

systems are seen in many of the large software developments. These occur for

large scale development of free software in wireless networking related area.

International Journal of Scientific & Engineering Research
ISSN 2229-5518 112

IJSER © 2019
http://www.ijser.org

IJSER

113

11.7 Conclusion

This chapter explains two approaches black box testing and white box

testing. Each of the approach has its own merits and drawbacks. Depending

upon the resources and time either approach can be followed.

The chapter also explains how the metrics being discussed in either

approach can be extracted in practical setup. The CodeCover based approach

is discussed to explain how the metrics of choice can be extracted.

International Journal of Scientific & Engineering Research
ISSN 2229-5518 113

IJSER © 2019
http://www.ijser.org

IJSER

114

 12. Conclusion

This chapter is conclusion chapter of the Thesis.

12.1 Introduction: The research problem

This Thesis studies the following research problems.

• Study of regression test suites in general

• Design and implementation of combinatorial testing based test suites
for internet of things operating system and its simulators

• Measuring the effectiveness of designed test suites using the
traditional coverage techniques like code coverage

• Automation of test scripts generation from combinatorial testing
design model and analyzing coverage to refine the combinatorial
testing design model.

• Propose an integrated test environment for combinatorial testing

12.1.1 Summary of results

The summary of the results are as shown in the table 10 below. Table 10

gives traceability between research problem and outcome

Table 19. Traceability from research problems to the outcomes

Research Problem Traceability to Thesis
chapter

Study of regression test suites with respect to execution
time and residual test coverage algorithm
enhancement.

Chapter 3 and 11

Design and implementation of combinatorial testing
based test suites for internet of things operating system
and its simulators

Chapter 5,7 and 9

 Measuring the effectiveness of designed test suites
using the traditional coverage techniques like code
coverage

Chapter 9

Automation of test scripts generation from
combinatorial testing design model and analyzing
coverage to refine the combinatorial testing design
model.

Chapter 9

 Propose an integrated test environment for
combinatorial testing

Chapter 4

International Journal of Scientific & Engineering Research
ISSN 2229-5518 114

IJSER © 2019
http://www.ijser.org

IJSER

115

Demonstration of CT-RTS Chapter 6

12.2 Conclusions.

Based on the Thesis contribution following conclusions can be drawn.

1. Statistical techniques can be applied to study the execution time of
a generic regression test suite. It is possible to study the statistical
parameters such as probability distribution function, correlation etc
of regression test suites. Further using statistical techniques it is
possible to interpolate or extrapolate the execution time of test
suites which will help during the pruning or augmentation of the
test suite.

2. It is possible to prioritize the regression test suite using the residual
test coverage algorithm which takes the code coverage and
execution time as the input parameter. Further, black box approach
to test suite prioritization using statistical techniques is possible.

3. Integrated test environment approach brings the better integration
of different tools for CT. It is a centralized approach which reduces
the number of tools and duplicated functionality. Maintenance
becomes simple.

4. Using ACTS tool it is possible to come up with an effective test suite
for a multi parameter software. The effectiveness of the test suite
is cross verified using the traditional code coverage metrics.

5. It is possible to come up with a test design methodology for Internet
of Things operating system using the combinatorial approach.

6. Re-architecture of regression test suite using CT approach is
possible. Contiki OS and Cooja simulator regression test suites are
used as case studies. The effectiveness of the test suites designed
using CT is cross verified using the traditional metrics of code
coverage using the tools such as CodeCover and Clover.

International Journal of Scientific & Engineering Research
ISSN 2229-5518 115

IJSER © 2019
http://www.ijser.org

IJSER

116

12.2 Future work

Following are the scopes for future works:

1) CT-RTS is applied for Contiki and its simulator Cooja. Similar
techniques can be explored with the other operating systems such as
RIOT and TinyOS. At the time of this thesis writing there were no
readily available simulators for the operating systems such as RIOT
and TinyOS. Since the time required to develop the simulators for
these operating systems was significant it is set aside as future work.

2) CT-RTS can be used for other open source softwares.
3) Integrated test environment can be explored for real life project with

the commercial tools mentioned in the thesis.
4) The statistical techniques mentioned in this thesis can be explored

further and more rigorously.
5) Test suite prioritization using the Residual test coverage algorithm can

be explored more rigorously.

International Journal of Scientific & Engineering Research
ISSN 2229-5518 116

IJSER © 2019
http://www.ijser.org

IJSER

117

Appendix A: ACTs Generated Test

Design for Contiki Operating System.

Column1 Column2 Column3 Column4 Column5 Column6 Column7 Column8 Column9 Column10
Test

Case#
Platform base Rime NetPerformanc collect ipv4 ipv6 RPL ipv6apps

0 Exp5438 coffee rucb NetPerf-lpp shell-collect-

lossy
webserver udp-

fragmentation
up-root coap

1 Exp5438 checkpointing deluge NetPerf-cxmac shell-collect telnet-

ping
unicast-

fragmentatio
root-reboot servreg-hack

2 Exp5438 Multithreading runicast NetPerf shell-collect-

lossy
telnet-

ping
ipv6-rpl-collect large-network coap

3 Exp5438 coffee trickle NetPerf-cxmac shell-collect webserver ipv6-udp upanddownroutes servreg-hack
4 Exp5438 checkpointing mesh NetPerf shell-collect webserver udp-

fragmentation
temporaryrootloss coap

5 Exp5438 Multithreading collect NetPerf-lpp shell-collect webserver unicast-

fragmentatio
randomrearrngement servreg-hack

6 Exp5438 checkpointing rucb NetPerf-cxmac shell-collect-

lossy
telnet-

ping
ipv6-rpl-collect rpl-dao servreg-hack

7 z1 Multithreading deluge NetPerf shell-collect-

lossy
telnet-

ping
ipv6-udp up-root coap

8 z1 coffee runicast NetPerf-lpp shell-collect webserver udp-

fragmentation
root-reboot servreg-hack

9 z1 checkpointing trickle NetPerf-lpp shell-collect-

lossy
telnet-

ping
unicast-

fragmentatio
large-network coap

10 z1 Multithreading mesh NetPerf-cxmac shell-collect-

lossy
telnet-

ping
ipv6-rpl-collect upanddownroutes coap

11 z1 coffee collect NetPerf shell-collect-

lossy
telnet-

ping
ipv6-udp temporaryrootloss servreg-hack

12 z1 checkpointing rucb NetPerf shell-collect telnet-

ping
ipv6-udp randomrearrngement coap

13 z1 Multithreading deluge NetPerf-lpp shell-collect webserver udp-

fragmentation
rpl-dao coap

14 wismote checkpointing runicast NetPerf-cxmac shell-collect webserver unicast-

fragmentatio
up-root servreg-hack

15 wismote Multithreading trickle NetPerf shell-collect-

lossy
webserver ipv6-rpl-collect root-reboot coap

16 wismote coffee mesh NetPerf-lpp shell-collect telnet-

ping
ipv6-udp large-network servreg-hack

17 wismote checkpointing collect NetPerf-cxmac shell-collect-

lossy
telnet-

ping
udp-

fragmentation
upanddownroutes coap

18 wismote Multithreading rucb NetPerf shell-collect-

lossy
telnet-

ping
unicast-

fragmentatio
temporaryrootloss coap

19 wismote coffee deluge NetPerf-lpp shell-collect-

lossy
webserver ipv6-rpl-collect randomrearrngement servreg-hack

20 wismote coffee runicast NetPerf shell-collect-

lossy
telnet-

ping
ipv6-udp rpl-dao coap

21 micaz checkpointing trickle NetPerf-cxmac shell-collect webserver udp-

fragmentation
up-root servreg-hack

22 micaz coffee mesh NetPerf-lpp shell-collect-

lossy
telnet-

ping
unicast-

fragmentatio
root-reboot coap

23 micaz Multithreading collect NetPerf-cxmac shell-collect webserver ipv6-rpl-collect large-network coap
24 micaz checkpointing rucb NetPerf shell-collect telnet-

ping
ipv6-udp upanddownroutes coap

25 micaz checkpointing deluge NetPerf-lpp shell-collect-

lossy
webserver ipv6-rpl-collect temporaryrootloss servreg-hack

26 micaz checkpointing runicast NetPerf-cxmac shell-collect telnet-

ping
udp-

fragmentation
randomrearrngement servreg-hack

27 micaz checkpointing trickle NetPerf-cxmac shell-collect webserver unicast-

fragmentatio
rpl-dao servreg-hack

International Journal of Scientific & Engineering Research
ISSN 2229-5518 117

IJSER © 2019
http://www.ijser.org

IJSER

118

28 sky coffee mesh NetPerf shell-collect-

lossy
webserver ipv6-rpl-collect up-root servreg-hack

29 sky checkpointing collect NetPerf-lpp shell-collect telnet-

ping
ipv6-udp root-reboot coap

30 sky Multithreading rucb NetPerf-cxmac shell-collect webserver udp-

fragmentation
large-network servreg-hack

31 sky checkpointing deluge NetPerf-lpp shell-collect-

lossy
telnet-

ping
unicast-

fragmentatio
upanddownroutes servreg-hack

32 sky checkpointing runicast NetPerf-cxmac shell-collect telnet-

ping
unicast-

fragmentatio
temporaryrootloss coap

33 sky checkpointing trickle NetPerf-lpp shell-collect webserver ipv6-rpl-collect randomrearrngement coap
34 sky coffee mesh NetPerf-lpp shell-collect-

lossy
telnet-

ping
ipv6-rpl-collect rpl-dao coap

35 jcreate coffee collect NetPerf shell-collect-

lossy
webserver ipv6-rpl-collect up-root servreg-hack

36 jcreate checkpointing rucb NetPerf-lpp shell-collect telnet-

ping
ipv6-udp root-reboot coap

37 jcreate Multithreading deluge NetPerf-cxmac shell-collect webserver udp-

fragmentation
large-network coap

38 jcreate Multithreading runicast NetPerf-lpp shell-collect webserver unicast-

fragmentatio
upanddownroutes servreg-hack

39 jcreate checkpointing trickle NetPerf-lpp shell-collect-

lossy
webserver ipv6-udp temporaryrootloss coap

40 jcreate coffee mesh NetPerf-cxmac shell-collect telnet-

ping
ipv6-udp randomrearrngement servreg-hack

41 jcreate checkpointing collect NetPerf-cxmac shell-collect webserver unicast-

fragmentatio
rpl-dao servreg-hack

42 sentilla-

usb
coffee rucb NetPerf shell-collect-

lossy
webserver ipv6-rpl-collect up-root servreg-hack

43 sentilla-

usb
checkpointing deluge NetPerf-lpp shell-collect telnet-

ping
ipv6-udp root-reboot coap

44 sentilla-

usb
Multithreading runicast NetPerf-cxmac shell-collect-

lossy
webserver udp-

fragmentation
large-network coap

45 sentilla-

usb
coffee trickle NetPerf shell-collect-

lossy
webserver unicast-

fragmentatio
upanddownroutes coap

46 sentilla-

usb
coffee mesh NetPerf-lpp shell-collect telnet-

ping
ipv6-udp temporaryrootloss coap

47 sentilla-

usb
Multithreading collect NetPerf shell-collect-

lossy
telnet-

ping
ipv6-udp randomrearrngement coap

48 sentilla-

usb
Multithreading collect NetPerf-cxmac shell-collect webserver unicast-

fragmentatio
rpl-dao servreg-hack

49 esb coffee rucb NetPerf shell-collect-

lossy
webserver ipv6-rpl-collect up-root servreg-hack

50 esb checkpointing deluge NetPerf-lpp shell-collect telnet-

ping
ipv6-udp root-reboot coap

51 esb Multithreading runicast NetPerf-cxmac shell-collect-

lossy
webserver udp-

fragmentation
large-network servreg-hack

52 esb Multithreading trickle NetPerf shell-collect-

lossy
webserver unicast-

fragmentatio
upanddownroutes servreg-hack

53 esb coffee mesh NetPerf-lpp shell-collect webserver ipv6-rpl-collect temporaryrootloss servreg-hack
54 esb Multithreading collect NetPerf shell-collect webserver ipv6-udp randomrearrngement coap
55 esb coffee trickle NetPerf-cxmac shell-collect telnet-

ping
udp-

fragmentation
rpl-dao servreg-hack

56 native coffee rucb NetPerf shell-collect-

lossy
webserver ipv6-rpl-collect up-root servreg-hack

57 native checkpointing deluge NetPerf-lpp shell-collect telnet-

ping
ipv6-udp root-reboot coap

58 native Multithreading runicast NetPerf-cxmac shell-collect webserver udp-

fragmentation
large-network servreg-hack

59 native coffee trickle NetPerf-lpp shell-collect-

lossy
webserver unicast-

fragmentatio
upanddownroutes coap

60 native coffee mesh NetPerf-cxmac shell-collect webserver unicast-

fragmentatio
temporaryrootloss servreg-hack

61 native Multithreading collect NetPerf-cxmac shell-collect telnet-

ping
ipv6-udp randomrearrngement coap

62 native checkpointing rucb NetPerf-cxmac shell-collect-

lossy
webserver ipv6-rpl-collect rpl-dao coap

63 cooja coffee rucb NetPerf shell-collect-

lossy
webserver ipv6-rpl-collect up-root servreg-hack

International Journal of Scientific & Engineering Research
ISSN 2229-5518 118

IJSER © 2019
http://www.ijser.org

IJSER

119

64 cooja checkpointing deluge NetPerf-lpp shell-collect telnet-

ping
ipv6-udp root-reboot coap

65 cooja Multithreading runicast NetPerf-cxmac shell-collect telnet-

ping
udp-

fragmentation
large-network servreg-hack

66 cooja Multithreading trickle NetPerf shell-collect-

lossy
telnet-

ping
unicast-

fragmentatio
upanddownroutes servreg-hack

67 cooja coffee mesh NetPerf-cxmac shell-collect-

lossy
telnet-

ping
ipv6-udp temporaryrootloss coap

68 cooja Multithreading collect NetPerf-lpp shell-collect-

lossy
telnet-

ping
ipv6-rpl-collect randomrearrngement coap

69 cooja checkpointing collect NetPerf shell-collect webserver udp-

fragmentation
rpl-dao coap

International Journal of Scientific & Engineering Research
ISSN 2229-5518 119

IJSER © 2019
http://www.ijser.org

IJSER

120

Appendix B: Code Coverage Data

Gathered for Existing Test Suite of

Contiki and Cooja using CodeCover

International Journal of Scientific & Engineering Research
ISSN 2229-5518 120

IJSER © 2019
http://www.ijser.org

IJSER

121

Appendix C: Tweaking of Ant

build.xml for Gathering The

Coverage Data with CodeCover

<?xml version=“1.0”?>

<project name=“COOJA Simulator” default=“run” basedir=“.”>

<property name=“java” location=“java”/>

.

.

<property

name=“args”

value=”/>

<property

name=“codecover

Dir”

value=“/home/user/Desktop/CodeCover/codecover-batch-1.0/lib”/>

<property name=“sourceDir” value=“/home/user/contiki-2.7/tools/cooja/java”/>

<property name=“instrumentedSourceDir” value=“instrumented”/>

<property name=“mainClassName” value=“se.sics.cooja.GUI”/>

<taskdef name=“codecover” classname=“org.codecover.ant.CodecoverTask”

classpath=“${codecoverDir}/codecover-ant.jar”/>

<target name=“clean”>

<delete>

<fileset dir=“.” includes=“*.clf”/>

</delete>

<delete file=“codecover.xml”/>

<delete file=“report.html”/>

<delete dir=“report.html-files”/>

</target>

<target name=“instrument-sources” depends=“clean”>

<codecover>

<instrument containerId=“c”

language=“java”

destination=“${instrumentedS

ourceDir}” charset=“utf-8”

copyUninstrumented=“yes”>

<source dir=“${sourceDir}”>

<include name=“**/*.java”/>

</source>

</instrument>

<save containerId=“c” filename=“codecover.xml”/>

</codecover>

</target>

<target name=“compile-instrumented”

depends=“instrument-sources”> <javac

srcdir=“${instrumentedSourceDir}”

destdir=“${instrumentedSourceDir}” encoding=“utf-

8” target=“1.7” debug=“true”

International Journal of Scientific & Engineering Research
ISSN 2229-5518 121

IJSER © 2019
http://www.ijser.org

IJSER

122

classpath=“${codecoverDir}/lib/codecover-

instrumentationjava.

jar:/home/user/contiki-2.7/tools/cooja/lib/log4j.jar:/home/user/contiki-

2.7/tools/cooja/lib/jdom.jar:/home/user/contiki-

2.7/tools/cooja/lib/jsyntaxpane.jar”

includeAntRuntime=“false”></javac> </target>

<target name=“run-instrumented” depends=“compile-

instrumented, copy configs”> <java

classpath=“${instrumentedSourceDir}:${codecoverDir}/lib/codec

overinstrumentation- java.jar:/home/user/contiki-

2.7/tools/cooja/lib/log4j.jar:/home/user/contiki-

2.7/tools/cooja/lib/jdom.jar:/home/user/contiki-

2.7/tools/cooja/lib/jsyntaxpane.jar” fork=“true” failonerror=“true”

classname=“${mainClassName}”>

<jvmarg value=“-Dorg.codecover.coverage-log-file=test.clf”/>

</java>

</target>

<target name=“create-report” >

<codecover>

<load containerId=“c” filename=“codecover.xml”/>

<analyze containerId=“c” coverageLog=“*.clf” name=“Test Session”/>

<save containerId=“c”

filename=“codecover.xml”/>

<report containerId=“c”

destination=“report.html”

template=“/home/user/Desktop/CodeCover/codecover-batch-1.0/reporttemplates/

HTML_Report_hierarchic.xml”>

<testCases>

<testSession pattern=“.*”>

<testCase pattern=“.*”/>

</testSession>

</testCases>

</report>

</codecover>

</target>

<target name=“help”>

<echo>

.

.

<target name=“copy configs” depends=“init”>

<mkdir dir=“${build}”/>

<copy todir=“/home/user/contiki-

2.7/tools/cooja/instrumented”> <fileset

dir=“${config}”/>

</copy>

.

.

.

<target name=“jar_cooja” depends=“init, compile, copy

configs, compile instrumented “>

<mkdir dir=“${dist}”/>

<jar destfile=“${dist}/cooja.jar” base dir=“/home/user/contiki-

2.7/tools/cooja/instrumented”>

<manifest>

International Journal of Scientific & Engineering Research
ISSN 2229-5518 122

IJSER © 2019
http://www.ijser.org

IJSER

123

<attribute name=“Main-Class”

value=“se.sics.cooja.GUI”/> <attribute

name=“Class-Path” value=“. lib/log4j.jar

lib/jdom.jar lib/jsyntaxpane.jar”/>

</manifest>

</jar>

<mkdir dir=“${dist}/lib”/>

<copy todir=“${dist}/lib”>

<fileset dir=“${lib}”/>

</copy>

</target>

</project>

International Journal of Scientific & Engineering Research
ISSN 2229-5518 123

IJSER © 2019
http://www.ijser.org

IJSER

124

APPENDIX D: ACTS Test Design Input

for Re-engineered Test Suite

Parameters:

Platform

[Exp5438, z1, wismote, micaz, sky, jcreate, sentilla-usb, esb,

native, cooja]

base

[Multithreading, coffee, checkpointng,

none]

Rime

[collect, rucb, deluge, runicast, trickle,

mesh, none]

NetPerformance

[NetPerf, NetPerf-lpp, NetPerf-cxmac,

none]

collect

[shell-collect, shell-collect-

lossy, none]

ipv4

[telnet-ping,

webserver, none]

ipv6

[ipv6-udp, udp-fragmentation, unicast-fragmentation, ipv6-rpl-

collect, none]

RPL

[up-root, root-reboot, large-network, upanddownroots, temporaryrootloss,

randomrearrangement, rpl-dao, none]

ipv6apps

[servreg-hack, coap,

none]

Relations:

Constraints :

(base != "none") => (Rime == "none")

(base != "none") => (NetPerformance == "none")

(base != "none") => (collect == "none")

(base != "none") => (ipv4=="none")

(base != "none") => (ipv6=="none")

(base != "none") => (RPL =="none")

(base != "none") => (ipv6apps == "none")

(Rime != "none") => (base=="none")

(Rime != "none") => (NetPerformance == "none")

(Rime != "none") => (collect == "none")

(Rime != "none") => (ipv4 == "none")

(Rime != "none") => (ipv6 == "none")

(Rime != "none") => (RPL == "none")

(Rime != "none") => (ipv6apps == "none")

(NetPerformance != "none") => (base == "none")

(NetPerformance != "none") => (Rime == "none")

International Journal of Scientific & Engineering Research
ISSN 2229-5518 124

IJSER © 2019
http://www.ijser.org

IJSER

125

(NetPerformance != "none") => (collect == "none")

(NetPerformance != "none") => (ipv4 == "none")

(NetPerformance != "none") => (ipv6 == "none")

(NetPerformance != "none") => (RPL == "none")

(NetPerformance != "none") => (ipv6apps == "none")

(collect != "none") => (base == "none")

(collect != "none") => (Rime == "none")

(collect != "none") => (NetPerformance == "none")

(collect != "none") => (ipv4 == "none")

(collect != "none") => (ipv6 == "none")

(collect != "none") => (RPL == "none")

(collect != "none") => (ipv6apps == "none")

(ipv4 != "none") => (base == "none")

(ipv4 != "none") => (Rime == "none")

(ipv4 != "none") => (NetPerformance == "none")

(ipv4 != "none") => (collect == "none")

(ipv4 != "none") => (ipv6 == "none")

(ipv4 != "none") => (RPL == "none")

(ipv6 != "none") => (base == "none")

(ipv6 != "none") => (Rime == "none")

(ipv6 != "none") => (NetPerformance ==

"none")

(ipv6 != "none") => (collect == "none")

(ipv6 != "none") => (ipv4 == "none")

(ipv6 != "none") => (RPL == "none")

(ipv6 != "none") => (ipv6apps == "none")

(RPL != "none") => (base == "none")

(RPL != "none") => (Rime == "none")

(RPL != "none") => (NetPerformance ==

"none")

(RPL != "none") => (collect == "none")

(RPL != "none") => (ipv4 == "none")

(RPL != "none") => (ipv6 == "none")

(RPL != "none") => (ipv6apps == "none")

(ipv6apps != "none") => (base == "none")

(ipv6apps != "none") => (Rime == "none")

(ipv6apps != "none") => (NetPerformance

== "none")

(ipv6apps != "none") => (collect == "none")

(ipv6apps != "none") => (ipv4 == "none")

(ipv6apps != "none") => (ipv6 == "none")

(ipv6apps != "none") => (RPL == "none")

(base != "none") || (Rime != "none") ||

(NetPerformance != "none") || (collect !=

International Journal of Scientific & Engineering Research
ISSN 2229-5518 125

IJSER © 2019
http://www.ijser.org

IJSER

126

"none") || (ipv4 != "none") ||(ipv6 != "none") ||

(RPL != "none") || (ipv6apps != "none")

International Journal of Scientific & Engineering Research
ISSN 2229-5518 126

IJSER © 2019
http://www.ijser.org

IJSER

127

APPENDIX E: ACTS Test Design for

Cooja Test Suite

Input Parameter Model 1:

Parameters:

FileOperation

[NewSimulation, OpenSimulation, CloseSimulation, SaveSimulation,

ExportSimulation, Exit]

Simulation

[StartSimulation, ReloadSimulation, ControlPanel, Simulation,

Null]

Motes

[AddMotes, MoteTypes, RemoveAllMotes,

Null]

Relations:

[2,(Simulation, Motes)]

Constraints :

(FileOperation = "CloseSimulation") => (Simulation == "Null")

(FileOperation = "CloseSimulation") => (Motes == "Null")

(FileOperation = "Exit") => (Simulation == "Null")

(FileOperation = "Exit") => (Motes == "Null")

Input Parameter Model 2:

Parameters:

FileOperation

[NewSimulation, OpenSimulation, CloseSimulation, SaveSimulation,

ExportSimulation, Exit]

Simulation

[StartSimulation, ReloadSimulation,

Null]

Tools

[Network, MoteOutPut, TimeLine, BreakPoints, RadioMessages,

SimulationScriptEditor, Notes, BufferView, MoteRadioDutyCycle, MoteInformstion,

MoteInterfaceViewer, VariableWatcher,MSPCli, MSPCodeWatcher,

MSPStackWatcher, MSPCycleWatcher, SerialSocket, CollectView, Null]

Relations:

[2,(Simulation, Tools)]

International Journal of Scientific & Engineering Research
ISSN 2229-5518 127

IJSER © 2019
http://www.ijser.org

IJSER

128

Constraints :

(FileOperation = "CloseSimulation") =>

(Simulation=="Null")

(FileOperation = "CloseSimulation") => (Tools == "Null")

(FileOperation = "Exit") => (Simulation ==

"Null")

(FileOperation = "Exit") => (Tools == "Null")

(FileOperation = "SaveSimulation") =>

(Simulation=="Null")

(FileOperation = "SaveSimulation") => (Tools == "Null")

(FileOperation =

"ExportSimulation")=>(Simulation=="Null")

(FileOperation = "ExportSimulation") => (Tools == "Null")

Input Parameter Model 3:

Parameters:

FileOperation [NewSimulation]

RadioMedium

[UDGM_DistanceLoss, UDGMConstantloss,

DirectedGraphRadioMedium, NoRadioTraffic, MutiPathRayTraceMedium]

CreateNewMoteType

[DisturberMote, ImportJavaMote, CoojaMote, MicazMote, SkyMote,

 Exp430F5438Mote, Wismote, Z1Mote]

Tools

[Network, MoteOutput, TimeLine, BreakPoints, RadioMessages,

SimulationScriptEditor, BufferView, MoteRadioDutyCycle, MoteInformation,

MoteInterfaceViewer, VariableWatcher, MSPCli, MSPCodeWatcher,

MSPStackWatcher, SerialClientSocket, SerialServerSocket,

CollectView]

Relations:

[3,(RadioMedium, CreateNewMoteType, Tools)]

Input Parameter Model 4:

Parameters:

FileOperation [OpenSimulation]

IOTScenario

[RplUdp, RplUdpPowerTrace, SkyWebSense, UnicastExample,

BroadCastExample,RplCollectTreeDenseNoloss, RplCollectTreeSparseLossy,

UdpStream, TrickleLibrary,RimeCollect, RimeBroadCast, HelloWorld, Netdb,

International Journal of Scientific & Engineering Research
ISSN 2229-5518 128

IJSER © 2019
http://www.ijser.org

IJSER

129

NetPerfSky, ServerClient, ServerOnly,

CoapServerClientExample, RestServerExample]

Tools

[Network, MoteOutPut, TimeLine, BreakPoints, RadioMessages,

SimulationScriptEditor,BufferView, MoteRadioDutyCycle, MoteInformation,

MoteInterfaceViewer, VariableWatcher,MSPCli, MSPCodeWatcher,

MSPStackWatcher, SerialClientSocket,SerialServerSocket, Collectview]

Relations:

International Journal of Scientific & Engineering Research
ISSN 2229-5518 129

IJSER © 2019
http://www.ijser.org

IJSER

130

Appendix F: Code for Auto

Generating csc Files.

import se.sics.cooja.*;

import java.util.ArrayDeque;

import java.util.ArrayList;

import java.util.Collection;

import java.util.Observable;

import java.util.Observer;

import java.util.Random;

import java.util.Vector;

import java.lang.reflect.Constructor;

import java.lang.reflect.InvocationTargetException;

import org.jdom.Document;

import org.jdom.Element;

import org.jdom.output.XMLOutputter;

import org.jdom.output.Format;

import java.io.FileOutputStream;

import java.util.zip.GZIPOutputStream;

import java.io.OutputStream;

import java.io.File;

import java.io.IOException;

import

se.sics.cooja.VisPlugin.PluginRequiresVisualizationException

;

import javax.swing.JDesktopPane;

import javax.swing.JInternalFrame;

import java.util.regex.*;

import java.nio.file.*;

public class GenTestcsc {

 public static final long MICROSECOND = 1L;

 public static final long MILLISECOND =

1000*MICROSECOND;

 /*private static long EVENT_COUNTER = 0;*/

 private Vector<Mote> motes = new Vector<Mote>();

 private Vector<Mote> motesUninit = new Vector<Mote>();

 private Vector<MoteType> moteTypes = new

Vector<MoteType>();

International Journal of Scientific & Engineering Research
ISSN 2229-5518 130

IJSER © 2019
http://www.ijser.org

IJSER

131

 /* If true, run simulation at full speed */

 private boolean speedLimitNone = true;

 /* Limit simulation speed to maxSpeed; if maxSpeed is

1.0 simulation is run at real-time speed */

 private double speedLimit;

 /* Used to restrict simulation speed */

 private long speedLimitLastSimtime;

 private long speedLimitLastRealtime;

 private long currentSimulationTime = 0;

 private String title = null;

 private RadioMedium currentRadioMedium = null;

 private boolean isRunning = false;

 private boolean stopSimulation = false;

 private Thread simulationThread = null;

 private static GUI myGUI = null;

 private long randomSeed = 123456;

 private boolean randomSeedGenerated = false;

 private long maxMoteStartupDelay = 1000*MILLISECOND;

 private Random randomGenerator = new Random();

 private boolean hasMillisecondObservers = false;

 private int logOutputBufferSize;

 /* Event queue */

 private EventQueue eventQueue = new EventQueue();

 /* Poll requests */

 private boolean hasPollRequests = false;

 private ArrayDeque<Runnable> pollRequests = new

ArrayDeque<Runnable>();

 private Class<? extends Mote> moteClass = null;

 public File currentConfigFile = null;

 private ArrayList<COOJAProject> currentProjects = new

ArrayList<COOJAProject>();

 private Vector<Plugin> startedPlugins = new

Vector<Plugin>();

International Journal of Scientific & Engineering Research
ISSN 2229-5518 131

IJSER © 2019
http://www.ijser.org

IJSER

132

 public static Simulation mySimulation = null;

 public static ArrayList<Element> config = new

ArrayList<Element>();

 private JDesktopPane myDesktopPane;

 /*

 private SimEventCentral eventCentral = new

SimEventCentral(this);

 public SimEventCentral getEventCentral() {

 return eventCentral;

 }

 */

 /**

 * Returns all mote types in simulation.

 *

 * @return All mote types

 */

 public MoteType[] getMoteTypes() {

 MoteType[] types = new

MoteType[moteTypes.size()];

 moteTypes.toArray(types);

 return types;

 }

 /**

 * Returns mote type with given identifier.

 *

 * @param identifier

 * Mote type identifier

 * @return Mote type or null if not found

 */

 public MoteType getMoteType(String identifier) {

 for (MoteType moteType : getMoteTypes()) {

 if

(moteType.getIdentifier().equals(identifier)) {

 return moteType;

 }

 }

 return null;

 }

 /**

 * Returns simulation with with given ID.

 *

 * @param id ID

 * @return Mote or null

 * @see Mote#getID()

 */

 public Mote getMoteWithID(int id) {

 for (Mote m: motes) {

 if (m.getID() == id) {

 return m;

 }

 }

International Journal of Scientific & Engineering Research
ISSN 2229-5518 132

IJSER © 2019
http://www.ijser.org

IJSER

133

 return null;

 }

 public GenTestcsc()

 {

 JDesktopPane desktop = new JDesktopPane();

 myDesktopPane = desktop;

 myGUI = new GUI(desktop);

 mySimulation = new Simulation(myGUI);

 }

 /**

 * Returns number of motes in this simulation.

 *

 * @return Number of motes

 */

 public int getMotesCount() {

 return motes.size();

 }

 /**

 * Adds given mote type to simulation.

 *

 * @param newMoteType Mote type

 */

 public void addMoteType(MoteType newMoteType) {

 moteTypes.add(newMoteType);

 }

 public Mote getMote(int pos) {

 return motes.get(pos);

 }

 public void addMote(final Mote mote) {

 motes.add(mote);

 }

 /**

 * @return Max simulation speed ratio. Returns null if

no limit.

 */

 public Double getSpeedLimit() {

 if (speedLimitNone) {

 return null;

 }

 return new Double(speedLimit);

 }

 /**

 * @return Random seed (converted to a string)

 */

 public String getRandomSeedString() {

 return Long.toString(randomSeed);

International Journal of Scientific & Engineering Research
ISSN 2229-5518 133

IJSER © 2019
http://www.ijser.org

IJSER

134

 }

 /**

 * @return Random seed

 */

 public long getRandomSeed() {

 return randomSeed;

 }

 /* Returns the current simulation config represented

by XML elements. This

 * config also includes the current radio medium, all

mote types and motes.

 *

 * @return Current simulation config

 */

 public Collection<Element> getConfigXML() {

 ArrayList<Element> config = new

ArrayList<Element>();

 Element element;

 // Title

 element = new Element("title");

 element.setText(title);

 config.add(element);

 /* Max simulation speed */

 if (!speedLimitNone) {

 element = new Element("speedlimit");

 element.setText("" + getSpeedLimit());

 config.add(element);

 }

 // Random seed

 element = new Element("randomseed");

 if (randomSeedGenerated) {

 element.setText("generated");

 } else {

 element.setText(Long.toString(getRandomSeed()));

 }

 config.add(element);

 // Max mote startup delay

 element = new Element("motedelay_us");

 element.setText(Long.toString(maxMoteStartupDelay));

 config.add(element);

 // Radio Medium

 element = new Element("radiomedium");

 element.setText(currentRadioMedium.getClass().getName(

));

International Journal of Scientific & Engineering Research
ISSN 2229-5518 134

IJSER © 2019
http://www.ijser.org

IJSER

135

 Collection<Element> radioMediumXML =

currentRadioMedium.getConfigXML();

 if (radioMediumXML != null) {

 element.addContent(radioMediumXML);

 }

 config.add(element);

 /* Event central */

 /*

 element = new Element("events");

 element.addContent(eventCentral.getConfigXML());

 config.add(element);

 */

 // Mote types

 for (MoteType moteType : getMoteTypes()) {

 element = new Element("motetype");

 element.setText(moteType.getClass().getName());

 Collection<Element> moteTypeXML =

moteType.getConfigXML(mySimulation);

 if (moteTypeXML != null) {

 element.addContent(moteTypeXML);

 }

 config.add(element);

 }

 // Motes

 for (Mote mote : motes) {

 element = new Element("mote");

 Collection<Element> moteConfig =

mote.getConfigXML();

 if (moteConfig == null) {

 moteConfig = new

ArrayList<Element>();

 }

 /* Add mote type identifier */

 Element typeIdentifier = new

Element("motetype_identifier");

 typeIdentifier.setText(mote.getType().getIdentifier())

;

 moteConfig.add(typeIdentifier);

 element.addContent(moteConfig);

 config.add(element);

 }

 return config;

 }

International Journal of Scientific & Engineering Research
ISSN 2229-5518 135

IJSER © 2019
http://www.ijser.org

IJSER

136

 /**

 * @return Current desktop pane (simulator visualizer)

 */

 public JDesktopPane getDesktopPane() {

 return myDesktopPane;

 }

 /**

 * Sets the current simulation config depending on the

given configuration.

 *

 * @param configXML Simulation configuration

 * @param visAvailable True if simulation is allowed

to show visualizers

 * @param manualRandomSeed Simulation random seed. May

be null, in which case the configuration is used

 * @return True if simulation was configured

successfully

 * @throws Exception If configuration could not be

loaded

 */

 public boolean setConfigXML(Collection<Element>

configXML,

 boolean visAvailable, Long

manualRandomSeed) throws Exception {

 // Parse elements

 for (Element element : configXML) {

 // Title

 if (element.getName().equals("title")) {

 title = element.getText();

 }

 /* Max simulation speed */

 /*

 if (element.getName().equals("speedlimit")) {

 String text = element.getText();

 if (text.equals("null")) {

 setSpeedLimit(null);

 } else {

 setSpeedLimit(Double.parseDouble(text));

 }

 }

 */

 // Random seed

 if (element.getName().equals("randomseed"))

{

 long newSeed;

 if

(element.getText().equals("generated")) {

 randomSeedGenerated = true;

International Journal of Scientific & Engineering Research
ISSN 2229-5518 136

IJSER © 2019
http://www.ijser.org

IJSER

137

 newSeed = new

Random().nextLong();

 } else {

 newSeed =

Long.parseLong(element.getText());

 }

 if (manualRandomSeed != null) {

 newSeed = manualRandomSeed;

 }

 mySimulation.setRandomSeed(newSeed);

 }

 // Max mote startup delay

 if (element.getName().equals("motedelay"))

{

 maxMoteStartupDelay =

Integer.parseInt(element.getText())*MILLISECOND;

 }

 if

(element.getName().equals("motedelay_us")) {

 maxMoteStartupDelay =

Integer.parseInt(element.getText());

 }

 // Radio medium

 if

(element.getName().equals("radiomedium")) {

 String radioMediumClassName =

element.getText().trim();

 Class<? extends RadioMedium>

radioMediumClass = myGUI.tryLoadClass(

 mySimulation,

RadioMedium.class, radioMediumClassName);

 if (radioMediumClass != null) {

 // Create radio medium

specified in config

 try {

 currentRadioMedium =

RadioMedium.generateRadioMedium(radioMediumClass,

mySimulation);

 } catch (Exception e) {

 currentRadioMedium =

null;

 }

 }

 // Show configure simulation dialog

 /*

 boolean createdOK = false;

 if (visAvailable) {

 createdOK =

CreateSimDialog.showDialog(GUI.getTopParentContainer(),

this);

 } else {

International Journal of Scientific & Engineering Research
ISSN 2229-5518 137

IJSER © 2019
http://www.ijser.org

IJSER

138

 createdOK = true;

 }

 if (!createdOK) {

 throw new Exception("Load aborted by user");

 }

 */

 // Check if radio medium specific

config should be applied

 /*

 if

(radioMediumClassName.equals(currentRadioMedium.getClass().g

etName())) {

currentRadioMedium.setConfigXML(element.getChildren(),

visAvailable);

 } else {

 }

 */

 }

 /* Event central */

 if (element.getName().equals("events")) {

 // eventCentral.setConfigXML(this,

element.getChildren(), visAvailable);

 logOutputBufferSize =

Integer.parseInt(element.getText());

 }

 // Mote type

 if (element.getName().equals("motetype")) {

 String moteTypeClassName =

element.getText().trim();

 System.out.println("Debug:

moteTypeClassName"+moteTypeClassName);

 /* Try to recreate simulation using a

different mote type */

 Class<? extends MoteType>

moteTypeClass = myGUI.tryLoadClass(mySimulation,

 MoteType.class,

moteTypeClassName);

 if (moteTypeClass == null) {

 throw new

MoteType.MoteTypeCreationException("Could not load mote type

class: " + moteTypeClassName);

 }

 MoteType moteType =

moteTypeClass.getConstructor((Class[]) null).newInstance();

International Journal of Scientific & Engineering Research
ISSN 2229-5518 138

IJSER © 2019
http://www.ijser.org

IJSER

139

 boolean createdOK =

moteType.setConfigXML(mySimulation, element.getChildren(),

 visAvailable);

 if (createdOK) {

 addMoteType(moteType);

 } else {

 throw new Exception("All mote

types were not recreated");

 }

 }

 /* Mote */

 if (element.getName().equals("mote")) {

 /* Read mote type identifier */

 MoteType moteType = null;

 for (Element subElement:

(Collection<Element>) element.getChildren()) {

 if

(subElement.getName().equals("motetype_identifier")) {

 moteType =

getMoteType(subElement.getText());

 if (moteType == null) {

 throw new

Exception("No mote type '" + subElement.getText() + "' for

mote");

 }

 break;

 }

 }

 if (moteType == null) {

 throw new Exception("No mote

type specified for mote");

 }

 /* Create mote using mote type */

 Mote mote =

moteType.generateMote(mySimulation);

 if (mote.setConfigXML(mySimulation,

element.getChildren(), visAvailable)) {

 if (getMoteWithID(mote.getID())

!= null) {

 } else {

 addMote(mote);

 }

 } else {

 throw new Exception("All motes

were not recreated");

 }

 }

 }

 /*

 if (currentRadioMedium != null) {

 currentRadioMedium.simulationFinishedLoading();

International Journal of Scientific & Engineering Research
ISSN 2229-5518 139

IJSER © 2019
http://www.ijser.org

IJSER

140

 }

 */

 return true;

 }

 public void saveSimulationConfig(File file) {

 this.currentConfigFile = file; /* Used to

generate config relative paths */

 try {

 this.currentConfigFile =

this.currentConfigFile.getCanonicalFile();

 } catch (IOException e) {

 }

 try {

 // Create and write to document

 Document doc = new

Document(extractSimulationConfig());

 OutputStream out = new

FileOutputStream(file);

 if (file.getName().endsWith(".gz")) {

 out = new GZIPOutputStream(out);

 }

 XMLOutputter outputter = new

XMLOutputter();

 outputter.setFormat(Format.getPrettyFormat());

 outputter.output(doc, out);

 out.close();

 System.out.println("Saved to file: " +

file.getAbsolutePath());

 } catch (Exception e) {

 e.printStackTrace();

 }

 }

 public Element extractSimulationConfig() {

 // Create simulation config

 Element root = new Element("simconf");

 System.out.println("currentProjects value

"+currentProjects.toString());

 /* Store extension directories meta data */

 for (COOJAProject project: currentProjects) {

 Element projectElement = new

Element("project");

 projectElement.addContent((project.dir).getPath().repl

aceAll("\\\\", "/"));

 projectElement.setAttribute("EXPORT",

"discard");

 root.addContent(projectElement);

 }

International Journal of Scientific & Engineering Research
ISSN 2229-5518 140

IJSER © 2019
http://www.ijser.org

IJSER

141

 Element simulationElement = new

Element("simulation");

 simulationElement.addContent(getConfigXML());

 root.addContent(simulationElement);

 // Create started plugins config

 Collection<Element> pluginsConfig =

getPluginsConfigXML();

 if (pluginsConfig != null) {

 root.addContent(pluginsConfig);

 }

 return root;

 }

 public Collection<Element> getPluginsConfigXML() {

 ArrayList<Element> config = new

ArrayList<Element>();

 Element pluginElement, pluginSubElement;

 System.out.println("getPluginsConfigXML loop");

 /* Loop over all plugins */

 for (Plugin startedPlugin : startedPlugins) {

 System.out.println("getPluginsConfigXML

loop");

 int pluginType =

startedPlugin.getClass().getAnnotation(PluginType.class).val

ue();

 // Ignore GUI plugins

 if (pluginType == PluginType.COOJA_PLUGIN

 || pluginType ==

PluginType.COOJA_STANDARD_PLUGIN) {

 continue;

 }

 pluginElement = new Element("plugin");

 pluginElement.setText(startedPlugin.getClass().getName

());

 // Create mote argument config (if mote

plugin)

 if (pluginType == PluginType.MOTE_PLUGIN) {

 pluginSubElement = new

Element("mote_arg");

 Mote taggedMote = ((MotePlugin)

startedPlugin).getMote();

 for (int moteNr = 0; moteNr <

getMotesCount(); moteNr++) {

 if (getMote(moteNr) ==

taggedMote) {

 pluginSubElement.setText(Integer.toString(moteNr));

International Journal of Scientific & Engineering Research
ISSN 2229-5518 141

IJSER © 2019
http://www.ijser.org

IJSER

142

 pluginElement.addContent(pluginSubElement);

 break;

 }

 }

 }

 // Create plugin specific configuration

 Collection<Element> pluginXML =

startedPlugin.getConfigXML();

 if (pluginXML != null) {

 pluginSubElement = new

Element("plugin_config");

 pluginSubElement.addContent(pluginXML);

 pluginElement.addContent(pluginSubElement);

 }

 // If plugin is visualizer plugin, create

visualization arguments

 if (startedPlugin.getGUI() != null) {

 JInternalFrame pluginFrame =

startedPlugin.getGUI();

 pluginSubElement = new

Element("width");

 pluginSubElement.setText("" +

pluginFrame.getSize().width);

 pluginElement.addContent(pluginSubElement);

 pluginSubElement = new Element("z");

 pluginSubElement.setText("" +

getDesktopPane().getComponentZOrder(pluginFrame));

 pluginElement.addContent(pluginSubElement);

 pluginSubElement = new

Element("height");

 pluginSubElement.setText("" +

pluginFrame.getSize().height);

 pluginElement.addContent(pluginSubElement);

 pluginSubElement = new

Element("location_x");

 pluginSubElement.setText("" +

pluginFrame.getLocation().x);

 pluginElement.addContent(pluginSubElement);

 pluginSubElement = new

Element("location_y");

International Journal of Scientific & Engineering Research
ISSN 2229-5518 142

IJSER © 2019
http://www.ijser.org

IJSER

143

 pluginSubElement.setText("" +

pluginFrame.getLocation().y);

 pluginElement.addContent(pluginSubElement);

 if (pluginFrame.isIcon()) {

 pluginSubElement = new

Element("minimized");

 pluginSubElement.setText("" +

true);

 pluginElement.addContent(pluginSubElement);

 }

 }

 config.add(pluginElement);

 }

 return config;

 }

 private Plugin startPlugin(final Class<? extends

Plugin> pluginClass,

 final GUI argGUI, final Simulation

argSimulation, final Mote argMote, boolean activate)

 throws

PluginConstructionException

 {

 // Check that plugin class is registered

 /*

 if (!pluginClasses.contains(pluginClass)) {

 throw new PluginConstructionException("Tool class not

registered: " + pluginClass);

 }

 */

 // Construct plugin depending on plugin type

 int pluginType =

pluginClass.getAnnotation(PluginType.class).value();

 System.out.println("pluginType

value"+pluginType);

 Plugin plugin;

 try {

 if (pluginType == PluginType.MOTE_PLUGIN) {

 if (argGUI == null) {

 throw new

PluginConstructionException("No GUI argument for mote

plugin");

 }

 if (argSimulation == null) {

 throw new

PluginConstructionException("No simulation argument for mote

plugin");

 }

International Journal of Scientific & Engineering Research
ISSN 2229-5518 143

IJSER © 2019
http://www.ijser.org

IJSER

144

 if (argMote == null) {

 throw new

PluginConstructionException("No mote argument for mote

plugin");

 }

 plugin =

 pluginClass.getConstructor(new Class[] { Mote.class,

Simulation.class, GUI.class })

 .newInstance(argMote,

argSimulation, argGUI);

 } else if (pluginType ==

PluginType.SIM_PLUGIN

 || pluginType ==

PluginType.SIM_STANDARD_PLUGIN) {

 if (argGUI == null) {

 throw new

PluginConstructionException("No GUI argument for simulation

plugin");

 }

 if (argSimulation == null) {

 throw new

PluginConstructionException("No simulation argument for

simulation plugin");

 }

 plugin =

 pluginClass.getConstructor(new Class[] {

Simulation.class, GUI.class})

 .newInstance(argSimulation, argGUI);

 } else if (pluginType ==

PluginType.COOJA_PLUGIN

 || pluginType ==

PluginType.COOJA_STANDARD_PLUGIN) {

 if (argGUI == null) {

 throw new

PluginConstructionException("No GUI argument for GUI

plugin");

 }

 plugin =

 pluginClass.getConstructor(new Class[] { GUI.class })

 .newInstance(argGUI);

 } else {

 throw new

PluginConstructionException("Bad plugin type: " +

pluginType);

International Journal of Scientific & Engineering Research
ISSN 2229-5518 144

IJSER © 2019
http://www.ijser.org

IJSER

145

 }

 } catch (PluginRequiresVisualizationException e)

{

 PluginConstructionException ex = new

PluginConstructionException("Tool class requires

visualization: " + pluginClass.getName());

 ex.initCause(e);

 throw ex;

 } catch (Exception e) {

 PluginConstructionException ex = new

PluginConstructionException("Construction error for tool of

class: " + pluginClass.getName());

 ex.initCause(e);

 throw ex;

 }

 if (activate) {

 plugin.startPlugin();

 }

 // Add to active plugins list

 startedPlugins.add(plugin);

 //updateGUIComponentState();

 /*

 // Show plugin if visualizer type

 if (activate && plugin.getGUI() != null) {

 myGUI.showPlugin(plugin);

 }

 */

 return plugin;

 }

 public class PluginConstructionException extends

Exception {

 private static final long serialVersionUID =

8004171223353676751L;

 public PluginConstructionException(String

message) {

 super(message);

 }

 }

 public void removePlugin(final Plugin plugin, final

boolean askUser) {

 new RunnableInEDT<Boolean>() {

 public Boolean work() {

 /* Free resources */

 plugin.closePlugin();

 startedPlugins.remove(plugin);

 //updateGUIComponentState();

 /* Dispose visualized components */

 if (plugin.getGUI() != null) {

International Journal of Scientific & Engineering Research
ISSN 2229-5518 145

IJSER © 2019
http://www.ijser.org

IJSER

146

 plugin.getGUI().dispose();

 }

 /* (OPTIONAL) Remove simulation if

all plugins are closed */

 /*

 if (mySimulation.getSimulation() != null && askUser

&& startedPlugins.isEmpty()) {

 doRemoveSimulation(true);

 }

 */

 return true;

 }

 }.invokeAndWait();

 }

 public void stopAllPlugin()

 {

 for (Plugin p: startedPlugins.toArray(new

Plugin[0])) {

 removePlugin(p, false);

 }

 }

 public static abstract class RunnableInEDT<T> {

 private T val;

 /**

 * Work method to be implemented.

 *

 * @return Return value

 */

 public abstract T work();

 /**

 * Runs worker method in event dispatcher

thread.

 *

 * @see #work()

 * @return Worker method return value

 */

 public T invokeAndWait() {

 if(java.awt.EventQueue.isDispatchThread())

{

 return RunnableInEDT.this.work();

 }

 try {

 java.awt.EventQueue.invokeAndWait(new

Runnable() {

 public void run() {

 val =

RunnableInEDT.this.work();

 }

International Journal of Scientific & Engineering Research
ISSN 2229-5518 146

IJSER © 2019
http://www.ijser.org

IJSER

147

 });

 } catch (InterruptedException e) {

 e.printStackTrace();

 } catch (InvocationTargetException e) {

 e.printStackTrace();

 }

 return val;

 }

 }

 public static void main(String args[])

 {

 String fullFile = new String() ;

 String testCaseName = new String();

 boolean SimControl = false;

 boolean TimeLine = false;

 //GenTestcsc test = new GenTestcsc();

 try{

 fullFile = new

String(Files.readAllBytes(Paths.get("GenTest.txt")));

 } catch (Exception e) { e.toString();}

 Pattern pat = Pattern.compile("[\\(\\)]");

 String strs[] = pat.split(fullFile);

 for(int i=0; i<strs.length;i++)

 {

 System.out.println("strs["+i+"]"+strs[i]);

 if(strs[i].length() < 10) continue;

 Pattern pat1 = Pattern.compile("[\\{\\}]");

 String strs1[] =

pat1.split(strs[i].trim());

 for (int j=0; j<strs1.length;j++)

 {

 System.out.println("Next token

:"+strs1[j].trim());

 Pattern pat2 =

Pattern.compile("[\\,]");

 if(strs1[j].contains("testcasename"))

 {

 String strs2[] =

pat2.split(strs1[j].trim());

 System.out.println("Test case

name is "+strs2[1]);

 testCaseName=strs2[1].trim();

 }

 if(strs1[j].contains("title"))

 {

 String strs2[] =

pat2.split(strs1[j].trim());

 Element temp = new

Element("title");

 temp.setText(strs2[1]);

 config.add(temp);

 }

 if(strs1[j].contains("radiomedium"))

International Journal of Scientific & Engineering Research
ISSN 2229-5518 147

IJSER © 2019
http://www.ijser.org

IJSER

148

 {

 String strs2[] =

pat2.split(strs1[j].trim());

 Element temp1 = new

Element("radiomedium");

 temp1.setText(strs2[1]);

 config.add(temp1);

 }

 if(strs1[j].contains("motetype") &&

!strs1[j].contains("mote1"))

 {

 String strs2[] =

pat2.split(strs1[j].trim());

 for(int k=0;k<strs2.length;k++)

 System.out.println("Strs2

"+strs2[k]);

 Element temp2 = new

Element("motetype");

 temp2.setText(strs2[1].trim());

 Element sourceElem = new

Element("source");

 sourceElem.setText(strs2[3].trim());

 Element identifierElem = new

Element("identifier");

 identifierElem.setText(strs2[5].trim());

 temp2.addContent(sourceElem);

 temp2.addContent(identifierElem);

 config.add(temp2);

 }

 if(strs1[j].contains("mote1"))

 {

 String strs2[] =

pat2.split(strs1[j].trim());

 Element temp3 = new

Element("mote");

 temp3.setText(strs2[1].trim());

 Element temp4 = new

Element("motetype_identifier");

 temp4.setText(strs2[3].trim());

 temp3.addContent(temp4);

 config.add(temp3);

 }

 if(strs1[j].contains("SimControl"))

 {

 SimControl = true;

 }

 if(strs1[j].contains("TimeLine"))

 {

 TimeLine = true;

 }

 }

International Journal of Scientific & Engineering Research
ISSN 2229-5518 148

IJSER © 2019
http://www.ijser.org

IJSER

149

 System.out.println("config to

string"+config.toString());

 Long manualRandomSeed = new Long(1);

 try{

 GenTestcsc test = new GenTestcsc();

 try{

 myGUI.setVisualizedInFrame(false);

 Class pluginClass =

Class.forName("se.sics.cooja.plugins.SimControl");

 Class pluginClass1 =

Class.forName("se.sics.cooja.plugins.TimeLine");

 //test.startPlugin(pluginClass,myGUI,mySimulation,null

,true);

 //test.startPlugin(pluginClass1,myGUI,mySimulation,nul

l,true);

 if(SimControl)

 {

 //test.startPlugin(pluginClass,myGUI,mySimulation,null

,true);

 }

 if(TimeLine)

 {

 //test.startPlugin(pluginClass1,myGUI,mySimulation,nul

l,true);

 }

 } catch(Exception e)

 {

 System.out.println("Exception

while starting the plugin: " + e);

 e.printStackTrace();

 }

 File file = new File(testCaseName);

 file.createNewFile();

 test.setConfigXML(config,false,manualRandomSeed);

 test.saveSimulationConfig(file);

 System.out.println("After stop

simulation");

 mySimulation.stopSimulation();

 myGUI.doRemoveSimulation(false);

 test.stopAllPlugin();

 config = new ArrayList<Element>();

 } catch (Exception e)

 {

 System.out.println("Exception while

saving simulation config: " + e);

 e.printStackTrace();

International Journal of Scientific & Engineering Research
ISSN 2229-5518 149

IJSER © 2019
http://www.ijser.org

IJSER

150

 }

 }

 }

}

International Journal of Scientific & Engineering Research
ISSN 2229-5518 150

IJSER © 2019
http://www.ijser.org

IJSER

151

Appendix G: Candidate’s Biography

Name Abhinandan H Patil

Education Secondary School

83.04%

Belagavi, India

Pre University

80%

Belagavi, India

B.E (Electronics and

Communication)

75.8%

GIT, Belagavi, India

M. Tech (Computer

Science and Engineering)

CGPA 7.85

VTU, Belgavi, India

Experience Industrial exposure Infosys : 0.5 Years

Motorola: 8. 4 Years

Kshema Tech : 1.3 Years

Abhinandan H Patil is a research student at BITS Pilani, Goa campus since

Jan 2014. Before joining BITS Pilani, Goa he was working in wireless software

industry mainly on wireless simulator for telecom network. His research

interests include, wireless networks, simulators for wireless networks,

software engineering, software testing, combinatorial testing. He is now

exploring artificial intelligence and machine learning, data analytics and cloud

computing.

International Journal of Scientific & Engineering Research
ISSN 2229-5518 151

IJSER © 2019
http://www.ijser.org

IJSER

152

Appendix H: Publications of The

Candidate

Publications from Thesis

[1] Abhinandan H. Patil, Neena Goveas and Krishnan

Rangarajan,"Regression Test Suite Prioritization using Residual Test Coverage

Algorithm and Statistical Techniques", International Journal of Education and

Management Engineering(IJEME),2016,Vol.6, No.5, pp.32-39, 2016.DOI:

10.5815/ijeme.2016.05.04

[2] Abhinandan H. Patil, Neena Goveas and Krishnan

Rangarajan,"Regression Test Suite Execution Time Analysis using Statistical

Techniques", International Journal of Education and Management

Engineering(IJEME),2016, Vol.6, No.3, pp.33-41, 2016.DOI:

10.5815/ijeme.2016.03.04

[3] Abhinandan H. Patil, Neena Goveas and Krishnan Rangarajan,"Test

Suite Design Methodology Using Combinatorial Approach for Internet of

Things Operating Systems," Journal of Software Engineering and

Applications,2015, 8, 303-312. doi: 10.4236/jsea.2015.87031

[4] Abhinandan H. Patil, Neena Goveas and Krishnan Rangarajan,"Re-

architecture of Contiki and Cooja Regression Test Suites using Combinatorial

Testing Approach," ACM SIGSOFT SEN, 2015, Volume 40 Issue 2, pp 1-

3,doi:10.1145/2735399.2735413

[5] Abhinandan H. Patil, Preeti Satish, Neena Goveas and Krishnan

Rangarajan,"Integrated test environment for combinatorial testing,"Advance

Computing Conference (IACC), 2015 IEEE International, 2015, doi:

10.1109/IADCC.2015.7154802

[6] Abhinandan H. Patil, Neena Goveas and Krishnan Rangarajan,

“Generating Effective Test Suite for Multiparameter Software using ACTS Tool

and its Verification using Code Coverage Tools”, 2018, IJSER, Volume 9, Issue

8.

[7] Abhinandan H. Patil, Neena Goveas and Krishnan Rangarajan, "Design

and Implementation of Contiki and Cooja Regression Test Suites by Using

Combinatorial Testing", Communicated.

International Journal of Scientific & Engineering Research
ISSN 2229-5518 152

IJSER © 2019
http://www.ijser.org

IJSER

153

[8] Abhinandan H. Patil, Neena Goveas and Krishnan Rangarajan, " ACTS-

RT: Advanced Combinatorial Testing for Software based Regression Testing

and its application to IoT Operating System Contiki”, Communicated

[9] Abhinandan H. Patil, Neena Goveas and Krishnan Rangarajan, “CT-RTS:

Combinatorial Testing based Regression Test Suite: Functional Test Case

Generator for Contiki and Cooja”, Communicated.

Other Publications

[1] “CodeCover: enhancement of CodeCover,” ACM SIGSOFT Software

Engineering Notes 02/2014; 39(1):1-4., DOI:10.1145/2557833.2557850

[2] “CodeCover: A Code Coverage Tool for Java Projects”, Elsevier, ERCICA;

03/2013

International Journal of Scientific & Engineering Research
ISSN 2229-5518 153

IJSER © 2019
http://www.ijser.org

IJSER

154

Appendix I: Supervisors Biodata

Neena Goveas is with the Department of Computer Science at BITS Pilani K K
Birla Goa campus.
For her PhD thesis, she worked on "Mean field approaches to
thermodynamic properties of magnetic systems" at IIT Bombay, advisor Prof.
G. Mukhopadhyay. She worked on INDO-US sponsored project
"Development and characterization of materials suitable for magneto-optic
Devices" at A. C. R. E., I. I. T. Bombay. She continued her research as a DST-
Young Scientist in a Project entitled "Study of low dimensional magnetic
systems" at IIT Guwahati. Other projects she was associated as a PI or Co-PI
are “Development of Remotely Configurable Arbitrary Ramp Generator for
FMCW Reflectometry, BRNS” and “Implementation of Wireless Sensor
Network for Process Monitoring of GAIL’s Pipeline, GAIL India Ltd”.

Her main theme of research work is to study complex systems. Using various
mean field and computational approaches to understand their properties.
Recent research work is on Network Science and its applications to transport,
social and computer networks; modeling of Cyber Physical Systems and
Wireless Sensor Networks; Construction of test suites for large software
systems.

International Journal of Scientific & Engineering Research
ISSN 2229-5518 154

IJSER © 2019
http://www.ijser.org

IJSER

155

Appendix J: Co-Supervisors Biodata

R. Krishnan, Ph. D

Contact Details:

 Mobile: 9844264071; E-mail: krishnanr1234@gmail.com

Educational Qualification

• Ph.D (Computer Science) with specialisation in computer vision, from

University of Central Florida, Orlando, USA 1987-90; GPA 4 on a 4 point

scale

• M.Tech (Computer Science) from IIT (Indian Institute of Technology) ,

Delhi, India 1983-85; GPA 9.8 on a 10 point scale

• B.E(Hons) Mechanical Engineering from Regional Engineering College,

Tiruchirapalli, India 1978-83; scored 83%, ranked 6th in the University of

Madras, India.

Work Experience:Academics

Current Position: Professor, Department of Computer Science and

Engineering @ Dayananda Sagar College of Engineering, Bangalore

Teaching Interests: Software Testing, Object Oriented Modelling & Design,

Software Architecture and AI.

Research: Research interests include Object tracking in Computer Vision ,

Software engineering topics like Combinatorial Testing, Usability, software

architecture. Guiding six research scholars in the areas of computer vision and

software testing.

Publications: International : 45, National : 7, citations: 693, h-index: 9 , i-10

index: 8

• Was in the program committee of IWCT (International Workshop on

Combinatorial Testing) 2015 , 2016 held in conjunction with IEEE ICST

(International conference on Software Testing) 2015,2016.

• Was a visiting research scholar for a month (June 2011 – July 2011) in

computer vision lab, University of Central Florida, Orlando, USA. This lab is

International Journal of Scientific & Engineering Research
ISSN 2229-5518 155

IJSER © 2019
http://www.ijser.org

IJSER

156

headed by Dr Mubarak Shah, a leading researcher in video processing, who was

also the advisor for my Ph D work on Motion trajectories. I also attended the

IEEE conference CVPR 2011(Computer Vision and Pattern recognition 2011),

Colarado, USA in this period.

Sponsored projects handled as PI:

SL

No.

Project Title Sponsoring

agency

Date of

Sanction

Grant

Amount

Status

1 Multi Object tracking in the

presence of occlusion in

aerial image sequences

ER&IPR, DRDO 11/2/201

7

Rs 22.07

Lakhs

Ongoing

2 Tracking multiple objects in

Aerial image sequence from

an Unmanned Air Vehicle

ER&IPR, DRDO 18/8/201

1

Rs 21.20

Lakhs

Complet

ed

Industry interaction:

• Conducted training on Combinatorial testing to industry (LG, Testing

workshop)

• Delivered training in Motorola on Software Architecture & Design Patterns

• Interacting with CISCO for establishing center of excellence in networking

• Interacting with a start-up in setting up of AI Lab

• Engaged as an external software engineering expert in six sigma

improvement initiatives with the Indian operations of a leading consumer

electronics major.

Professor, Department of Computer Science and Engineering , CMRIT,

Bangalore(July 2015 – Nov 2016).

• Taught courses on Object Oriented Modelling & Design, Software

Engineering for UG and Cloud Computing, AI&Agent Technology, Machine

Learning Techniques for PG .

• Organized five day IEEE Workshop on Applications and Research Directions

in Big Data, Dec 9 -13, 2015, CMRIT Bangalore.

• POC for MOU with Delphi Automotive systems and conducted a half day

workshop on Combinatorial Testing in Delphi center, Nov 2015.

• Publication chair for IEEE CCEM 2016.

International Journal of Scientific & Engineering Research
ISSN 2229-5518 156

IJSER © 2019
http://www.ijser.org

IJSER

157

 Professor, Department of Computer Science and Engineering , SSN

Institutions, Chennai (Jan 2009 – Oct 2009 :)

Jan 2009 – Mar 2009: Worked in SSN School of Advanced software

engineering, Chennai

April 2009 – Oct 2009: Worked in the Department of Computer Science &

Engineering, SSN College of Engineering, Chennai. Taught the course on

Software Quality Assurance for the M.E Computer Science & Engineering

students and handled the case tools lab for the B.E Computer Science &

Engineering final year students.

Work Experience:Software Engineering

Motorola India: (April 1996 – Oct 2008)

Designation: Principal Staff Engineer

Technical Lead & manager for a small applied research team in the software

engineering tools & technology area. Team’s charter was to identify, evaluate,

pilot & induct software engineering tools, methods/practices that help to

improve productivity/quality in software and champion software engineering

initiatives in the organization. The role involved working closely with the

project teams in driving the software engineering roadmap for the

organization.

Software engineering areas worked on:

• Software Testing & Automation

• Was the site level champion for test interest group and represented the

site in the Corporate level Test Process Improvement group.

• Initiated development of an in-house tool to support testcase generation

based on OATS (Orthogonal array Based Testing Strategy) and championed

its use successfully in the organization resulting in huge effort savings in

testing involving combinations.

• Evaluated unit test tools and made recommendation to the organization.

Championed the adoption of the recommended tool. Statistical skills were

demonstrated in data analysis in this project and was certified as a Six

Sigma green belt.

International Journal of Scientific & Engineering Research
ISSN 2229-5518 157

IJSER © 2019
http://www.ijser.org

IJSER

158

• Led a team of two members in the enhancement and support of a remote

testing tool VMD (Virtual Mobile Device) for remote testing mobile devices.

This involved understanding the issues and gaps in the tool based on usage

in project teams and working with the vendor to get them addressed.

• Was the site level champion for security testing tools like Mu,

Codenomicon.

• Identified and Piloted the use of AspectC++ tool for automatic logging &

tracing. Interacted with the university professor and got few show stoppers

in this tool addressed.

• Managed a small team working on Model driven Engineering and

championed the use of the technology

• Created software testing course material covering test related concepts,

process and tools for training new entrants into the organization. This

course was developed with contributions from the practioners in the

project teams.

• Software Security

 Was the site level champion for this corporate initiative, working closely with

the corporate security champion. Key contributions include:

• Collaborating with external security experts in defining the security rules in

the coding standards and getting them supported in the static analysis tool

widely used in Motorola.

• Revising the existing software process to absorb this practice.

• Interacted with the project teams to help them understand the initiative

and the related practices. Was also the Lead trainer at the site level for the

secure programming course: an awareness course mandated for all the

developers.

• Managed the team that supported the related tools

• Product Quality

 This initiative was designed to bring focus on product quality aspects

like performance, availability, usability etc during the development cycle. Took

a lead role in formulating a framework for improving product quality, created

the related process assets & training material, piloted and inducted the

practices like attribute specification, architecture evaluation, usability

inspections and usability feedback survey using SUMI (Software Usability

Measurement Inventory) method. Partnered with the quality department and

product quality champions from Operations, in rolling out this initiative. This

International Journal of Scientific & Engineering Research
ISSN 2229-5518 158

IJSER © 2019
http://www.ijser.org

IJSER

159

was recognised as an “Emerging Best Practice” in Motorola Software

Engineering Symposium-2000, a paper describing this work was published in

ACM Software Engineering Notes, July-2001 pp:77-82 ; Also presented a

tutorial on this topic in SEPG International conference on software engineering

– 1999.

• Software Reuse

• Championed reuse in Motorola India for couple of years. Identified key

domains and formed reuse champions team and domain teams. It was

essentially an opportunistic reuse program, centered around an in-house

repository tool. Educated the project teams on reuse maturity models and

the importance of moving to the highest maturity (the twin lifecycle

model). Contributed to a more recent corporate level asset based reuse

program, in creating and rolling out an asset evaluation scheme.

• Software Architecture & Design

• Created and delivered a tutorial on Software architecture as part of

Motorola Technology Seminar series and in SEPG International conference

on software engineering-2001

• Identified and Piloted architecture evaluation methods like

SAAM(Software architecture analysis method), ATAM(Architecture

Tradeoff Analysis Method) in projects.

• Did a survey of published work in software design for multicore and

synthesized a set of design guidelines. Delivered a technical talk on this

topic in an internal technical forum .

• Conducted internal courses on Software Design & Design Patterns.

• Process Mapping

• Participated in the process mapping exercise undertaken at Motorola

India, in collaboration with corporate software engineering research labs.

• Helped apply system dynamics modelling concept to the recruitment

problem.

• Other work in the Tools Area

• Coordinated the evaluation and induction of various software engineering

tools like Purify, TestExpert, Xrunner, Source Insight etc.

• Customer interface and people manager for a 4 member tool support

team

Tata Consultancy Services, Chennai :May 1992 – March1996

International Journal of Scientific & Engineering Research
ISSN 2229-5518 159

IJSER © 2019
http://www.ijser.org

IJSER

160

Designation: Manager

January 1994 - March 1996 @ TCS Chennai

• Software Implementation of MPEG-1 audio encoder using 'C' under

windows. The challenge was in getting a realtime implementation to match

sound capture rate.

• Modeled software project management using system dynamics concepts.

Developed a simulation engine for system dynamic models and a front-end

for software project management problem. The tool was used for

simulating few scenarios

• Did a study to consolidate the problems faced by the language processing

tools team and this led to the understanding of issues to be addressed by

R & D.

• Guided few student projects

November 1992 - December 1993 @AT&T Bell Labs, Merrimack Valley, USA

(Worked as a consultant from TCS)

• This was a contract assignment through TCS, Chennai. A member of the

software conveyor belt team, an international team formed to bring in

systematic reuse in their Transmission Business Unit. Participated in the

design and development of a toolset around a MIL (Module

Interconnection Language). Also worked on a demo prototype using the

MIL. This work involved hooking different communication mechanisms like

shared memory to the MIL framework. This work was done using 'C' and

Meta tool an application generator. Also participated in brainstorming

sessions, discussions and reviews relating to multiuse design.

May 1992 - October 1992 @ TCS Chennai

• Was attached to the training department (Visa waiting period)

CMC R&D Lab, Secunderabad, India : January 1985 - July 1987

Designation: Engineer

• A member of product development team. Was involved in the design and

development of a number of interfaces and utilities to ADMIN, a network

model database package.

Work Experience : Computer Vision Research

International Journal of Scientific & Engineering Research
ISSN 2229-5518 160

IJSER © 2019
http://www.ijser.org

IJSER

161

Centre for Artificial Intelligence & Robotics, Bangalore : October 1990 - April

1992

Designation: Scientist “C”

• The work included establishing a research facility in Computer Vision along

with a senior colleague and guiding a team on various research topics in

Computer Vision like stereo vision and shape based object recognition.

University of Central Florida, Orlando, USA : August 1987 - July 1990

• Was a research assistant with Prof. Mubarak Shah in the Computer Science

Department. In addition to doing my thesis work in Computer Vision,

helped few undergraduate students in their research projects. The thesis

was on “Motion Trajectories”, addressed the sub problems on model based

object recognition through Motion such as trajectory generation,

segmentation and matching.

PUBLICATIONS

Software Engineering Journals

1.Regression Test Suite Prioritization using Residual Test Coverage Algorithm

and Statistical Techniques", Abhinandan H. Patil a*, Neena Goveas a, Krishnan

Rangarajan, I.J. Education and Management Engineering, 2016, 5, 32-39

Published Online September 2016 in MECS.

2."A Preliminary Survey on Combintorial Test Design Modeling Methods" ,

Preeti S, Krishnan Rangarajan,, IJSER Volume 7, Issue 7, July 2016.

3.Abhinandan H. Patil, Neena Goveas, Krishnan Rangarajan “Test Suite Design

Methodology Using Combinatorial Approach for Internet of Things Operating

Systems”, Journal of Software Engineering and Applications, 2015, 8, 303-312,

Published Online July 2015 in SciRes.

4.Abhinandan H. Patil, Neena Goveas, Krishnan Rangarajan , " Re-architecture

of Contiki and Cooja Regression Test Suites using Combinatorial Testing

Approach ", ACM Software Engineering Notes, Volume 40 Issue 2, March 2015.

5. Shubha Bhat, Vindhya Malagi, Krishnan Rangarajan, Ramesh Babu D.R,

“Computer Vision Guided based guidance in UAVs: Software Engineering

International Journal of Scientific & Engineering Research
ISSN 2229-5518 161

IJSER © 2019
http://www.ijser.org

IJSER

162

challenges”, ACM Software Engineering Notes, Volume 35, Number 6, July

2010

6. R Krishnan, Margaret Nadworny, Nishil Bharill, “Static Analysis tools for

security checking in code at Motorola, ACM SIGAda Ada Letters, Volume XXVIII

Issue 1, April 2008, pages 76-82.

7. R Krishnan, S Murali Krishna, Nishil Bharil, “Code Quality Tools: Learning

from our Experience”, ACM Software Engineering Notes, Volume 32, Number

4, July 2007

8. R Krishnan, S Murali Krishna, P Siva Nandhan, “Combinatorial Testing:

Learnings from our Experience”, ACM Software Engineering Notes, Volume32,

Number 3, May 2007

9. Krishnan Rangarajan et.al, Product Quality Framework, published in ACM

software engineering notes, Volume 26, Number 4, July 2001.

Software Engineering Conferences:

1. "Broken Kannada Character Recognition- a Neural Network based

approach", Sandhya.N, Krishnan. R, D.R.Ramesh Babu , IEEE-ICEEOT-2016 ,

March 3 - 6, DMI College of Engineering, Chennai.

2. Abhinandan H Patil, Preeti Satish, Krishnan R, "Integrated test environment

for combinatorial testing", IEEE IACC 2015, june 2015, Bangalore, India.

3. Preethi Satish, Arinjita Paul, Krishnan Rangarajan, “Extracting the

Combinatorial Test Parameters and Values from UML Sequence Diagrams”,

icstw, 2014 IEEE Seventh International Conference on Software Testing,

Verification and Validation Workshops, Cleveland, Ohio USA, March 31, 2014.

4.Preethi Satish, Sheeba K, Krishnan Rangarajan, “Deriving Combinatorial Test

Design Model from UML Activity Diagram”, icstw, pp 331-337, 2013 IEEE Sixth

International Conference on Software Testing, Verification and Validation

Workshops, Luxemberg, 2013.

5. R Krishnan, Nishil Bharil, Margaret Nadworny, “Static Analysis Tools for

checking Security in Code at Motorola” in Static Analysis Summit - II

conference, Nov 8-9, 20 07, Fairfax, Virgina, USA

6. R Krishnan, Margaret Nadworny, “Moving Software from Expense to Asset”

presented in IEEE-Compsac, September 2006, Chicago

7. Murali Krishna, R Krishnan, “Cost of Quality Reduction through Unit Test

Automation, International Conference on Software Testing”, January 20 – 22,

2005, Taj Residency, Bangalore, India.

International Journal of Scientific & Engineering Research
ISSN 2229-5518 162

IJSER © 2019
http://www.ijser.org

IJSER

163

Software Engineering (On file in Motorola Symposiums):

1. Software Systems and Simulation, SSS 2006, Tools fair: Poster on security

rules support in Klocwork

2. Software Systems and Simulation, SSS 2005, “Orthogonal Array Test

Strategy”

3. Software Systems and Simulation, SSS 2005, Tools fair : Moto_Oatsgen (an

internal tool supporting Orthogonal Array Testing).

4. Motorola European Test Symposium – 2005, presentation on “Orthogonal

Array Test Strategy”

5. Software Systems and Simulation, SSS 2004 “Viewpoints Methodology: A

structured, integrative and stakeholder-driven approach to requirements

elicitation”

6. Software Systems and Simulation, SSS 2003 “A systematic approach to

improve usability of a product”

7. Software Systems and Simulation, SSS 2003 “Aspect Oriented

Programming”

8. Software Systems and Simulation, SSS 2003 “Architecture Evaluation Using

ATAM”

9. Software Engineering Symposium, SES 2001 “Architecture Technology

Map”

10. Motorola System Engineering Symposium - MSS 2000 “Product Quality

Framework: A vehicle for focussing on High Availability and other Design

Goals”

11. Software Engineering Symposium, SES 2000 “Domain Analysis of Protocol

test environment”

12. Asia Pacific Software Engineering Symposium- APSES 1999 “Testing for

non-functional attributes”

13. Asia Pacific Software Engineering Symposium- APSES 1999 “Usability

Analysis with SUMI Method”

14. Asia Pacific Software Engineering Symposium- APSES 1999 “Product

Quality Framework”

15. Asia Pacific Software Engineering Symposium- APSES 1997 ”Reuse

Economic Model”

Software Engineering Tutorials presented in Conferences, Technical Forums

1. Conducted sessions on “Combinatorial Testing” and “Security practices in

the Software Lifecycle” in the workshop on Methodologies for Effective

International Journal of Scientific & Engineering Research
ISSN 2229-5518 163

IJSER © 2019
http://www.ijser.org

IJSER

164

Software Testing, conducted by Innovate-IT in Bangalore, March 11-12, 2011.

http://www.innovate-it.in/workshop_software_testing.html

2. Invited talk on “Software Quality” in VITCON-2007, organized by Vemana

Institute of Technology, April 28th, 2007

3. Invited colloquim talk on Usability organized by ISQT, Bangalore June 2007

4. Was a trained trainer for the Secure Programming Course in Motorola

(2005-07). Initiated trainers for this course in couple of other units in Motorola

5. Created & delivered a talk on Software Architecture, Feb 2002 which is

available as an online training material with Motorola University

6. Invited lecture on Software Reuse in Leadership meet of Honeywell, June 9,

2001

7. Invited talk on Product Quality in Bangalore SPIN, May 24, 2001

8. Tutorial on Architecture in international conference on software

engineering, SEPG 2001, Bangalore, India

9. Tutorial on Product Quality in international conference on software

engineering, SEPG-99, Bangalore, India

10. Tutorial on reuse. In conference on software engineering, CONSEG-97,

Madras, India

Computer Vision Journals:

1. Multi-object Tracking in Aerial Image Sequences using Aerial Tracking

Learning and Detection Algorithm,Vindhya P. Malagi*, Ramesh Babu D.R., and

Krishnan Rangarajan ,Defence science Journal, Vol. 66, No. 2, march 2016, pp

122-129

2."Anjana B.H, Rashmi S, R, Krishnan, ""A Survey on Context Driven activity

Recognition and Analysis in Wide Area Surveillance", in International Journal

of Ethics in Engineering & management education [ISSN: 2348-4748], Volume

2, Issue 5, May 2015, pp 36-42.

2. An algorithm to estimate scale weights of complex wavelets for Effective

Feature Extraction in Aerial Images, Shubha Bhat, Ramesh Babu D.R, Krishnan

Rangarajan, Ramakrishnan K.A, Defence science Journal, Vol 64, No 6, 2014.

3. Sandhya.N, R Krishnan and Ramesh D R Babu. : Feature Based Kannada

Character Classification Method of Kannada Character Recognition. IJSER

Volume 5, Issue 2, Feb 2014.

4. Sandhya.N, R Krishnan and Ramesh D R Babu. : A Language Independent

Characterization of Document Image Noise in Historical Scripts. International

Journal of Computer Applications 50(9):11-18, July 2012.

International Journal of Scientific & Engineering Research
ISSN 2229-5518 164

IJSER © 2019
http://www.ijser.org

IJSER

http://www.innovate-it.in/workshop_software_testing.html

165

5.Ashish Sethi, Hemanth S,Kuldeep Kumar, Bhaskara Rao N, Krishnan R:

SignPro-An Application Suite for Deaf and Dumb, IJCSET, May 2012, Vol 2, Issue

5,1203-1206, ISSN: 2231-0711.

6.L.N. Mohankumar, R. Kishnan, and V.P. Malagi :An Efficient Approach for

Identification and Extraction of Moving Objects in Video Sequences Using

Morphological Dilation, International Journal of Research and Reviews in

Computer Science (IJRRCS), Vol. 2, No. 5, October 2011, ISSN: 2079-2557 ©

Science Academy Publisher, United Kingdom.

7. Shubha Bhat, Ramesh Babu D.R, Krishnan Rangarajan, Ramakrishnan K.A,

“An algorithm to estimate scale weights of complex wavelets for Effective

Feature Extraction in Aerial Images”, Defence science Journal, Vol 64, No 6,

2014.

8.Krishnan Rangarajan, A. G. Seethalakshmy, Jharna Majumdar: “Computation

and use of planar face normal”, Pattern Recognition Letters 14(10): 809-816

(1993)

9. Mubarak Shah, Krishnan Rangarajan, Pins Sing Tsai, "Motion Trajectories",

published in "IEEE transaction on systems, man and cybernatics". Also was

accepted for presentation in "International Conference on pattern

recognition", Hague, Holland, August 31- September 3, 1992

10. K.Rangarajan, William Allen and M.Shah, "Matching Motion Trajectories

using scale space", Journal of pattern recognition Vol 26, 004, pp 595-

610,1993.Also was accepted for presentation in "International Conference on

Pattern Recognition", Hague, Holland, August 31- September 3, 1992.

11. K. Gould, K. Rangarajan and M.Shah, "Trajectory Primal Sketch" appeared

in the book "Advances in Image Analysis", edited by Mahdeviah and Gonzalez,

published by the optical engineering press.

12. K. Rangarajan and M. Shah, "Interpretation of Motion Trajectories using

Focus of Expansion" appeared in the Journal "IEEE Transactions on Pattern

Analysis and Machine Intelligence", Vol 14, No 12, December 1992, pp 1205-

1210

13. K. Rangarajan and M.Shah, "Establishing Motion Correspondence" was

presented in "IEEE Computer Society Conference on Computer Vision and

Pattern Recognition" June 1991 at Hawaii. It also appeared in the Journal

"CVGIP: Image Understanding", Vol 54, pp 56-73 (July 1991).

14. K. Rangarajan, M.Shah and D. Van Brackle, "Optimal Corner Detector", was

presented in Second International Conference on Computer Vision, December

International Journal of Scientific & Engineering Research
ISSN 2229-5518 165

IJSER © 2019
http://www.ijser.org

IJSER

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/r/Rangarajan:Krishnan.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/s/Seethalakshmy:A=_G=.html
http://www.informatik.uni-trier.de/~ley/db/journals/prl/prl14.html#RangarajanSM93

166

1998 at Tampa, Florida. This paper also appeared in the Journal "Computer

Vision, Graphics and Image Processing", Vol 48, pp 230-245 Nov 1989.

Computer Vision Conferences:

1. Sandhya.N, Krishnan. R, D.R.Ramesh Babu,"A novel local enhancement

technique for rebuilding broken characters in degraded Kannada scripts ",

IEEE IACC 2015, june 2015, Bangalore, India.

2. Sandhya N, Krishnan R, Ramesh Babu D.R, "Handwritten Kannada Character

Recognition using Zonal Features and Multi-class SVM", ICPRMSP , Jan 9-10

2015, Annamalai University, India.

3. Sandhya.N, Krishnan. R, D.R.Ramesh Babu, Pianka Das, “A Comprehensive

pre-processing approach for digital preservation of documents”, Proceedings

of International Conference on Emerging Research in Computing, Information,

Communication and Applications, ERCICA-2014, August 01-02, Bangalore,

India.

4. Shubha Bhat, Ramesh Babu D.R, Krishnan Rangarajan, Ramakrishnan K.A,

“Evaluation of feature descriptors to recover camera parameters for

navigation of unmanned air vehicles”, Proceedings of International Conference

on Emerging Research in Computing, Information, Communication and

Applications, ERCICA-2014, August 01-02, Bangalore, India.

5.Vindhya Malagi, Vinutha Gayathri, Krishnan Rangarajan, Ramesh Babu D.R,

“Enhancing COCOA framework for tracking moving objects in the presence of

occlusion in Aerial Image Sequences”, ICMCCA 2012, Dec 13-15, 2012,

Bangalore, India.

6. Jharna Majumdar, Adil Hamid and Krishnan Rangarajan "CAD Model Based

System for Visual Inspection", was accepted for presentation in Second

International Conference on Automation, Robotics and Computer Vision,

September 15-18, 1992, Singapore.

7. Krishnan Rangarajan, Seethalakshmy and Jharna Majumdar, "Computation

and use of Planar Face Normals", was accepted for presentation in Second

International Conference on Automation, Robotics and Computer Vision,

September 15-18, 1992, Singapore.

8. Monisha Dhar, Krishnan Rangarajan and Jharna Majumdar, "Edge and

Region Based Stereo", was presented in IPA Conference cum workshop on AI

applications in physical sciences, January 15-17, 1992 at BARC, Bombay. Also

appeared in "Asia-Pacific Engineering Journal (APEJ)", (Part A), Vol 2, No 2,

1992 pp 217- 231.

International Journal of Scientific & Engineering Research
ISSN 2229-5518 166

IJSER © 2019
http://www.ijser.org

IJSER

167

9. Seethalakshmy, Krishnan Rangarajan and Jharna Majumdar, "Part

Identification for Robotic Applications", was presented in IPA Conference cum

workshop on AI applications in physical sciences, January 15-17, 1992 at BARC,

Bombay.

10. Mubarak Shah, Krishnan Rangarajan, Pins Sing Tsai, "Motion Trajectories",

"International Conference on pattern recognition", Hague, Holland, August 31-

September 3, 1992

11. K.Rangarajan, William Allen and M.Shah, "Matching Motion Trajectories

using scale space", "International Conference on Pattern Recognition", Hague,

Holland, August 31- September 3, 1992.

12. K. Rangarajan and M.Shah, "Establishing Motion Correspondence" was

presented in "IEEE Computer Society Conference on Computer Vision and

Pattern Recognition" June 1991 at Hawaii.

13. K. Rangarajan, M.Shah and D. Van Brackle, "Optimal Corner Detector", was

presented in Second International Conference on Computer Vision, December

1988 at Tampa, Florida.

International Journal of Scientific & Engineering Research
ISSN 2229-5518 167

IJSER © 2019
http://www.ijser.org

IJSER

168

References

 [1] K. Ashton, "Internet of things," RFIDJournal, 2009.

 [2] Dunkels, J. P. Vasseur and A., Interconnecting Smart Objects

with IP The Next Internet, Morgan Kauffman Publishers, 2010.

 [3] H. Chaouchi, The Internet of Things, John Wiley and Sons, 2010.

[4] D. A. P and V. J., "IP for Smart Objects," 8 10 2017. [Online].

Available: http://www.ipso-alliance.org.

[5] B. N, J. M, D. A and V. T, "The design and implementation of an

ip-based sensor network for intrusion monitoring," 2006.

[6] B. T. Myers, G. J. and T. M. Thomas, "The Art of Software

Testing," 2010.

[7] Contiki, "Contiki Web Site," 2017. [Online]. Available:

http://www.contiki-os.org/.

[8] A. P. Mathur, Foundations of Software Testing, Pearson, 2013.

[9] P. C.Jorgensen, Software Testing A Craftsman’s Approach, CRC

Press, 2013.

[10] "TinyOS website," 8 10 2017. [Online]. Available:

http://www.tinyos.org.

[11] "TinyOS Working Group," 8 10 2017. [Online]. Available:

http://www.cs.utah.edu/ regehr/tinyos-tools-wg/.

[12] "RIOT website," 8 10 2017. [Online]. Available:

http://www.riot-os.org/.

[13] Y. Lee, D. Kuhn and R. N. Kacker, "Practical Combinatorial

Testing Manual," 2017.

[14] C. Nie, Practical Combinatorial Testing, ACM Survey, 2014.

[15] Y. L. L. Shikh, G. Ghandehari and M. N. Bourazjany, "An input

space modeling methodology for combinatorial testing," in

International Workshop on Combinatorial Testing, 2013.

[16] P. B. P. Ammann, "Abstracting Formal Specifications to

Generate Software Tests via Model Checking," in Proc. 18th Digital

Avionics Systems Conference, 1999.

International Journal of Scientific & Engineering Research
ISSN 2229-5518 168

IJSER © 2019
http://www.ijser.org

IJSER

169

[17] A. G. P. V. Paolo Arcaini, "Validation of models and tests for

constrained combinatorial interaction testing," in IEEE

International Conference on Software Testing, Verification, and

Validation Workshops, 2014.

[18] Johansen and M. F., Testing Product Lines of Industrial Size:

Advacements in Combinatorial Interaction Testing, University of

Oslo, PhD Thesis, 2013.

[19] "ACTS tool website," 2017. [Online]. Available:

http://csrc.nist.gov/groups/SNS/acts/index.html.

[20] "CCM Tool website," 2017. [Online]. Available:

http://csrc.nist.gov/groups/SNS/acts/index.html.

[21] M. N.Borazjany, "Combinatorial testing of acts: A case study,"

in Fifth International Conference on Software Testing, Verification

and Validation, 2012.

[22] Y. Lee, D. Kuhn and R. Kacker, "Estimating fault detection

effectiveness," in IEEE International Conference on Software

Testing, Verification, and Validation Workshops, 2014.

[23] L. Yu., D. Kuhn and R. Kacker, "Combinatorial coverage

measurement concepts and applications," in International

Workshop on Combinatorial Testing, 2013.

[24] OpenClover, "Open Clover," 2017. [Online]. Available:

http://openclover.org.

[25] "CodeCover Web site," 2017. [Online]. Available:

http://codecover.org.

[26] M. J. Harrold, J. A. Jones, D. L. T. Li, A. Orso, M. Pennings, S.

Sinha, S. A. Spoon and A. Gujarathi, "Regression test selection for

java software," in Proceedings of the 16th ACM SIGPLAN

conference on Object Oriented Programming, Systems, Languages,

and Applications, 2001.

[27] L. Yu., D. Kuhn and R. N.Kacker, Introduction to Combinatorial

Testing, A Chapman and Hall Books, 2013.

[28] NIST, "NIST Website," 2017. [Online]. Available:

http://csrc.nist.gov/groups/SNS/acts/index.html.

[29] P. J. a. H. Wallinder, "A Test Tool Framework for an Integrated

Test Environment in the Telecom Domain," 2017.

International Journal of Scientific & Engineering Research
ISSN 2229-5518 169

IJSER © 2019
http://www.ijser.org

IJSER

170

[30] Y. Lee, L. Shikh, G. Ghandehari and M. N. Bourazjany, "Applying

combinatorial testing to the siemens suite," in International

Workshop on Combinatorial Testing, 2013.

[31] CTT, "College Time Table," 05 Sept 2018. [Online]. Available:

https://sourceforge.net/projects/collegetimetable/.

[32] A. H. Patil, N. Goveas and K. Rangarajan, "Clover Logs of

Execution," 10 2017. [Online]. Available:

https://drive.google.com/drive/folders/0B2vHzPHgs0nVZWxtSE5s

VVdGUmc.

[33] "Contiki supported hardware platforms," 2017. [Online].

Available: http://www.contiki-os.org/hardware.html.

[34] A. H. Patil, N. Goveas and K. Rangarajan, "Re-architecture of

Contiki and Cooja Regression Test Suites using Combinatorial

Testing Approach," ACM SIGSOFT SEN, 2015.

[35] J. T. Pro, "J Test Pro," 10 2017. [Online]. Available:

https://www.segger.com/products/debug-probes/j-

trace/technology/real-time-code-coverage/.

[36] G. Cover, "G Cover," 10 2017. [Online]. Available:

https://www.ghs.com/products/safety_critical/gcover.html.

[37] A. H. Patil, N. Goveas and K. Rangarajan, "Test case

Autogeneration code Git hub repository," 10 2017. [Online].

Available:

https://github.com/Abhinandan1414/CoojaTestCaseGeneration.

[38] D. Adam, "Full tcp/ip for 8 bit architecture," in Proceedings of

the first ACM International Conference on Mobysis, Sanfransisco,

2003.

[39] "Raspberry Pi wikipedia," 8 10 2017. [Online]. Available:

http://en.wikipedia.org/wiki/Raspberry_Pi.

[40] P. a. P.E.Black, "Abstracting formal specifications to generate

software tests via model checking," in Proc. 18th Digital Avionics

System Conference, 2013.

[41] R. Jain, The art of computer systems performance analysis,

Wile-InterScience, 2010.

[42] E. Kreyszig, Advanced Engineering Mathematics, 2011.

[43] B. S. Grewal, Higher Engineering Mathematics, 2014.

International Journal of Scientific & Engineering Research
ISSN 2229-5518 170

IJSER © 2019
http://www.ijser.org

IJSER

171

[44] "JVM Hotspot command line arguments," 2017. [Online].

Available:

http://www.oracle.com/technetwork/java/javase/tech/vmoption

s-jsp-140102.html.

[45] I. Muneer, Systematic Review on Automated Testing Types,

Effort and ROI, PhD Thesis, 2014.

[46] B. Ovilio, Test effort and test coverage: correlation analysis in a

safety critical operating system, PhD Thesis, 2012.

[47] "Test environment management best practices," 2017.

[Online]. Available: http://www.softwaretestinghelp.com/test-

bed-test-environment-management-best-practices/.

[48] K.-J. L. a. J.-J. Y. Tong-Yu Hsieh, "Test Efficiency Analysis and

Improvement of SOC Test Platforms," in 16th IEEE Asian Test

Symposium.

[49] J. V. Oenen, Improving regression test code coverage using

meta heuristics, Thesis, 2010.

[50] A. H. Patil, "CodeCover: A Code Coverage Tool For Java

Projects," in ERCICA, 2013.

[51] A. H. Patil, "CodeCover:Enhancement of CodeCover," ACM

SIGSOFT SEN, 2014.

[52] S. B. a. R. Weber, "Enhancing Software Testing by Judicious Use

of Code Coverage Information," in IEEE Conference Publications,

2007.

[53] R. M. K. a. R. Skibbe, "On software reliability and code

coverage," in IEEE Conference Publications, 1996.

[54] M. H. a. R. M. H. Zheng Li, "Search Algorithms for Regression

Test Case Prioritization," IEEE transactions on Software

Engineering, 2007.

[55] J. O. P. Ammann, Introduction to Software Testing, Cambridge

University Press, 2008.

[56] M. Y. T. O. L. Baresi, 2001. [Online]. Available:

http://www.cs.uoregon.edu/michal/pubs/oracles.html.

[57] B. Beizer, Software Testing Techniques, Van Nostrand Reinhold,

1990.

International Journal of Scientific & Engineering Research
ISSN 2229-5518 171

IJSER © 2019
http://www.ijser.org

IJSER

172

[58] Introducing Combinatorial Testing in Large Organizations,

ASTQB, 2014.

[59] "Evaluating the t-way Technique for Determining the

Thoroughness of a Test Suite," in NASA IV&V Workshop, 2013.

[60] "Combinatorial coverage measurement," in NASA IV&V

Workshop, 2012.

[61] Y. Lei, "IPOG - A General Strategy for t-Way Software Testing,"

in IEEE Engineering of Computer Based Systems conference, 2007.

[62] "Test Management tools," 2017. [Online]. Available:

http://en.wikipedia.org/wiki/Test_management_tools.

[63] K. A. A. a. S. G. Sergiy A. Vilkomir, "MIST: Modeling input space

for testing tool," in Proceddings of the 13th IASTED International

Conference Software Engineering and Applications (SEA 2009),

2009.

[64] P.-L. Poon, "CHOC'LATE: a framework for specification-based

testing," Communications of the ACM 53.4, pp. 113-118, 2013.

[65] L. B. a. M. Young, "Test Oracles," 2001. [Online]. Available:

http://www.cs.uoregon.edu/michal/pubs/oracle.html.

[66] A. H. Patil, N. Goveas and K. Rangarajan, "CTT test execution log

files," 05 Sept 2018. [Online]. Available:

https://drive.google.com/drive/u/1/folders/1t_fT6rd3OLTfLiipmR

yQi99_436emGAk.

[67] E. w. site, "Eclipse web site," 05 September 2018. [Online].

Available: https://www.eclipse.org/downloads/.

[68] A. H. Patil, N. Goveas and K. Rangarajan, "Test Suite Design

Methodology using Combinatorial Approach for Internet of Things

Operating Systems," Journal of Software Engineering and

Application, 2015.

[69] A. H. Patil, P. Satish, N. Goveas and K. Rangarajan, "Integrated

Test Environment for Combinatorial Testing," in IACC, Bengaluru,

2015.

[70] J. Bach and P. Shroeder, "Pairwise Testing - A Best Practice That

Isn't," in Proceedings of 22nd Pacific Northwest Software Quality

Conference, 2004.

International Journal of Scientific & Engineering Research
ISSN 2229-5518 172

IJSER © 2019
http://www.ijser.org

IJSER

173

[71] Aranha, Silva and E. H. da, Estimating Test Execution Effort

Based on Test Specifications, PhD Thesis, 2009.

[72] L. Tahat, B. Korel, M. Harman and H. Ural, "Regression Test

Suite Prioritization using System Models," Wiley Online Library,

2011.

[73] Balcer, T. J. Ostrand and M. J., "The category-partition method

for specifying and generating functional tests," Communications of

the ACM, 1988.

[74] Behar, Y. Adler and N., "Code Coverage Analysis In Practice for

Large Systems," 2011.

[75] Borba and E. Aranha, "Estimating Manual Test Execution Effort

and Capacity Based on Execution Points," International Journal of

Computer and Application, 2009.

[76] Bryce, R. C, S. Sampath, J. B. Pedersen and S. Manchester, "Test

suite prioritization by cost-based combinatorial interaction

coverage," International Journal of System Assurance Engineering

and Management, pp. 126-134, 2011.

[77] Bryce, R. C and C. J. Colbourn, "Prioritized interaction testing

for pair-wise coverage with seeding and constraints," Information

and Software Technology, pp. 960-970, 2006.

[78] Chen and T. Yueh, "DESSERT: a DividE-and-conquer

methodology for identifying categorieS, choiceS, and choicE

Relations for Test case generation," Software Engineering, IEEE

Transactions on 38.4, pp. 794-809, 2012.

[79] Clarke, J. Lawrence and S., "How well do professional

developers test with code coverage visualizations? An empirical

study," in IEEE Conference Publications, 2007.

[80] D. Kuhn, J.Higdon, J. Lawrence, R. Kacker and Y. Lei,

"Combinatorial Methods for Event Sequence Testing," in First Intl

Workshop on combinatorial Testing, 2012.

[81] R. Krishnan, S. M. Krishna and P. S. Nandhan, "Combinatorial

testing: learnings from our experience," ACM SIGSOFT SEN, pp. 1-

8, 2007.

[82] Dunkels, J. Vasseur and A., Interconnecting Smart Objects with

IP The Next Internet, Morgan Kaufmann Publishers, 2010.

International Journal of Scientific & Engineering Research
ISSN 2229-5518 173

IJSER © 2019
http://www.ijser.org

IJSER

174

[83] G. Rothermel, M. J. Harrold, J. Ostrin and C. Hong, "An empirical

study of the effects of minimization on the fault detection

capabilities of test suites," in ICSM ’98: Proceedings of the

International Conference on Software Maintenance, 1998.

[84] Grochtmann, Matthias, J. Wegener and K. Grimm, "Test case

design using classification trees and the classification-tree editor

CTE," Proceedings of Quality Week, 1995.

[85] H.Washizaki and K. Sakamoto, "Open Code Coverage

Framework: A Consistent and Flexible Framework for Measuring

Test Coverage Supporting Multiple Programming Languages,"

2010.

[86] Harrold, J. A. Jones and M. J., "Test-suite reduction and

prioritization for modified condition/decision coverage," IEEE

Trans.Softw. Eng, p. IEEE, 2003.

[87] Hildebrandt, A. Zeller and R., "Simplifying and isolating failure-

inducing input," Software Engineering, IEEE Transactions on, vol.

28, pp. 183-200, 2002.

[88] Ghandehari, L. Shikh, Gholamhossein, Y. Lei, T. Xie, R. Kuhn and

R. Kacker, "Identifying failure-inducing combinations in a

combinatorial test set," in Software Testing, Verification and

Validation (ICST), 2012 IEEE Fifth International Conference, 2012.

[89] Grag, F. D. Frate and P., "On the correlation between code

coverage and software reliability," in IEEE Conference, 1995.

[90] L. Tahat, B. Korel, M. Harman and H. Ural, "Regression Test

Suite Prioritization using System Models," Wiley Online Library,

2011.

[91] Thiagarajan and A. Srivastava, "Effectively prioritizing tests in

development environment," in ISSTA ’02: Proceedings of the 2002

ACM SIGSOFT International Symposium on Software Testing and

Analysis, 2002.

[92] S. Mirarab, S. Akhlaglv and L. Tahvildari, "Size Constrained

Regression Test Case Selection using Multicriteria Optmization,"

IEEE transactions on Software Engineering, p. 2012.

International Journal of Scientific & Engineering Research
ISSN 2229-5518 174

IJSER © 2019
http://www.ijser.org

IJSER

175

[93] McClary, C. J. Colbourn and D. W., "Locating and detecting

arrays for interaction faults," Journal of combinatorial

optimization, 2008.

[94] M. Lyu, J. Horgan and S. London, "A coverage analysis tool for

the effectiveness of software testing," IEEE Trans. on Reliability,

1994.

[95] Qi, W. E. Wong and Yu, "Effective Fault Localization using Code

Coverage," in IEEE Conference Publications, 2007.

[96] Qu, Xiao, M. B. Cohen and K. M. Woolf, "Combinatorial

interaction regression testing: A study of test case generation and

prioritization," in ICSM 2007. IEEE International Conference on.

IEEE, 2007.

[97] R.Mercer, T.W.Williams and M., "Code Coverage, what does it

mean in terms of quality," in IEEE Conference Publications, 2001.

[98] S. Elbaum, A. G. Malishevsky and G. Rothermel, "Test case

prioritization: A family of empirical studies," IEEE Transactions,

2014.

[99] Yilmaz, Cemal, M. B. Cohen and A. A. Porter, "Covering arrays

for efficient fault characterization in complex configuration

spaces," Software Engineering, IEEE Transactions on 32, 2006.

International Journal of Scientific & Engineering Research
ISSN 2229-5518 175

IJSER © 2019
http://www.ijser.org

IJSER

	Certificate
	Declaration
	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of tables
	Abbreviations
	1 Introduction
	1.1 Background
	1.1.1 IoT Operating Systems
	1.1.2 Testing for IoT Operating Systems
	1.1.3 Regression testing

	1.2 Motivation
	1.3 Problem statement
	Objective 1: Study of Regression test suites in general
	Objective 2: Design and implementation of combinatorial testing based test suites for internet of things operating system and its simulators
	Objective 3: Measuring the effectiveness of designed test suites using the traditional coverage techniques like code coverage
	Objective 4: Automation of test scripts generation from combinatorial testing design model and analyzing coverage to refine the combinatorial testing design model
	Objective 5: Propose an integrated test environment for combinatorial testing

	1.4 Research goals
	Research goal 1:
	Research goal 2:
	Research goal 3:
	Research goal 4:
	Research goal 5:
	Research goal 6:

	1.5 Solution Approach
	1.6 Publications
	1.7 Research Contributions
	1.8 Thesis outline
	Chapter 2 – Literature Survey
	Chapter 3 - Regression Test Suite Execution Time Analysis using Statistical Techniques
	Chapter 4 - Integrated Test Environment for Combinatorial Testing
	Chapter 5 - CT-RTS: Advanced Combinatorial Testing for Software Regression Testing
	Chapter 6 –CT-RTS: Generating Effective Test Suite for Multiparameter Software using ACTS Tool and its Verification using Code Coverage Tools
	Chapter 7 - Re-architecture of Contiki and Cooja Regression Test Suites using Combinatorial Testing Approach
	Chapter 8 - Test Suite Design Methodology using Combinatorial Approach for Internet of Things Operating Systems
	Chapter 9 – CT-RTS: Contiki and Cooja Regression Test Suites Design and Implementation using Combinatorial Testing
	Chapter 10- CT-RTS: Combinatorial Testing based Regression Test Suite: Functional Test Case Generator for Contiki and Cooja
	Chapter 11 - Regression Test Suite Prioritization using Residual Test Coverage Algorithm and Statistical Techniques
	Chapter 12 – Conclusion

	2 Literature Survey
	2.1 Properties and Characteristics of IoT Operating Systems
	2.2 Importance of Regression Testing
	2.3 Combinatorial techniques based approaches to Software Testing
	2.4 The need of Combinatorial based testing techniques for IoT OS
	2.5 Use of Combinatorial technique based tools
	2.6 Software Test Coverage and its relevance to the design of Regression test suites
	2.6.1 CodeCover
	2.6.2 OpenClover

	2.7 Gaps in Existing Research

	3 Regression Test Suite Execution Time Analysis using Statistical Techniques
	3.1 Introduction
	3.2 Functional Simulator Tools
	3.3 Java Functional Simulator Tools
	3.4 Java Hotspot VM Options
	3.5 Test Case and Test Execution Time Observations
	3.6 Statistical Techniques for Execution Time Analysis
	3.7 Limitations of Statistical Techniques
	3.8 Advantages of Statistical Approach
	3.9 Conclusion

	4 Integrated Test Environment for Combinatorial Testing
	4.1 Introduction
	4.2 Overview of Integrated Test Environment
	4.3 Test Model Generator
	4.4 Test Generator
	4.5 Test Management Tool
	4.6 Selection and Prioritization Tool
	4.7 Defect Tracking Tool
	4.8 Analysis
	4.9 Model Checking Tool
	4.10 Conclusion

	5 CT-RTS: Combinatorial Testing based Software Regression Suite
	5.1 Introduction
	5.2 CT-RTS: Readily Executable Test Cases
	5.3 CT-RTS: Functional Test Case Generation
	5.4 Conclusion

	6 CT-RTS: Generating Regression Test Suite for Multiparameter Software and its Verification using Code Coverage Tools.
	6.1 Introduction
	6.2 Brief Literature Survey of CT
	6.3 ACTS Tool
	6.4 Open Clover
	6.5 College Time Table
	6.6 CT-RTS: Generating The Test Cases and Gathering Coverage Data
	6.6.1 ACTS Tool Usage for Generating The Test Cases

	6.7 Results and Results Analysis
	6.8 Conclusion

	7 Re-architecture of Contiki and Cooja Regression Test Suites using Combinatorial Testing Approach
	7.1 Introduction
	7.2 Contiki Testing Environment
	7.3 Combinatorial Testing
	7.4 CodeCover Tool Usage
	7.5 Results
	7.6 Conclusion

	8 Test Suite Design Methodology using Combinatorial Approach for Internet of Things Operating Systems
	8.1 Introduction
	8.2 Typical Workflow for Baselining the regression Test Suite
	8.3 Process of Redesigning the Regression Test Suite if it Already Exists
	8.3.1 Contiki Specific Details

	8.4 Process of Designing the Regression Test Suite if it Does Not Exist
	8.5 Contiki Specific Environment Changes to be Done
	8.6 Conclusion

	9. CT-RTS: Contiki and Cooja Regression Test Suites Design and Implementation using Combinatorial Testing
	9.1 Introduction
	9.2 Background
	9.2.1 Existing regression test suite
	9.2.2 ACTS tool for generating combinatorial test design
	9.2.3 Code coverage using OpenClover

	9.3 Re-engineering the base test suite
	9.4 Test design using ACTS tool for re-engineered test suite
	9.5 Auto generation of test cases
	9.6 Test design for Cooja test suite using ACTS tool
	9.7 Code coverage data gathering process
	9.8 Results
	9.9 Results analysis
	9.10 Supplementary material
	9.11 Conclusion

	10. Combinatorial Testing based Functional Test Case Generator for Contiki Operating System and Cooja Simulator
	10.1 Introduction
	10.2 Combinatorial testing and NIST ACTS tool
	10.3 Contiki the IoT operating system
	10.4 Cooja simulator
	10.5 Regression test suite of Contiki Operating System
	10.6 Requirements for FTCGCC
	10.7 High level design of FTCGCC
	10.8 Software implementation
	10.8.1 Java’s regexp parser
	10.8.2 Java Document Object Model Parser
	10.8.3 Data structures and functions

	10.9 FTCGCC usage in Contiki environment
	10.10 Conclusion

	11 Regression Test Suite Prioritization using Residual Test Coverage Algorithm and Statistical Techniques
	11.1 Introduction
	11.2 Test Coverage Algorithm for White Box Testing
	11.3 Residual Test Coverage Algorithm enhancements for White Box Testing
	11.4 Statistical Approach for Prioritization of Test Cases for Black Box Testers.
	11.5 Coverage Tools: CodeCover a case study
	11.6 Process Flow for Collecting Metrics of Choice
	11.7 Advantages of Test Suite Prioritization
	11.7 Conclusion

	12. Conclusion
	12.1 Introduction: The research problem
	12.1.1 Summary of results

	12.2 Conclusions.
	12.2 Future work

	Appendix A: ACTs Generated Test Design for Contiki Operating System.
	Appendix B: Code Coverage Data Gathered for Existing Test Suite of Contiki and Cooja using CodeCover
	Appendix C: Tweaking of Ant build.xml for Gathering The Coverage Data with CodeCover
	APPENDIX D: ACTS Test Design Input for Re-engineered Test Suite
	APPENDIX E: ACTS Test Design for Cooja Test Suite
	Appendix F: Code for Auto Generating csc Files.
	Appendix G: Candidate’s Biography
	Appendix H: Publications of The Candidate
	Publications from Thesis
	Other Publications

	Appendix I: Supervisors Biodata
	Appendix J: Co-Supervisors Biodata
	References

