

DEVELOPMENT AND VALIDATION OF MODEL-
BASED SOFTWARE FOR TA-ISG (TORQUE ASSIST-

INTEGRATED STARTER GENERATOR) MOTOR

CONTROLLER FOR HYBRID CAR APPLICATION

BITS ZG629T: Dissertation

by

Mr. Paul Lalthuamsanga

ID No: 2010HZ12772

Dissertation work carried out at

Tata Technologies Ltd (Tata Motors Ltd Premises), Pune.

BIRLA INSTITUTE OF TECHNOLOGY & SCIENCE

PILANI (RAJASTHAN)

March, 2012

DEVELOPMENT AND VALIDATION OF MODEL-
BASED SOFTWARE FOR TA-ISG (TORQUE ASSIST-

INTEGRATED STARTER GENERATOR) MOTOR

CONTROLLER FOR HYBRID CAR APPLICATION

BITS ZG629T: Dissertation

by

Mr. Paul Lalthuamsanga

ID No: 2010HZ12772

Dissertation work carried out at

Tata Technologies Ltd (Tata Motors Ltd Premises), Pune.

Submitted in partial fulfillment of M.S. Software Systems degree

programme

Under the Supervision of

Mr. Prasanta Sarkar, Project Manager,

Tata Technologies Ltd (Tata Motors Ltd Premises), Pune.

BIRLA INSTITUTE OF TECHNOLOGY & SCIENCE

PILANI (RAJASTHAN)

March, 2012

CERTIFICATE

This is to certify that the Dissertation entitled “DEVELOPMENT AND

VALIDATION OF MODEL-BASED SOFTWARE FOR TA-ISG (TORQUE ASSIST-

INTEGRATED STARTER GENERATOR) MOTOR CONTROLLER FOR HYBRID

CAR APPLICATION” and submitted by Paul Lalthuamsanga having ID-No.
2010HZ12772 for the partial fulfillment of the requirements of M.S. (Software

Systems) degree of BITS embodies the bonafide work done by him/her under my
supervision.

 Signature of the Supervisor

Place: PUNE
Date: 2 April 2012 Sd...

Mr. Prasanta Sarkar,

Project Manager,

Tata Technologies Ltd

(Tata Motors Ltd Premises), Pune.

Acknowledgements

I would like thank to all my colleagues, my supervisor, my examiner and the
department head, at Advance engineering Department, Tata Motors Ltd, Pune, for

their support and encouragement in the fulfillment of this project. I would also like
to thank God for giving me good health and good environment to work with good

people around me.

Paul.

ABSTRACT

Title: Development and validation of Model based software for TA-ISG (Torque assist

Integrated starter generator) motor controller for Hybrid Car Application.

Supervisor: Prasanta Sarkar.

Name of student: Paul Lalthuamsanga.

Semester: Second

ID no: 2010HZ12772.

This dissertation gives a way to apply a model-based design for designing and validation of

motor controller for Hybrid Car application. It also highlights a specific methodology for modeling a

microcontroller peripherals and PCB circuitry components in a MATLAB model.

All the system components including software model, processor execution model, PCB circuitry

model, inverter model, motor model, engine model and Hybrid ECU functionality are all modeled in

MATLAB simulink. Each component are modeled first, and then integrated one by one. Model in loop

simulation (MIL) was performed for different functional checking of the control and also for PID

parameter tuning. Fault detection logic and injection into the plan environment are also modeled and

validated in the MIL simulation.

Code generation using Real-Time workshop of MATLAB from the model used in MIL was

performed and porting was done to microchip microcontroller. All measurement and calibration

attribute as taken into account during code generation and porting. Then, Hardware in loop simulation

(HIL) with the controller hardware was performed for hardware and software integration validation. The

above simulation done on MIL was again done on HIL system.

 This report describes above work in detail.

Signature of Student Signature of Supervisor

Paul Lalthuamsanga Prasanta Sarkar

 Tata technologies Ltd (Tata Motors premises)

 Pimpri, Pune.

Date: 2 April 2012

TABLE OF CONTENTS

TABLE OF CONTENTS .. I

LIST OF FIGURES.. IV

LIST OF TABLES...VII

ABBREVIATION..VII

1 CHAPTER 1: INTRODUCTION.. 1

1.1 INTRODUCTION AND PROBLEMS.. 1

1.2 MODEL_BASED DESIGN CONCEPT ... 2

1.2.1 STEPS IN MODEL –BASED DESIGN ... 3
1. Plant modeling.. 3
2. Controller analysis and synthesis.. 3
3. Offline .. 3
4. Deployment .. 4

1.2.2 ADVANTAGES OF MBD ... 4
1.3 TA-ISG MACHINE AND CONTROL CONCEPT... 4

1.3.1 COMMUTATION SEQUENCE .. 6
1.3.2 CLOSED LOOP CONTROL... 9
1.3.3 FIELD WINDING CONTROL.. 10
1.3.4 HALL SENSOR ... 10

1.4 PROJECT FOLDER STRUCTURE.. 12

2 CHAPTER 2: MODELING ... 13

2.1 MODELING: .. 13

2.2 MODELING OF PLAN MODEL .. 14

2.2.1 Power Inverter model ... 15
2.2.1.1 Current sensor .. 15

2.2.2 Motor model ... 16
2.2.2.1 ASSUMPTIONS IN MOTOR MODELING: .. 16
2.2.2.2 Electromagnetic Torque... 17
2.2.2.3 Main simulation Loop subsystems... 18

2.2.2.3.1 Torque and Speed Loop equation and model.. 18
2.2.2.3.2 Sinusoidal back emf generation model ... 19

2.2.2.4 Hall sensor ... 20
2.2.2.5 Hall error simulation .. 21

2.2.3 Battery model.. 21
2.2.4 Engine model .. 22
2.2.5 Hybrid ECU model ... 22

2.3 MODELING OF CONTROLLER .. 23

2.3.1 ASSUMPTION IN CONTROLLER MODELING.. 23
2.3.2 Current shunts monitor Model.. 26
2.3.3 Hall sensor signal circuit model... 26
2.3.4 Digital Input Circuit Model .. 27
2.3.5 PWM Signal Filter circuit Model ... 27
2.3.6 Spare input signal circuit model... 28
2.3.7 MCP2515 CAN Controller circuit model ... 28
2.3.8 Relay driver output circuit model ... 29
2.3.9 Field short circuit detection circuit model.. 29
2.3.10 Heat Sink Temperature sensor interface model ... 30
2.3.11 I Trip Signal Battery circuit model .. 30

 ii

2.3.12 Jumper Circuit Model .. 31
2.3.13 MOSFET driver H-Bridge circuit Model... 31
2.3.14 Voltage Sense Circuit Model ... 32
2.3.15 Three Phase Bridge driver circuit Model .. 33
2.3.16 MCU 18F4431 Chips Model.. 35

2.3.16.1 MCU ADC Block modeling... 35
2.3.16.2 MCU Input Capture Block Modeling... 37
2.3.16.3 TIMER0 timer Module Modeling (for ISR 1 msec Interrupt).. 39
2.3.16.4 TIMER5 MODULE MODELING ... 40
2.3.16.5 MCU Power Control PWM Module Modeling .. 42
2.3.16.6 SOFTWARE MODEL... 46

2.3.16.6.1 FOREGROUND SUBSYSTEM MODEL.. 47
2.3.16.6.1.1 Capture ISR model ... 47

2.3.16.6.1.1.1 Hall Check model... 48
2.3.16.6.1.1.2 Latch logic model... 50
2.3.16.6.1.1.3 Commutation model ... 50
2.3.16.6.1.1.4 Update speed count model ... 51

2.3.16.6.1.2 Current Limiting Subsystem Model ... 52
2.3.16.6.1.2.1 Current Scaling in Fixed point block model... 53
2.3.16.6.1.2.2 Current Fault checking and latching algorithm block model................................ 53
2.3.16.6.1.2.3 PID CONTROL BLOCK MODEL .. 54

2.3.16.6.1.2.3.1 Feedback Filter block model .. 55
2.3.16.6.1.2.3.2 Reference Filter block model ... 56
2.3.16.6.1.2.3.3 PID Control block model ... 56

2.3.16.6.1.3 TIMER1 ISR model ... 57
2.3.16.6.1.4 INT1 ISR (Field short circuit detection) model .. 58
2.3.16.6.1.5 Timer5 Overflow ISR model .. 58

2.3.16.6.2 BACKGROUND SUBSYSTEM MODEL... 59
2.3.16.6.2.1 Time slice Scheduler model.. 59
2.3.16.6.2.2 CAN Manager Model ... 60
2.3.16.6.2.3 State Control Subsystem model .. 61

2.3.16.6.2.3.1 Voltage scaling in fixed-point model ... 61
2.3.16.6.2.3.2 Speed calculation model... 62
2.3.16.6.2.3.3 Fault manager model .. 62
2.3.16.6.2.3.4 ISG Control state-chart model.. 65

2.3.16.6.2.3.4.1 IDLE state .. 65
2.3.16.6.2.3.4.1.1 Fault Reset sub-chart.. 65

2.3.16.6.2.3.4.2 Motor state ... 66
2.3.16.6.2.3.4.2.1 Field-winding on sub-chart .. 66
2.3.16.6.2.3.4.2.2 First Commutation sub-chart ... 66
2.3.16.6.2.3.4.2.3 Commutation and current control sub-chart... 67

2.3.16.6.2.3.4.3 Alternator state... 68
2.3.16.6.2.3.4.3.1 Field Control sub-chart (Alternator mode)... 68
2.3.16.6.2.3.4.3.2 Load response control sub-chart (Alternator mode)............................. 68

3 CHAPTER 3: MODEL-IN-LOOP SIMULATION ... 70

3.1 CONCEPT OF MBD FOR MIL .. 70

3.2 SIMULATION CONFIGURATION.. 70

3.3 SIMULATION RESULTS .. 71

3.3.1 Lock condition from start.. 71
3.3.2 Motor torque higher than load torque.. 72
3.3.3 Lock condition while running ... 72

4 CHAPTER 4: BUILD PROCESS.. 73

4.1 TOOL CHAIN ... 73

4.2 REAL-TIME WORKSHOP BUILD PROCESS ... 74

4.2.1 Subsystem for code generation ... 74

 iii

4.2.2 Source code and A2L file generation.. 75
4.2.2.1 Configure optimization for code generation... 75
4.2.2.2 Configure measurement variable ... 76
4.2.2.3 Configure Calibration parameter.. 77
4.2.2.4 Saving workspace variable... 78
4.2.2.5 Configure A2L Header for 18F4431 ECU ... 78
4.2.2.6 Build all for code generation.. 79

4.3 INTEGRATION OF SOURCE CODE IN MPLAB... 79

4.3.1 Configuration fuses of microchip 18F4431 .. 80
4.3.1.1 Initialization code... 80

4.3.2 Interrupt code – integration.. 81
4.3.3 Background code - integration ... 82
4.3.4 Building in MPLAB and Flash to ECU .. 82

4.4 COMPLETE A2L FILE GENERATION... 83

4.5 RUN-TIME CONTROL... 84

4.5.1 Measurement and calibration... 84
4.5.2 Hybrid ECU simulating Node... 84

5 CHAPTER 5: HARDWARE IN LOOP SIMULATION... 85

5.1 INTRODUCTION AND CHALLENGES IN HIL TESTING.. 85

5.2 DSPACE SYSTEM SETUP .. 86

5.3 TEST RESULT ... 87

5.3.1 Lock condition from start.. 88
5.3.2 Motor torque higher than load torque.. 88
5.3.3 Lock condition while running ... 89
5.3.4 Comparison of control at different rpm.. 89
5.3.5 Fault test ... 90

6 CHAPTER 6: CONCLUSION... 92

6.1 RESULT COMPARISON OF HIL AND MIL... 92

6.1.1 Lock condition .. 92
6.1.2 Motor torque higher than load torque.. 93
6.1.3 Lock condition while running ... 93

6.2 DISCUSSION ... 94

6.3 FUTURE WORK .. 94

APPENDIX I... 95

APPENDIX II ... 96

APPENDIX III.. 99

REFERENCES ... 101

 iv

LIST OF FIGURES

Figure 1: Starting/Torque assist – Battery drives the TA-ISG to start the engine.............. 1

Figure 2: Running – Engine charges the battery through TA-ISG 2

Figure 3: Block diagram of TA-ISG Control.. 5

Figure 4: Hall sensor signal, back emf, output torque and phase current. 6

Figure 5: winding energizing sequence with respect to the hall sensor............................. 7

Figure 6: Control block diagram of Armature winding .. 7

Figure 7 : Field winding control block diagram ... 10

Figure 8 : Hall sensor mounting.. 11

Figure 9 : Hall sensor pattern at 60 degree apart .. 11

Figure 10: Project folder structure .. 12

Figure 11 :Top-level model containing controller and plan ... 13

Figure 12 : Plan model comprises of different components of vehicle. 14

Figure 13 : Power Inverter model of the motor controller.. 15

Figure 14: current sensor model ... 15

Figure 15 : Motor 3-phase star winding simulation with back emf generator.................. 16

Figure 16: Electromagnetic torque model... 17

Figure 17: main simulation loop subsystem ... 18

Figure 18: Torque speed equation realization in Simulink... 19

Figure 19 : sinusoidal back emf model ... 20

Figure 20 : Hall sensor model... 20

Figure 21: Hall error simulation ... 21

Figure 22: Battery model .. 21

Figure 23: Engine model... 22

Figure 24: hybrid ECU model... 22

Figure 25 : Controller PCB model, and traceability ... 24

Figure 26 : Current shunt monitor circuit Model.. 26

Figure 27 : Hall sensor signal circuit model ... 26

Figure 28 : Digital Input Circuit Model.. 27

Figure 29 : PWM Signal Filter circuit Model... 27

Figure 30 : Spare input signal circuit model... 28

Figure 31: MCP2515 CAN Controller circuit model ... 28

Figure 32 : Relay driver output circuit model... 29

Figure 33 : Field short circuit detection circuit model.. 29

Figure 34 : Heat Sink Temperature sensor interface model ... 30

Figure 35 : I Trip Signal Battery circuit model... 30

Figure 36 : Jumper Circuit Model... 31

Figure 37 : MOSFET driver H-Bridge circuit Model... 31

Figure 38 : FAN73832_1 shutdown logic model ... 32

Figure 39 : FAN73832_2 shutdown logic model ... 32

Figure 40 : Voltage Sense Circuit Model ... 32

Figure 41 : Three Phase Bridge driver circuit Model ... 33

Figure 42 : IR3132 functional diagram... 33

 v

Figure 43 : IR2132 functional model.. 34

Figure 44 : IR2132 Latching model.. 34

Figure 45 : Microcontroller model scheme... 35

Figure 46 : MCU ADC block diagram ... 36

Figure 47 : ADC channel conversion and sampling model .. 36

Figure 48 : MCU Input Capture block for IC1 ... 37

Figure 49: MCU Input Capture block for IC2 and IC3 .. 38

Figure 50: Input capture model... 38

Figure 51: Signal line to data converter model ... 39

Figure 52: Capture trigger generator model.. 39

Figure 53: MCU timer 0 block diagram ... 39

Figure 54: Timer 0 interrupt generation model... 40

Figure 55 : MCU Timer 5 Block diagram .. 40

Figure 56 : Timer5 overflow and count model ... 41

Figure 57 : Timer 5 overflow and count state-chart ... 41

Figure 58 : MCU PWM module block diagram ... 42

Figure 59 : PWM module model .. 43

Figure 60 : PWM generator and Period interrupt triggering logic.................................... 43

Figure 61 : Complementary logic block ... 44

Figure 62 : Output Logic block... 45

Figure 63 : De-multiplex Byte block .. 45

Figure 64 : Software model (Background and Foreground Subsystem)........................... 46

Figure 65 : Foreground subsystem model... 47

Figure 66: Capture ISR model .. 48

Figure 67 : Hall error check model ... 48

Figure 68 : Hall error conditions analysis... 49

Figure 69 : Latch logic model... 50

Figure 70: Commutation model .. 50

Figure 71: update speed count model ... 51

Figure 72: combine 16bit and 8bit to 32bit... 51

Figure 73: PWM interrupt or Current control model.. 52

Figure 74: current scaling model ... 53

Figure 75: current fault checks and latch state-chart .. 54

Figure 76: PID controller block model ... 55

Figure 77 : Feedback FIR filter model.. 55

Figure 78: Reference ramp down model... 56

Figure 79: PI controller model.. 56

Figure 80: Timer 1 ISR model .. 57

Figure 81: IR2132 Trip Latch state-chart ... 57

Figure 82: Timer 5 overflow ISR model... 58

Figure 83: Background subsystem model... 59

Figure 84: Time slice scheduler.. 60

Figure 85: CAN manager model... 60

Figure 86: State control subsystem model .. 61

Figure 87: Voltage scaling model ... 61

Figure 88: speed calculation model .. 62

 vi

Figure 89: Fault manager model ... 64

Figure 90: ISG state control chart ... 65

Figure 91: Fault reset chart ... 66

Figure 92: Field winding delay sub-chart ... 66

Figure 93: First commutation sub-chart.. 67

Figure 94: commutation and current control sub-chart... 67

Figure 95: Field control sub-chart... 68

Figure 96: Load response control sub-chart1.. 68

Figure 97: Load response control sub-chart2.. 69

Figure 98: MIL configuration parameter .. 70

Figure 99: Lock condition from start (MIL) ... 71

Figure 100: motor running (MIL) ... 72

Figure 101: Motor lock while running (MIL)... 72

Figure 102: Development tool chain... 73

Figure 103: subsystem for code generation .. 74

Figure 104: configure optimization .. 75

Figure 105: configure hardware implementation.. 75

Figure 106: Configure RTW target link compiler .. 76

Figure 107: configure measurement variables .. 76

Figure 108: Configure Calibration parameters ... 77

Figure 109: saving workspace variable... 78

Figure 110: build using M-script .. 79

Figure 111: fuse setting of 18F ... 80

Figure 112: initialization of peripherals.. 80

Figure 113: ISR subsystems integration ... 81

Figure 114: Integration of input and output of subsystem.. 81

Figure 115: background code integration ... 82

Figure 116: ASAP2 complete GUIDE development .. 83

Figure 117: ASAP2 complete GUI when run ... 83

Figure 118: Hybrid ECU simulator... 84

Figure 119: Hardware interface connection.. 86

Figure 120: dSPACE setup block diagram ... 87

Figure 121: Lock condition from start (HIL).. 88

Figure 122: motor running (HIL).. 88

Figure 123 : motor lock while running (HIL)... 89

Figure 124: control behavior at different rpm... 89

Figure 125: Lock conditions compare MIL and HIL.. 92

Figure 126: motor running compare MIL and HIL .. 93

Figure 127: motor lock while running compare MIL and HIL... 93

 vii

LIST OF TABLES

Table 1: Hall commutation sequences Table .. 5

Table 2 : Sequence of rotating the motor in clockwise direction 8

Table 3: Sequence of rotating the motor in counter-clockwise direction 8

Table 4 : ADC channel assignment .. 37

ABBREVIATION

A Motor Armature Red phase winding marking

A2L ASAP2 standard file

AC Alternating Current

ADC Analog to digital converter

B Motor Armature Yellow phase winding marking

C Motor Armature Blue phase winding marking

CAN Controller area Network

CPU Central processing unit

DC Direct Current

DUT Device under Test

ECU Electronic unit

EMF electromagnetic force

FIFO First in First out

GUI Graphical user interface

HIL Hardware in loop simulation

IGBT insulated gate bipolar transistor

ISG Integrated starter generator

Kd Differential gain

Ki Integral gain

Kp Proportional gain

LTI Linear time invariant

MBD Model based design

MCU Microcontroller unit

MIL Model in loop simulation

MOSFET metal–oxide–semiconductor field-effect transistor

PID Proportional Integral Differential

PCB Printed circuit board

PWM Pulse width modulation

 viii

RTW Real-time workshop

SD Shutdown

SPI Serial peripheral Interface

SCI Serial Communication Interface

TA-ISG Torque assist-integrated starter generator

Ts Sampling time

RAM Random access memory

IDE Integrated development environment

GUIDE Graphical user interface development environment

P Number of Pole in machine

CCP CAN calibration protocol

ISR Interrupt service routine

PI Proportional Integral

uC Microcontroller

 1

1 CHAPTER 1: INTRODUCTION

Hybrid Car Technology is one of the technologies which could be the solution for

global environment pollution problems. Such a technology would required many aggregates

on the power-train of the vehicle which comprises of engine or fuel-cell, battery and motor.

Hybrid Car can be classified according to the level of hybridization, called hybridization factor,

the ratio of electric power provided to the wheel of the total power deliver to the wheel.

Depending on values of the hybridization factor, there can be strong, medium, and mild

hybridize Car. In a strong hybrid car application, electric motor could alone drive the wheel

without engine assistance, but in a medium or mild hybrid car application, motor needs engine

assist.

We will be focusing on the mild hybrid application where we are using a Claw Pole

electric machine (TA-ISG) [Fig1] as a motor. In a mild hybrid application, the TA-ISG

(Torque assist integrated starter generator) machine acts as the starter to crank the engine ,

provides torque assist to engine when the vehicle accelerates [Fig1], and also acts as the

generator to charge the battery when it doesn’t operate in motoring mode [Fig2]. This mild

hybrid system using a TA-ISG can be adapted with conventional engine vehicles with only

minimal system changes using belt system linking to engine. It can provide good improvement

in fuel consumption.

Figure 1: Starting/Torque assist – Battery drives the TA-ISG to start the engine

1.1 INTRODUCTION AND PROBLEMS

 2

Figure 2: Running – Engine charges the battery through TA-ISG

 These power-train systems require a complex computerized control system,

communication, and so handling a hand-written C source codes algorithm would be a

cumbersome. So, a modern approach of MATLAB model based design was used, where there

can be a full traceability of model from requirement documents to the actual program codes

dumped to the microcontroller. Early finding of software bugs as well as logical mistake can

be done before actual testing on test bench. So this dissertation project addresses those issues

using MIL (Model in loop simulation) and HIL (Hardware in loop simulation) validation

methodology. Today, vehicle manufacturers are moving towards model based software

development and simulation for easy maintenance and control of the complex control

algorithm. In this project, we will be focusing on the development and validation of TA-ISG

controller software in which model-based design approach was adopted and validation process

using MIL and HIL was used, before deployment to the actual working environment.

Model-Based Design (MBD) is a mathematical and visual method of addressing

problems associated with designing complex control, signal processing and communication

systems. It is used in many motion controls, industrial equipment, aerospace, and automotive

applications. Model-based design is a methodology applied in designing embedded software.

MBD provides an efficient approach for establishing a common framework for

communication throughout the design process while supporting the development cycle ("V"

1.2 MODEL_BASED DESIGN CONCEPT

 3

diagram). In Model-based design of control systems, development is manifested in these four

steps: 1) modeling a plant, 2) analyzing and synthesizing a controller for the plant, 3)

simulating the plant and controller, and 4) integrating all these phases by deploying the

controller. The model-based design paradigm is significantly different from traditional design

methodology. Rather than using complex structures and extensive software code, designers

can use MBD to define models with advanced functional characteristics using continuous-time

and discrete-time building blocks. These built models used with simulation tools can lead to

rapid prototyping, software testing, and verification. Not only is the testing and verification

process enhanced, but also, in some cases, hardware-in-the-loop simulation can be used with

the new design paradigm to perform testing of dynamic effects on the system more quickly

and much more efficiently than with traditional design methodology.

1.2.1 STEPS IN MODEL –BASED DESIGN

The main steps in MBD approach are:

1. Plant modeling. Plant modeling can be data-driven or first principles based. Data-

driven plant modeling uses techniques such as System identification. With system

identification, the plant model is identified by acquiring and processing raw data from

a real-world system and choosing a mathematical algorithm with which to identify a

mathematical model. Various kinds of analysis and simulations can be performed using

the identified model before it is used to design a model-based controller. First

principles based modeling is based on creating a block diagram model that implements

known differential-algebraic equations governing plant dynamics. A type of first

principles based modeling is physical modeling, where a model is created by

connecting blocks that represent physical elements that the actual plant consists of.

2. Controller analysis and synthesis. The mathematical model conceived in step 1 is

used to identify dynamic characteristics of the plant model. A controller can be then be

synthesized based on these characteristics.

3. Offline simulation and real-time simulation. The time response of the dynamic

system to complex, time-varying inputs is investigated. This is done by simulating a

simple LTI or a non-linear model of the plant with the controller. Simulation allows

specification, requirements, and modeling errors to be found immediately, rather than

later in the design effort. Real-time simulation can be done by automatically

 4

generating code for the controller developed in step 3. This code can be deployed to a

special real-time prototyping computer that can run the code and control the operation

of the plant. If plant prototype is not available, or testing on the prototype is dangerous

or expensive, code can be automatically generated from the plant model. This code

can be deployed to the special real-time computer that can be connected to the target

processor with running controller code. This way, controller can be tested in real-time

against a real-time plant model.

4. Deployment. Ideally this is done via automatic code generation from the controller

developed in step 3. It is unlikely that the controller will work on the actual system as

well as it did in simulation, so an iterative debugging process is done by analyzing

results on the actual target and updating the controller model. Model based design

tools allow all these iterative steps to be performed in a unified visual environment.

1.2.2 ADVANTAGES OF MBD

Some of the notable advantages MBD offers in comparison to the traditional approach are:

� MBD provides a common design environment, which facilitates general

communication, data analysis, and system verification between development groups.

� Engineers can locate and correct errors early in system design, when the time and

financial impact of system modification are minimized.

� Design reuse, for upgrades and for derivative systems with expanded capabilities, is

facilitated.

Torque assist Integrated Starter Generator (TAISG) machine [Fig 3] is a claw-pole

electric machine which has a rotor winding, and brush contact. The rotor flux can be

individually controlled through H-Bridge in the Power inverter block [Fig 3]. Three phase

winding armature are controlled through a 3-phase Bridge in the Power inverter block [Fig 3].

The rotor position is senses using hall sensors which are coupled to the TAISG machine [Fig

1.3 TA-ISG MACHINE AND CONTROL CONCEPT

 5

3]. Intelligent controller PCB was designed with microcontroller for computerize software

control which interface with power inverter and machine.

Figure 3: Block diagram of TA-ISG Control

Torque assist Integrated Starter Generator (TAISG) machine [Figure 3] is a claw-pole

electric machine which has a rotor winding, and brush contact. The rotor flux can be

controlled using an H-Bridge as shown in the Figure above. The Machine has 12 poles (P)

armature star winding i.e. P/2 = 6 electrical cycles. Each electrical cycle will have 6

commutations sequence according to the table [Table 1] shown below for phase Red(A), phase

Yellow (B) and phase Blue (C) conductions.

Table 1: Hall commutation sequences Table

sequence Hall signal (A,B,C) Phase Conduction

1 0 A+C-

2 1 A+B-

3 3 C+B-

4 7 C+A-

5 6 B+A-

6 4 B+C-

 6

1.3.1 COMMUTATION SEQUENCE

Figure 4 shows an example of Hall sensor signals with respect to back EMF and the

phase current. Figure 5 shows the switching sequence that should be followed with respect to

the Hall sensors. The sequence numbers on Figure 4 correspond to the numbers given in

Figure 5. For every 60 electrical degrees of rotation, one of the Hall sensors changes the state.

It takes six steps to complete an electrical cycle. In synchronous, with every 60 electrical

degrees, the phase current switching should be updated. However, one electrical cycle may not

correspond to a complete mechanical revolution of the rotor.

Figure 4: Hall sensor signal, back emf, output torque and phase current.

 7

Figure 5: winding energizing sequence with respect to the hall sensor

Figure 6: Control block diagram of Armature winding

 8

The number of electrical cycles to be repeated to complete a mechanical rotation is

determined by the rotor pole pairs. For each rotor pole pairs, one electrical cycle is completed.

So, the number of electrical cycles/rotations equals the rotor pole pairs. Figure 6 shows a

block diagram of the controller used to control a BLDC motor. Q0 to Q5 are the power

switches controlled by the PIC18FXX31 microcontroller. Based on the motor voltage and

current ratings, these switches can be MOSFETs, or IGBTs, or simple bipolar transistors.

Table 2 : Sequence of rotating the motor in clockwise direction

Table 3: Sequence of rotating the motor in counter-clockwise direction

Table 2 and Table 3 shows the sequences in which these power switches should be

switched based on the Hall sensor inputs, A, B and C. Table 2 is for clockwise rotation of the

motor and Table 3 is for counter clockwise motor rotation. This is an example of Hall sensor

signals having a 60 degree phase shift with respect to each other. As we have previously

discussed in the “Hall Sensors” section, the Hall sensors may be at 60° or 120° phase shift to

each other. When deriving a controller for a particular motor, the sequence defined by the

motor manufacturer should be followed. Referring to Figure 6, if the signals marked by

PWMx are switched ON or OFF according to the sequence, the motor will run at the rated

speed. This is assuming that the DC bus voltage is equal to the motor rated voltage, plus any

 9

losses across the switches. To vary the speed, these signals should be Pulse Width Modulated

(PWM) at a much higher frequency than the motor frequency. As a rule of thumb, the PWM

frequency should be at least 10 times that of the maximum frequency of the motor. When the

duty cycle of PWM is varied within the sequences, the average voltage supplied to the stator

reduces, thus reducing the speed. Another advantage of having PWM is that, if the DC bus

voltage is much higher than the motor rated voltage, the motor can be controlled by limiting

the percentage of PWM duty cycle corresponding to that of the motor rated voltage. This adds

flexibility to the controller to hook up motors with different rated voltages and match the

average voltage output by the controller, to the motor rated voltage, by controlling the PWM

duty cycle. There are different approaches of controls. If the PWM signals are limited in the

microcontroller, the upper switches can be turned on for the entire time during the

corresponding sequence and the corresponding lower switch can be controlled by the required

duty cycle on PWM. The potentiometer, connected to the analog-to-digital converter channel

in Figure 6, is for setting a speed reference. Based on this input voltage, the PWM duty cycle

should be calculated.

1.3.2 CLOSED LOOP CONTROL

The speed/Torque can be controlled in a closed loop by measuring the actual speed of

the motor, or current along the phases. The error in the set speed/Torque and actual

speed/torque is calculated. A Proportional plus Integral plus Derivative (P.I.D.) controller can

be used to amplify the speed/torque error and dynamically adjust the PWM duty cycle. For

low-cost, low-resolution speed requirements, the Hall signals can be used to measure the

speed feedback. A timer from the PIC18FXX31 can be used to count between two Hall

transitions. With this count, the actual speed of the motor can be calculated. For high-

resolution speed measurements, an optical encoder can be fitted onto the motor, which gives

two signals with 90 degrees phase difference. Using these signals, both speed and direction of

rotation can be determined. Also, most of the encoders give a third index signal, which is one

pulse per revolution. This can be used for positioning applications. Optical encoders are

available with different choices of Pulse per Revolution (PPR), ranging from hundreds to

thousands.

 10

1.3.3 FIELD WINDING CONTROL

Field winding in a TAISG machine are separately control using H-Bridge where we

can control the amount of current on rotor winding and the direction of current. Figure 7

shows the detail block diagram as below.

Figure 7 : Field winding control block diagram

IGBT or MOSFET driver as shown in the figure above is an H-Bridge driver which

gives a complementary PWM on each leg of the high and low MOSFET/IGBT. While PWM1

is in PWM and PWM0 is low, the complementary PWM will appear on the PWM1H and

PWM1L signal, and PWM0H will be low and PWM 1L will be high. Thereby, the current will

be in the direction of A to B in the rotor/field winding, and the amount of current would be

control using duty on PWM1.

During motoring operation, a full duty is applied which will give maximum rotor flux

at specific current direction say A to B. Field duty can also be used to control rotor flux during

alternating operation and field weakening operation.

1.3.4 HALL SENSOR

As mounting diagram shown below, magnetic cup is mounted on the rotor, and a fixed

hall sensor is mounted on the body of the motor. Magnetic cup consist of alternate 6 North

poles and 6 South poles magnet ring. When the magnetic cup rotate the three hall sensor give a

sequence of hall signal as shown in the consecutive figure below.

 11

Figure 8 : Hall sensor mounting

Figure 9 : Hall sensor pattern at 60 degree apart

The hall sensor at 60 degree apart was used in our machine so the hall sequences will

be 000(0), 001(1), 011(3), 111(7), 110(6), and 100(4). So, out of the 8 combination hall

signals 101(5) and 010(2) will not be appearing. There will be 6 hall changes within one

electrical cycle, so 36 hall changes in one mechanical rotation for 12 pole machine.

 12

Specific folder structure is maintained in this project as shown below

Figure 10: Project folder structure

The project folders are maintained in a hierarchical manner do to its complex tool

chain, and are mentioned below:-

• Main < project folder>: This main folder can be given any name. This folder

contains the MPLAB project and its aggregates. It contains sub-folder as

mentioned below:-

o MATLAB model: This folder contains MATLAB model and all

MATLAB related files associated with the model

o ASAP2POST_TML: This folder contain ASAP2 complete file

generator M-script, GUI, and contain hex file and A2L files.

o Platform_code: This folder contains the hand written code like

platform code-hardware driver.c, ccp.c, etc.

1.4 PROJECT FOLDER STRUCTURE

 13

2 CHAPTER 2: MODELING

Modeling is done on MATLAB Simulink [1] using native blocksets of Simulink

library. Modeling a control system involved two parts – Plan model and Controller model.

Controller model consist of the parts of system on focus, and the plan model consist of the

remaining system which is on the scope of the design. Since the focus of this development is

on motor controller PCB design and development, we segregate the Controller PCB part from

the whole system as a one subsystem named ISG_CONTROLLER_PCB as show in Figure

below, and the rest of the system including Power inverter, battery, engine and vehicle models

sit on the plan part of the model. Figure below shows the topmost level model of the

MATLAB Model, which consist of Plan model and controller PCB model.

Figure 11 :Top-level model containing controller and plan

2.1 Modeling:

 14

Modeling is done on MATLAB Simulink using native blocksets of Simulink library.

Plan model comprises of power inverter, motor, battery, engine, vehicle ECU, and the Vehicle

subsystem as shown in [Figure 12]. SimPower System physical blocksets of Simulink library

are used in the model for power MOSFETs, resistors, inductors, capacitors, and voltage

sources. Apart from the motor, inverter and battery subsystem, the hybrid ECU and Engine

cranking Load torque are included. Those hybrid ECU and Engine subsystems are modeled for

future addition to simulate the whole vehicle dynamics for controller software validation.

Figure 12 : Plan model comprises of different components of vehicle.

2.2 Modeling of Plan Model

 15

2.2.1 Power Inverter model

This model consists of 3 phase inverter, DC link capacitor, H-bridge, H-bridge shunt

resistor, and current sensors. As shown in figure below, input signal to inverter are switching

signal of MOSFET. Since these MOSFETs and Diodes are physical model of SimPower

System it can be connected as like a wired connection in a physical world. The black color

represents physical wire, and red lines represent Simulink signals. SimPower System sensors

library blocks like current measurement blocks, voltage measurement blocks are used to give

feedback signal to controller through current sensor subsystem as shown in gray box below.

Figure 13 : Power Inverter model of the motor controller

2.2.1.1 Current sensor

Current sensor subsystem converts the ampere value to sensor output voltage level (0V

to 5V) as shown below, where 2.5 V represent zero current.

Figure 14: current sensor model

 16

2.2.2 Motor model

Motor can be simulated as shown in figure below using SimPower system model and

logical or mathematical Simulink subsystem model. Armature winding are modeled in star

configuration using resistors, inductors and voltage sources as shown by black wire

connection. Back emf is simulated using voltage source which are adjusted from Simulink

signals subsystems depending upon speed of motor. Back emf is generated using mathematical

equations from MAIN_SIM_LOOP as shown below. This subsystem consists of Simulink

subsystem like electromagnetic torque, main simulation loop, hall-sensor and hall-sensor

simulation subsystems.

Figure 15 : Motor 3-phase star winding simulation with back emf generator.

2.2.2.1 ASSUMPTIONS IN MOTOR MODELING:

• Magnetic circuit saturation is ignored.

• Stator resistance, self and mutual inductance of all phases are equal and constant.

• Hysteresis and eddy current losses are eliminated.

• All semiconductor switches are ideal.

• Mutual inductance is not considered.

 17

2.2.2.2 Electromagnetic Torque

The torque generated by the machine depends on the phase current of each winding,

flux pattern reference and machine constant.

Figure 16: Electromagnetic torque model

The equation shown below is realized in the above model

Equation 1: Electromagnetic torque equation

()ccbbaame IIIKT φφφ ++=

Where,

eT - Electromagnetic Torque

mK - Machine constant

cba III ,, - Phase current

cba φφφ ,, - Flux pattern in per unit

The flux pattern is generated from sinusoidal back-emf subsystem shown in Figure 17:

main simulation loop subsystem.

 18

2.2.2.3 Main simulation Loop subsystems

 This subsystem consists of two subsystems – torque and speed loop, and sinusoidal

back emf subsystem. Machine inertia is not considered and is left with constant zero as shown

below

Figure 17: main simulation loop subsystem

2.2.2.3.1 Torque and Speed Loop equation and model

 The core of the simulation lies on the load torque equation shown below

Equation 2 : Torque speed equation

t
JTTe

∂

∂
=−

ω
l

Where,

eT - Electromagnetic torque produces by the motor

l
T - Load torque applied

J - Total inertia which includes Engine inertia, the machine inertia and all other

component on the shaft.

t∂

∂ω
 - Angular speed, where, snπω 2= such that sn in rps (revolution per sec).

 19

The above equation can be realized a MATLAB Simulink model as shown below.

Figure 18: Torque speed equation realization in Simulink.

Load Torque lT is simulated from the frictional model of Engine, given in the Engine

subsystem. Load Torque from engine lT varies with the speed of the crank shaft of the engine

which is couple to ISG machine using belt and the belt ratio should also be consider in the

model.

2.2.2.3.2 Sinusoidal back emf generation model

The back emf pattern can be generated by a sinusoidal signal generator, where phase

shift are applied for each phase as shown below. Position in radian is taken as an input which

varies from 0 to 2*pi, and repeat itself. The frequency and amplitude will be decided by the

speed of the machine.

 20

Figure 19 : sinusoidal back emf model

2.2.2.4 Hall sensor

Hall sensor can be simply model in Simulink using look-up table where the pattern of

hall signal is generated at different rotor position from 0 to 360 degree. The input to this

subsystem is a rotor position which varies from 0 to 360 repetitively depending on the

machine speed.

Figure 20 : Hall sensor model

 21

2.2.2.5 Hall error simulation

Hall sensor fault condition can be created by the model shown below. Using this

subsystem fault can be injected during run-time of the simulation manually. Shorted to Ground

and shorted to supply of hall sensor signal for each combination can be simulated.

Figure 21: Hall error simulation

2.2.3 Battery model

Battery is modeled using an ideal voltage source with internal resistance of SimPower

system block as shown below. Four 12V battery are used which has an internal resistance of

32 mOhm.

Figure 22: Battery model

 22

2.2.4 Engine model

The friction torque and inertia components of the engine are only modeled here. The

cranking load behavior of the engine can be simulated using this model.

Figure 23: Engine model

2.2.5 Hybrid ECU model

Function of Hybrid is the main control system of the whole vehicle which send

command to all other ECU in the vehicle. In this simulation CAN message is only simulated.

Please note that motor controller are controlled only by Hybrid ECU through CAN message as

shown below.

Figure 24: hybrid ECU model

 23

Modeling of the Controller includes PCB circuitry, Microcontroller and its Software

algorithm. The complexity of this controller model is that the hardware component of the PCB

are modeled to an extent of its logical functions with an aim to be able to auto-code directly

from subsystem of the <model>.mdl file of the model used in the MIL simulation. Processor

execution timing and interrupts are also modeled in MATLAB Simulink which are as per the

specific configuration of the 18F microcontroller used. This is one of the most interesting parts

of this dissertation project that it is one typical way of modeling, which could help designer

working on the same model for both simulation and auto-coding. Part of software subsystem

to be auto-coded will be discuss on the later part, and porting of generated code to the

microcontroller platform code will also be discuss on Code generation chapter of this report.

Segregation of electrical circuitry part of the controller PCB are done as it is on the

physical PCB, and part of the digital circuitry inside the microcontroller are all model on its

logical aspect on module-wise subsystem. Software parts of the system are then model inside

as one subsystem around the hardware and digital electronics subsystem model. This type of

modeling would help to solve software bugs before actual implementation. It also gives an

idea of the hardware-software interface, hardware functionality of the peripherals.

2.3.1 ASSUMPTION IN CONTROLLER MODELING

1. Active component of the electronics like capacitor, inductor, charging and discharging

are not model. Only logical functions of the chips and the circuit are modeled.

2. Some logical functions of some chips are not considered for simplicity.

3. Sampling rate is fixed to 1 usec, fixed-step. This is done due to better PWM

generation of 10/7.8 KHz (100/128 usec period), we can have 1/0.7v% resolution of

duty.

4. Electromagnetic interference and electrostatic discharge are not considered.

5. Filter circuit functions like filtering delay etc are neglected in the model.

6. Configuration registers setting of MCU and its peripherals are fixed.

2.3 Modeling of Controller

 24

Figure 25 : Controller PCB model, and traceability

As shown in the figure above, modeling of functionality of PCB circuitry and IC are

possible by looking into the actual the functional requirements in the simulation. All the PCB

circuitries are modeled and are put to separate subsystems.

 25

PCB consists of subsystem listed as below:-

1. Current shunt monitor.

2. Digital input circuit.

3. Field short circuit detection.

4. Hall sensor signal circuit.

5. Heat sink temperature sensor circuit.

6. I-Trip signal Battery circuit.

7. Jumper circuit.

8. MCP2515 CAN Controller circuit.

9. MCU 18F4431 Chips.

10. MOSFET driver H-Bridge circuit.

11. Relay driver circuit.

12. Spare input signal circuit.

13. Three-phase Bridge driver circuit.

14. PWM signal filter circuit.

15. Voltage sense signal circuit.

Since, we neglect the filtering logic in our modeling and simulation, we could directly

connect input and output in many subsystem as shown in the next section.

 26

2.3.2 Current shunts monitor Model

Figure 26 : Current shunt monitor circuit Model

2.3.3 Hall sensor signal circuit model

Figure 27 : Hall sensor signal circuit model

 27

2.3.4 Digital Input Circuit Model

Figure 28 : Digital Input Circuit Model

2.3.5 PWM Signal Filter circuit Model

Figure 29 : PWM Signal Filter circuit Model

 28

2.3.6 Spare input signal circuit model

Figure 30 : Spare input signal circuit model

2.3.7 MCP2515 CAN Controller circuit model

Figure 31: MCP2515 CAN Controller circuit model

 29

2.3.8 Relay driver output circuit model

The main function of Relay driver is to latch out serial data from SPI to a parallel

logic, which are modeled as shown below.

Figure 32 : Relay driver output circuit model

2.3.9 Field short circuit detection circuit model

As shown in figure 10, the field shunt resistor voltage is taken as input to this circuit

which is a very low voltage, and is amplify and given to a comparator circuit. It is then

compare with a know threshold voltage which is selected depending on trip current required.

Since the H-Bridge driver chip shutdown does not latch the SD signal, microcontroller output

latch is provided to latch through software.

Figure 33 : Field short circuit detection circuit model

 30

2.3.10 Heat Sink Temperature sensor interface model

Thermistor sensor from the power inverter heat sink is connected to the circuit shown

below. Threshold is set using potential divider circuit which is model the same way in a

MATLAB Simulink model.

Figure 34 : Heat Sink Temperature sensor interface model

2.3.11 I Trip Signal Battery circuit model

This subsystem senses the specific threshold voltage (over voltage) of battery, which

give trip signal to the 3-phase driver chip.

Figure 35 : I Trip Signal Battery circuit model

 31

2.3.12 Jumper Circuit Model

Jumper on the PCB which route anyone of the signal exclusively to uC pin.

Figure 36 : Jumper Circuit Model

2.3.13 MOSFET driver H-Bridge circuit Model

Two FAN73832 are used to driver two leg of MOSFET in complimentary with dead-

time, and with a shutdown pin controlled through uC and trip circuit as in figure 21. Shutdown

logic model are shown in the subsequent figure 26 and 27.

Figure 37 : MOSFET driver H-Bridge circuit Model

 32

Figure 38 : FAN73832_1 shutdown logic model

Figure 39 : FAN73832_2 shutdown logic model

2.3.14 Voltage Sense Circuit Model

Power board battery voltage signal are wire directly to the PCB, which are higher

voltage (say 48V) and are needed to be divided down to uC sensible voltage level using

potential divider circuit as shown below

Figure 40 : Voltage Sense Circuit Model

 33

2.3.15 Three Phase Bridge driver circuit Model

IR2132 the three phase driver chips are model on its functional excluding the bootstrap

capacitor and diode. Fault latch and fault shutdown logic are modeled as shown below in the

consecutive figures below.

Figure 41 : Three Phase Bridge driver circuit Model

Figure 42 : IR3132 functional diagram

 34

Fault Latch are reset by giving all 3 low input together for sometime as modeled below

figure, state-chart is used to model fault state latch.

Figure 43 : IR2132 functional model

Figure 44 : IR2132 Latching model

 35

2.3.16 MCU 18F4431 Chips Model

 This subsystem consists of the CPU and the peripheral digital electronics inside

the physical uC chips, as shown in the figure below. CPU functionalities are model as

software which acts as the main control software from where uC C-code will be generated.

Each of the peripheral modules is also modeled on a separate subsystem as shown in figure 33.

Figure 45 : Microcontroller model scheme

2.3.16.1 MCU ADC Block modeling

18F4431 chip ADC channel are group into 4 groups- A, B, C and D. Two channels at a

time can be sampled together, and conversion can be done consecutively and can be routed to

a 4 FIFO buffer as shown below. In this ADC modeling in MATLAB, we neglect this

complexity of FIFO and channel multiplexing. So, direct conversion logic is modeled for each

ADC channel.

 36

Figure 46 : MCU ADC block diagram

Figure 47 : ADC channel conversion and sampling model

ADC modeling is done for each 5 channels used which are used for sensing analog

signal of currents and voltage signals. Table below highlights the ADC channels used with

details, and modeling is same for each channel as given in above figure 35.

 37

Table 4 : ADC channel assignment

ADC

Channel

ADC

Grouping

Port

Group

18F Pin

No

Signal symbols Signal Descriptions

AN0 A RA0 19 I_SENSE_R R-phase current

AN5 B RA5 24 I_SENSE_Y Y-phase current

AN8 A RE2 27 I_SENSE_B B-phase current

AN7 D RE1 26 VBAT_SEN Bus Voltage

AN6 C RE0 25 I_SENSE Bus Current

2.3.16.2 MCU Input Capture Block Modeling

Input channel (IC1) includes a special event trigger that can be configured for use in

Velocity Measurement mode. Its block diagram is shown in Figure below. IC2 and IC3 are

similar, but lack the special event trigger features or additional velocity-measurement logic. A

representative block diagram is shown in Figure below. Please note that the time base is

Timer5.

Figure 48 : MCU Input Capture block for IC1

 38

Figure 49: MCU Input Capture block for IC2 and IC3

Here, capture triggering module and line-to-data are model, all other complexity are

not model, but timer 5 special event reset is model in figure 44 using a state-chart, details can

be found on Timer 5 module modeling in section 2.3.15.4.

Figure 50: Input capture model

 39

Figure 51: Signal line to data converter model

Figure 52: Capture trigger generator model

2.3.16.3 TIMER0 timer Module Modeling (for ISR 1 msec Interrupt)

Figure 53: MCU timer 0 block diagram

 40

Timer 0 is modeled as a pulse generator which gives rising edge of pulse at specific

interval of time, and is used to trigger the timer0 ISR subsystem inside the software

foreground subsystem.

Figure 54: Timer 0 interrupt generation model

2.3.16.4 TIMER5 MODULE MODELING

Figure 55 : MCU Timer 5 Block diagram

 41

Timer 5 module block diagram as is inside the microcontroller is shown above. Timer

5 is used for hall sensor signal change time counter, which is used for speed calculation.

Overflow and resetting of timer are taken care inside the software foreground subsystem,

resetting is done on every instant of hall change, and overflow is taken care using timer5

overflow interrupt.

Figure 56 : Timer5 overflow and count model

This part of the model is not consider in the software since it works on the digital

peripheral of the uC digital electronics, but are configure through special function register

setting, during the initialization phase of uC peripheral registers. This subsystem is sampled at

base model sampling rate i.e. 1usec, which is the resolution of the counter.

Figure 57 : Timer 5 overflow and count state-chart

 42

2.3.16.5 MCU Power Control PWM Module Modeling

Figure 58 : MCU PWM module block diagram

Power PWM module block diagram of 18F4431 is shown above, which consists of

configuration and functional register, along with the PWM generator, dead-time generator and

the output driver blocks. The special event trigger and dead-time generator are not model in

this model. Complimentary logic and output override logic are digitally wired inside output

driver block which are control through PWMCON0, OVDCOND and OVDCONS register.

OVDCOND and OVDCONS registers are used to define the PWM override options. The

OVDCOND register contains eight bits, POVD7:POVD0 that determine which PWM I/O pins

will be overridden. The OVDCONS register contains eight bits, POUT7:POUT0, that

determine the state of the PWM I/O pins when a particular output is overridden via the POVD

bits. The POVD bits are active-low control bits. When the POVD bits are set, the

corresponding POUT bit will have no effect on the PWM output. In other words, the pins

corresponding to POVD bits that are set will have the duty PWM cycle set by the PDC

registers. When one of the POVD bits is cleared, the output on the corresponding PWM I/O

 43

pin will be determined by the state of the POUT bit. When a POUT bit is set, the PWM pin

will be driven to its active state. When the POUT bit is cleared, the PWM pin will be driven to

its inactive state. The above mention logic is model as below.

Figure 59 : PWM module model

The PWM generator block is model in state-chart as given with a base sampling rate of

1 usec. PWM period interrupt trigger pulse is also modeled, along with this PWM period

could be set externally depending on the PWM frequency used for switching the MOSFET

(say 10 KHz, 100usec).

Figure 60 : PWM generator and Period interrupt triggering logic

 44

The output override control block are model in consecutive figures 49 through 51 and

are self explanatory. Complimentary logic is model as given below which are control by

PWMCON0 (bit3, bit2, bit1 and bit0) register. If else signal routing block call switch in

Simulink blockset is used to do that operation as shown.

Figure 61 : Complementary logic block

 45

Figure 62 : Output Logic block

OVDCOND, OVDCONS are 8 bit register, where each bit field represents the override

setting for each channel of PWM signal. So, demux block is model as given below to latch out

data to signal lines for controlling PWM output override in figure 50.

Figure 63 : De-multiplex Byte block

 46

2.3.16.6 SOFTWARE MODEL

 This subsystem is from where we generated the code which goes directly to the

microcontroller. C code to be dump to microcontroller are auto-coded using real-time

workshop from this level of subsystem. It consists of foreground and background subsystems

which are communicated by global storage blocksets of Simulink, and some of the signal are

loop back through unit delay block. Foreground are interrupt which are executed on timer or

external event, background at task are function which are executed on the forever while loop

inside the main function in C programming.

Figure 64 : Software model (Background and Foreground Subsystem)

 47

2.3.16.6.1 FOREGROUND SUBSYSTEM MODEL

Foreground subsystem consist of event based and timer based trigger subsystem. Event

based trigger subsystem comprises of Hall event capture, PWM period event capture interrupt,

and Trip event interrupt. Timer based trigger subsystem comprises of Timer0 periodic

interrupt and Timer5 overflow interrupt. All subsystems in the foreground subsystem are

trigger based subsystems.

Figure 65 : Foreground subsystem model

2.3.16.6.1.1 Capture ISR model

This subsystem is trigger on every hall change on any of the hall sensor signals

generated through the peripheral subsystem of the uC. The source of this subsystem input

could be referred in section MCU input capture block modeling, and MCU Timer 5 module.

Under this subsystem there are four subsystems-Hall checks, Latch logic, commutation and

update speed count.

 48

Figure 66: Capture ISR model

2.3.16.6.1.1.1 Hall Check model

Under this system the hall sequence is monitor all the time, whenever there is wrong

sequence or reversal, output signal is made high accordingly.

Figure 67 : Hall error check model

 49

Figure 68 : Hall error conditions analysis

Hall sensor signal are analyze on each of the probable condition when shorted to

ground or shorted to supply as shown in figure above. Accordingly the hall check algorithm is

modeled.

 50

2.3.16.6.1.1.2 Latch logic model

This state-chart is same with the latch logic given before, it will hold the fault status

until reset signal appear.

Figure 69 : Latch logic model

2.3.16.6.1.1.3 Commutation model

During motoring operation, the switching pattern should be change on every hall signal

change. This subsystem switches the pattern of switch configuration depending on hall sensor

signal. Occurrence of hall error will switch off all MOSFET. This subsystem is enabled only

when commutation enable flag is raise from the background state control chart. Note that only

pattern of MOSFET switching are only decided by PWM override which is controlled from

this subsystem.

Figure 70: Commutation model

 51

2.3.16.6.1.1.4 Update speed count model

Timer 5 is used to measure the time between one electrical cycles of the machine, so

this subsystem is enable on whenever hall status is 1 as shown in capture ISR model. Note that

there will be 6 electrical cycle for mechanical one rotation for a 12 pole machine. T5 counter

count a tick of 1 usec resolution in the microcontroller hardware. So, the accumulated count is

read and noted to a global storage variable as shown below. But, there might be a case that, T5

16-bit counter overflow before hall status change to 1. In this case, a timer 5 overflow counter

value will be updated on timer 5 overflow interrupt routine. 16 bit count value and number of

overflow (8-bit) should be combined to 32-bit counter as shown below. So, speed count value

of 32-bit is used in background to calculate speed in rpm.

Figure 71: update speed count model

Whenever timer5 has been overflow or overflow count is not zero, the overflow

counter will be reset.

Figure 72: combine 16bit and 8bit to 32bit

 52

2.3.16.6.1.2 Current Limiting Subsystem Model

 This is the main control model which controlled the motor current using PID

algorithm, and then controls torque. This subsystem will be trigger on every PWM period, so

if the PWM period is 10/7.8 KHz, it will be trigger at instances of 100/128 usec. All phase

current and bus current are sensed and converted to fixed-point engineering value (ampere) as

shown in the figure below as a four small subsystems on left hand side. Other two subsystems

are over current fault checking and the PID controller. Most subsystems in this current

limiting subsystem are enabled at all time except that PID controller is enabled only when

flagged by background state control. Any current faults will immediately shutdown the PID

control which intern shut off the motor. Direct PWM duty control option is provided which

directly control armature PWM duty over CAN interface for debugging and system checking

during development.

Figure 73: PWM interrupt or Current control model

 53

 Current limiting subsystem consists of current scaling block for each channel,

fault checking and latch logic for each current channel, and the PID controller. Let us go

through each of the block and study the functions of it one by one.

2.3.16.6.1.2.1 Current Scaling in Fixed point block model

ADC converted value need to be scaled to ampere value for the strategy, so fixed point

scale value is chosen depending on the sensor specification, and are multiply with the ADC

offset corrected value. ADC offset correction are done using initial start-up ADC value when

the uC is first switch-on.

Figure 74: current scaling model

2.3.16.6.1.2.2 Current Fault checking and latching algorithm block model

Current value are check on both positive and negative extreme values, so if over

current occurs on any current signal, a specific bit in the current fault variable is set. So,

current fault can be uniquely identified. Each current limit checks are done on exclusive sub-

state, which means that all checking are done paralleled within one sampling, and then if any

fault occurs, it jumps to fault latch state and cannot jump back unless trip reset event occurs.

 54

Figure 75: current fault checks and latch state-chart

2.3.16.6.1.2.3 PID CONTROL BLOCK MODEL

Note that we are controlling the block current; feedback to PID controller is a block

current. The feedback block current is derived from the phase current depending on the hall

status signal using mutiport switch as shown below. This feedback is filter using FIR filter so

as to reduce commutation and switching transient for better feedback signal. Reference current

is set through a global storage variable through CAN message from background. Reference

filtering using exponential filter is used to reduce jerk in the motor during switch on and off

the motor. Shutdown signal and hall error signal will automatically reset the reference block

current to zero reference. The tunable parameter like Kp, KiTs and Kd/Ts are accessed using a

global storage variable as shown in figure below.

 55

Figure 76: PID controller block model

2.3.16.6.1.2.3.1 Feedback Filter block model

Block current feedback is filter as mentioned using 1
st
 order FIR filter, and is

implemented using unit sample delay, addition and shift arithmetic as shown below.

Figure 77 : Feedback FIR filter model

 56

2.3.16.6.1.2.3.2 Reference Filter block model

Smooth reference signal is implemented using an exponential smoothening algorithm

as shown below. Since our processor is an 8-bit fixed-point processor, we implement using

shift arithmetic, addition-subtraction and unit delay blocks as shown below.

Figure 78: Reference ramp down model

2.3.16.6.1.2.3.3 PID Control block model

PID controller is implemented in a different way due to the computation constraint of

the CPU. All variable are implemented in a fixed point number. To reducing the

computational complexity, KiTs and Kd/Ts are directly given as a tunable parameter. Anti-

windup reset is also implemented, along with control output saturation block.

Figure 79: PI controller model

 57

2.3.16.6.1.3 TIMER1 ISR model

Timer 1 is used for maintaining fixed time step by all algorithms in the background.

Timer 1 is configured to interrupt the CPU every 1 msec interval which do the sampling of

shown below. The 3phase bridge driver trip latch logic is also executed in this subsystem.

Latch state-chart is shown in consecutive figure below.

Figure 80: Timer 1 ISR model

Figure 81: IR2132 Trip Latch state-chart

 58

2.3.16.6.1.4 INT1 ISR (Field short circuit detection) model

When field shunt resister voltage drop is high, it create an interrupt on INT1 pin of the

uC through the hardware circuitry as shown in Figure 33 : Field short circuit detection

circuit model, so a Field H-Bridge trip flag is set, which will shutdown the system from other

subsystem.

2.3.16.6.1.5 Timer5 Overflow ISR model

Timer 5 as mentioned before is used for speed calculation; the hall signal is used as a

reference to read the count value from timer 5. But if hall change doesn’t occur for sometimes

the timer 5 will overflow which create an interrupt, and overflow count will be incremented as

shown below.

Figure 82: Timer 5 overflow ISR model

 59

2.3.16.6.2 BACKGROUND SUBSYSTEM MODEL

The while loop routine in C is consider as background which will be continuously

looped/executed when there is no interrupt to be process by CPU. But in this model we

executive two subsystem as shown below in a time slice scheduling algorithm. A time slice is

control by a timer1 1msec interrupt.

Figure 83: Background subsystem model

2.3.16.6.2.1 Time slice Scheduler model

 It scheduled the two subsystem- CAN manager and State control subsystems in

a fixed time slice fashion of 50-50 for both. A slice of 5msec is provided for each subsystem.

This time slicing distribute the CPU time for other task and ISR to execute with better

throughput.

 60

Figure 84: Time slice scheduler

2.3.16.6.2.2 CAN Manager Model

CAN message frame are process in this subsystem, all frames are array of bytes and

are combined if required to the required data types. Reserve CAN frame for future used are

also shown below.

Figure 85: CAN manager model

 61

2.3.16.6.2.3 State Control Subsystem model

This is the main control body of this software model. The state-flow based control is

used where each of the system state are defined clearly with relevant to the control

requirement. In this subsystem, fault manager is put before state control to have a proper fault

control. Other background task like speed calculation, battery voltage scaling, relay driver

output control are modeled as shown by same subsystem in the below figure.

Figure 86: State control subsystem model

2.3.16.6.2.3.1 Voltage scaling in fixed-point model

ADC value of the Bus voltage is converted using a specific scaling factor as shown

below.

Figure 87: Voltage scaling model

 62

2.3.16.6.2.3.2 Speed calculation model

Speed in rpm (revolution per minute) is deduced in this subsystem from timer5 count

value and overflow count value as shown below.

Figure 88: speed calculation model

2.3.16.6.2.3.3 Fault manager model

Faults are classified depending on the type and nature of fault. Fault manager is one of

the important sub-systems in safety critical control system design. In this development, many

of the hardware fault detection circuitry are design and implemented in the controller

hardware, but function fault can also be identified in controller software. On the occurrence of

fault, the state controls will shutdown the system depending upon the criticality of fault. Minor

fault can also exist in a system where the system can still function with it.

Fault classifications are shown below:-

1. Hardware Fault

a. Heat sink trip.

b. Field H-Bridge Trip.

c. IR2132 fault.

 63

2. Motor Fault

a. Motor Lock.

b. Overcharge.

c. Hall error.

d. Over-speed.

3. System Fault.

a. Over-voltage

b. Under-voltage

c. Bus over-current on positive direction.

d. Bus over-current on negative direction.

e. R-phase over-current on positive direction.

f. R-phase over-current on negative direction.

g. Y-phase over-current on positive direction.

h. Y-phase over-current on negative direction.

i. B-phase over-current on positive direction.

j. B-phase over-current on negative direction.

4. Minor Fault

a. Hall reversal

b. CAN node not detected.

 64

Figure 89: Fault manager model

 65

2.3.16.6.2.3.4 ISG Control state-chart model

Control state-chart consists of three main state- idle state, motor state, and alternating

state. The default entry or reset state is the idle state, which consist of fault reset sub-state.

Whenever switch-off event or fault occurs in a system, it will come to this idle state. One

intermediate state is put between the motor state and idle state, called current reference ramp

down state, to have a smooth shutdown of PID controller by ramping down the reference

signal exponential refer Figure 78: Reference . Note that this subsystem will be sampled

every 10 msec instances.

Figure 90: ISG state control chart

2.3.16.6.2.3.4.1 IDLE state

 The isg state number is maintained throughout the operation for diagnostic purpose,

the isg state value for this state is 0.

2.3.16.6.2.3.4.1.1 Fault Reset sub-chart

This is a sub-state of idle state where fault can be reset in idle state on fault reset event

from CAN message.

 66

Figure 91: Fault reset chart

2.3.16.6.2.3.4.2 Motor state

When CAN command from Hybrid ECU is motor command, the state control jump

from idle state to this motor state.

2.3.16.6.2.3.4.2.1 Field-winding on sub-chart

On entry to motor sub-state, it jumps directly to field winding ON sub-state and stay

for fixed amount of time i.e. field on delay time, which is a calibration parameter. The isg state

number is changed to 1.

Figure 92: Field winding delay sub-chart

2.3.16.6.2.3.4.2.2 First Commutation sub-chart

When the motor is turn on, PWM output override should be first set from background

so that duty set by Current control from foreground will be effective. So, depending on the hall

status PWM output override is set in this sub-chart as shown below. And the isg state value is

set to 2.

 67

Figure 93: First commutation sub-chart

2.3.16.6.2.3.4.2.3 Commutation and current control sub-chart

Once first commutation is done the motor will rotate, and the foreground PID control

come into effect to control the block current by updating armature PWM duty. And also

change of commutation on hall status change will be handled by commutation subsystem in

foreground at the same time. The background state control will be jumping to this sub-state,

and continuously check the lock condition. The isg state will be set to 3, and if the machine

rotate and speed appear it will jump to motor run sub-state, and then set isg state to 5. If the

load torque is high with respect to the set reference current, lock can happen i.e. isg state 4.

Figure 94: commutation and current control sub-chart

 68

2.3.16.6.2.3.4.3 Alternator state

Normal alternator operation is achieved by switching off all the MOSFET and

controlling the field current by H-bridge. The back emf generated by the machine should be

higher than the battery voltage, so that power can flow from engine to battery, or machine to

battery. All motor functions like current control will be off, and only field current is control

thereby controlling the charging voltage i.e. the Bus voltage. So, field control and load

response control state-chart comes into action together during this operation. The isg state is

set to 11 and then 12. State 11 is for initialization of alternating operation.

2.3.16.6.2.3.4.3.1 Field Control sub-chart (Alternator mode)

Figure 95: Field control sub-chart

2.3.16.6.2.3.4.3.2 Load response control sub-chart (Alternator mode)

Figure 96: Load response control sub-chart1

 69

Figure 97: Load response control sub-chart2

The alternator mode of control is out of the scope of this present dissertation report,

and also MIL and HIL validation is not done for this mode of operation. It will be a future

improvement and on-going development, where synchronous rectification algorithm or

boosting operation will also be done. So, we will skip at this point for the time being.

 70

3 CHAPTER 3: MODEL-IN-LOOP SIMULATION

In Model-Based Design (MBD) there would be a system model at the center of the

development process. The significant feature of this design is that it facilitates quicker and

more cost-effective development of dynamic systems. With built-in mathematical functions

and routines these tools are optimized for designing and analyzing control strategies through

off-line simulation. Moreover these tools can be integrated with real-time hardware which

means integrating traditional off-line simulation with real-world testing. MATLAB Simulink

facilitates designing of the control algorithm and also helps in executing off-line simulation on

the desktop. But it doesn't mean that with software simulations all the distinctive behaviors of

an actual dynamic environment can be accounted for.

The Model-in-the-loop simulation captures the specified behavior of the model that is

to be implemented in C code later on. These simulated results are validated with the

requirements. Also it acts as the verification reference for the next stages of development

cycle. Since the model acts as the design document, it reduces the defects slippage due to

translation of requirements to design.

Figure 98: MIL configuration parameter

3.1 Concept of MBD for MIL

3.2 Simulation configuration

 71

Model in loop (MIL) simulation is performed in MATLAB Simulink with the

configuration as shown in Figure 98: MIL configuration parameter above. The fixed step

sampling rate of 1 usec is used in the simulation with solver ode5 (Dormand-Price). The

simulation is performed at fixed-step discrete environment. 1 usec fixed-sampling is chosen to

have a better PWM duty resolution and also for the based time count for the timer tick.

SimPower system block is also given a good result with this sampling rate.

 The limitation and assumption of the simulation are defined in the previous chapter in

section 2.2.2.1 above and section 2.3.1 above.

System model are checked here, and a specific functions or integrity of whole model

are checked. The controller model is validated to functional level with respect to phase block

current control. Some fault conditions are also simulated here. Control parameter like the PID

controller tunable parameter like Kp, Ki, Kd are tune in MIL level simulation. The plan

dynamics are observe and accordingly controller are modeled as shown in chapter 2 of this

report.

3.3.1 Lock condition from start

By setting the load torque very high with respect to the block current reference, current

control at lock condition is observed as shown below.

Figure 99: Lock condition from start (MIL)

3.3 SIMULATION RESULTS

 72

3.3.2 Motor torque higher than load torque

When the Load torque set in the plan model is lesser than the torque produce by the

specific controlled phase current, the motor will rotate showing a change in phase current

direction due to commutation cause by rotation. Below result shows the phase current at

20Nm Load torque and block current reference to 150 Ampere, it has been observed that

commutation causes spike in the current, but is latter controlled by PID controller.

Figure 100: motor running (MIL)

3.3.3 Lock condition while running

When load torque is made suddenly high during the running condition of the machine,

rotor can get locked as shown below and the controller shutdown once it detect lock fault.

Figure 101: Motor lock while running (MIL)

 73

4 CHAPTER 4: BUILD PROCESS

The tool chain of this project is shown in the figure below.

Figure 102: Development tool chain

4.1 Tool chain

 74

Auto-coding is done using embedded real-time workshop; the same MIL model is used

in which a specific M-script [Appendix I] is run before code generation to copy out software

part of the model to a new model from where actual code is generated. The generated code is

located at specific location which consists of the C source code, and A2L file which contains a

measurement and calibration variable data description file with address token. The generated

code along with hand-code are combine in MPLAB integrated development environment, and

are compiled using Hi-tech PICC18 C compiler, and then flash to uC using ICD2/ ICD3 in-

circuit debugger. Map file generated after compiling contains the address of variable in RAM

as well as on Flash memory. The A2L file containing the address token must resolved by some

method discussed later topic in this chapter.

4.2.1 Subsystem for code generation

As mentioned, code generation is done from a specific part of the model subsystem

(ISGECUSoftware) as highlighted in the figure below. Other part of the model will not be

used for code generation; it is used only for MIL simulation.

Figure 103: subsystem for code generation

4.2 Real-time workshop build process

 75

4.2.2 Source code and A2L file generation

4.2.2.1 Configure optimization for code generation

Optimization option of MATLAB for block simulation and code generation are

configure from the optimization dialog of configuration parameter. All most all optimization

options are checked as shown below for better code footprint.

Figure 104: configure optimization

Since microchip PIC18 was used, Embedded Target preference is set as below.

Figure 105: configure hardware implementation

 76

Code generation in MATLAB RTW is fully control by target language compiler of

MATLAB which can also be configured depending on requirement using TLC programming.

Ready-made ert.tlc is available on MATLAB, which is used directly here as shown.

Figure 106: Configure RTW target link compiler

4.2.2.2 Configure measurement variable

Signal name should be assigned for all measurement variables using signal properties

widget as shown in figure below.

Figure 107: configure measurement variables

 77

Note that the same signal should be created on model explorer widget before selecting

checkbox (signal name must resolve from Simulink signal object) and object should be created

under mpt.Signal object. Signal properties like dimension, complexity, sampling time,

sampling mode, minimum, maximum, initial value, units and storage class can be configured

from model explorer widget itself. Storage class for measurement variables should be defined

as exported global, which will be generated as a global variable in C.

4.2.2.3 Configure Calibration parameter

Calibration parameters are used in the model using constant block whose name are

resolve from model explorer widget, using mpt.Parameter object whose properties like value,

dimension, complexity, minimum, maximum, units, storage class and header file name. It can

be assigned as shown in figure below. Note that storage class should be assigned as constant

volatile which will be allocated to flash memory or as an initialize RAM variable.

Figure 108: Configure Calibration parameters

 78

4.2.2.4 Saving workspace variable

All variables and parameters which are created on model explorer are all located at the

workspace, which are save to a specific mat file as shown below.

Figure 109: saving workspace variable

4.2.2.5 Configure A2L Header for 18F4431 ECU

A2L header file for the ECU like CCP version, CAN message baud rate, ID of CRO

and DTO, memory alignment, RAM and FLASH address range specification etc. are added or

define in <asap2userlib.tlc> located at … \toolbox\rtw\targets\asap2\asap2\user in the

MATLAB installation directory.

Example: /begin TP_BLOB
 /* CCP version */ 0x201

 /* Blob version */ 0x202

 /* CAN msg ID - send */ 0x7F1 /* CCP_CRO*/

 /* CAN msg ID - recv */ 0x7F2 /*CCP_DTO*/

 /* station address */ 0x200

 /* byte order */ 1

 /begin CAN_PARAM

 /* crystal frequency */ 0x1F4

 /* timing register 0 */ 0x41

 /* timing register 1 */ 0x25

 /end CAN_PARAM

 …………………………………………………………………………………

 79

4.2.2.6 Build all for code generation

As mentioned code generation is done from a subsystem of main model. To

accomplish this code generation from a specific subsystem of model with work space variable,

an m-script [Appendix I] has been written which automate the code build process. This m-

script is run as shown below.

Figure 110: build using M-script

All source codes, some generated from MATLAB and some hand-written code are

integrated together in MPLAB IDE environment. Generated codes of RTW lies on a specific

directory on MATLAB model folder refer section 1.4 above, and the platform code in specific

location. As the main MPLAB project lies in the main directory, all codes are link from here.

Hi-tech C STD compiler is used to compiled and linked, and then generated executable hex

and map file for further use in the tool chain. Hex file will be dump to microcontroller and

map file will be used for complete A2L file generation shown in the later section of this report.

4.3 Integration of source code in MPLAB

 80

4.3.1 Configuration fuses of microchip 18F4431

There is specific fuse setting to be done during flashing the code to microchip product,

those fuses setting can be coded by using Hi-tech C compiler directives as shown below

Figure 111: fuse setting of 18F

4.3.1.1 Initialization code

All initialization function of MCU peripherals are done at the starting of the main as

the usual C coding methodology as shown below.

Figure 112: initialization of peripherals

 81

4.3.2 Interrupt code – integration

The Two interrupt priorities- low and high priority functions are shown below. All

interrupts are pre-configured and interrupt flag are checked, and depending on the interrupt

event the specific subroutine code will be executed. The subsystem model in foreground of

Simulink model which has been generated as a one C function, will be called inside this flag

(not seen - code folding ON). So, inside this the input to the subsystem will be updated and

then function will be called and then out will be updated as shown in figure Figure 114:

Integration of input and output of subsystem below.

Figure 113: ISR subsystems integration

Figure 114: Integration of input and output of subsystem

 82

4.3.3 Background code - integration

The while loop routine in C main file is directly the background subsystem in our

MATLAB model, so integration of the background subsystem in MPLAB model is done by

calling the C functions of the background subsystem in the while loop of C main file as

shown below. All input subsystem are update from hardware peripheral of the uC and then

function are called, and then output of subsystem are again updated to the peripheral hardware

of the uC.

Figure 115: background code integration

4.3.4 Building in MPLAB and Flash to ECU

Building of the whole code is done in MPLAB and the hex code is flash using the

ICD3 as shown in the tool chain diagram above. Note that ASAP2 driver in ECU is

implement along with this source code which is called the CAN Calibration protocol (CCP).

The ready-made driver code has been plug-in to the build process with slight modification.

Flashing through CAN is not included with the implemented CCP protocol.

 83

For generating complete A2L file, asap2Complete.m [Appendix II] file should be run,

but this script required a specific format of map file for resolving address token in the A2L file

generated on RTW build. So, this specific map file format is generated from original map file

using Perl script [Appendix III]. To automate the whole process a GUI is design using

GUIDE (graphical user interface development environment) as shown below.

Figure 116: ASAP2 complete GUIDE development

When the script runs, it prompt for file browser- A2L, map, and hex file as shown.

Once all files are given, a complete A2L file will be generated by pressing generate button.

Figure 117: ASAP2 complete GUI when run

4.4 Complete A2L file generation

 84

Control, measure and calibrate are the basic important word which comes in

development of any complex control software. Here we will discuss how the control is

implemented for HIL testing, and also how measurement and calibration of ECU are done.

4.5.1 Measurement and calibration

INCA tool or Labview M&C
1
 tool can be used as a tool for measurement and

calibration through CAN interface using CCP protocol. The tools offer a wide variety of

functions including precalibration of function models on the PC, ECU flash programming,

measurement data analysis, calibration data management, and automated optimization of ECU

parameters. The generated calibration and measurement data can be processed and evaluated

continuously. PID controller parameter tuning has been done extensively using this tool.

4.5.2 Hybrid ECU simulating Node

GUI is designed in Labview as shown below for a manual CAN command message

sending node like a Hybrid ECU in vehicle. So an interface connection using a CAN-USB

device is used as shown in tool chain figure above.

Figure 118: Hybrid ECU simulator

1
 Labview measurement and Calibration tool

4.5 Run-time control

 85

5 CHAPTER 5: HARDWARE IN LOOP SIMULATION

Hardware-in-the-loop (HIL) simulation is a technique that is used in the development

and test of complex real-time embedded systems. HIL simulation provides an effective

platform by adding the complexity of the plant under control to the test platform. The

complexity of the plant under control is included in test and development by adding a

mathematical representation of all related dynamic systems. These mathematical

representations are referred to as the “plant simulation”. The embedded system to be tested

interacts with this plant simulation.

A HIL simulation must include electrical emulation of sensors and actuators. These

electrical emulations act as the interface between the plant simulation and the embedded

system under test. The value of each electrically emulated sensor is controlled by the plant

simulation and is read by the embedded system under test (feedback). Likewise, the embedded

system under test implements its control algorithms by outputting actuator control signals.

Changes in the control signals result in changes to variable values in the plant simulation.

In many cases, the most effective way to develop an embedded system is to connect

the embedded system to the real plant. In other cases, HIL simulation is more efficient. The

metric of development and test efficiency is typically a formula that includes the following

factors: 1. Cost, 2. Duration, 3. Safety, 4. Feasibility

Cost of the approach will be a measure of the cost of all tools and effort. The duration

of development and test affects the time-to-market for a planned product. The safety factor

and duration are typically equated to a cost measure. Specific conditions that warrant the use

of HIL simulation include the following:

• Enhancing the quality of Testing

• Tight development schedules

• High-burden-rate plant

5.1 Introduction and challenges in HIL testing

 86

• Early process human factors development

In hardware-in-the-loop (HIL) testing, the designer can verify the production system

controller by simulating the real-time behavior and characteristics of the final system without

the physical hardware or operational environment. While the system is simulated in real-time

on a test computer the control code can be run on the target controller hardware. Though it is

possible to connect the target hardware with the actual motor, testing against a simulated

motor offers several advantages. When compared to a physical plant, a desktop simulator,

often called a hardware-in-the-loop (HIL) tester, is far more cost-efficient, and easier to

reproduce. The simulated motor also can simulate a variety of operating conditions or even

fault conditions, such as engine stall, that would be difficult, costly, and/or dangerous with the

actual plant. If measured data from HIL simulation deviates from Model-in-the-Loop

simulation, the most likely cause is a bug in the target compiler or a problem with the

processor.

dSPACE system is used for setting-up hardware in loop simulation. All the signals

interface requirement are drawn on excel spread sheet as shown in figure below. Pin

assignment for each of the signal on controller PCB and dSPACE systems are made. Note that

this HIL is a signal level HIL where high current or high power is not involved.

Figure 119: Hardware interface connection

5.2 dSPACE System setup

 87

 The block diagram of the test setup is shown below. Since SimPower system model

used in MIL simulation cannot be directly flash into the dSPACE system due to fast sampling

requirement. A new model equivalent to SimPower system model has been made, and is used

for this HIL simulation. The details of switch model to average model conversion are out of

the scope of this report. Note that we are using an average plan model in our dSPACE system.

dSPACE HIL system is control through Laptop running Control desk software for

monitoring and controlling of Plan parameter at run-time. After the build process the code is

flash to the ECU using ICD3 programmer as shown in the diagram, ECU is named as ‘In-

house ISG Drive Controller’, another Laptop running INCA and LAbview is used to control

and monitor the parameter of the controller ECU.

Figure 120: dSPACE setup block diagram

� Switching pattern of the PWM signals (7.8/10 kHz switching frequency) generated by

the controller based on hall sensor signals is verified. Motor stalls if the pattern is

incorrect.

� Current control works fine with Fixed-point PID controller

5.3 TEST RESULT

 88

� PI Tuning considering:-

� Lock (high Load Torque= 60-100 Nm).

� Rotating with fixed Load Torque and fixed reference current.

� Varying load torque with fixed reference current.

� Varying reference current (causes speed variation) at constant Load condition.

� All the condition shown below replicated the MIL simulation result with a slight

different in the waveform which is an effect of discrete sampling.

5.3.1 Lock condition from start

Figure 121: Lock condition from start (HIL)

5.3.2 Motor torque higher than load torque

Figure 122: motor running (HIL)

 89

5.3.3 Lock condition while running

Figure 123 : motor lock while running (HIL)

5.3.4 Comparison of control at different rpm

Analysis has been done at two different rpm of the machine, the nature of block current

control behavior is observed. It has been found that sampling rate of the PID controller effect

the accuracy of control at different speed. The block phase current control at lower rpm is

much better compare to a higher rpm as shown by figure below.

Figure 124: control behavior at different rpm

 90

5.3.5 Fault test

Fault is classified uniquely as listed below and test conditions are created through

dSPACE Plan model and the following test has been observed, and are all passed.

� Hardware Fault

� Heat-sink Trip. (Controller over temperature)

� H-Bridge Trip.

� 2132_Fault Trip.

� Motor over Temperature.

� Motor Fault.

� Motor Lock.

� Overcharging Voltage.

� Hall error.

� Over Speed.

� System Fault.

� Bus under Voltage.

� Bus over Voltage.

� CAN Fault.

� Current Fault.

� Bus Negative over Current

� Bus Positive over Current

� RPhase Negative over Current

� RPhase Positive over Current

� YPhase Negative over Current

� YPhase Positive over Current

� BPhase Negative over Current

� BPhase Positive over Current

� Minor Fault.

� Hall reversal.

� CAN Node not detect

 91

It is observed that the controller doesn’t latch the fault when over-current is detected.

These types of problems have been resolved by making Latching logic in software. Any Fault

occurrences will shutdown the system immediately except for minor fault. Software response

for all the fault conditions has been checked.

 92

6 CHAPTER 6: CONCLUSION

Each of the waveform observed in the MIL and HIL has the same Load torque and

control reference. Since, we are developing a motor controller software in which current is the

main control parameter, so all result are made on the observation of the armature winding

phase currents. The torque produce by the motor is also directly proportional to the amount of

phase current applied. The nature of the waveform between MIL and HIL result is shown in

the consecutive section below on three different cases. If we observe the nature of HIL result,

it is clearly showing that the nature of their waveform is curlier than MIL waveform due to

lower sampling rate. The MIL offline simulation was done at 1 usec sampling, but the HIL

with dSPACE runs at 100usec sampling which is at the order of 100 differences. But note that

control algorithm runs at the same rate in time in both MIL and HIL.

6.1.1 Lock condition

Figure 125: Lock conditions compare MIL and HIL

6.1 Result comparison of HIL and MIL

 93

6.1.2 Motor torque higher than load torque

Figure 126: motor running compare MIL and HIL

6.1.3 Lock condition while running

Figure 127: motor lock while running compare MIL and HIL

 94

We have discussed all the development process which we will be coming across in the

model based development and validation of motor controller software, before an actual

deployment to Test Bench or Vehicle. All throughout this development and validation activity,

the software bugs in the model has been continuously corrected. It has been observed that MIL

can be a very good validation tool for functional behavior of the system, due to this reason I

have hit hard the modeling section of this report on modeling of microcontroller functionality

which is a unique approached, and also helps in porting the generated source codes in the

microcontroller IDE environment. Porting of a generated code of different ISR function can be

difficult, but this approach helps in easy porting since we consider the microcontroller

execution instants during modeling or MIL itself. Also, HIL validation help to find many

hardware issue in the circuit as well as in the platform code. Fault injection into the plan which

cannot be generated or dangerous at the actual physical environment like over-current testing

can be done.

This development has cover only the motoring function of the TAISG machine

functionalities, but the other functions like generating mode (normal charging, synchronous

rectification, and boosting operation) are the future scope of this work. But with this tool chain

setup in hand, it would really fasten the development of other functions of the system which

are to be implemented and tested. Also, this HIL setup can be used as a based setup for further

full hybrid HIL simulation.

6.2 DISCUSSION

6.3 FUTURE WORK

 95

APPENDIX I

FILENAME: code_generation.m (m-script)
clear all
clc

delete('ISGECUSoftware.mdl'); % Delete previous copy of the model
close_system('ISGECUSoftware');% Close if open
open_system('control_sim_v2p3_1');%OPEN the main model
clear
load ('matlab.mat');
%To use MATLAB commands to change data in a model workspace,
%first get the data from Modelworkspace for the currently selected model:
hws = get_param('control_sim_v2p3_1', 'modelworkspace');
hws.DataSource = 'MAT-File';
hws.FileName = 'MWparams';
hws.saveToSource; % MWparams.mat file will be save in working directory
hws.DataSource = 'MDL-File'; %Attached back modelworkspace variable with

Model

%CREATE new Model from where we are going to generate the code
new_system('ISGECUSoftware');
save_system('ISGECUSoftware');

%COPY CONFIGURATION SETTING to a new Model
%The following example creates a copy of ModelA's active configuration
%object and attaches it to ModelB, changing the name if necessary to be

unique.
%The code is the same whether the object is a configuration set or

configuration reference.
myConfigObj = getActiveConfigSet('control_sim_v2p3_1');
newConfigObj = attachConfigSetCopy('ISGECUSoftware', myConfigObj, true);

%COPY a Subsystem named 'ISGECUSoftware' from Base model
%control_sim_v2p3_1.mdl to new model 'ISGECUSoftware.mdl'
Simulink.SubSystem.copyContentsToBlockDiagram('control_sim_v2p3_1/ISG_CONTR

OLLER_PCB/MCU_18F4431Chips/ISGECUSoftware', 'ISGECUSoftware');

%CLOSE the Main Model
save_system('control_sim_v2p3_1');
close_system('control_sim_v2p3_1');
%save, close and open new model create from specific subsystem
save_system('ISGECUSoftware');
close_system('ISGECUSoftware');
open_system('ISGECUSoftware');

%Set ACTIVE COPNFIGURATION TAKEN FROM MAIN MODEL
setActiveConfigSet(gcs, 'Configuration1');
save_system('ISGECUSoftware');

%LOAD Model workspace data to new Model 'ISGECUSoftware.mdl' Model

workspace
hws = get_param('ISGECUSoftware', 'modelworkspace');
hws.DataSource = 'MAT-File';

 96

hws.FileName = 'MWparams';
hws.reload;
hws.DataSource = 'MDL-File'; %Attached modelworkspace variable with Model
delete MWparams.mat %delete the local copy of modelworkspace variable
%load workspace_variables.mat;

%DELETE TRIGGER BLOCK for Code Optimization
Total_Trigger_blocks=find_system('ISGECUSoftware', 'blocktype',

'TriggerPort');
delete_block(Total_Trigger_blocks);

%DELETE 10msec_scheduler BLOCK for Code Optimization
delete_block('ISGECUSoftware/Background/10msec_scheduler');
save_system('ISGECUSoftware');

%RTW code Generation
rtwbuild('ISGECUSoftware');
save_system('ISGECUSoftware');
close_system('ISGECUSoftware');
%delete ISGECUSoftware.mdl;

APPENDIX II

FILENAME: asap2Complete.m (M-script)
function varargout = ASAP2Complete(varargin)
% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
 'gui_Singleton', gui_Singleton, ...
 'gui_OpeningFcn', @ASAP2Complete_OpeningFcn, ...
 'gui_OutputFcn', @ASAP2Complete_OutputFcn, ...
 'gui_LayoutFcn', [] , ...
 'gui_Callback', []);
if nargin && ischar(varargin{1})
 gui_State.gui_Callback = str2func(varargin{1});
end

if nargout
 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
 gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT

 97

% --- Executes just before ASAP2Complete is made visible.
function ASAP2Complete_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to ASAP2Complete (see VARARGIN)

% Choose default command line output for ASAP2Complete
handles.output = hObject;

% Update handles structure
guidata(hObject, handles);
set(handles.GenerateButton,'Enable','off');
set(handles.ASAP2BrowseButton,'Enable','on');
set(handles.MAPBrowseButton,'Enable','off');
% UIWAIT makes ASAP2Complete wait for user response (see UIRESUME)
% uiwait(handles.figure1);

% --- Outputs from this function are returned to the command line.
function varargout = ASAP2Complete_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure
varargout{1} = handles.output;

% --- Executes on button press in ASAP2BrowseButton.
function ASAP2BrowseButton_Callback(hObject, eventdata, handles)
% hObject handle to ASAP2BrowseButton (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
 global ASAP2filename;
 global ASAP2pathname;
 [ASAP2filename, ASAP2pathname] = uigetfile('*.a2l', 'Pick an A2L-

file');
 if isequal(ASAP2filename,0) || isequal(ASAP2pathname,0)
 set(handles.ASAP2StaticText,'String','User pressed cancel');
 else
 set(handles.ASAP2StaticText,'String',['User selected ',

fullfile(ASAP2pathname, ASAP2filename)]);
 if isequal (cd,ASAP2pathname)
 error(' #####File on Current Directory****');
 else
 copyfile(fullfile(ASAP2pathname, ASAP2filename),ASAP2filename);
 end
 set(handles.ASAP2BrowseButton,'Enable','off');
 set(handles.MAPBrowseButton,'Enable','on');
 end

 98

% --- Executes on button press in MAPBrowseButton.
function MAPBrowseButton_Callback(hObject, eventdata, handles)
% hObject handle to MAPBrowseButton (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
 global MAPfilename;
 global MAPpathname;
 PerlFile = 'convertMAP_Hitech.pl';
 [MAPfilename, MAPpathname] = uigetfile('*.map', 'Pick an MAP-file');
 if isequal(MAPfilename,0) || isequal(MAPpathname,0)
 set(handles.MAPStaticText,'String','User pressed cancel');
 else
 set(handles.MAPStaticText,'String',['User selected ',

fullfile(MAPpathname, MAPfilename)]);
 set(handles.GenerateButton,'Enable','on');
 set(handles.ASAP2BrowseButton,'Enable','off');
 set(handles.MAPBrowseButton,'Enable','off');
 if isequal (cd,MAPpathname)
 error(' #####File on Current Directory****');
 else
 copyfile(fullfile(MAPpathname, MAPfilename),MAPfilename);
 % Call PerlFile from operating system
 result = perl(PerlFile,MAPfilename);
 %Copy hex-file also for just for easy reference
 [hexfilename, hexpathname] = uigetfile('*.hex', 'Pick an HEX-

file');
 if isequal(hexfilename,0) || isequal(hexpathname,0)
 disp('User pressed cancel')
 else
 disp(['User selected ', fullfile(hexpathname,

hexfilename)]);
 copyfile(fullfile(hexpathname, hexfilename),hexfilename);
 end
 end
 end

% --- Executes on button press in GenerateButton.
function GenerateButton_Callback(hObject, eventdata, handles)
% hObject handle to GenerateButton (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
 global MAPfilename;
 global ASAP2filename;

 asap2post(ASAP2filename, ['temp_',MAPfilename]);
 disp('******* A2L File Created in working directory *******');
 set(handles.genstatusStaticText,'String','******* A2L File Created in

working directory *******');
 set(handles.GenerateButton,'Enable','off');
 %Delete after all
delete(['temp_',MAPfilename]);
delete(MAPfilename);
%delete(ASAP2filename);

 99

APPENDIX III

FILENAME: convertMAP_Hitech.pl (perl Script)

#***Hitech C compiler MAP file Compatible to MATLAB A2L file generation****
#******* RUN THIS SCRIPT BY INPUTING MAP FILE OF HI-TECH COMPILER**********
#************USE THIS OUTPUT FILE MAP FILE TO asap2post.m******************
****** CREATED ON : 13-AUG-2011, 11:45PM IST ************************

$MAPFileName = $ARGV[0];# File input name'MPLAB_TAISG_project_v0p0.map'; #
$outputFileName = "temp_" . $MAPFileName; # File output name

open(MAPFILE, $MAPFileName)
 || die "PERL Error: Couldn't open MAP file: ", $MAPFileName, ".\n";
undef $/; $MAPFileString = <MAPFILE>; $/ = "\n";
close(MAPFILE);

- Replace consecutive white-space characters with a single space
$MAPFileString =~ s/\s+/\n/g;
@FileArray =split(/\n/, $MAPFileString);
- Convert MAPFileString to MAPFile Hash Table

open(OUTPUTFILE, (">" . $outputFileName))
 || die "PERL Error: Couldn't open output file: ", $outputFileName, "\n";

$Length=scalar(@FileArray);
print "Length of Array =",$Length,"\n";
$n=0;
$count=0;
$foundSymbol=0;
while ($n < $Length) {
 if(($FileArray[$n] eq "Symbol")&& ($foundSymbol==0)) {
 print "Found Symbol Table at ",$n,"----",$FileArray[$n],"\n";
 $SymbolIndexnumber=$n;
 $foundSymbol=1;
 }
 if(($FileArray[$n] eq "Table") && ($foundSymbol==1))
 { print "Found Symbol Table at ",$n,"----",$FileArray[$n],"\n";
 $SymbolIndexnumber=$n;
 $foundSymbol=2;
 }
 if(($foundSymbol==2))
 {
 push(@NewFileArray,$FileArray[$n]);
 #print "New Array [",$count,"]----",$NewFileArray[$count],"\n";
 $count++;
 }

 $n++;
}
if($foundSymbol!=2){
 print "\n***********Wrong Input file********Not a Hi-tech PICC18 MAP

file*****\n";

 100

}
else
{

 $NewLength=scalar(@NewFileArray);
 print "\nLength of New Array =",$NewLength,"\n";

 $NewLength=$count;
 $n=0;
 $count=0;
 while ($n < $NewLength) {
 print "New Array [",$n,"]----",$NewFileArray[$n],"\n";
 if(($NewFileArray[$n] eq "bss")||($NewFileArray[$n] eq

"bigbss")||($NewFileArray[$n] eq "data")||($NewFileArray[$n] eq

"bigdata")||($NewFileArray[$n] eq "const"))
 {
 $NewFileArray[$n-1] =~ s/^_//g;
 push(@FinalFileArray,$NewFileArray[$n-1]); # Push Variable Name
 push(@FinalFileArray,"\t"); #Push Tab
 $ecuadress="0x".$NewFileArray[$n+1]; #augment '0x'
 push(@FinalFileArray,$ecuadress); # Push Address of Variable
 push(@FinalFileArray,"\n"); #Push new line
 $count=$count+4;
 print "###*****###",$count," index",$n,"\n";

 }
 $n++;
 }
 #NewFileArray contain contain only the required data but still types

name need to remove
 $NewLength=$count;
 $n=0;
 print "\n\n********************SEMI-FINAL*****************\n\n";
 while ($n < $NewLength) {
 print "Final Array [",$n,"]----",$FinalFileArray[$n],"\n";
 $n++;
 }
 print "\n\n********************FINAL*****************\n\n";
 $Finalbuff=join("",@FinalFileArray);
 print "\n\n";
 print $Finalbuff;
 print "\n\n";
 print %Finalbuff;

 print OUTPUTFILE $Finalbuff; #Print to FILE
 rename $outputFileName, $MAPFileName;
 print "\n\nComplete MAP file generation....... \n";
 close(OUTPUTFILE);
}

 101

REFERENCES

1. MATHWORKS SIMULINK HELP, www.mathworks.com/help/

2. VECTOR ECU Calibration, www.vector.com

3. ETAS INCA, www.etas.com

4. MPLAB IDE, www.microchip.com

5. Hi-tech C Compiler, www.htsoft.com

6. MAAB modeling guidelines.

7. MISRA C coding standard.

8. Gabriela Nicolescu, Pieter J. Mosterman http://www.amazon.com/Model-Based-

Embedded-Computational-Analysis-Synthesis/dp/1420067842 : Model-Based Design

for Embedded Systems (Computational Analysis, Synthesis, and Design of Dynamic

Systems), Taylor & Francis Group, LCC 2010.

9. Tata motors Ltd, “TAISG_functional_requirements_V2.0.pdf”, Advance Engineering

department, ERC TATA motors Ltd, Pimpri, Pune, 2011.

10. Stefan Baldursson, “BLDC Motor Modeling and Control – A Matlab®/Simulink®

Implementation”, Master Thesis work. May, 2005.

11. A.Tashakori, M. Ektesabi, and N. Hosseinzadeh “Modeling of BLDC Motor with Ideal

Back-EMF for Automotive Applications”, July 2011, London, UK.

12. Wonbok Hong, Wootaik Lee, Byoung-Kuk Lee, “Dynamic simulation of brushless DC

motor drives considering phase commutation for automotive applications”, Electric

Machines & Drives Conference, 2007. IEMDC '07. IEEE International, 3-5 May 2007,

Antalya, Turkey.

