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ABSTRACT 

 

In engineering  theory  for  stability  analysis  Continuous  Algebraic  

Lyapunov  Equation (CALE)  is  an important one. In  this dissertation 

we extend  the  set of   Hurwitz matrix with a viable tool Singular  

Value Decomposition (SVD)  to determine  the  upper  solution  

bounds  for CALE which are widely applicable methods of linear 

algebra, especially in stability theory. In theory for practical purposes 

one can estimate a stability margin by using some available control 

bounds. But these upper bounds for CALE are valid under some 

restrictive condition    which are inapplicable. To make them 

applicable this thesis is an attempt to extend the solutions of upper 

bounds illustrated with some numerical examples. The following 

summarizes the contents of this thesis: 

Chapter-1 contains basic outlines for vectors, matrix   theory  in total 

from linear algebra. 

Chapter-2 deals with numerical matrix eigenvalue problems with a 

discussion on generalized eigenvalue problems.  

Chapter-3 describes different matrix factorization specially  LU, QR 

and Singular Value Decomposition  in a detail. 

Chapter-4   discusses   about  the  computational  tool  SVD with  its  

wide range of  applications. 

Finally, in chapter- 5, we are trying to discuss about the basic 

concepts of Lyapunov equations and for practical purposes we extend 

Hurwitz matrices with SVD to find upper solution bounds for 

Continuous Algebraic Lyapunov Equations (CALE) which are 

numerically applicable. 
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INTRODUCTION 

 

One of the most useful and important tools to emerge from linear 

algebra is the singular value decomposition (SVD).Of many useful 

decompositions, singular value decomposition is a factorization of a 

matrix A into the product TVU  of a unitary matrix U ,a diagonal 

matix  , and another unitary matrix TV -has assumed a special role. 

There are several reasons –firstly, it is achieved by unitary matrices 

makes it an ideal vehicle for geometry of n  space. Secondly, it is 

stable : small perturbation in A correspond to small perturbation in 

 and conversely. Thirdly, the diagonality of makes it easy to 

determine when A is near to a rank-degenerate matrix. The SVD has 

a long and fascinating history. Though its existence is accredited to 

five mathematicians in particular: Eugenio Beltrami (1835-1899), 

Camille Jordan (1838-1921), James Joseph Sylvester (1814-1897), 

Erhard Schmidt (1876-1959), and Hermann Weyl (1885-1955).One 

could argue that it could never have been developed without the 

contributions  of Gauss and Cauchy, both who contributed to the 

field of Linear Algebra in its naissance. In 1823 Gauss published his 

famous elimination algorithm for reducing matrices and from there 

was able to derive the inverse of a matrix. One obtains the inverse by 

a process called eliminatio indefinita (or “general elimination”): 

                                        ByxAxy   

 Soon after, mathematicians such as Cauchy, Jacobi, and Weierstrass 

played a vital role to set the stage for the singular value 

decomposition algorithm by contributing to various aspects of linear 

algebra such as the properties of eigenvalues and eigenvectors, an 

algorithm for the diagonalization of a symmetric matrix, and the 

canonical forms for pairs of bilinear functions which is 

contemporarily known as “the generalized eigenvalue problem”. 

With the collective contributions of these mathematicians singular 

value decomposition is derived by Beltrami, Jordan, Sylvester, 

Schmidt, and Weyl, whose contributions are as follows: 
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1.Beltrami : Eugenio Beltrami is called the progenitor of Singular 
value decomposition. In 1873 he first derived SVD algorithm. 
Beltrami’s contribution first published in   Journal of Mathematics 
for university students which is an attempt to persuade students to 
study bilinear forms. However, though he was the first to discover 
singular value decomposition for a real, square and nonsingular 
matrix having distinct singular values, his derivation did not cover 
degeneracies.  
 
2.Jordan : Camille Jordan can rightly be called the co discoverer  of  
the singular value decomposition. Although  he published  his 
derivation a year after Beltrami, it is clear that his work is 
independent. In fact, his publication ‘‘Memorie  sur les forms 
bilineaires ’’treats three problems, of which the reduction of a 
bilinear form to a diagonal form by orthogonal substitutions is the 
simplest. 
 

Jordan’s derivation: Jordan starts with the form 

                                                    AyxP T  

and seeks the maximum and minimum of P subject to  

              1
22
 yx                     ………………………...(2.1) 

The maximum is determined  by the equation 

             AdyxAydxdP TT 0            ………………………(2.2) 

which must be satisfied for all dx  and dy that satisfy 

            0xdxT  and 0ydyT          …………………………(2.3) 

Jordan then asserts that equation (2.2) will therefore be a 

combination of equation (2.3) from which we get, 

                   xAy                         …………………………(2.4) 

and   

                  TT yAx                         ………………………..(2.5)  
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From (2.4) it follows that the maximum is  

                                          xxAyx TT      

Similarly the maximum is also  ,so that      

Jordan now observes that  is determined by the vanishing 

determinant 

                             













IA

AI
D

T 


 

of the system of (2.4)-(2.5).He shows that his determinant contains 
only even powers of  .Now let 1  be a root of the equation 0D

,and let (2.4) and (2.5) be satisfied by ux   and vy  ,where 

1
22
 vu . 

Let, 
              uUÛ    and     vVV̂  
 

be orthogonal, and  let 

                            xUx ˆˆ  and      yVy ˆˆ    . 

With these substitution, let 

                                      .ˆˆˆ yAxP T  

In this system, P attains its maximum for 1
ˆˆ eyx  ,where 

 Te 0..,,.........0,11  . 

Moreover, at the maximum we have  

                                    xyA ˆˆˆ
1    and      TT yAx ˆˆˆ

1  , 

which implies that 

                             









10

0ˆ
A

A


 . 
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Thus with 11 x̂  and 11 ŷ   , P  assumes the form  

                                  1111 P  , 

where  1P  is independent of 1  and 1 .Then Jordan applies the 

reduction inductively to 1P  to arrive at the canonical form  

                                       TP  . 

Finally, Jordan notes that when the roots of the characteristic 

equation 0D are simple, the columns of U  and V  can be directly 

from   (2.1) , (2.4) and (2.5) . 

Results: Jordan proceeds from problem to solution with economy 

and elegance.His approach of using a partial solution of the problem 

to reduce it to one of smaller size-deflation, which is the modern 

term. Avoids the degeneracies  that complicate Beltrami’s approach. 

Deflation is now a widely used theoretical and algorithmic tool. 

Another consequence of Jordan’s approach is the variational 

characterization the largest singular values as the maximum of a 

function. 

3.Sylvester: Mathematician James Joseph Sylvester, who similarly 

discovered SVD independently, although he did so almost a decade 

and a half after Beltrami. Sylvester proposed an iterative approach 

that reduced a quadratic form to a diagonal form. The fact that 

Sylvester ended up sending a note to Comptes  Rendus attempting to 

lay claim for a discovery made by Beltrami over a decade before 

suggests he had no idea that its  existence  was  already  asserted. 

Part  of his  algorithm, labeled  “Infinitesimal Iteration” offers an 

alternative way to diagonalize a matrix by making infinitesimal 

orthogonal substitutions on the off-diagonal components such that 

any of  the components raised to powers higher than one can be 

ignored . He then asserts that an infinite iteration over these 

transformations will bring the off-diagonals to zero.  

4.Schmidt: Schmidt was another important pioneer of the Singular 

value decomposition. He approached it  from integral equation. He 
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demonstrated  the usefulness of the SVD in deriving an optimal, 

low-rank approximation of a larger problem during his study of 

integral equations with unsymmetrical kernels . In his approach, 

Schmidt also derived the approximation theorem, which is useful 

when one needs to approximate a matrix with another matrix of a 

specific rank, the solution of which can be derived by the singular 

value decomposition of the original matrix. The approximation 

theorem is often incorrectly labeled as the Eckhart-Young theorem 

since it was proved by the duo in 1936; however, Schmidt had 

actually proven the theorem almost thirty years before. 

Schmidt’s Derivation :Schmidt begins with a kernel  tsA ,  that is 

continuous and symmetric on    baba ,,  .  A continuous,  

nonvanishing function satisfying                                                                                             

                                                  dtttsAs
b

a
  ,                                                                                                                                                 

is said to be an eigenfunction of  A corresponding to eigenvalue 

.Schmidt then establishes the following facts: 

(i)The kernel A has at least one eigenfunction. 

(ii)The eigenvalues and their eigenfunctions are real. 

(iii)Each eigenvalue of A has at most a finite number of linearly    

independent eigen functions. 

(iv)The kernel A has a complete, orthonormal system of 

eigenfunctions; that is,a sequence     ....,........., 21 ss  of orthonormal 

eigenfunctions such that every eigenfunction can be expressed as a 

linear combination of a finite number of the  sj  . 

(v)The eigenvalues satisfy 

                                        
i i

b

a

b

a
dsdttsA

2

2 1
,


 

which implies that the sequence of eigenvalues is unbounded. 
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Results: Schmidt’s two contributions to the singular value 

decomposition are its generalization to function spaces and his 

approximation theorem. An important difference in Schmidt’s 

version of the decomposition is the treatment of null vectors of A . 

5. Hermann Weyl: In the history of SVD  another contributing 

mathematician was  Hermann Weyl,  whose  contribution to  the  

theorem of the singular value decomposition was to develop a 

general perturbation theory and use it to give an elegant proof of the 

approximation theorem. 

Weyl’s Derivation: The heart of Weyl’s development is a lemma 

concerning the singular values of a perturbed matrix.  Specifically, if 
T

k XYB  , then 

                             ABA kk 11                   ...........................(5.1) 

where  i denotes the i th singular value  

Proof: Since Y has k columns, then 

                       112211 ........  kk vvvv   

of the first 1k columns of V  such that 0vY T .We may assume that 

,1v or equivalently that 1........
2

1

2

2

2

1  k .It follows that 

                                       vBABAvBA
TT 2

1        

                                                        vAAv TT     

                                                        2
1

2

1
2
2

2

2
2
1

2

1 ........  kk   

                                                         2
1 k . 

Weyl then proves two theorems. The first states that if AAA  , 

then  

                    



 jiji  1                  ……………………..(5.2) 
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where   and   are the singular values of A and A  .Weyl begins by 

establishing (5.2) for  1 ji : 

       111111111   vAuvAuAvu TTT  
 
To establish the result, let 1


iA and 1


jA .Then    AAA ii

   11 and 

   AAA jj
   11 .From (5.1) it follows that 

                      1111 
 jiji AAAA   

                                      111 
 ji AAA  

                                     1 ji  

which proves the theorem. 
 
The second theorem is a corollary of the first. Set kBAA   and 

kBA  , where kB  has rank k .Since   01  kk B ,setting 1 kj  in (5.2) 

                             ikki BA   ,           ,.......2,1i      

 

As a result we obtain 

                         22
1

2
............ nkkBA       . 

This inequality is  equivalent to (5.2) and establishes the 

approximation theorem. 

 

To know more about SVD and its application we have followed so 

many books and papers, many of which are cited in this dissertation 

as references. However, in these books and paper mentioned the 

calculations are not given in detail .We have carried out most of the 

calculations  in detail. 

 

                              

 



 

CHAPTER  ONE 

A REVIEW OF SOME BASIC CONCEPTS OF LINEAR ALGEBRA 

 

This chapter contains some important definitions, propositions, and 

theorems from Linear Algebra and Matrix theory. For the sake of 

consciences, profound discussion of a topic and proofs of the 

theorems are omitted, since detailed are available in the references 

listed at the end of the thesis. 

1.1 Vectors 

1.1.1 Definition  

In general, an ordered set of real numbers is called a vector, the 

numbers themselves are called the components of a vector. A vector 

  having n  components has the form                                        

                                  























nv

v

v

v


2

1

 

A vector in this form is called column vector and its transpose  

                             Tn
T vvvv ,........,, 21  

is known as row vector. 
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1.1.2   Vector Space Rn 

The set of all n -vectors (that is each vector having n-components) 

denoted by nR , is called the vector space nR . In nR  space all the 

elements known as scalar. 

1.1.3 Operations on Vectors 

Consider, two vectors vu, in nR .Here 

 naaau ,.......,, 21  

  nbbb ,.......,, 21   

Then their sum, 

 nn bababau  ,.......,, 2211  

The scalar product of the vector u with a real number k , written ku , 

is the vector obtained by multiplying each component of u  by k . 

That is,  

 naaakku ,.......,, 21  

    nkakaka ,.......,, 21  

Here vu   and ku  is also a vector in nR . 

1.2  Matrices  

1.2.1 Basic concepts 

A collection of n  vectors in nR  arranged in a rectangular array of m  

rows and n  columns is called a matrix. A matrix A  has the form 
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                  A=





















mnmm

n

n

aaa

aaa

aaa

























21

22221

11211

 

It is denoted by  
nmijaA


  

or simply,  ijaA  , where 

 mi ,......,2,1  and   nj ,......,2,1  

A is said to be of order nm . The set of all nm  matrices denoted by 

nmR  . 

Example: 











10

21
A  

Here A is a matrix of 22  matrix . 

1.2.2 Definitions 

Square Matrix : A matrix A having the same number of rows as 

columns is called a square matrix. 

Example: 











24

32
A is a square matrix of  22  order. 

Row Matrix: The matrix with only one row is called a row matrix.  

Example:  321A  is of order 31 . 
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Column Matrix: The matrix with only one column is called a 

column matrix. 

Example: 

 


















1

4

3

P is a column matrix of 13 order. 

Null Matrix: The matrix with all elements equal to zero is called a 

null matrix. 

Example: 



















000

000

000

M is a null matrix of 33  order. 

Rectangular Matrix: Let  ijaA   is a matrix. If nm   and 0m , 

0n , then  
nmijaA


   is called a rectangular matrix of order nm  . 

Example: 



















34333231

24232221

14131211

aaaa

aaaa

aaaa

A  

is a rectangular matrix of order 43 . 

Diagonal Matrix: The matrix A is called a diagonal matrix if it is a 

square matrix and whose each non-diagonal elements are all zero 

and the diagonal elements are non-zero. 
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Example:  

 


















500

040

001

A  is a diagonal matrix of order 33 . 

Scalar Matrix: Any diagonal matrix A is called a scalar matrix if 

and only if every diagonal elements are equal. 

Example: 



















a

a

a

A

00

00

00

  is a scalar matrix of 33  order. 

Identity Matrix: The diagonal A  is called an identity matrix or 

unit matrix if and only if all the diagonal elements are equal to 1. 

It is denoted by nI  or simply I . 

Example: 











10

01
A is an Identity matrix of order 22 . 

Upper triangular Matrix: Any square matrix A is said to be an 

upper triangular matrix if 0ija ,  for ji > . 

Example: 

  























nn

n

n

a

aa

aaa

A

























00

0 222

11211
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 is an upper triangular matrix. 

Lower triangular Matrix: Any square matrix A  is said to be an 

lower triangular matrix if 0ija  for  ji <  . 

Example:  

       A=





















nnnn aaa

aa

a

























21

2221

11

0

00

 

is  a lower triangular matrix. 

Tridiagonal Matrix: Any matrix of the type 

                        

































nn

nn

n

n

a

a

aaa

aaaa

aaa

A



























0000

0

0000

0

0

0

)1(

343332

2222221

11211

 

is called a tridiagonal matrix 

Example:  

       























4600

7250

0413

0021

A  

 is a tridiagonal matrix. 
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Principal diagonal and Trace : The elements  jiaij   in a square 

matrix form the principal diagonal and their sum 

nnaaaa  ..........332211  is called the trace of that square matrix. 

Hessen berg Matrix: A square matrix A is upper Hessenberg if 

0ija  for 1j> i .The transpose of an upper Hessen berg matrix is a 

lower Hessen berg matrix if  0ija  for 1i> j . 

Here























*

*

**

*
*

0**










                                         























**0

*

***

***












 

     Lower Hessen berg                      Upper Hessen berg 

Symmetric Matrix : Any square matrix A is said to symmetric 

matrix if jiij aa   i  and j .  

Example: 



















653

542

321

A  is a Symmetric matrix.  

Skew Symmetric Matrix : Any square matrix A  is said to be skew 

symmetric matrix if jiij aa  ,  i  and j .  

Example: 





















cfg

fbh

gha

A is a skew symmetric matrix. 
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Idempotent Matrix: The matrix A  is called an Idempotent matrix 

if it is a square matrix and also if AA 2 . 

Example: 













12

12
A  

Now, 













12

122A 








 12

12
 

    













1224

1224
 

     











12

12
 

     A  

Therefore, A is an Idempotent matrix.  

Involutory Matrix: The matrix A is called an Involutory matrix if it 

is a square matrix and also if IA 2 . 

Example: 













21

32
A  

Now, 













21

322A 








 21

32
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     









10

01
    

       I  

Singular Matrix: Any square matrix A  is called a singular matrix if 

0A   0ADet . 

Example: 

Let,  









42

21
A  

2241 A  0  

 A  is a singular  matrix.  

Non-Singular Matrix: Any square matrix A  is said to be non-

singular if 0A   0ADet . 

Example: 

Let, 









31

42
A  

 1432 A  

      02   

 A  is a nonsingular matrix. 
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1.2.3 Operations on matrices  

Addition of matrices 

If A and B are nm  matrices the sum of A  and B  is defined to be the 

nm  matrix BA , obtained by adding corresponding entries. 

That is 

     ijijij BABA   ,for each i  and j . 

For Example: Consider two matrix: 











32

21
A and 










24

32
B  

Then, 




















24

32

32

21
BA  

        













2342

3221
 

         









56

53
 

Here BA  is also a 22 matrix. 

Properties of matrix addition 

For nm  matrices ,, BA  and C  the following properties are  hold: 

(i)Closure Property :  BA   is again an nm   matrix  

(ii)Associative Property:    CBACBA   
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(iii)Commutative Property: ABBA   

(iv)Additive Identity: The nm  matrix 0  consisting of all zeros 

has the property that AA  0 . 

(v)Additive Inverse : The nm   matrix  A   has the property that 

  0 AA .  

Scalar Multiplication 

The product of a scalar   times a matrix A , denoted by A  or A  is 

defined to be the matrix obtained by multiplying each entry of A   by 

 . 

 For example: 

Consider a matrix  









43

21
A  

and a scalar 2 .Then,  











43

21
2A  

        









86

42
,  is also a matrix. 

Properties of scalar multiplication 

For nm  matrices A  and B  and for scalars  and  , the following 

properties hold. 

(i) Closure Property: A  is again an nm  matrix. 

(ii)Associative Property:  A  A  
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(iii)Distributive Property: (a)   BABA    

 Scalar Multiplication is distributed over matrix addition. 

(b)   AA     

Scalar multiplication is distributed over scalar addition.  

(iv)Identity Property: AA 1 , Here 1 is an identity element 

under scalar multiplication. 

Transpose of a matrix : The transpose of a matrix A is obtained by 

interchanging the rows and columns of A and it is denoted by tA . 

Example: 

Let,   









764

321
A  

        















7

6

3

2
41

tA  

When AAt  , then A is also called transpose of A. 

Determinant of a matrix: For every square matrix A, there a unique 

scalar is called determinant of A, which is denoted by  Adet  or A . 

Example: 

Let, 









31

42
A  

     1432 A   

         2  
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The inverse of a matrix: An nn  matrix A is said to invertible if 

there exists an nn   matrix B  such that 

                                   IBAAB   

Properties of inverse of a matrix 

For nn  matrix A, the followings are equivalent: 

(i) A is nonsingular. 

(ii)  Adet  is nonzero. 

(iii)     nArankArank T   

(iv)   0AN  

(v) 1A exists. 

(vi) A has linearly independent rows and columns. 

(vii)The eigen values of A are nonzero.  

Example: 

  Let,    






















524

012

321

A  

         






















524

012

321

A  

              )44(3)010(2)05(1      

             01  
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i.e   A is a non-singular matrix. 

Now  

       IA,






















100524

010012

001321







 

               




















100524

010012

001321







 ; 122 2RRR  , 133 4RRR   

               






















104760

012650

001321







 ; 233 65 RRR   

               






















568100

012650

021305







; 211 25 RRR   

              




















568100

303550050

152025005







; 311 3RRR  , 322 6RRR   

              






















568100

6710010

345001







; 11
5

1
RR  , 22

5

1
RR   

               ),( BI   

 B 1A






















568

6710

345
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Test for the existence of the Inverse: 

                 Here, 






















524

012

321

A  

                  and   
























568

6710

345

B  

                    






















524

012

321

AB  






















568

6710

345

 

                            
























251212301416402020

06607801010

151231814424205

   

                            


















100

010

001

 

                            3I  

Here B  is the required inverse of A . 

Conjugate of a matrix: Let A  be any matrix of complex number. 

Then the matrix A  is obtained from A  by replacing each element by 

its conjugate, is called the conjugate of A . 

Here A  is read as conjugate of A . 

Example: 

Let 













ii

idciba
A

42
of A and is denoted 
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     A= 












ii

idciba

42
 

Adjoint of a square matrix:  Let  
nnijaA


  be any nn  matrix. The 

transpose of the matrix  
nnijAB


 . where ijA  denotes the co-factor of 

the elements ija  in the A , is called the adjoint of the matrix A and is 

denoted by the symbol AAdj . 

Example: 

Let, 

          























nnnn

n

n

aaa

aaa

aaa

A

























21

22221

11211

 

 

Then 

























nnnn

n

n

AAdj

AAA

AAA

AAA
T
















21

22221

11211
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























nnnn

n

n

AAA

AAA

AAA
















21

22212

12111

 

Range and Null space: For every nm  matrix A , there are two 

important associated subspaces: the range of A , denoted by  AR ,and 

the null space of A , denoted by  AN , defined as follows: 

R(A)={bb=Ax for some x} 

N(A)={xAx=0} 

The dimension of  AN  is called the nullity of A and denoted by null

 A . 

Rank of a Matrix: The rank of a matrix is defined as the number of  

independent rows or which is the same as the number of independent 

columns it contains. It is denoted by  AR . 

Example: 

Let,  

         











12

12
A  

            2AR  
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Properties of Rank of a Matrix 

Let A be an nm  matrix. Then 

(i)    TArankArank   

(ii)     nAnullArank   

(iii)       nBrankArankABrank  , where B  is pn . 

(iv)      ACrankArankBArank  , where B  and C  are nonsingular  

matrices of appropriate order. 

(v)       BrankArankABrank ,min  

(vi)      BrankArankBArank   

1.2.4 Some Special Matrices 

Similar Matrix : Two matrix A  and B  are called similar if there 

exists a nonsingular matrix T  such that  

                                BATT 1  

Unitary Matrix: A complex square matrix U  is unitary if 

IUUUU  ** , where  TUU *  

Orthogonal Matrix: A real square matrix  Ois orthogonal if 

IOOOO TT  . If U  is an kn  matrix such that kUU 1  then U is 

said to orthogonal.  
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Companion Matrix: An unreduced upper Hessen berg matrix of the 

form 

                   






















nc

c

c

C

1000

10
01

00

2

1















 

is called an upper companion matrix. The transpose of an upper 

companion matrix is a lower companion matrix.  

Non derogatory Matrix: A matrix A is non derogatory if and only 

if it is similar to a companion matrix of its characteristic polynomial. 

That is A is a non derogatory matrix if and only if there exists a 

nonsingular matrix T  such that ATT 1  is a companion matrix.  

Positive Definite Matrix : A real symmetric matrix A  is Positive 

definite (Positive semi definite) if  00> AxxT for every nonzero x  .  

Similarly, a complex Hermitian matrix A is Positive definite 

(Positive semi definite) if  00> Axx  for every nonzero complex 

vector x .  

Positive semi-definite matrices : A matrix is said to be positive 

semi-definite  when it can be obtained as the product of a matrix by 

its transpose. This implies that a positive semi-definite  matrix is 

always symmetric. So, formally, the matrix A is positive semi-

definite if it can be obtained as: 

                                     TXXA    

for a certain matrix X  (containing real numbers). Positive semi 

definite matrices of special relevance for multivariate analysis 
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positive semi-definite matrices include correlation matrices, 

covariance and, cross-product matrices. The important properties  of 

a positive semi-definite matrix is that its eigen values are always 

positive or null and that its eigenvectors are pair wise orthogonal 

when their eigen values are different. 

Block Matrices : A matrix whose each entry is a matrix is called a 

block matrix. A block diagonal matrix is a diagonal matrix whose 

each entry is a matrix. A block triangular matrix is similarly defined.  

A block Matrix  











2221

1211

AA

AA
A  

Projector Matrix: A projector or projection matrix P is a square 

matrix that satisfies PP 2 , Such a matrix is also known as 

idempotent matrix. If P  is a projector, PI   is also a projector 

because 

                                 :12121 22
PPPPPPI    

PI   is called complementary projector to P . 

Orthogonal Projection : Let S  be a subspace of nR .Then an nm  

matrix P  having the properties 

   (i)   SPR   

   (ii)  symmetricisPPPT   

   (iii)  IdempotentisPPP 2  
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is called the orthogonal projection onto S  or, simply, the projection 

matrix. We denote the orthogonal projection P  onto S  by SP . 

Stable Matrix : A square matrix A is said to be a stable matrix if 

every eigen value of  matrix A has negative real part. The  matrix is 

called positive stable if every eigen value has positive real part. In 

control theory an eigenvalue with negative real part is called a stable 

eigenvalue. 

Discrete Stable Matrix: A matrix A having all its eigen values 
inside the unit circle is called a discrete stable matrix or  a 
convergent matrix or Schur matrix. 

 

Stability Margin : Let n ..,,........., 21  be the eigen values of A.Then 

the distance   nii ..,,.........1:Remin     to the imaginary axis is called 

the stability margin of  A . 

 

Hurwitz matrix and the Hurwitz stability criterion 

Namely, given a real polynomial 

nn
nn azazazzp  


1
1

1)(   

the  nn  square matrix 































na

a

a

a

a
aaa

aaa

aaaa

pH



















0

0

000

0

1

0

0

0

00

01

0

:)(

3

4

1

2

531

642

7531

 

is called Hurwitz matrix corresponding to the polynomial p . It was 

established by Adolf Hurwitz in 1895 that a real polynomial is 

http://planetmath.org/node/31472
http://planetmath.org/node/37312
http://planetmath.org/node/40182
http://planetmath.org/node/36147
http://planetmath.org/node/36226
http://planetmath.org/node/32464
http://planetmath.org/node/37312
http://planetmath.org/node/36147
http://en.wikipedia.org/wiki/Square_matrix
http://en.wikipedia.org/wiki/Adolf_Hurwitz
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stable (that is, all its roots have strictly negative real part) if and only 

if all the leading principal minors of the matrix :)( pH  are positive 

                          

0)(

0

1)(

0
1

)(

0)(

5041123

31

42

531

3

3012

2

31

2

111







aaaaaa

aa

aa

aaa

p

aaaa
a

aa
p

aap

 

and so on. The minors  )( pk are called the  Hurwitz determinants. 

Hurwitz stable matrices : In engineering and stability theory, 

a square matrix A  is called stable matrix ( or sometimes Hurwitz 

matrix) if every  eigenvalue of A  has strictly negative real part,  that 

is,             

                                               0Re i       

for each eigenvalue i . A is also called a stability matrix, because 

then the differential equation 

                                Axx 


 

is asymptotically stable, that is, 0)( tx  as t  Hurwitz matrix is 

named after Adolf Hurwitz. If  sG  is a (matrix-valued) transfer 

function, then G is called Hurwitz if the poles of all elements of G

have negative real part. Note that it is not necessary that  sG  for a 

specific argument S , be a Hurwitz matrix it need not even be square. 

The connection is that if A  is a Hurwitz matrix, then the dynamical 

system 

http://en.wikipedia.org/wiki/Stable_polynomial
http://en.wikipedia.org/wiki/Hurwitz_determinant
http://en.wikipedia.org/wiki/Hurwitz_determinant
http://en.wikipedia.org/wiki/Engineering
http://en.wikipedia.org/wiki/Stability_theory
http://en.wikipedia.org/wiki/Square_matrix
http://en.wikipedia.org/wiki/Eigenvalue
http://en.wikipedia.org/wiki/Negative_number
http://en.wikipedia.org/wiki/Real_part
http://en.wikipedia.org/wiki/Ordinary_differential_equation
http://en.wikipedia.org/wiki/Stability_theory
http://en.wikipedia.org/wiki/Adolf_Hurwitz
http://en.wikipedia.org/wiki/Transfer_function
http://en.wikipedia.org/wiki/Transfer_function
http://en.wikipedia.org/wiki/Transfer_function
http://en.wikipedia.org/wiki/Dynamical_system
http://en.wikipedia.org/wiki/Dynamical_system
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)()()(

)()()(

tuDtxCty

tuBtxAtx






 

has a Hurwitz transfer function. 

Transfer Function: The transfer function of a linear dynamical 

system is the ratio of the Laplace transform of its output to the 

Laplace transform of its input. In systems theory, the Laplace 

transform is called the “frequency domain” representation of the 

system. 

Consider a canonical dynamical system 

x˙(t) = Ax(t) 

y(t) = Cx(t) 

 

with input nRRu : , output mRRy :  and state pRRx : , and  DCBA ,,,  

are constant matrices of conformable sizes. 

The frequency domain representation is 

      y (s) 

 

and thus the transfer function matrix is  AsICD  . 

In the case of single-input-single-output systems 1 nm , the 

transfer function is commonly expressed as a rational function of S :   

                             

 

H(s) 

http://planetmath.org/node/35394
http://planetmath.org/node/35394
http://planetmath.org/node/35508
http://planetmath.org/node/35508
http://planetmath.org/node/35508
http://planetmath.org/node/36148
http://planetmath.org/node/34343
http://planetmath.org/node/33388
http://planetmath.org/node/35394
http://planetmath.org/node/31596
http://planetmath.org/node/36379
http://planetmath.org/node/37406
http://planetmath.org/node/33376
http://planetmath.org/node/32464
http://planetmath.org/node/32761
http://planetmath.org/node/34300
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The values iz  are called the zeros of  H(s), and the values ip  are 

called the poles. If any of the poles has positive real part, then the 

transfer function is termed unstable; if all of the poles 

have strictly negative real part, it is stable. 

1.3 Vector Norms and Matrix Norms 

Let X be a vector space. A real valued function RX :.  is said to be 

a norm on X  satisfies the following properties: 

(i) 0x and 0x  iff  0x  

(ii) yxyx  , 

(iii) xx   , 

For any Xx  and Xy  and R . Let nCx .Then we define the 

vector p -norm of x as  

pp

i

n

ip
xx

1

1











;   for  P1  

In particular when  ,2,1p  we have 

 i

n

i
xx

11 
  

 

2

12 i

n

i
xx


  

 i
ni

xx



1
max  

Let   nm
ij CaA  ,then the matrix norm induced by a vector p -norm is 

defined as  

http://planetmath.org/node/37981
http://planetmath.org/node/36147
http://planetmath.org/node/36226
http://planetmath.org/node/38259
http://planetmath.org/node/36397
http://planetmath.org/node/36147
http://planetmath.org/node/38259
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p

p

x
P x

Ax
A

0

sup


  

The matrix norm induced by vector p -norms are sometimes called 

induced p -norms. In particular the induced matrix 1-norm and 2 -

norm can be computed  by        

              
111

max j
nj

aA


    ; ja is the j
th column of A , 

               AAA  max2
  

The most important matrix norm which is not induced by a vector 

norm is Frobenius norm defined by  

                   
2

1

2

11











ij

n

j

m

iF
aA . 
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 CHAPTER   TWO 

INTRODUCTION TO MATRIX EIGEN VALUE PROBLEMS 
 

The Eigen value problem is a problem of considerable theoretical 

interest and wide ranging application. Eigen values and eigenvectors 

were introduced in connection with the convergence of iterative 

methods for approximating the solution to a linear solution. But now it 

is also crucial in solving system of differential equation. This chapter is 

devoted to study of numerical matrix Eigen value problems. These 

problems are very important practical problems and arise in a variety 

of application, including engineering, statistics and economics.  

 

2.1 Eigenvalues and Eigenvectors  

Let A be an nm  matrix. Then  is an eigen value of A  if there exists a 

nonzero vector x  such that- 

     xAx   

or,   0 xIA                                                           …………..(2.1.1) 

The vector x is a right eigenvector of A  associated with the eigenvalue 

 .  x,  will be called an eigen pair of A .  

The vector y  given by  

                          TT yAy       

is called a left eigenvector of A  associated with eigenvalue  . In 

generally we mention right eigenvector just an eigenvector.  

The homogenous system   0 xIA   has a nontrivial solution if and 

only if  
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                                0det  IA   

Here  IA det  is a polynomial in   of degree n  and is called the 

characteristics polynomial of A . Thus the n  eigen values of A  are the 

n  roots of its characteristics polynomial.  

The sum of the eigen values of matrix A  is called the trace of A . It is 

denoted by trace  A  or Tr  A  

Mathematical Example 

 Let  

      






















310

212

722

A   

be an 33  square matrix set of all eigen vectors x for A  is defined as 

those vectors which, when multiplied by A , result in a simple scaling 

  of x. Thus 

         xAx   

If we restrict ourselves to real eigen values, only effect of the matrix on 

the eigenvectors will be change their length, and possibly reverse their 

direction. So multiplying the right hand side by the identity matrix I , 

we have 

 xIAx    

                       or,   0 xIA    

Now for non-trivial solutions, we require the determinant  IA det  

which is called the characteristics polynomial of A to be zero. i.e. 

   0

100

010

001

310

212

722

det 





















































  
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or, 0

310

212

722

det 




























 

  or,              0273222312     

 or,      0142622342 2    

   4,3,1   

These are the eigenvalues of the matrix of A . 

For finding eigenvector  zyxv ,, such that   0 vIA   

or, 























































0

0

0

310

212

722

z

y

x







 

For 1 : 
















































 

0

0

0
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721

z

y

x

   

   
04
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072







zy

zx

zyx

        
04

0

072







zy

zx

zyx

     
04

0

082







zy

zx

zy

      0

04





zx

zy

 

Here is only one free variable. Considering  sz   ,we get sx  , sy 4

.Thus we get the corresponding eigenvector  


















s

s

s

v 41    

If   we choose 1s , then  1z , 4y , 1x   : 



















1

4

1

1v  

  


















1

4

1

1v  is the eigen vector for 1 . 
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For 3 : 
























































0

0

0

610

222

721

z

y

x

   

   
06

0222

072







zy

zyx

zyx

       
06

0

072







zy

zyx

zyx

  
06

0

06







zy

zyx

zy

   0

06





zyx

zy

 

Here is only one free variable. Considering  sz   ,we get sy 6 , sx 5 . 

Thus we get the corresponding eigenvector  


















s

s

s

v 6

5

2   . 

If  we choose 1s , then 1z  , 6y  and 5x :   


















1

6

5

2v . 

  


















1

6

5

2v  is the eigen vector for 3 . 

For 4 : 
















































 

0

0

0

110

252

726

z

y

x

   

   
0

0252

0726







zy

zyx

zyx

      
0

06156

0726







zy

zyx

zyx

  
0

06156

01313







zy

zyx

zy

   06156

0





zyx

zy

 

Here is only one free variable. Considering  sy 2  ,we get sx 3 , 

sz 2 . Thus we get the corresponding eigenvector  






















s

s

s

v

2

2

3

3   . 

If  we choose 1s , then we get 2y  , 3x  and 2z :   






















2

2

3

3v . 
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  






















2

2

3

3v  is the eigen vector for 4 . 

Now for repeated eigenvalues  again we assume  

                 
























8018

329

307

A  

For eigenvalues of A  we solve  

  0det  IA   

or,   






















818

37
12

8018

329

307
4

 

                                            54872    

                                         22 2    

                                          12
2

   

Thus we get, 22,1    and 13  . 

These are the eigenvalues of the matrix of A . A  has two 

eigenvalues 22,1   (repeated) and 13  .We might say 22   as it is 

a repeated eigenvalue , since as a root 2  has a multiplicity of two. 

For finding eigenvector  zyxv ,, such that   0 vIA   
























































0

0

0

8018

329

307

z

y

x







 

For 2  : 
























































0

0

0

6018

309

309

z

y

x
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0618

039

039







zx

zx

zx

        
0618

039

039







zx

zx

zx

       
0618

039





zx

zx
  zx 3    

Here we have found that y  can be chosen arbitrarily, and 

independently of x and z , whereas z cannot be chosen 

independently. Considering, tsx   ,we get, sz 3 , ty  . Thus we get 

the corresponding eigenvector  














 



s

t

ts

v

3

1 . 

 When ,0,1  ts  we get 0,3,1  yzx  :  


















3

0

1

1v . 

Again  , when ,1,0  ts  we get  1,0,1  yzx  : 


















0

1

1

2v .  

Thus we get  two linearly independent eigenvectors. 

 


















3

0

1

1v    and   


















0

1

1

2v  are two linearly independent eigenvectors for 

2 . 

 

For 1  : 
























































0

0

0

9018

339

306

z

y

x

 

0618

0339

036







zx

zyx

zx

   
0339

036





zyx

zx
    

yx

zx



2
 

Here is only one free variable. Considering sx   ,we get sz 2 , sy   
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Thus we get the corresponding eigenvector  


















s

s

s

v

2

3  .  

If  we choose 1s ,  then we get 1x , 2z  and 1y :


















2

1

1

3v . 

 


















2

1

1

3v  is the eigen vector for 1 .  

Physical example 

As the earth rotates, every arrow pointing outward from the center of 

the earth also rotates, except those arrows which are parallel to the axis 

of rotation. Consider the transformation of the earth after one hour of 

rotation: An arrow from the center of the earth to the geographic south 

pole would be an eigenvector of this transformation, but an arrow from 

the center of earth to anywhere on the equator would not be an 

eigenvector. Since the arrow pointing at the poles not stretched by the 

rotation of the earth, its eigenvalue is1. 

 

2.2 Properties of eigenvalues & eigenvectors 

(a) The eigenvalues of a real symmetric matrix are real. 

(b) Eigenvectors of a symmetric matrix are orthogonal, but only for 

distinct eigenvalues. 

(c) If A be non-singular matrix, then the eigenvalues of 1A are 

reciprocals of the eigenvalues of A . 

(d) Two matrices A  & B  are said to be similar if there exists a non-

singular matrix P  such that APPB 1  and similar matrices have the 

same eigenvalues. 
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(e) If A  and B  are two square matrices then AB  and BA  have the same 

eigenvalues. Also BA 1  and AB 1  have the same eigenvalues when 

0A . 

(f) If eigenvalues of a matrix A  are n ....,,.........,, 321  then the 

eigenvalues of the matrix kA will be k
n

kkk  ....,,.........,, 321  

(g) A set of non-zero eigenvectors belonging to distinct eigenvalues are 

linearly independent. 

(h) If iX is an eigenvector of a given matrix, then scalar multiple of this 

is also an eigenvector. 

(i) The matrix A  and TA  (transpose of A ) have the same eigenvalues. 

(j) The eigenvalues of a triangular matrix are exactly the diagonal 

elements of the matrix. 

(k) A symmetric matrix A  is positive definite if and only if all the   

eigenvalues of A  are positive. 

(l) Normalization of an eigenvector can be done in two ways. One 

method is to divide all the elements of a vector by the largest 

element so that vectors have unity as the largest element. In the 

second method, each element is divided by the sum of the squares of 

the elements of the vector in which case vectors have unit length. 

(m) The absolute value of a determinant  Adet is the product of the 

absolute values of the eigenvalues of matrix A . 

(n) 0   is an eigenvalue of A if A is a singular (non-invertible) 

matrix. 
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2.3 Spectrum and spectral radius 

The eigenvectors iX  corresponding to i ; (i=1, 2, 3, ... , n) for the 

square matrix A  is given by 

                               iii XAX   

the eigenvalues 
i  may be either distinct or repeated. The set of all 

eigenvalues  of  a matrix A  is called the spectrum of A and the largest 

of i is called the spectral radius  Ap ) of a matrix A  is defined by 

                        iAp max  

where   is an eigenvalue of A . 

Example: Let the square matrix be  











20

01
A           

to compute the eigenvalues of A , consider 

                IAp   det  

      




























10

01

12

01
det   

      

















12

01
det  

       232    

The eigenvalues of A are the solution of  

                              0p  

                                                                       or, 0232     

                                                                       or,    012     

                                                                       or, 2,1  

                                                                        2,1  
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Here the set  2,1  of matrix A  is called spectrum of A  and the spectral 

radius is       22,1max p                                                   

  2 p  

 

2.4 Basic Theorems 

Theorem-1: Any similarity transformation 1PAP  applied to A  leaves 

the eigenvalues of the matrix unchanged. 

Proof: Let   be an eigenvalue of A  and X  be the associated 

eigenvector. Then 

XAX                                 …………….………………….. (2.4.1) 

Multiplying both sides of equation (2.4.1) by P , we have 

PXPAX                             ………………………………….  (2.4.2) 

Let PXY  . So that YPX 1 . 

Substituting this in equation (2.4.2), then we get 

 YYPAP 1  

Thus X  is an eigenvalue of 1PAP  and Y is the associated eigenvector. 

 

Cay1ey-Hamilton Theorem 

Theorem-2: Let  nP  be the characteristics polynomial of an arbitrary 

nn  square matrix A . Then A  satisfies its own characteristics 

equation and so is a solution of the matrix polynomial equation   0APn  

. 

Proof: For simplicity, we only prove the theorem for real symmetric 

matrices, though it is true for every nn  matrix. If A  is a real nn  

symmetric matrix, then 1 PAPA . Let the characteristic polynomial of  

A be 

    IccccP nn
nnn

n  
  1

2
2

1
1 ...........1  
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Then replacing   by A  converts   nP  to the matrix polynomial 

     IcAcAcAcAAP nn
nnnn

n  


1
2

2
1

1 ...........1  

But 1 PAPA , therefore 

      1
1

2
2

1
1 ...........1 


  PIcAcAcAcAPAP nn

nnnn

n  

The i-th row of the matrix polynomial 

 IcAcAcAcA nn
nnn  


1
2

2
1

1 ...........  

is simply, 

Icccc nin
n
i

n
i

n
i  

  1
2

2
1

1 ...........  

But this  inP  , and it must vanish for ni ,.......,3,2,1  because i  is an 

eigenvalue of A . Thus  

 IcAcAcAcA nn
nnn  


1
2

2
1

1 ...........  

Showing  that 

  0APn . Hence the result proved. 

 

Verification of the Cayley-Hamilton theorem  

Consider a 33  square matrix 



















121

242

121

A  

For this matrix, 

 



































100

010

001

121

242

121

IA  

     






























121

242

121
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Hence 

                4412122141det IA  

        44122224541 2  

                                            451 2  

                                        555 232    

                                        23 6   

The characteristic equation for A is, 

                                            06 23             …………………..(2.5.1) 

And the square of A  is, 



















6126

122412

6126
2A  

     Therefore,      


















367236

7214472

367236
3A  

Now substituting A for   in equation (2.5.1), we obtain 




































6126

122412

6126

6

367236

7214472

367236

6 23 AA  

             



































367236

7214472

367236

367236

7214472

367236

 

             


















000

000

000

 

i.e. every matrix is non-zero of its characteristics polynomial. 
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2.5 Power Method for finding eigenvalues 

The Power method is an iterative approach that can be employed to 

determine the largest or dominant eigenvalue with the largest 

magnitude. The largest eigenvalue of a matrix is also called the 

principal eigenvalue. One of the simplest methods for finding the 

largest eigenvalue and eigenvector of a matrix is the Power Method, 

also called the Vector Iteration Method. The method fails if there is no 

dominant eigenvalue. 

 

2.5.1 Definition of Dominant eigenvalues 

The Power method, can be used when 

(i) the nn  matrix of A  has n linearly independent eigenvectors 

(ii) the eigenvalues can be ordered in magnitude as 

       n  ..............321                       ………………….(2.5.1) 

             

Note the strict inequality 

When this ordering can be done, 1  is called the dominant eigen value 

of A . The eigenvectors corresponding to 1  are called dominant 

eigenvectors of A . 

 

Example: Let A  be the matrix whose eigenvalues are 2, 5, 0, -7 and -

2. Then the dominant eigenvalue of Ais given by the following way: 

        02257   

Therefore, A   has a dominant eigenvalue of 71  . 
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2.5.2 The role of Dominant Eigen values and Eigenvectors in 

Dynamic Systems 

Consider the homogenous discrete time system  

,1 kk Axx      ..........2,1,0k  

Let 
1  be the dominant eigenvalue of A that is  

n  ..............321 where n ,.......,, 21 are the eigenvalues of A . 

Suppose A  has a set of independent eigenvectors: 
nvvv ,.......,, 21
Then the 

state 
kx at any time 0k is given by  

           n
k
nn

kk
k vvvx   .........222111  

where 
nn vvvx   .........22110
. Because k

i
k  1 ,,......,3,2,1 ni   it follows 

that for large values of k . 

                    ,11
k
ii

k                 ni ..,..........3,2  

provided that 01  . This means that for large values of k the state 

vector   
kx  will approach the direction of the vector 

1v corresponding to 

the dominant eigenvalue
1 . Furthermore, the rate at which the state 

vector approaches 
1v  is determined by the ratio of the second to the 

first dominant eigenvalue: 






1

2


  

In the case 01   the second dominant eigenvalue 
2 and the 

corresponding eigenvector assume the role of the first dominant 
eigenpair. Similar result holds for the continuous time system    
                          tAxtx 



            

 

2.6 Procedure of Power method 

The Power method for approximating eigenvalues is iterative. First we 

assume that the matrix A  has a dominant eigenvalue with 

corresponding dominant eigenvectors. Then we choose an initial 

approximation of one of the dominant eigenvectors of A . This initial 
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approximation must be a nonzero vector in nR . Finally we form the 

sequence given by 

01 AXX   

  0
2

012 XAAXAAXX   

  0
3

0
2

23 XAXAAAXX    

  

  

  00
1

1 XAXAAAXX kk
kk  
  

By properly scaling this above sequence for large powers of k , we will 

see that we obtain a good approximation of the dominant eigenvector 

of A . 

Example: Finding the largest eigenvalue and the corresponding 

eigenvector for the matrix 

             




















133

263

425

A  

starting with  

      TX 0010 
 

 

Solution: 

    




































0

0

1

133

263

425

01 AXX     


















3

3

5

 

                       


















6.0

6.0

1

5  
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

















27

27

31

0
2

12 XAAXX    


















871.0

871.0

1

31  

     


















201

201

209

0
3

23 XAAXX  


















962.0

962.0

1

209  

    


















1431

1431

1447

0
4

34 XAAXX   


















977.0

977.0

1

1447  

   


















10065

10065

10097

0
5

45 XAAXX


















997.0

997.0

1

10097        

   


















70551

70551

70615

0
6

56 XAAXX


















999.0

999.0

1

70615                                                                                                                              

   


















494049

494049

494177

0
7

67 XAAXX


















1

1

1

494177  

The ratio of 
6

7

X

X
 is  

   )approx(7998.6
70615

494177

6

7 
X

X
 

Therefore the largest eigenvalue is 7 and the corresponding eigenvector 

is 

                                     T111   

2.7 The importance of largest and smallest eigenvalues 

In several applications all we needed to compute were a few largest 
and smallest eigenvalues and the corresponding eigenvectors. For 
example in buckling it is the smallest eigen value that is the most 
important one. 
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In vibration analysis of structures, a common engineering practice is 
just to compute the a few smallest eigenvalues ( frequencies) and the 
corresponding eigenvectors (modes), because it has been in practice 
that the larger eigenvalues and eigenvectors contribute very little to the 
total response of the system. The same remarks hold in the case of 
control problems modeled by a system of second-order differential 
equations arising in the finite element-generated reduced-order model 
of large flexible space structure (Inman 1989). 
 
In statistical applications, such as in principal component analysis, only 
the first few largest eigenvalues are computed. There are other 
applications where only the dominant and subdominant eigenvalues 
and the corresponding eigenvectors play an important role. 
 

2.8 Diagonalization 

A square matrix A is said to be diagonalizable if A  is similar to a 
diagonal matrix, i.e. if  where P  is invertible and D  is a 
diagonal matrix. 
In general, 

            




















n

nn vvvvvvA















00

00

00

,......,,......, 2

1

2121

 

and if  nvvv ,......, 21 is invertible, A  equals 

                               1

21

2

1

21 ,......,

00

00

00

,......,




















n

n

n vvvvvv















 

The Diagonalization Theorem 

Therom: An nn  matrix A  is diagonalizable if and only if A  has n 

linearly  independent  eigenvectors. 

In fact, 1 PDPA , with D a diagonal matrix, if and only if the columns 

of P  are n  linearly independent eigenvectors of A . In this case, the 

1 PDPA
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diagonal entries of D  are eigenvalues of A  that correspond, 

respectively, to the eigenvectors in P . 

 
Example: Diagonalize the following matrix,  
                     

                            




















101

121

002

A    

                   
 
Step 1: Find the eigenvalues of A  
                                 
                         0det  IA   
                

          or, 0

101

121

002






























 

 
          or,      012

2
   

 

Thus, eigenvalues of A are 2,1  

Step 2:  Find three linearly independent eigenvectors of A : 
By solving   0 XIA  , for each value of  , we obtain the following: 
 

Basis for :1   


















1

1

0

1v  

 
 

Basis for :2   


















0

1

0

2v      and     


















1

0

1

3v  
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Step 3: Construct P from the eigenvectors  

                        






















101

011

100

p  

Step 4: Construct D from the corresponding eigenvalues. 

             


















200

020

001

D  

 
Step 5: Verifying,  AP= PD 
 









































101

011

100

101

121

002

AP   






















201

021

200

 

 







































200

020

001

101

011

100

PD























201

021

200

 

 

Therefore , 1 PDPA  that is A is diagonalizable. 

 

2.9 Eigen Decomposition 

Let P  be a matrix of eigenvectors  of a given square matrix A  and D

be a diagonal matrix with the corresponding eigenvalues on the 

diagonal. Then, P   is a square matrix, A   can be written as an eigen 

decomposition 

                                 1 PDPA   

where D  is a diagonal matrix. Furthermore, if A  is symmetric, then the 
columns of P  are orthogonal vectors. 

Mainly, matrix diagonalization is known as eigen decomposition. 

 

http://mathworld.wolfram.com/Matrix.html
http://mathworld.wolfram.com/Eigenvector.html
http://mathworld.wolfram.com/SquareMatrix.html
http://mathworld.wolfram.com/DiagonalMatrix.html
http://mathworld.wolfram.com/SquareMatrix.html
http://mathworld.wolfram.com/EigenDecomposition.html
http://mathworld.wolfram.com/EigenDecomposition.html
http://mathworld.wolfram.com/DiagonalMatrix.html
http://mathworld.wolfram.com/SymmetricMatrix.html
http://mathworld.wolfram.com/OrthogonalVectors.html
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2.9.1 Generalized Eigenvalue Problem  

Let A and B be two nn  matrix.Then BxAx  , where   is called an 
eigenvalue and the vector x is an eigenvector ,is known as generalized 
eigenvalue problem. 

 

Matrix Pencil 

The matrix BA    is called a matrix pencil. Also known as eigen 

pencil. It is denoted by  BA, . The pair  BA,  is called regular if 

 BA det  is not identically zero.Otherwise the pair  BA,  is called 

singular. 

The Eigenvalue of a Regular Pencil 

Case-1: Let  BA,  be a regular pencil.If B is nonsingular,then all the 

eigenvalues of the pair  BA,  are finite and  are the same as of 1AB or 

of 1BA . 

Proof : Since B is nonsingular, so we say that B is invertible. Then 

from the definition of generalized eigenvalue problem we have 

BxAx  or equivalently XAXB 1  .Thus   is an eigenvalue of.Also 

111   ABBBAB so 1AB and 1BA  are similar. Therefore, they have the 

same eigenvalues. 

Case-2:  If B is singular, then the degree of    BAp   det  is less 

than .n   

The Eigenvalue of a Singular Pencil 

If  BA,  is a singular pencil, then, because  BA det  vanishes 

identically, any number  can be an eigenvalue of  BA, .  
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2.9.2 The Symmetric Definite Generalized Eigenvalue Problem 

If A and B are real symmetric matrices and at least one them is positive 

definite. , furthermore, if B is positive definite, then the generalized 

eigenvalue problem 

                           BxAx   

is called the symmetric definite generalized eigenvalue problem. 

Many practical applications give rise to symmetric definite generalized 

eigenvalue problem of the form  

      BxAx   and xABx   

when B is positive definite  we can write  

           xABx    

 in the form  

           01   BxBA   

where 1B is also positive definite. Then the problem BxAx  and  

xABx  are same.           

Many engineering applications give rise to generalized  eigenvalue 

problems. A majority of eigenvalue problem arising in mechanical 

vibration are generalized eigenvalue problems. For example, the 

eigenproblems for vibrations of structures such as buildings and 

bridges are the so-called symmetric definite eigenvalue problems for 

the mass and stiffness matrices. Most important applications of the 

symmetric definite generalized eigenvalue problem is to find the 

solution of second-order differential equations in mechanical vibration 

. 
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CHAPTER THREE 

MATRIX  FACTORIZATION 
 

One of the most fruitful ideas in the theory of matrices is that of a 

matrix factorization or matrix decomposition or canonical form. The 

theoretical utility of matrix decomposition has long been 

appreciated. More recently, they have become the mainstay of 

numerical linear algebra, where they serve as computational 

platforms from which a variety of problems can be solved. Three 

important matrix factorizations: LU, QR and the Singular Value 

Decomposition(SVD) and their applications are shortly describes in 

this chapter.   

3.1  LU Factorization 

In linear algebra LU decomposition factors a matrix as the product 

of a lower triangular matrix and upper triangular matrix. The LU 

decomposition can be viewed as the matrix form of Gaussian 

elimination. This decomposition was introduced by the 

mathematician Alan Turing. To solve a system of linear equation by 

LU decomposition we have to know about Gaussian elimination.  

3.1.1 Gaussian Elimination 

The most general system of n  linear equations in n unknown can be 

written as 
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nnnnnnn

nn

nn

nn

bxaxaxaxa

bxaxaxaxa

bxaxaxaxa

bxaxaxaxa





















332211

33333232131

22323222121

11313212111

 

The ija  and  the ib  are  known  constants , and the  ix  are  the 

variables. This system can be expressed very compactly in matrix 

notation as bAx  , where A  is the nn   matrix  

              

























nnnnn

n

n

n

aaaa

aaaa

aaaa

aaaa


































321

3333231

2232221

1131211

                     

and x  and b     are   the   n - dimensional column vectors 

 T
nxxxx 321 and  T

nbbbb 321 , 

respectively. A  is called the coefficient matrix, x  is the solution 

vector and b is  the right-hand side vector for the system. 

We will focus on the solution technique known as Gaussian 

elimination with back substitution.  

Reviewing the Basics 

The first step in the solution of a linear system of equations is to 

gather all the information needed to compute the solution (that is, the 

coefficients and the right-hand sides) into one structure, known as 

the augmented matrix for the system. For a system of n equations 

in n  unknowns, the augmented matrix will have  1 nn  
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dimensions. The first n columns are the coefficient matrix, A , for 

the system. The right-hand side vector, b , from the last column. 

For the general system of linear equations, the augmented matrix is 

               

























nnnnnn

n

n

n

b

b

b

b

aaaa

aaaa

aaaa

aaaa






































3

2

1

321

3333231

2232221

1131211

 

It is customary to use a vertical line to separate the two portions, 

coefficient and right-hand side, of the augmented matrix. The 

objective of Gaussian elimination is to transform the coefficient 

portion of the augmented matrix into upper triangular form. The 

transformation of the coefficient portion of the augmented matrix is 

carried out through the systematic application of three elementary 

row operations . The three operations, and the notation we will use 

to signify each, are  

Rule-1: Any two rows can be interchanged. The notation ji RR 

indicates that row i  was interchanged with row j . 

Rule-2: Any row can be multiplied by a nonzero constant. The 

notation ii Rmr   indicates that row i  was multiplied by m . 

Rule-3: Any multiple of one row can be added to another row. The 

notation jii RmRr   indicates that m  times row j  was added to row 

i . 

To illustrate the Gaussian elimination process, consider the system, 
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.123

12

232

1

321

431

4321

4321









xxx

xxx

xxxx

xxxx

 

we begin by placing the pivot in the first row, first column of the 

augmented matrix. In the matrices shown below, the location of the 

pivot is indicated by angled braces, . The pivot serves as a 

reference location for organizing subsequent calculations. The goal 

is to replace each element below the pivot, within the pivot column, 

with a zero. This can be done by performing Rule-3 on the rows 

below the pivot row, each time adding an appropriate multiple of the 

pivot row. The required multiple, m is determined by the formula 

             
pivotinelement

zerobyreplacedbetoelement
m   

For the problem at hand, the multipliers for the second, third, and 

fourth rows are -1,+1, and -3 respectively. The result of carrying out 

the corresponding row operations is 

         

























1

1

2

1

0123

1201

3211

1111

    









144

133

122

3RRr

RRr

RRr

    





















 2

2

1

1

3410

2310

2100

1111

            

Having completed one elimination pass through the matrix 

(generating zero in one column), the pivot is moved down one row 

and to the right one column to set up for the next pass. At this point, 

the pivot element is zero. This problem can be by passed by locating 

a row below the pivot row which has a nonzero entry in the pivot 

column. Provided the original coefficient matrix was nonsingular, it 

will always be possible to find such a row. The current pivot row 

and the selected row are then interchanged. Here, we choose to 
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interchange rows 2 and 3. Adding the new pivot row to the fourth 

row completes the second elimination pass. 

    





















 2

2

1

1

3410

2310

2100

1111

   


 32 RR   





















 2

1

2

1

3410

2100

2310

1111

  

 

                       


 344 RRr   





















 0

1

2

1

1100

2100

2310

1111

 

 

For the third, and in this case final, pass through the matrix, the pivot 

is moved to the third row, third column. As a general rule, the 

number of elimination passes is always one less than the number of 

equations. By adding the third row to the fourth row, the 

transformation of the coefficient portion of the augment matrix to 

upper triangular form is complete: 

 





















 0

1

2

1

1100

2100

2310

1111

  


 344 RRr   





















1

1

2

1

1000

2100

2310

1111

 

To obtain the solution to the system, we are now in position to 

perform back substitution. The equation corresponding to the bottom 

row of the transformed augmented matrix contains just one variable 

and can be solved directly. Here, we find 14 x . This value is then 

substituted into the equation corresponding to the next to last row to 

give   1123 x  or 13 x . Continuing to work back up the matrix, the 

values for 4x and 3x  are substituted into the second equation, 

yielding     212132 x  or 32 x . Finally, from the first equation we 
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find 11131 x  or 21 x . Collecting these four values, the 

solution vector is 

                   TX 1132  . 

3.1.2 General procedure of LU decomposition 

Let a matrix A can be factored or decomposed into a unit lower 

triangular matrix L and a upper triangular matrix U ,thus we will get 

ALU  ,which is termed as LU decomposition of A .A typical 

procedure of LU decomposition is as follows: 

(a)To get the matrix U , we have to use row operations until an 

upper triangular matrix is formed. By using Gaussian elimination we 

can obtain the upper triangular matrix U .  

(b)To get a unit lower matrix L , we have to start with the identity 

matrix and use the following rules.  

 Any row operations that involves adding a multipleof one row 
to another. As ji kRR  ,put the value k  in the thi row , thj

column of the identity matrix. 
 Any row operations that involves getting a leading one on the 

main diagonal. As ikR , put the value 
k

1  in  the position of 

the identity matrix where the leading one occurs.  
An example to find an LU decomposition of the following matrix 

                  




















393

642

321

A   

(i)Use Gaussian Elimination to get the upper triangular matrix U .  
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



















393

642

321







13

12

3

2

RR

RR





















12150

080

321




2

8

1
R

















 12150

010

321



 23 15RR
















1200

010

321

          




3

12

1
R

















100

010

321

 . 

(ii) Form the lower triangular matrix L  by using the rules mentioned 

above for the row operations involved to get U .   

→Start with the identity matrix  
















100

010

001

.  

 

 

Row operations: 

 
















100

010

001







13

12

3

2

RR

RR

















103

012

001




1

8

1
R



















103

082

001



 23 15RR




















1153

082

001

 

  


3

6

1
R

 




















12153

082

001

 

Thus an LU decomposition is given by 

         




















393

642

321

 




















12153

082

001

















100

010

321

 

Now we show how an LU decomposition can be used to solve a 

system of linear equations.  

Steps to solve a system of using an LU decomposition:  

(a) Set up the equation bAx  .  
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(b) Find an LU decomposition for A . This will yield the equation    

bLUx  .  

(c) Let yUx  . Then solve the equation bLy  for y .  

(d) Take the values for y  and solve the equation yUx  for x . This 

will give the solution to the system bAx  .       

 

 

Example:  Consider system of linear equations: 

                            
6393

18642

532

321

321

321







xxx

xxx

xxx

 

Set the equations as bAx  : 

          





















































6

18

5

393

642

321

3

2

1

x

x

x

 

This will yield the equation,   bxLU   : 

From the above we get, 




















12153

082

001

















100

010

321

















3

2

1

x

x

x



















6

18

5

 

and  Uxy 
















3

2

1

y

y

y

















100

010

321

















3

2

1

x

x

x

 

Then we solve bLy  for y : 




















12153

082

001


















3

2

1

y

y

y

















6

18

5

 

Now solving for y gives the following values: 
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612153

1882

5

321

21

1







yyy

yy

y

   
2

1

5

3

2

1







y

y

y

 

Take the values for y and solve the equation Uxy  for x . This will 

give the solution to the system  bAx  :  




















2

1

5

















100

010

321

















3

2

1

x

x

x

  

  
2

1

532

3

2

321







x

x

xxx

   



2

1

1

3

2

1







x

x

x

 

Therefore, the solution to the system is 11 x ,  12 x  and 23 x . 

3.2  QR Decomposition 

QR decomposition is one of the most frequently used methods to 

complete eigen analysis of a non-symmetric matrix, despite the fact 

that its convergence is not ensured. This is the method that handles 

these shorts of problems in a unique way .In numerical linear algebra 

QR algorithm is an eigenvalue algorithm: that is introduced by John 

G.F. Francis and Vera N.Kublanovskaya in the late 1950’s. 

 

3.2.1  General procedure of QR Decomposition 

The basic idea is to perform a QR decomposition, writing the matrix 

as a product of an orthogonal matrix and an upper triangular matrix, 

multiply the factors in the other order, and iterate. Before this 

method the matrix A must be reduced to a combination of tri-

diagonal and an upper triangular matrix with one more diagonal, 

which is a Hessen berg matrix of the form  

                 























nn

n

n

A

AA

AAA

A

























00

0 222

11211
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In the first step, the matrix A is transformed into a Hessen berg 

matrix by using Givens or Householder transformations. In the 

second step, this Hessen berg matrix is subject to the iterative 

process called chasing.  

Given matrix )0(AA . The QR algorithm constructs the sequence of 

matrices   iA  as follows: for ,.....2,1,0i  

 • factor  iA into the product    ii RQ ,where  iQ is an orthogonal 

matrix, so      Tii QQ 1  and  iR is an upper triangular matrix; and  

 • let us compute       iii RQA 1  

From the relation      iii RQA  ,it follows that      iiTi RAQ  ,since  iQ     

is an orthogonal matrix. The calculation in the second step is then 

equivalent to      iii QRA 1      iiTi QAQ . Hence, each iteration 

performs a similarity transformation with an orthogonal matrix, 

which implies that the eigen values of  1iA  are identical to those of 
 iA . 

Example: In general, 

                              









 ,1 iii

iii

QRA

RQA
 

Putting ,.......3,2,1i then we have QRA  factorization. 

Let , QRAA 
























212

122

121
0  

        
























2481.07029.06667.0

6202.04134.06667.0

7442.005788.3333.0























3721.000

3980.26874.20

3333.03333.13

 

     















































2481.07029.06667.0

6202.04134.06667.0

7442.005788.3333.0

3721.000

3980.26874.20

3333.03333.13
1 RQA  
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



















0923.02615.02481.0

2615.27966.21929.0

4884.10585.21111.2

 

Similarly, by computing we get the iterations: 

   

























5161.01047.00616.0

7694.10527.30310.0

3865.18104.14636.2
2A  

    





















3948.00191.00099.0

9230.19892.20056.0

3930.18691.14056.2
3A  

 

    

























4178.00038.00017.0

8930.10021.30010.0

3937.18579.14157.2
4A  

    

    

























4136.00007.00003.0

8982.19996.20002.0

3933.18600.14140.2
5A     

    





















4143.00001.00001.0

8974.10001.30000.0

3934.18597.14143.2
6A           

    





















4142.00000.00000.0

8974.10000.30000.0

3934.18597.14142.2
7A     

Hence the eigen values are 4142.0,0000.3,4142.2 321   . 

 

3.3 Singular Value Decomposition (SVD)  

The theoretical utility of matrix decomposition has long been 

appreciated. More recently, they have become the mainstay of 
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numerical linear algebra. One of the most useful and important tools 

to emerge from linear algebra is the singular value decomposition 

(SVD). The SVD has a long and fascinating history. Though its 

existence is accredited to five mathematicians  in particular: Eugenio 

Beltrami (1835-1899), Camille Jordan (1838-1921), James Joseph 

Sylvester (1814-1897), Erhard Schmidt (1876-1959), and Hermann 

Weyl (1885-1955). 

3.3.1 General procedure of SVD 

The singular value decomposition factors a matrix A into the product 
TVU  of a unitary matrix U ,a diagonal matix  ,and another unitary 

matrix TV . The SVD algorithm can be described as follows : 

(i)  Calculate 
TAA and AAT

. 

(ii)  Find the eigenvalues and  . 

(iii)  Find U and V  

 (iv)  Concatenate TVU   

The singular value decomposition of a matrix A takes the form 

                 TVUA   

Example: 

 Let,  











11

22
A  

     






 


12

12TA  

Then 






 












12

12

11

22
TAA  










20

08
 

       
























 


53

35

11

22

12

12
AAT  

Then we have to derive the eigen values for both TAA  and AA T
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                  0 IAAT   

                  0 IAAT   

Thus for TAA ,we get the eigen values are 2,8 21   . 

The singular values n .,,.........1  are equivalent to n .,,.........1  

respectively such that  

              811    

              222    

Thus,  











20

08
 . 

To find U ,whose columns are the unit eigenvectors of TAA : 

         0 xIAAT   

     or, 0
10

01

20

08
11 

















x  

       or, 0
20

08
1

1

1 











x




   

     or, 0
60

00
1 










x  

       









0

1
1x  

 Again,   0 xIAAT   

    or, 0
10

01

20

08
22 

















x  

    or, 0
20

08
2

2

2 











x




 



 
Chapter Three: Matrix Factorization 

 

59  
 

    or, 0
60

00
2 










x  

         









1

0
2x  

Turn 1x and 2x into orthonormal unit vectors, such that 











0

1̀

1

1
1

x

x
u    and 










1

0

2

2
2

x

x
u  

This two vectors form U  

        









10

01
U  

To find the unit eigenvectors of V  we can do the followings:  

    















i
TT

T
i

T

i
AAAA

AAAA
E





2222

1211ker  

We get, 





















1

1

33

33
ker1 spanE  

  

















1

1

33

33
ker2 spanE    

We need orthonormal basis so we have to multiply the vectors by 

reciprocals of length, we get 

           









1

1

2

1
1v


 and 











1

1

2

1
2v


 

Thus we get, 











11

11

2

1
V  

With all of these values we get the final equation as: 

            TVUA   



 
Chapter Three: Matrix Factorization 

 

60  
 

     

















































2

1

2

1
2

1

2

1

20

08

10

01

11

22
. 

Among so many matrix decompositions, SVD is a reliable and 

widely used computational technique. There are so many reasons –

firstly, it is achieved by unitary matrices makes it an ideal vehicle for 

geometry of n  space. Secondly, it is stable: small perturbation in A 
correspond to small perturbation in and conversely. Thirdly, the 

diagonality of makes it easy to determine when A is near to a  

rank-degenerate matrix. 
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CHAPTER FOUR 

SINGULAR VALUE DECOMPOSITION 

 

The SVD has a long and fascinating history. It has become a 

computationally viable tool for solving a wide variety of problems 

arising in many practical applications. The crux of using the SVD in 

these applications is in the fact these applications require knowledge 

of  the rank of matrix, approximations of a matrix using matrices of 

lower rank, the orthonormal bases for the row and column spaces of 

a matrix as well as for their orthogonal complements and orthogonal 

projections onto these subspaces. The SVD is very effective for 

these computations. 

4.1 Basic Concepts 

More generally, any nm  matrix can be factored as  

                                               TVUA     

where U  is an mm orthogonal matrix whose columns are the 

eigenvectors of  TAA .V is an nn  orthogonal matrix whose columns 

are the eigenvectors of  AAT  and   is an nm diagonal matrix of the 

form  

                                            



























0

0

0

0
1





r



 

with r  ................21   0  and  r = rank (A). 

In the above r .,..........,.........,, 321 are the square roots of the 

eigenvalues of AAT .They are called singular values of A .This 
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decomposition is called the singular value decomposition or SVD of 

A .The SVD is closely related eigen decomposition of TAA .  

Reduced SVD 

The equations with right singular values  jv  and left singular values 

 ju  can be written as            

                                        ,jjj uAv    nj 1           ……………..(4.1.1) 

The collection of vector equation can be expressed as a matrix 

equation 

   

            































































































































































n

nn uuuvvv
A








 2

1

2121  

 or more compactly  ˆÛAV .In this matrix equation ̂  is an nn   

diagonal matrix with positive real entries, Û is an nm   matrix with 

orthonormal columns and V is an nn   matrix with orthonormal 

columns. Thus V is unitary we can multiply on the right by TV to 

obtain  

                                                   TVUA  ˆˆ         ……………………(4.1.2) 

This factorization of A is called a reduced singular value 

decomposition  or reduced svd of A. 

                             

                                 A                Û         ̂        
TV  

                                        Fig-Reduced SVD  nm   
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Full SVD 

To get full svd  the columns of U are n orthonormal vectors in m-

dimensional space mC ,unless nm   they do not form a basis of mC , 

nor Û a unitary matrix. By adjoining an additional nm   orthonormal 

columns Û  can be extended to a unitary matrix, call the result  U .For 

the product to remain unaltered, the last m-n columns of U should be 

multiplied by zero. Let   be the nm   matrix consisting of ̂  in the 

upper nn  block together with nm   rows of zeros below. 

Now we have a new factorization ,the full SVD of A  

                          TVUA         nm          …………………………(4.1.3) 

 

                        A                               U                         TV               

                                             Fig: Full SVD                                                                                                                

 

4.2  A  geometric interpretation of the SVD 

One way to understand how A deforms space is to consider its 

action on the unit sphere in nR : An arbitrary element x   of this unit 
sphere can be represented by nnvxvxvxx  ...............2211  with 1

1

2 
n

ix

.The image is kkk uxuxAx   ...............111 . Letting, iii xy  , we see the 

image of the unit sphere consists of the vectors   

kkuyuyuy  ...............2211 ;  

where 
 

         


k

i

k

k x
yyy

1

2

2

2

2
2

2
2

2
1

2
1 ........


 

                                            
                                                1 
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If A has full column rank, so that nk  ; the inequality is actually a 

strict equality. Otherwise, some of the ix  are missing on the right, 

and the sum can be anything from 0 to 1. This shows that A  maps 

the unit sphere of 
nR  to a k dimensional ellipsoid with semi-axes in 

the directions iu  and with the magnitudes i . If nk   the image is 

just the surface of the ellipsoid, otherwise it is the solid ellipsoid. 

In summary, we can visualize the effect A as follows: it first 

collapses kn   dimensions of the domain, then distorts the remaining 

dimensions, stretching and squeezing the unit k sphere into an 

ellipsoid and finally embeds the ellipsoid in mR : This is illustrated 

for 3 mn   and 2k  in  following  Fig: 

 
                                                                
                                  Figure :How A deforms Rn

 

 

As an immediate consequence, we see that A the operator norm of 

A, defined as the maximum value of Av  for v  on the unit sphere, is 

simply 1 , the largest singular value of A . Put another way, we 

have the inequality  xAx 1  for all nRx , with equality only when 

x  is a multiple of 1v . 
 

4.3 The Singular Value Decomposition Theorem  

Statement: Let A  be a real nm   matrix. Then there exist 

orthogonal matrices U  and V  such that 

                   






 


00

01AVU T  
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 where 1  is a nonsingular diagonal matrix. The diagonal entries of  

  are all nonnegative and can be arranged in non increasing order. 

The number of nonzero diagonal  entries of   equals the rank of A . 

Proof: Consider the matrix AAT .It is an nn    symmetric positive 

semi definite matrix; therefore its eigen values  are nonnegative. 

Denote the eigen values of AAT  by 22
22

2
11 ........,,........., nn   . 

Assume that these have been ordered such that r  ................21  
 0  and  

                                      0..........21   nrr   

We know that a symmetric matrix has a set of orthonormal 

eigenvectors. Denote the set of orthonormal eigenvectors of AAT

corresponding to 1  through n  by nvvv ,.....2,1 ; that is 1v  through nv  are 

orthonormal and satisfy  

                    iii
T vAvA 2                      ni ,......,2,1  

Then, 

          02 ¹ ii
TT

i AvAv  ,                        ri ,......,2,1 …………………(4.3.2) 

 and  

        0j
TT

j AvAv ,                         ijri ¹ ,,......,2,1  ………………...(4.3.3) 

Write 

         rvvvV ,........,, 211   

         nrr vvvV ,........,, 212   

where 1v through rv  are the eigenvectors associated with the nonzero 

eigenvalues  1 through r , and nrr vvv ,........,, 21   correspond to the zero 

eigen values. Then 

22 AVAV TT
  nrr

TT vvvAAV ,........,, 212   =    00......,,.........0,02 TV  

 



 
Chapter Four : Singular Value Decomposition 

 

65  
 

This implies that 02 AV , or  

    0kAV ,                        nrrk ,....2,1          ………………….(4.3.4) 

Define now a set of nonzero  vectors  iu  by  

        i

i

i Avu


1
                 ri ,......,2,1                  …………………..(4.3.5) 

The    iu ’s, ri ,......,2,1 ,then form an orthonormal set, because  

       j
T
i uu   Ti

i

v


1   j

j

v


1
 

                =
ji

1  j
TT

i AvAv                                  ………………...(4.3.6) 

                = �
0                              �ℎ�� � ≠ �
1                             �ℎ�� � = �

� 

Define  ruuuU .,,........., 211   and  mrr uuuU .,,........., 212   such that 

 21,UUU    is orthonormal. Then, for anyk r  ,we have  

0 i
T
kii

T
k uuAvu  ,        ri .,,.........1  (by orthogonality of the vectors of 

U ) and   

0i
T
k Avu ,                      nri ,........,1   

Let 

     21,VVV  , Then  

 n

T
m

T

T

T vvvA

u

u

u

AVU ,...., 21
2

1
























   n

T
m

T
r

TT
r

r

TT

TT

vvvA

u

u

Av

Av

Av

,......,1

1

1

21

1

2

2

1

1

















































     

………….(4.3.7) 



 
Chapter Four : Singular Value Decomposition 

 

66  
 

          = 





























00

1

1

0
1

2

2
2

2

2
1

1

r

r












 








00

01

       
 

 where  rdiag  ,....., 211  . 

The statement about the rank is obvious, because rank ( A) = rank 

 TVU   = rank   r .The decomposition TVUA  is known as the 

singular value decomposition (SVD) of A. 

Note: 

We can assume that ;nm   because  if m  n, we consider the SVD 

of TA , and if the SVD of TA is TVU  ,then the SVD of A is TT UV  . 

Here singular values are in non increasing order. Thus max1   is the 

largest singular value and min n  the smallest  singular value and 

 A  denote the set of singular values of A. 

4.4 Uniqueness of Singular Value Decomposition 

There are  nmk ,min  singular values of A .Let r  be the rank of A . 
Then there are r  positive singular values. These are the positive 
square roots of the nonzero eigenvalues of AAT  (or TAA ).The 
remaining  rk  ,if r k , singular values are zero. Thus, the singular 
values are unique. However, singular vectors are not unique. For 
example, if A has a multiple singular value  s   0,then the 
corresponding columns of the matrix V  can be chosen as any 
orthonormal basis  of the space spanned by the eigenvectors 
associated with the multiple eigen value  2s   of  AAT . Therefore, 
the singular value decomposition is “almost unique”. There are two 
sources of ambiguity. The first is in the orientation of the singular 
vectors. One can flip any right singular vector, provided that the 
corresponding left singular vector is flipped as well, and still obtain 
a valid SVD. Singular vectors must be flipped in pairs (a left vector 
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and its corresponding right vector) because the singular values are 
required to be nonnegative. This is a trivial ambiguity. If desired, it 
can be removed by imposing, for instance, that the first nonzero 
entry of every left singular value be positive. The second source of 
ambiguity is deeper. If the matrix A maps a hyper sphere into 
another hyper sphere, the axes of the latter are not defined. For 
instance, the identity matrix has an infinity of SVDs, all of the form 
                                                   
                                                TUIUI 

 

where U  is any orthogonal matrix of suitable size. More generally, 
whenever two or more singular values coincide, the subspaces 
identified by the corresponding left and right singular vectors are 
unique, but any ortho normal basis can be chosen within, say, the 
right subspace and yield, together with the corresponding left 
singular vectors, a valid SVD. Except for these ambiguities, the SVD  
is unique. 
 
Even in the general case, the singular values of a matrix A  are the 
lengths of the semi-axes of  the  hyper ellipse E defined by 
 
                                   IxAxE  :  

The SVD reveals  a  great  deal  about the  structure  of  a  matrix.  If  
we  define r  by  0........... 11  rr   that is, if is the smallest 
nonzero singular value of  A , then 
 
            rArank   

             rrr vvvspanAnull ,........,, 21   

             nuuuspanArange .,,........., 21  

 
The sizes of the matrices in the SVD are as follows: U  is mm , and 
  is nm , and V  is nm . 
Thus,   has the same shape and size as A , while U and V  are square. 

However, if  mn, the bottom   nnm   block of   is zero, so that 

the last  nm  columns of U  are multiplied by zero. 
 
Similarly, if mn, the rightmost  mnm   block of  is zero, and 

this multiplies the last  mn   rows of V  . This suggests a “small,” 
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equivalent version of the SVD. If  nmp ,min , we can define 

 pUU p :1;: ,  ppp :1;:1 , and   pVVp :1;: ,  and write  

                                T
PPP VUA   

where pU  is pm  , p  is pp   , and pV  is pn  . 

Moreover, if rp   singular values are zero, we can let  rUUr :1;: ,  

   rrr :1;:1 , and  rVVr :1;: , then we have 

                                         T
i

r

i
ii

T
rrr vuVUA 




1

  

which is an even smaller, minimal, SVD. 
 
Finally, both the 2-norm and the Frobenius norm 

          

 


m

i

n

j
F aijA

1 1

2

 

 and 

           
x

Ax
A

x 0
2

sup
¹

  

are neatly characterized in terms of the SVD: 

           
22

1

2
................. PF

A           

 
           12

A . 
 

4.5 Relationship between the SVD and EVD 
 
The SVD theorem shows the fact that the singular values Of A are 
the nonnegative square roots of eigenvalues of TAAA  .The 
following theorem shows that how the SVD of A is related to the 
eigen decompositions of TAA  and AAT . 
 

Theorem 

 Let TVUA  be the singular value decomposition of m n matrix A

 nm  .Let r be the rank of the matrix .Then  

       1.     nnr
TT diagVAAV  0,....0,..,,.........,

22

2

2

1   

       2.     mmr
TT diagUAAU  0,....0,..,,.........,

22

2

2

1   
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Proof: We get, 

                TTTT VUUVAA   

                   TT VV                                          

                   TVV                                     ……………………..(4.5.1) 

where  is an nn diagonal matrix with 0,.......0,.....,,......... 22
1 r as its 

diagonal entries. 

Thus, 

     AVAV TT  

                      nnrdiag  0,.......0,.....,,......... 22
1              ………………(4.5.2) 

Similarly, 

      TTT UUAA                                                       …………… (4.5.3) 

              =    mmrdiag 0,.......0,.....,,......... 22
1   . 

Note:  

i) The right singular vectors nvvv ,........, 21 are the eigenvectors of the 

matrix AAT . 

ii) The left singular vectors muuu ,........, 21 are the eigenvectors of the 

matrix TAA . 

iii) 22
1 .....,,......... r  are the nonzero eigenvalues of  both AAT  and TAA . 

Example 

Finding  the singular value decomposition of 

                                     











11

22
A  

Let us find  









53

35
AAT
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Now the eigenvalues of AAT  are 2 and 8 and corresponding unit 

eigenvectors are  

                        

















 



2

1
2

1

1v      and   




















2

1
2

1

2v  

 respectively 21   and 2282  .We have  

 









2

0
1111111 uvvuAv T   , so  










1

0
1u  













0

22
2122222 uvvuAv T   , so  










0

1
2u . 

The SVD of A is therefore,  

                   








































2

1

2

1
2

1

2

1

220

02

01

10
TVUA  

We can also compute the eigenvectors 1u and 2u directly from TAA . 

4.6 Applications of the SVD  

The SVD has become an effective tool in handling various important 

problems arising in a wide variety of applications areas, such as 

control theory, signal and image processing, identification and 

estimation, speech synthesis, pattern recognition, time series 

analysis, electrical network theory and biomedical engineering.  

The aspects of control theory and identification problems requiring 

use of the SVD including problems on  controllability   and  

observability , realization of state-space models, the H-infinity 

control, balancing, robust feedback stabilization, model reduction 

and so on. 
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In signal and speech processing the SVD can be regarded as a filter 

that produces an estimate of a signal from noisy data. For example, 

when a person speaks, speech is absent  about  50% of the time. 

Thus, if there are background noises coming from a fan, a vibrating 

machine, and so on, then these disturbances dominate in the 

microphone signal when speech is absent. In such a situation the 

ratio of speech signal to the background noise has to be enhanced, 

and the SVD can be used effectively to do so. 

In image-processing applications the SVD is routinely used for 

image compression, to remove noise in picture, and so on.In 

biomedical engineering the SVD plays an important role in obtaining 

a meaningful fetal ECG from that of the mother. 

Furthermore, the SVD is the most effective tool in solving least 

squares and the generalized least-sqaure problems and to determine 

the rank of a matrix. As well as SVD is the most reliable way to 

determine the rank deficiency of a matrix, orthonomal bases for the 

low and column spaces of a matrix and also for orthogonal 

complements and  projections.  

4.6.1 Image Processing(Fetal ECG)  

Consider a problem of taking the electrocardiogram of a fetus by 

placing the cutaneous electrodes at the heart and the abdomen of the 

pregnant mother. The maternal ECG (MECG) clearly disturbs the 

observation of the fetal ECG(FECG),because the contributions of the 

maternal heart signals are much  stronger than those of the fetal 

heart. The objective then will be to detect the FECG while 

simultaneously suppressing the MECG respective to noise. 

Let us suppose there are p  measurement signals    tmtm p....,,.........1 . 

Let these measurements be arranged in a vector called the 

measurement vector,  tm : 

                         Tp tmtmtmtm .,,........., 21                   ……………  (4.6.1.1) 
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Let there be r source signals      tststs r...,.........., 21  arranged in the 

source signal vector,  ts : 

                           Tr tstststs .,,........., 21                        …………..(4.6.1.2) 

Obviously, the measurement signals are corrupted by an additive 

noise signal, and there exists a relationship between the 

measurement signals. It can be assumed that this relationship is 

linear and indeed each measurement signal    tmi   can be written as a 

linear combination of r source signals   tsi   and additive noise signal 

 tni . This leads to the following equations: 

                 
         
         tntsttsttsttm

tntsttsttsttm

rr

rr

222221212

112121111

.......

.......




 

                          



                                                            …………(4.6.1.3) 

                          tntsttsttsttm rrprppp  .......2211  

  or , 
                           tntTstm                                                  …………(4.6.1.4)    

 where,   ijtT    and          Tr tntntntn .,,........., 21          …………(4.6.1.5)  

The matrix T  is called the transfer matrix and depends upon the 
geometry of the body, the positions of the electrodes and sources, 
and the conductivities of the body tissues. 

 Now, the problem is to get an estimate of the source signals  ts  

knowing only   tm   and, from that estimate, separate out the 

estimate of fetal source signals.  

Let each measurement consist of q  samples. Then the measurement 

can be stored in a matrix M of order qp .The matrix equation form 

of (4.6.1.4)  is NTSM   . 

We now show that the SVD of M  can be used to get an estimates of 
the source signals. Let 

                     TVUM                                                 …………..(4.6.1.6) 

be the SVD of M .Then qp  matrix Ŝ  defined by  

                        MUS Tˆ                                            …………..(4.6.1.7) 
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will contain pestimates source signals. Next, we need to get the 

estimates of the fetal source signals from Ŝ ; let this be called FŜ . 

Partition the matrix of singular values   of  M  as follows: 

                     
























000

00

00

F

M

                                      ………..(4.6.1.8) 

where M  contains mr  large singular values associated with the 

maternal heart, F  contains jr  singular values, those smaller ones 

associated with the fetal heart, and 0  contains the remaining 

singular values associated with noise, and so on.   

 Let   0,, UUUU FM  be a comfortable partitioning of U . Then  

obviously, we have  

                           M

U

U

U

MUS
T

T
F

T
M

T



















0

ˆ

                        

…………..(4.6.1.9) 

                                  

















T

T
F

T
M

U

U

U

0

         


















0
ˆ

ˆ

ˆ

S

S

S

F

M

   

Thus MUS T
FF ˆ . 

Once FŜ is determined , we can also construct a matrix Fcontaining 

only   the contributions of fetus in each measured signal, as follows: 

T

i

rr

ri
iiFF vuSUF

jm

m







1

ˆ    

where iu  and iv are the i th column of U and V and i is the i th 

singular value of M .The signal in FŜ are called fetal signals.                                                
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4.6.2 The Rank the Rank-Deficiency of a Matrix 

Finding the matrix of an nm  matrix and, in particular, determining 

the non singularity of a square matrix are very important tasks that 

frequently arise in linear algebra and many important applications. 

The most obvious and the least expensive way of determining the 

rank of a matrix is ,  to triangularize the matrix using Gaussian 

elimination and then to find the rank of the reduced upper triangular 

matrix. Unfortunately, however, this is not for a very reliable 

approach in floating- point arithmetic. In practice, it is more 

important as we will see, to determine if the given matrix is near to a 

matrix of a certain rank and, in particular, to know if a matrix of full 

rank is near a rank-deficient matrix. The Gaussian elimination 

method, which uses elementary transformations, may transform a 

rank-deficient matrix rank into one having full rank, due to 

numerical round-off error. The most reliable way to determine the 

rank and nearness to rank-deficiency is to use the SVD. 

Let us suppose that A has rank r , that is, n  ...........21    0   . 

Then  by using the SVD we can find the distance  of matrix A  from 

the nearest  matrix of lower rank which is k r . 

 

Low Rank Approximations 

The most widespread application of the singular value 

decomposition is the detection of rank degeneracy. If A is of rank k , 

then 

                   k  0 nk    ........1 . 

Thus if A has small singular values, then A is near a matrix of 

defective rank. Specifically, set  0,......0,,.......,1 kk diag   and  

                               Tk

k VUA 









0
. 

Then kA has rank not greater than kand  
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22
1

2
............ nkFk AA    . 

The above construction shows that small singular values are a 

sufficient condition fort a rank degeneracy. 

Again, let B be any matrix of rank not greater than k ,let the singular 

values of B  be denoted by n  ...........21 . Then  

0........21   nkk   

 

By Mirsky’s  theorem 




 
n

i
FknkiiF

AAAB
1

222
1

22
............  . 

Thus if A is near a matrix B of rank k ,then the sum of squares of the 

ksmallest singular values of A is not greater than 2

F
AB  . 

Theorem: (Schmidt) 

    “The matrix kA is a matrix of rank k that is nearest A in the 

frobenius norm.” 

Or 

Let  A and kA  be two matrix. Then  

 (i) kA has rank k . 

 (ii) The distance of kA from :A 12  kkAA  . 

 (iii)  Out of all matrices of rank k , kA is closest to A ;that is  

               
  22

min k
kBrank

AABA 


 

Proof of (i):  Since, n  ...........21 . 

 It is obvious that rank   kAk  ; because  

 rank  kA  rank  T
k VU   
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                  rank  k      

                 k  . 

Thus kA   has rank k . 

Proof  of  (ii): Since  TVUA   and   T
kk VUA             

and     T
kk VUAA   . 

So, we have   
22

T
kk VUAA    

                                         
2k      

                                         1 k . 

Thus the distance between  A and kA is 1k . 

Proof  of  (iii): To prove (iii), we have to show that if nmRB   is 

any matrix of rank k ,then   

12  kBA  ;that is kA is closest to A among all other matrices of rank 

k .Since  B has rank k , the full null space of B ,  BN  has dimension 

kn . Consider now the space  121 ,........,,  kvvvspanS , where 1v through 

1kv are the right singular vectors of A .Since  BN  and S are both 

subspaces of nR  and the sum of their dimensions is greater than  n

,their intersection must be nonempty. Let z  be a unit vector lying in 

this intersection. Then, since z  121 ,........,, kvvvspan ,there exists 

scalars such that 12211 ........  kkvcvcvcz . 

Furthermore, because 121 ,........,, kvvv are orthonormal. We must have 

1........
2

1

2

2

2

1  kccc . Because z  BN ,we have 0ZB .So 

          i

k

i
iii

k

i
i vcvAcAzzBA 










1

1

1

1

  
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Because 121 ,........,, kuuu  are also orthonormal, 

  2
1

1

1

1

1

22
1

1

1

22

2 














  ki

k

i
i

k

i
ik

k

i
ii vAccczBA   

Thus 
 

2
1

2

2

2 


 k
z

zBA
BA                 1

2
z   . 

 
 
4.6.3 Least Square Problem and The Pseudo inverse  
 
The singular value decomposition is an effective tool to solve least 

square problems, both in the full rank and rank deficient cases. 

Consider the algebraic linear system 

                                             bAx   

where A is a nm  matrix and b is a real vector. Then the linear least 

square problem is defined as follows to find a real n–vector x such 

that is 
22

bAxr   minimum. 

Let,
TVUA   be the SVD of A.Then we have 

 
22

bVUr T   

       
2

bUxVU TT   

      2
by   

where yxV T  and bbU T  .Thus, the use of the SVD of A reduces the 

least-squares problem for a full matrix A to one with a diagonal 

matrix  : 

The reduced problem is trivial to solve. We have  
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



m

ki
i

k

i
iii bbyby

1

2

1

2

2
  

where k is the number of nonzero values of A .Thus, the vector  

          






















ny

y

y

y


2

1

 

 

that  minimizes 
2

by  is given by : 

         iy �

ib

i
                �� i ¹0

���������                �� i = 0               

� 

When y is computed the solution can be recovered from Vyx  . 

Because corresponding to each zero singular value i , iy can be set 

arbitrarily, in the rank-deficient case, we will have infinitely many 

solutions to the least-squares problem. In the full-rank case the least  

squares solution is unique. 

The Pseudo inverse 

 One of the most important applications of the SVD is the solution of 

linear systems in the least squares sense. A linear system of the form  

                                           bAx   

To solve bAx  for nm  matrix , we have to use mn  pseudo inverse 

matrix of the form  

                                  TVUA ††  .  
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The matrix   TT AAAA
1† 

 ,when Ais  of order  nmnm   and has rank 

n, or the matrix   1† 
 TT AAAA , when A is  of order nm (  m n) and 

has rank  m ,is called the pseudoinverse of A .The pseudoinverse is 

also reffered to as the Moore-Penorse generalized inverse of A . 

 Clearly, the definition of pseudo inverse is the ordinary definition of 

the inverse of square matrix  A. When A is square and invertible 

                                      1111† 
 AAAAAAAA TTTT  

Let , TVUA    be SVD of A ,then it is easy to   verify that  TVUA ††  , 

where mn

r

Rdiag 







 0,.......,0,

1
.......,..........,.........

1
,

1

21

†


, satisfying  the 

following conditions: 

                   
 

  XAAXiv

AXXAiii

XXAXii

AAXAi

T

T









)(

)(

)(

)(

   

This expression  TVUA ††   for the pseudo inverse coincides with 

1A  when A  is non singular, because    

                                  TT AAAA
11    

                                        TTTTT UVVUUV 
1

  

                                        TTTT UVVV 
 11      

                                      TUV 1 ,   here  1†  . 
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CHAPTER FIVE 

UPPER SOLUTION BOUNDS FOR CALE: 

A SINGULAR VALUE DECOMPOSITION APPROACH 

 
The Continuous Algebraic Lyapunov equation (CALE) is one of the 

forms of Lyapunov equation.  CALE is a  fundamental  matrix 

equation which plays an significant role in control theory, model 

reduction and stochastic analysis of  dynamical systems. Mainly in 

control  system solution bounds of CALE is very important to solve 

stability  analysis problems .Although the bounds of the exact 

solution of the Lyapunov equation can be found numerically, the 

computational burden increases with the dimension of the system 

matrices. For some applications such as stability analysis, it is often 

not necessary to know the exact solution. In this chapter we discuss 

about basic terminology of Lyapunov equation and the upper bounds 

solution for Continuous Algebraic Lyapunov equation via SVD 

approach. 
  

5.1 Preliminaries 
             

The stability of a continuous time system is defined here with 
respect to an equilibrium state. An equilibrium state of the 
uncontrolled system  

                                 tAxtx 


,     00 xx      .……………..(5.1.1)                      

 is the vector ex satisfying       

                                           0eAx      

Clearly  0ex  (is an equilibrium state and it is the unique 

equilibrium state if and only  only if A is nonsingular. An 
equilibrium state ex  is asymptotically stable if for any initial state, 

the state vector  tx approaches ex  as time increases. 

The system (5.1.1) is asymptotically stable if and only if the 
equilibrium state is asymptotically stable. Thus, the system (5.1.1) is 
asymptotically stable if and only if   0tx as t . 
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Criterion of Continuous-Time Stability 
 
A well-known criterion of asymptotic stability of a continuous-time  

system is given below : 

          “The system (.5.1.1) is asymptotically stable if and only if all 

the eigenvalues of the matrix A have negative real parts.’’ 

 
Proof: The general solution of (5.1.1) is   

                                                  0xetx At  

Thus,   0tx if and only if 0Ate  as t We will now show 
that this happens if and only if all the eigenvalues of A have negative 
real parts. 
Let  kJJJJdiagAXX ,.....,, 321

1  be the Jordan canonical form of 

A. Then, 
              1.,,........., 21  XeeeXdiage tJtJtJAt K  

Let i be the eigenvalue of A  associated with iJ . Then 0tJie if and 

only if i has a negative real part. Therefore, 0Ate  if and only if 

all the eigenvalues  A of  have negative real parts.  

 
 
 5.2 Lyapunov Equations 
                     
 For continuous time stability  the matrix equation:  

                                             MXAXA T   
  and its dual  

                                          MXAAX T   
 are called the continuous time Lyapunov equations. 
  
 Similarly,the matrix equation :   

                                              MXAAX T   
  and its dual  

                                            MAXAX T   
 are known as discrete time Lyapunov equations. 
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5.3 Continuous-Time Lyapunov Stability Theory  
           
Before the advent of computers, finding the eigenvalues of a matrix 
A was an extremely difficult task. In 1892, the Russian 
mathematician A. Lyapunov (1857-1918) developed a historical 
stability criterion for nonlinear systems of equations. In the linear 
case, this criterion may be formulated in terms of the solution of a 
matrix equation. 
 
Lyapunov Stability Theorem  
 
The linear system: 

                              tAxtx 


 
 
is asymptotically stable if and only if for any symmetric positive 
definite matrix M , 
there exists a unique symmetric positive definite matrix X  satisfying 
the equation:   
                          
                             MXAXA T                  …………………..(5.3.1) 
 
Proof : Let's define a matrix X by 
                                    

                                dtMeeX AttAT





0

             …………………(5.3.2) 

Then, we show that when the system is asymptotic stable, X is a 
unique solution of the equation (5.3.1) and is symmetric positive 
definite. Using the expression of X in  (5.3.1), we obtain 
                     

                          dtMeeAdtMeeXAXA AttATAttAT TT





00

 

                                     

                                            

  0
0

AttAAttA MeedtMee
dt

d TT

 

Since A  is  stable, 0tAT

e  as t .Thus, MXAXA T  , showing 

that that X  defined by (5.3.2) satisfies the equation (5.3.1). 
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 To show that X  is positive definite, we have to show that XuuT   0 

for any nonzero vector u .Using (5.3.2) we can write 

                                       udtMeeuXuu AttATT T





0

.  

To prove that X is unique, assume that there are two solutions 1X  

and 2X  of (5.3.1). Then, 

                                02121  AXXXXAT , 
which implies that 

                                   02121  AtTtA eAXXXXAe
T

  
 or                            

                                      021  AttA eXXe
dt

d T

, 

and hence    AttA eXXe
T

21   is  a  constant  matrix  for   all t .  

Evaluating at 0t  and t we conclude that 021  XX . 
We now prove the converse, that is, we prove that if X is a 
symmetric positive definite solution of the equation (5.3.1), then A  
is stable. 
Let  x, be an eigenpair of A . Then pre multiplying the equation 

(5.3.1) by *x  and post multiplying it by x , we obtain: 
                  
           XxxXxxXxAxXAxx T ****     Xxx *   Mxx *  
Since M  and X are both symmetric positive definite, we have    

   0  or  Re     0. 
 
 
5.4  Stability of Discrete-Time System 
             

Consider the discrete time system: 

                                         kk Axx 1         …………………..(5.4.1) 

 with initial value 0x . 

The system (5.4.1) is asymptotically stable if and only if all the 

eigenvalues of A are inside the unit circle or all the eigenvalues of A  

have moduli less than 1. 
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Discrete-Time Lyapunov Stability Theory 

In discrete system continuous time Lyapunov equations are replaced  

by discrete analogs. The discrete counterparts of the continuous-time 
Lyapunov equations are known as Stein equations in control theory. 
 
Lyapunov Stability Theorem   
 
The system 

                   kk Axx 1  

is asymptotically stable if and only if, for any positive definite 
matrix M , there exists  a unique positive definite matrix X  
satisfying the discrete Lyapunov  equation: 
                                       
                                   MXAAX T          ……………………(5.4.2) 
 
Proof : Let's define a matrix X  by 
             

                                  k

k

kT MAAX 





0

            …………………(5.4.3) 

Since A  is discrete-stable, the infinite series on the right-hand side 
converges. 
Furthermore, the matrix X is symmetric and positive definite. We 
now show that X is the unique solution of the equation. (5.4.2). 
Indeed, 
 

              MMAAMAAXAAX k

k

kTk

k

kTT  






 10

…………….(5.4.4) 

Thus, X  defined by (5.4.3) satisfies the equation. (5.4.2). 

      To prove that X  is unique, let's assume that there is another 

symmetric positive definite solution 1X of (5.4.2). 

Then, 
                 MAXAX T  11 , 
and 

                      kT

k

kTk

k

kT AAXAXAMAAX )11
00

 








, 
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                       1
1

1
0

1 XAXAAXA
k

kkT

k

kkT 








 . 

                      
 
5.5 Lyapunov Functions  
       
For the linear system :  

                                        tAxtx 


 
According to Lyapunov, to check stability of a system by finding 
some function  xV , called the Lyapunov function, which for time 
invariant  systems satisfies 
                                 xV   0             00 V       ……………..(5.5.1) 
 

                                 
dt

dx

x

v

dt

dv
xV








0            ……………..(5.5.2) 

For the linear system the linear functions can be chosen to be 
quadratic, that is  
                                
                                  XxxxV T       TXX   0  ……………..(5.5.3) 

where X is symmetric  if  xV


 is negative definite; which with the use 
of  (5.3.1)  this  can be seen as follows: 
      

                                        


 xXxXxxxV T
T

, 
                                               
                                               xXAXAx TT  , 
 that is the system is asymptotically stable if the following condition 

is satisfied  

                                       XAXAT     0 

  or, equivalently, 

            MXAXAT  ; TMM   0                 ……………(5.5.4) 
Therefore, 

                                          xV
  xMx  *   

Thus  xV


 is negative definite if M is positive definite. 
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There is no general procedure for finding the Lyapunov functions for 
nonlinear systems, but for linear time invariant systems, the 
procedure comes down to the problem of solving a linear algebraic 
equation, called the Lyapunov algebraic equation. The matrix 
algebraic equation (5.5.4) is known as the Lyapunov algebraic 
equation. 
 

5.6 Singular Value Decomposition Approch For CALE  

The continuous algebraic Lyapunov equation (CALE) has been 

widely used in engineering theory. In practical application, 

especially for stability analysis upper bounds of CALE are desired. 

"New estimates for solutions of Lyapunov equations" by Y.Fang, 

K.Loparo, and X.Feng was published in March,1997.To this paper 

we can reach to solutions of upper bounds for continuous algebraic 

lyapunov equations. In section 5.6.1 we discuss about the above 

paper to get solutions of CALE .But in most cases the existing upper 

bounds are valid under some restrictive assumptions which are 

practically inapplicable. Afterwards, Svetoslav G. Savoy and Ivan 

P. Popchev were motivated by this fact that upper solution bounds 

for the continuous Lyapunov equation are valid under some very 

restrictive conditions, so an attempt "New Upper Bounds for the 

CALE:A Singular Value Decomposition Approach" is made in 

April, 2007 to extend the set of Hurwitz matrices for which such 

bounds are applicable. In  section 5.6.2 it is shown that the matrix set 

for which solution bounds are available is only a subset of another 

stable matrices set. This helps to loosen the validity restriction and 

its easy for application. Extended matrices with upper bounds are 

illustrated here by examples via SVD approach. 

 

5.6.1 Upper Bounds Solution for CALE with Hurwitz matrix 

Consider, the continuous algebraic Lyapunov equation  

                           0 QPAPAT ,   ,HA  Q 0,      .........................  (1) 
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 with respect to unknown matrix P .Here H  is the set of Hurwitz 

matrices, the symmetric part of matrix A is, 

                            AAA T
S 

2

1
 

The eigen values of a nn matrix A  are denoted by    n  ..........21 ;       

   AAS  1  is the matrix measure of A .The maximum and minimum 

singular values of matrix A are  A1 and  An  respectively. The 

maximum real part of the eigenvalues of matrix A  is  A  and I is the 

identity matrix. If  (A)  0 ,the best known upper solution bounds 

are:  

  01 lp  )(
2

1 1

1


 SQA

   
                    .................................................(2) 

  0tptr   
n

Sii AQ
1

)()(
2

1
                .................................................(3) 

Let  T  be a non-singular matrix, denote 1~ TATA   and define the set  

]
~

[:
~

{ AAH   0} .Then equation (1) can be written as – 




















1

1

~

~
0

~~~~~

QTTQ

PTTP

QAPPA

T

T

T

                              

          .................................................(4) 

For  any given matrix A H and A H-1,There exists matrix T, such 

that 1~ HA , i.e SA
~  0. 

Consider the positive scaler ,defined as-  

    =        1

1
2

1 
 S

TTATQ  

        =     




 

1

1 TATTATQ TTT  

        =     ][
1

1


 TATTTAQ TTT          ][ TT

TT   
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       =      11
1

  TATTTTATTQ TTTTT  

        =       111
1

  TATTATTTQ TTT  

        =       ][
11

1

  AAQTT TT  

        =      1

1

~~

2

1 
 SAQ             ]

~
[ 1 QTTQ T     

           










2

1

2

1

1

~~~

2

1
SS AQA  

 or, 2      










2

1

2

1

1

~~~
SS AQA  

Since,       2

1

2

1 ~~~
2


 SS AQAI  

  then we get the inequality  

                  QAS

~~
2     

                   =    QAPPAQAA TT ~~~~~~~~

2

1
2    

                   =    PIAPIAT ~~~~
   

Here, matrix A
~

is Hurwitz and by Lyapunov Stability theory PI
~

  

must  be a positive semi definite matrix, which yields the upper 

matrix bound 

        TTP T ;     1

1
2

1 
 S

T ATTQ
               

………………………(5) 

and then we can obtain scalar bounds for 1(p) and tr(p) easily. 

The estimation problem for P has three important aspects: (i) 

restrictions on matrix A, (ii) computational burden and (iii) tightness 

of the bounds. Bounds based on equation (4) eliminate problem (i), 

but require the determination of matrix T, the  selection of which to 

obtain the tightest bound is an open and difficult question. 
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Matrix T is obtained by some additional computational procedure 

and in this sense TTp T , )( AP 0, is said to be an external Lyapunov 

matrix (ELM) for A . An internal Lyapunov matrix (ILM) is a matrix 

which can be defined  entirely in terms of A . i.e if HA , then 

AAP T is an ILM for A . 

Its an attempt to overcome to a certain extent the above mentioned 

difficulties concerning bouns based on ELM. This is closely related 

with the definition of an extension H
~  of the conservative set H  in 

sense that, if HA , but HA
~

 , there exists ILM for A. This will help 

to avoid the computation of an ELM. 

 

5.6.2 Extension of Hurwitz matrices by using SVD  

Using the singular value decomposition of the coefficient matrix in 

(1),  it is always possible to present it as a product of two matrices as 

follows  

                               
TT

T

AAPAAP

UVF

FPFPA







2
2

2
1

21

,

  

where  TVUA  , IVVUU TT  ,and   is a positive diagonal matrix 

containing singular values of A. Similarly the SVD of the 

transformed matrix results as follows- 











 

TTT

T

AAPAAPVUF

FPPFVUTATA

~~~
,

~~~
,

~~~

~~~~~~~~

2
2

2
1

21
1

           ………………………………(6) 

With IVVUU TT 
~~~~

 and 
~

 is a positive diagonal matrix, Then we can 

define the matrix set  

                     HFAH 
~

:
~~
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Theorem 1:For any matrix HA and nonsingular T, one has  

 
(a)     FSTAT S

T ~1
1   , 

 
(b) HH

~
 , 

 
(c)   0

~~
 SAHA  ; here we denote TPTS T

1

~
 . 

 
Proof: From the representation of the SVD of the transformed 
matrix we get, 

                         XpFppAp 


2

1

1
2

1

1
2

1

1
2

1

1
~~~~~~        

 
Assertion (a) is proved applying the well known inequality 

)()( YY    valid for any matrix Y to X; which results in  

         
  














2

1

1
12

1

11

~~
)( PTTATTPX S

TT   

                =   1
1

STAT S
T  

                










2

1

1
2

1

1

~~~
PFP  

                 ,~
F  

since the eigenvalues of F
~  are preserved under the nonsingular 

transformation. Assertion (b) follows immediately, i.e.,  

                0
~~
  AHA    0 TAT T   0 X HF 

~
HA

~
 

Finally, F
~ is unitary by definition and hence normal matrix, or  

                                   0
~~~~

0
~ 1

1 
 SAPAFFHA  , 

which proves (c). 

Corollary 1: For anyT, such   that TTP T  is an ELM for A , 

TPTS T
1

~
      is   also a  ELM  for A . 

Proof: It follows from assertions (b) and (c) in Theorem 1. Let  

TT T be an ELM for A  i.e., 
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                                HAATAT T ~
0

~
0    

                                          SAHA 
~~

 0. 

 
Certainty The approach suggested for getting upper bounds for the 

solution of P in (1) is always theoretically applicable since the 

symmetric part of the transformed matrix A
~

 is negative definite. 

Here corollary 1 illustrates the important fact that the SVD 

approach does not introduce any conservatism concerning 

restrictions on the coefficient matrix for bounds validity. If TT T  is 

an ELM for A , then the upper matrix bound in (5) becomes  

                                   ,SP     1

1
2

1 
 SSAQ  

Since the main purpose is to get ILM, let IT  ,i.e AA 
~

, FF 
~

,

11

~
PPS  . Then theorem (1) become: 

 
Corollary 2: For any matrix HA , such that 
 (a)    FPAS

~1
11   , 

 (b) HAHA
~

  , 
 (c)     00

~ 1

21 


APAPHA  .  

 
In  other words , HA

~
 , if and only if ,  1P   and 1

2


P are ILMs for A . 

Here we denote  1S =  
SAP1  and  

S
ApS

1

22


 . 

 

Corollary 3:  Let HA
~

  then the solution P in (1) has the following  
upper matrix bounds 

           
 

 

















1

212

1

22

1

11111

2

1
,

2

1
,

QSPP

QSPP





      

……………………………(7) 

Lemma: If  HA
~

 , the maximum eigenvalue  and the trace of P in 
(1) have the following upper bounds: 
 

………………………………(8) 
 

 

      
    









,,,,min

,,min

21211

1

21111

tttttPt

AAlP

r

n
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   

   

   

    
































,
2

1

,
2

1

,
2

1

,
2

1

2
2

22

1

12

1

1

2

11

1

11

1

2

1

212

1

1

111

QPtPSt

QPtPSt

PtQSt

PtQSt

r

r

r

r









                

…………………..……………(9) 

Proof: Bounds 1l  and ....2,1,  iti  are obtained from the respective 

matrix bounds (7) for P . We know the SVD representation of 
FPFPVUA T

21   , TUVF  ,the CALE (1) can be rewritten as  

                           

                          . 

Application of the operator to both sides of the above equalities 

results in  

            

                       

                        , 

            , 

                      , 

                       . 

 

Since , bounds  are proved. 

The requirement  is less restrictive in comparison with the 

assumption that , due to the fact that . Therefore, the 

presented bounds (7), (8) and (9) are less conservative with respect 

to the validity restrictions imposed on matrix  by the existing 

estimation approaches. The derived bounds (7), (8), and (9) are 

based on the SVD of the coefficient matrix and  in this sense they 

differ from all available bounds. Nevertheless, the only specific 

procedure consists in getting in the form . Once the 

PFPPFPQPPFPPFPQ TT   1
11

1
111

2222222 FPPPPPPFQPFPPPPFQ TT 

rt

   PFtQPt rr 21
1 






 2

1
2

1

2 PFPt Sr

  )(2 PtF r

   222 2 FPPPtQPt rr 






 2

1

22
2

1

2 PPFPPt Sr

   PtFPP r222

02
1

11
1

1   SPSPFS 2,1t 

HA
~


HA HH

~


A

A

A TVUA 
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decomposition is done, one can easily compute the matrices 

involved in the respective bounds as follows:  

 

 

      

        . 
 
Matrix F is a normal one and hence it is unitarily similar to a 
diagonal matrix i.e., . If  is Hurwitz, the proposed 
bounds are all valid. Then, the inverses of ,  and are obtained 

by inversing diagonal matrices, i.e.,  

         

           , 

where denotes a diagonal matrix containing the real parts of the 

eigenvalues of , while (2) and (5) require the computation of a 

possibly ill-conditioned general matrix. Since  is a normal matrix, 

the computation of and should not be a problem. In any case, 

this computation is easier than the computation of the eigenvalues of 

 which must be put in the form  with  (unitary) and  

(triangular) being complex matrices in the general case. Also, the 

computation of the spectrum of is not required at all if the SVD is 

performed due to the following reasons. Matrix  must be Hurwitz 

in order to get valid bounds. If is Hurwitz, this leads to 

                             

which is possible only if  is Hurwitz. 

The above results shows that the set of Hurwitz matrices for which 

there exist valid upper bounds for the solution of the CALE can be 

,,, 22
1

11
11

TTT VVPVVPVVP  

,,,, 2
2

11
22

TTTT UVFAAPUUPUUP  

    ,11
TTTT

S VVVUUVVVAPS 

  SS

T
S

T FAPSVVFVV   1
22,

 TWWF  

SF 1S 2S

,
2

1
,2 Re

11

Re
T

S
T

S WWFWWF 


11

2
11

Re
111

1 ,
2

1 
 S

TT FSVVWWVVS

ReA

F

F

W 

A TCCA T C T

A

F

F

011111111  PFPAPPAFPPAPFPA S
T

A
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further extended. The applicability for the proposed bounds for  is 

illustrated by several numerical examples. 

 

Numerical Example :  
 
Consider the unitary matrices  
                      

                      ,       

 
where  and the positive diagonal matrix . It is desired 

to investigate the influence of the parameters and on the 

possibility to get bounds for in (1), if the coefficient matrix is 

                              

                                 

                                 

                                 

Denote    . Then , 

                        

For any 1 and any 0, .The unitary part of is 

           

              

P















11

11

2

1
U 












1

1

1

1
2 a

a

a
V

0a  1,diag

a 

p

TVUA 








 


























1

1

1

1

10

0

11

11

2

1
2 a

a

a



  






 

















1

1

1

1

12

1
2 a

a

a 



  















aa

aa

a 



1

1

12

1
2

   1
212



 at















aa

aa
tA





1

1

a  HA A

TUVF 








 

















1

1

1

1

11

11

2

1
2 a

a

a
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               , 

or   in this case. If  ,then   ,by 

necessity. 

Consider the matrix bounds (7),with  

        

                        

        , 

      , where                                                                                                                      

      
  

          
 

  















aa

aa

a 11

11

)1(2

1
2















aa

aa
t

1)1(

11

 FFF T
S 

2

1




























aa

aa
t

aa

aa
t

1)1(

11

11

)1(1

2

1















aaaa

aaaa
t

1111

1111

2

1















a

a
t

220

022

2

1















a

a
t

10

01
2

2

1

 Iat  1

HAHA
~

  HA a  1,min 

    ,11
TTTT

S
VVVUUVVVAPS 

,T
S

T VVFVV 

2
11 )1( PatS 

   IatFAPS SS
  11

22

TVVP 1








 
























1

1

1

1

10

0

1

1

1

1
22 a

a

aa

a

a


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Now Putting, 5.0a and  2 . 

Thus we get,  













05.2

25.1
tA  

)(A max eigenvalue of  SA . Since, 

     SnSS AAA   ........................   21

      0........................   )( 21  SnSS AAAA  .Thus  0)( A ,bounds 

(2) and (3) are not valid. Assume 









10

01
IQ .From the continuous 

algebraic lyapunov equation,     








 













1

1

11

1
2 a

a

a

a

a 





















11

1
2

2

2 



aaa

aaa

a

















1
2

2

2
2





aaa

aaa
t
































1
2

1
2

2

2
2

2

2
22

1








aaa

aaa
t

aaa

aaa
tP
































11
4

2

2

2

2
2









aaa

aaa

aaa

aaa
t

TUUP 11
2

 









































11

11

2

1

10

0

11

11

2

1
1
































11

11

1

1

2

1
1

1

























11

11

2

1
11

11




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                         ;0 QPAPAT     ,HA      Q 0. Let, 









wz

yx
P .We 

have to find the value of P . 

                   Now , 0 IPAPAT

 

                      or, 0
10

01

02

5.25.1

02

5.25.1












































t

wz

yx

wz

yx
t   

                     or, 

0221

05.25.12

05.25.12

05.25.231









tzty

twtztx

twtytx

tztytx

 

By solving this in Mathematica 5  we get, 

t
w

t
z

t
y

t
x

25.0
,

75.0
,

25.0
,

75.0
          

Thus we get,      





















tt

ttP
75.025.0

25.075.0

 

                                   











 

31

13
25.0 1t  

Trace :   15.1  tPtr  and eigenvalues of  P are  
tt

1
,

5.0 .So we can write  

the largest eigenvalue of P as :   1
1

 tP . Since HA
~

 , bounds (8) 

and (9) are valid. In this case, 1
21

 t .The matrix bound 

  PAAtP T 


2

1
11

22 , which is evident from the fact that  

                                    , 

Since   is unique for any given matrices and . Consider 

bounds (8) and (9).We get the maximum eigenvalue upper bound is 

                       ],[min
1

2111 AAl n


   

PPtItAPPAT 
 1

2
11

2

1

2

P A Q
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 Here we get the singular values of  are : }58114.1,16228.3{                    

Therefore, 

               

Thus by using Mathematica 5 we get, 

                    

Similarly, the trace upper bound is  

           . 

The proposed upper scalar bounds coincide with the exact respective 

solution parameters in this case. 

 

A

16228.32,58114.1 11   tt

     Ptttl 1
111

1 58114.1,2min58114.1,16228.3min  

   Ptttttt r  1111
1 5.15.1,5.1,3min



 

 

 

 

 

 

 

 

APPENDIX 



A = t K
-Σ + a 1 + Σ a

-Σ - a -1 + Σ a
O �. 8Σ ® 2, a ® 0.5<

88-1.5 t, 2. t<, 8-2.5 t, 0. t<<

B = Transpose@AD

88-1.5 t, -2.5 t<, 82. t, 0. t<<

P = K
x y

z w
O

88x, y<, 8z, w<<

B.P + P.A + K
1 0

0 1
O � 0

881 - 3. t x - 2.5 t y - 2.5 t z, -2.5 t w + 2. t x - 1.5 t y<, 8-2.5 t w + 2. t x - 1.5 t z, 1 + 0. t w + 2. t y + 2. t z<< � 0

M =

-3 t -2.5 t -2.5 t 0

2 t -1.5 t 0 -2.5 t

2 t 0 -1.5 t -2.5 t

0 2 t 2 t 0

88-3 t, -2.5 t, -2.5 t, 0<, 82 t, -1.5 t, 0, -2.5 t<, 82 t, 0, -1.5 t, -2.5 t<, 80, 2 t, 2 t, 0<<

T =

-1

0

0

-1

;

LinearSolve@M, TD �� MatrixForm

0.75

t

-
0.25

t

-
0.25

t

0.75

t



K =

0.75`

t
-

0.25`

t

-
0.25`

t

0.75`

t

::
0.75

t
, -

0.25

t
>, :-

0.25

t
,
0.75

t
>>

Tr@KD

1.5

t

Eigenvalues@KD

:
0.5

t
,
1.

t
>

SingularValueListAK
-1.5 2

-2.5 0
OE

83.16228, 1.58114<

InverseAK
-1.5 t 2 t

-2.5 t 0
OE

::0, -

0.4

t
>, :

0.5

t
, -

0.3

t
>>

SingularValueListAK
0 -0.4

0.5 -0.3
OE

80.632456, 0.316228<

2   Untitled-1
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