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ABSTRACT

Title: Development and validation of Model based software for TA-ISG (Torque assist

Integrated starter generator) motor controller for Hybrid Car Application.

Supervisor: Prasanta Sarkar.
Name of student: = Paul Lalthuamsanga.
Semester: Second

ID no: 2010HZ12772.

This dissertation gives a way to apply a model-based design for designing and validation of
motor controller for Hybrid Car application. It also highlights a specific methodology for modeling a
microcontroller peripherals and PCB circuitry components in a MATLAB model.

All the system components including software model, processor execution model, PCB circuitry
model, inverter model, motor model, engine model and Hybrid ECU functionality are all modeled in
MATLAB simulink. Each component are modeled first, and then integrated one by one. Model in loop
simulation (MIL) was performed for different functional checking of the control and also for PID
parameter tuning. Fault detection logic and injection into the plan environment are also modeled and
validated in the MIL simulation.

Code generation using Real-Time workshop of MATLAB from the model used in MIL was
performed and porting was done to microchip microcontroller. All measurement and calibration
attribute as taken into account during code generation and porting. Then, Hardware in loop simulation
(HIL) with the controller hardware was performed for hardware and software integration validation. The
above simulation done on MIL was again done on HIL system.

This report describes above work in detail.

Signature of Student Signature of Supervisor
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1 CHAPTER 1: INTRODUCTION

1.1 INTRODUCTION AND PROBLEMS

Hybrid Car Technology is one of the technologies which could be the solution for
global environment pollution problems. Such a technology would required many aggregates
on the power-train of the vehicle which comprises of engine or fuel-cell, battery and motor.
Hybrid Car can be classified according to the level of hybridization, called hybridization factor,
the ratio of electric power provided to the wheel of the total power deliver to the wheel.
Depending on values of the hybridization factor, there can be strong, medium, and mild
hybridize Car. In a strong hybrid car application, electric motor could alone drive the wheel
without engine assistance, but in a medium or mild hybrid car application, motor needs engine
assist.

We will be focusing on the mild hybrid application where we are using a Claw Pole
electric machine (TA-ISG) [Figl] as a motor. In a mild hybrid application, the TA-ISG
(Torque assist integrated starter generator) machine acts as the starter to crank the engine ,
provides torque assist to engine when the vehicle accelerates [Figl], and also acts as the
generator to charge the battery when it doesn’t operate in motoring mode [Fig2]. This mild
hybrid system using a TA-ISG can be adapted with conventional engine vehicles with only
minimal system changes using belt system linking to engine. It can provide good improvement

in fuel consumption.

Engine  TASG Battery

ostartingTorgque assist — Battery drives the TA-
IS5 to start the engine

Figure 1: Starting/Torque assist — Battery drives the TA-ISG to start the engine



Engine  TAISG Battery

Funning — Engine charges the battery through
TASG

Figure 2: Running — Engine charges the battery through TA-ISG

These power-train systems require a complex computerized control system,
communication, and so handling a hand-written C source codes algorithm would be a
cumbersome. So, a modern approach of MATLAB model based design was used, where there
can be a full traceability of model from requirement documents to the actual program codes
dumped to the microcontroller. Early finding of software bugs as well as logical mistake can
be done before actual testing on test bench. So this dissertation project addresses those issues
using MIL (Model in loop simulation) and HIL (Hardware in loop simulation) validation
methodology. Today, vehicle manufacturers are moving towards model based software
development and simulation for easy maintenance and control of the complex control
algorithm. In this project, we will be focusing on the development and validation of TA-ISG
controller software in which model-based design approach was adopted and validation process

using MIL and HIL was used, before deployment to the actual working environment.

1.2 MODEL_BASED DESIGN CONCEPT

Model-Based Design (MBD) is a mathematical and visual method of addressing
problems associated with designing complex control, signal processing and communication
systems. It is used in many motion controls, industrial equipment, aerospace, and automotive
applications. Model-based design is a methodology applied in designing embedded software.

MBD provides an efficient approach for establishing a common framework for

communication throughout the design process while supporting the development cycle ("V"



diagram). In Model-based design of control systems, development is manifested in these four
steps: 1) modeling a plant, 2) analyzing and synthesizing a controller for the plant, 3)
simulating the plant and controller, and 4) integrating all these phases by deploying the
controller. The model-based design paradigm is significantly different from traditional design
methodology. Rather than using complex structures and extensive software code, designers
can use MBD to define models with advanced functional characteristics using continuous-time
and discrete-time building blocks. These built models used with simulation tools can lead to
rapid prototyping, software testing, and verification. Not only is the testing and verification
process enhanced, but also, in some cases, hardware-in-the-loop simulation can be used with
the new design paradigm to perform testing of dynamic effects on the system more quickly

and much more efficiently than with traditional design methodology.

1.2.1 STEPS IN MODEL -BASED DESIGN

The main steps in MBD approach are:

1. Plant modeling. Plant modeling can be data-driven or first principles based. Data-
driven plant modeling uses techniques such as System identification. With system
identification, the plant model is identified by acquiring and processing raw data from
a real-world system and choosing a mathematical algorithm with which to identify a
mathematical model. Various kinds of analysis and simulations can be performed using
the identified model before it is used to design a model-based controller. First
principles based modeling is based on creating a block diagram model that implements
known differential-algebraic equations governing plant dynamics. A type of first
principles based modeling is physical modeling, where a model is created by
connecting blocks that represent physical elements that the actual plant consists of.

2. Controller analysis and synthesis. The mathematical model conceived in step 1 is
used to identify dynamic characteristics of the plant model. A controller can be then be
synthesized based on these characteristics.

3. Offline simulation and real-time simulation. The time response of the dynamic
system to complex, time-varying inputs is investigated. This is done by simulating a
simple LTI or a non-linear model of the plant with the controller. Simulation allows
specification, requirements, and modeling errors to be found immediately, rather than

later in the design effort. Real-time simulation can be done by automatically



generating code for the controller developed in step 3. This code can be deployed to a
special real-time prototyping computer that can run the code and control the operation
of the plant. If plant prototype is not available, or testing on the prototype is dangerous
or expensive, code can be automatically generated from the plant model. This code
can be deployed to the special real-time computer that can be connected to the target
processor with running controller code. This way, controller can be tested in real-time
against a real-time plant model.

4. Deployment. Ideally this is done via automatic code generation from the controller
developed in step 3. It is unlikely that the controller will work on the actual system as
well as it did in simulation, so an iterative debugging process is done by analyzing
results on the actual target and updating the controller model. Model based design

tools allow all these iterative steps to be performed in a unified visual environment.

1.2.2 ADVANTAGES OF MBD

Some of the notable advantages MBD offers in comparison to the traditional approach are:

. MBD provides a common design environment, which facilitates general
communication, data analysis, and system verification between development groups.
. Engineers can locate and correct errors early in system design, when the time and

financial impact of system modification are minimized.

. Design reuse, for upgrades and for derivative systems with expanded capabilities, is
facilitated.
1.3 TA-ISG MACHINE AND CONTROL CONCEPT

Torque assist Integrated Starter Generator (TAISG) machine [Fig 3] is a claw-pole
electric machine which has a rotor winding, and brush contact. The rotor flux can be
individually controlled through H-Bridge in the Power inverter block [Fig 3]. Three phase
winding armature are controlled through a 3-phase Bridge in the Power inverter block [Fig 3].

The rotor position is senses using hall sensors which are coupled to the TAISG machine [Fig



3]. Intelligent controller PCB was designed with microcontroller for computerize software

control which interface with power inverter and machine.

CONTROLLEER | POWWEER INVERTER | TAISG MACHINE
| i | (Claw-pols Moter)

Controller PCB

Figure 3: Block diagram of TA-ISG Control

Torque assist Integrated Starter Generator (TAISG) machine [Figure 3] is a claw-pole
electric machine which has a rotor winding, and brush contact. The rotor flux can be
controlled using an H-Bridge as shown in the Figure above. The Machine has 12 poles (P)
armature star winding i.e. P/2 = 6 electrical cycles. Each electrical cycle will have 6
commutations sequence according to the table [Table 1] shown below for phase Red(A), phase
Yellow (B) and phase Blue (C) conductions.

Table 1: Hall commutation sequences Table

sequence Hall signal (A,B,C) Phase Conduction
1 0 A+C-
2 1 A+B-
3 3 C+B-
4 7 C+A-
5 6 B+A-
6 4 B+C-




1.3.1 COMMUTATION SEQUENCE

Figure 4 shows an example of Hall sensor signals with respect to back EMF and the
phase current. Figure 5 shows the switching sequence that should be followed with respect to
the Hall sensors. The sequence numbers on Figure 4 correspond to the numbers given in
Figure 5. For every 60 electrical degrees of rotation, one of the Hall sensors changes the state.
It takes six steps to complete an electrical cycle. In synchronous, with every 60 electrical
degrees, the phase current switching should be updated. However, one electrical cycle may not

correspond to a complete mechanical revolution of the rotor.
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Figure 4: Hall sensor signal, back emf, output torque and phase current.
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Figure 5: winding energizing sequence with respect to the hall sensor

REF DC+
®— PWMS a1 a3 Qs
| o — =
RUNS PYWMA PWM1 /- | —a | _G_IZ ) A
STOP PWM2 - H - =
—— PVM3 PWM5
PIC18FXX31 IGBT =
i PWM4
FWD/REV PWM2 | Driver
PWM2
—N— PWM1 -
PWMO /1 \
PWMO '(_L;;.
Qo

Figure 6: Control block diagram of Armature winding



The number of electrical cycles to be repeated to complete a mechanical rotation is
determined by the rotor pole pairs. For each rotor pole pairs, one electrical cycle is completed.
So, the number of electrical cycles/rotations equals the rotor pole pairs. Figure 6 shows a
block diagram of the controller used to control a BLDC motor. Q0 to Q5 are the power
switches controlled by the PICI8FXX31 microcontroller. Based on the motor voltage and

current ratings, these switches can be MOSFETsS, or IGBTs, or simple bipolar transistors.

Table 2 : Sequence of rotating the motor in clockwise direction

Seqt;ience Hall Sensor Input Active PWHS Phase Current

A B c A B c
1 0 0 1 PWM1(Q1) [ PWM4(Q4)| DG+ Ooff DC-
2 0 0 0 PwM1(Q1) [Pwm2(@2)| Dc+ DC- Off
3 1 0 0 PWM5(Q5) | Pwm2(Q2) off DC- DC+
4 1 1 0 PWM5(Q5) | PWMD(Q0)| DC- Off DC+
5 1 1 1 PWM3(Q3) [ PwMo(@D)| DeC- DC+ off
6 0 1 1 PWM3(Q3) | Pwim4(Q4) off DC+ DC-

Table 3: Sequence of rotating the motor in counter-clockwise direction

Seqn.;ience Hall Sensor Input Active PWMs Phase Current

A B c A B c
1 0 1 1 PWM5(Q5) | PWM2(Q2) off DC- DC+
2 1 1 1 PWM1(Q1) |PWMm2(Q2)| DC+ DC- off
3 1 1 0 PwWM1(Q1) |Pwma@4)| Dc+ Off DC-
4 1 0 0 PWM3(Q3) | PWM4(Q4) Off DC+ DC-
5 0 0 0 PWM3(Q3) | Pwmo(@o)|  Dc- DC+ off
6 0 0 1 PWM5(Q5) | PwMo(@0)| DC- off DC+

Table 2 and Table 3 shows the sequences in which these power switches should be
switched based on the Hall sensor inputs, A, B and C. Table 2 is for clockwise rotation of the
motor and Table 3 is for counter clockwise motor rotation. This is an example of Hall sensor
signals having a 60 degree phase shift with respect to each other. As we have previously
discussed in the “Hall Sensors” section, the Hall sensors may be at 60° or 120° phase shift to
each other. When deriving a controller for a particular motor, the sequence defined by the
motor manufacturer should be followed. Referring to Figure 6, if the signals marked by
PWMx are switched ON or OFF according to the sequence, the motor will run at the rated

speed. This is assuming that the DC bus voltage is equal to the motor rated voltage, plus any



losses across the switches. To vary the speed, these signals should be Pulse Width Modulated
(PWM) at a much higher frequency than the motor frequency. As a rule of thumb, the PWM
frequency should be at least 10 times that of the maximum frequency of the motor. When the
duty cycle of PWM is varied within the sequences, the average voltage supplied to the stator
reduces, thus reducing the speed. Another advantage of having PWM is that, if the DC bus
voltage is much higher than the motor rated voltage, the motor can be controlled by limiting
the percentage of PWM duty cycle corresponding to that of the motor rated voltage. This adds
flexibility to the controller to hook up motors with different rated voltages and match the
average voltage output by the controller, to the motor rated voltage, by controlling the PWM
duty cycle. There are different approaches of controls. If the PWM signals are limited in the
microcontroller, the upper switches can be turned on for the entire time during the
corresponding sequence and the corresponding lower switch can be controlled by the required
duty cycle on PWM. The potentiometer, connected to the analog-to-digital converter channel
in Figure 6, is for setting a speed reference. Based on this input voltage, the PWM duty cycle

should be calculated.

1.3.2 CLOSED LOOP CONTROL

The speed/Torque can be controlled in a closed loop by measuring the actual speed of
the motor, or current along the phases. The error in the set speed/Torque and actual
speed/torque is calculated. A Proportional plus Integral plus Derivative (P.I.D.) controller can
be used to amplify the speed/torque error and dynamically adjust the PWM duty cycle. For
low-cost, low-resolution speed requirements, the Hall signals can be used to measure the
speed feedback. A timer from the PIC18FXX31 can be used to count between two Hall
transitions. With this count, the actual speed of the motor can be calculated. For high-
resolution speed measurements, an optical encoder can be fitted onto the motor, which gives
two signals with 90 degrees phase difference. Using these signals, both speed and direction of
rotation can be determined. Also, most of the encoders give a third index signal, which is one
pulse per revolution. This can be used for positioning applications. Optical encoders are
available with different choices of Pulse per Revolution (PPR), ranging from hundreds to

thousands.



1.3.3 FIELD WINDING CONTROL

Field winding in a TAISG machine are separately control using H-Bridge where we
can control the amount of current on rotor winding and the direction of current. Figure 7

shows the detail block diagram as below.

REF DC+

f - s
RUN/ PWMTH —a '|
STOP PWMOH s xl"‘ - xl"‘

N PWM1 -
PIC18F X331 IGBT Field winding

PWMO | Driver
FWD/REY PWMOL I A

= ef et |

DC-

Figure 7 : Field winding control block diagram

IGBT or MOSFET driver as shown in the figure above is an H-Bridge driver which
gives a complementary PWM on each leg of the high and low MOSFET/IGBT. While PWMI1
is in PWM and PWMO is low, the complementary PWM will appear on the PWMI1H and
PWMIL signal, and PWMOH will be low and PWM 1L will be high. Thereby, the current will
be in the direction of A to B in the rotor/field winding, and the amount of current would be
control using duty on PWMI.

During motoring operation, a full duty is applied which will give maximum rotor flux
at specific current direction say A to B. Field duty can also be used to control rotor flux during

alternating operation and field weakening operation.

1.3.4 HALL SENSOR

As mounting diagram shown below, magnetic cup is mounted on the rotor, and a fixed
hall sensor is mounted on the body of the motor. Magnetic cup consist of alternate 6 North
poles and 6 South poles magnet ring. When the magnetic cup rotate the three hall sensor give a

sequence of hall signal as shown in the consecutive figure below.
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Figure 8 : Hall sensor mounting

If Hall sensor at 60 degree apart d-axis

Direction of rotation of rotor

Hall logic
Hall approach North Pole — logic 1,

Hall approach South Pole — logic 0.

Hall status . . . . . . | Normal Forward motion

Figure 9 : Hall sensor pattern at 60 degree apart

The hall sensor at 60 degree apart was used in our machine so the hall sequences will
be 000(0), 001(1), 011(3), 111(7), 110(6), and 100(4). So, out of the 8 combination hall
signals 101(5) and 010(2) will not be appearing. There will be 6 hall changes within one

electrical cycle, so 36 hall changes in one mechanical rotation for 12 pole machine.
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14 PROJECT FOLDER STRUCTURE

Specific folder structure is maintained in this project as shown below
- [{MAIN_PROJECT FOLDER> | T T

Shiitiiing nfie

e

Figure 10: Project folder structure

The project folders are maintained in a hierarchical manner do to its complex tool

chain, and are mentioned below:-

¢ Main < project folder>: This main folder can be given any name. This folder
contains the MPLAB project and its aggregates. It contains sub-folder as

mentioned below:-

o MATLAB model: This folder contains MATLAB model and all
MATLAB related files associated with the model

o ASAP2POST_TML: This folder contain ASAP2 complete file
generator M-script, GUI, and contain hex file and A2L files.

o Platform_code: This folder contains the hand written code like

platform code-hardware driver.c, ccp.c, etc.
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2 CHAPTER 2: MODELING

2.1 Modeling:

Modeling is done on MATLAB Simulink [1] using native blocksets of Simulink

library. Modeling a control system involved two parts — Plan model and Controller model.

Controller model consist of the parts of system on focus, and the plan model consist of the

remaining system which is on the scope of the design. Since the focus of this development is

on motor controller PCB design and development, we segregate the Controller PCB part from

the whole system as a one subsystem named ISG_CONTROLLER_PCB as show in Figure

below, and the rest of the system including Power inverter, battery, engine and vehicle models

sit on the plan part of the model. Figure below shows the topmost level model of the

which
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Figure 11 :Top-level model containing controller and plan
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2.2 Modeling of Plan Model

Modeling is done on MATLAB Simulink using native blocksets of Simulink library.
Plan model comprises of power inverter, motor, battery, engine, vehicle ECU, and the Vehicle
subsystem as shown in [Figure 12]. SimPower System physical blocksets of Simulink library
are used in the model for power MOSFETSs, resistors, inductors, capacitors, and voltage
sources. Apart from the motor, inverter and battery subsystem, the hybrid ECU and Engine
cranking Load torque are included. Those hybrid ECU and Engine subsystems are modeled for

future addition to simulate the whole vehicle dynamics for controller software validation.

Cidgg
BLgE ROt

I B

Figure 12 : Plan model comprises of different components of vehicle.
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2.2.1 Power Inverter model

This model consists of 3 phase inverter, DC link capacitor, H-bridge, H-bridge shunt
resistor, and current sensors. As shown in figure below, input signal to inverter are switching
signal of MOSFET. Since these MOSFETs and Diodes are physical model of SimPower
System it can be connected as like a wired connection in a physical world. The black color
represents physical wire, and red lines represent Simulink signals. SimPower System sensors
library blocks like current measurement blocks, voltage measurement blocks are used to give

feedback signal to controller through current sensor subsystem as shown in gray box below.

He]

Figure 13 : Power Inverter model of the motor controller
2211 Current sensor

Current sensor subsystem converts the ampere value to sensor output voltage level (OV

to 5V) as shown below, where 2.5 V represent zero current.

supphy

double - 7
Sensor output voltage bl
Sensor Output Woltage

ADC refersnce Preductl

55 double

double

Constant2

L L

Current =

roduet

cony factor

double

Figure 14: current sensor model
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2.2.2 Motor model

Motor can be simulated as shown in figure below using SimPower system model and
logical or mathematical Simulink subsystem model. Armature winding are modeled in star
configuration using resistors, inductors and voltage sources as shown by black wire
connection. Back emf is simulated using voltage source which are adjusted from Simulink
signals subsystems depending upon speed of motor. Back emf is generated using mathematical
equations from MAIN_SIM_LOOP as shown below. This subsystem consists of Simulink
subsystem like electromagnetic torque, main simulation loop, hall-sensor and hall-sensor

simulation subsystems.

— _:@ W 5

(SN

MAIN_SIM_LOCP

Leef
\/&E\

Figure 15 : Motor 3-phase star winding simulation with back emf generator.
2.2.2.1 ASSUMPTIONS IN MOTOR MODELING:
* Magnetic circuit saturation is ignored.
» Stator resistance, self and mutual inductance of all phases are equal and constant.
* Hysteresis and eddy current losses are eliminated.
* All semiconductor switches are ideal.

e Mutual inductance is not considered.
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2.2.2.2 Electromagnetic Torque

The torque generated by the machine depends on the phase current of each winding,

flux pattern reference and machine constant.

double

flux_a_FU
fluz_b_PU double
flux_c_PU double

Froduct

N
o | double + double machine_const double
-
Lt N Electomagnetic tarque
Froductl

-
Kb

Froduct2

Figure 16: Electromagnetic torque model

The equation shown below is realized in the above model

Equation 1: Electromagnetic torque equation

Te = Km (1a¢a +Ib¢b +Ic¢c)

Where,
T, - Electromagnetic Torque
K, - Machine constant
1,,1,,1, - Phase current
0.9,.90. - Flux pattern in per unit

The flux pattern is generated from sinusoidal back-emf subsystem shown in Figure 17:

main simulation loop subsystem.
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2.2.2.3 Main simulation Loop subsystems

This subsystem consists of two subsystems — torque and speed loop, and sinusoidal

back emf subsystem. Machine inertia is not considered and is left with constant zero as shown

below
() ouble pin Rotor _postion_electricalfrac) 22482 mlposition(rad)

T

Jooble ] s nguiar Speed motor e (radisec)

double Te_machine

Te

Machine_speed_Electrical (rad/sec)

Back EMF

double (3

back_ermf

Sinugoidal Back EMF
double Engine_Inertis Rotor_position_electrical(deg) double
engine_inertia
Rotar_position_efde)
EI%. Machine_Inertia Machine_speed_Mechanical (rad/sec) doubie

Machine_lnettia

Machine_speed_miradiset)

Torgue and speed loop

Figure 17: main simulation loop subsystem

2.2.2.3.1 Torque and Speed Loop equation and model

The core of the simulation lies on the load torque equation shown below

Equation 2 : Torque speed equation

T -1, =7%%
: ot
Where,

T, - Electromagnetic torque produces by the motor
T, - Load torque applied

J - Total inertia which includes Engine inertia, the machine inertia

component on the shaft.

0w

and all other

8_ - Angular speed, where, @ = 27m_ such that n_ in rps (revolution per sec).
t
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The above equation can be realized a MATLAB Simulink model as shown below.

YVYVYY

KTs / doutle KTe dauble ~,_double T _double
» / » = 2 = 18001 >
24 /A 24 y
af theta_m(rad) thela_e(rad) | _—
- -

Discrete-Time % Gain
ntegratort ain3

s ] oo D
- Rolor_position_electrical(rad)

Integrator

(3)
Raotor_position_electrical(deg)

“~._double ¢ SN
T ——s
4 Machine_speed_Electrical (rad/sec)

Gaing

Figure 18: Torque speed equation realization in Simulink.

Load Torque 7, is simulated from the frictional model of Engine, given in the Engine
subsystem. Load Torque from engine 7, varies with the speed of the crank shaft of the engine

which is couple to ISG machine using belt and the belt ratio should also be consider in the

model.

2.2.2.3.2 Sinusoidal back emf generation model

The back emf pattern can be generated by a sinusoidal signal generator, where phase
shift are applied for each phase as shown below. Position in radian is taken as an input which

varies from 0 to 2*pi, and repeat itself. The frequency and amplitude will be decided by the

speed of the machine.
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E, =K w,F(,)

"

2
Eh = Keme(ge _sz_)

E.=K,w,F(6, +2T’r)

m

phase shift :- ( 0 ) (2*pi/3) -(2*pi/3)

// e flux_a PU |
< ux_b_FU |
i AN | doue / < ux_c_PU |
[ /]
Flux_Aphase_Uhokup_PILU1

- double 4
Position(rad)
Flux_Bphase_LookupfPU1 'I '.i x |""°‘”‘°'E 2 machine_const EENE A
Back EMF
Praduct

[N double Kb
g B R4 |

Flux_Cphase_Lookup_PLU1

double

2
Angular Speed_motor_e (radfsec)

Figure 19 : sinusoidal back emf model

2.2.2.4 Hall sensor

Hall sensor can be simply model in Simulink using look-up table where the pattern of
hall signal is generated at different rotor position from 0 to 360 degree. The input to this
subsystem is a rotor position which varies from O to 360 repetitively depending on the

machine speed.

. uintg . n

Hall1

Lookup Tahle1

Raotor_position
T louble

uintd » a

Hall2

[
>

—

Lookup Table2

. uintd » -

Hall2

Lookup Tablet

Figure 20 : Hall sensor model
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2.2.2.5 Hall error simulation

Hall sensor fault condition can be created by the model shown below. Using this
subsystem fault can be injected during run-time of the simulation manually. Shorted to Ground
and shorted to supply of hall sensor signal for each combination can be simulated.

MNOTE:

EBelow manual switches can be used to simulate hall error .
assume hardware pull-up on hall signal line, and shorted to ground can also be simulated

Constant1 0 Constant?| 1
Iuim:EH t ! uints
Manual Switch3 o
— o )
uintg uints o 1)
LI e B hall_out1
hall_in1 rManual Switch
1 > uints
D e e ] -
- hall_out2
hall_inz2 hanual Switch

- ’
o UintS
uints - h"@
hall_out3

hall_in3 hanual Switch2

Figure 21: Hall error simulation

2.2.3 Battery model

Battery is modeled using an ideal voltage source with internal resistance of SimPower
system block as shown below. Four 12V battery are used which has an internal resistance of

32 mOhm.

L] =<
D voltage Sourc maskd Clink)

Ideal DE wolkags source.

eeeeeeee vs [Fione =
(=14 I Cancel Help Spply |
-t - L =
Series RLC Branch (mask) (ink) -
Implements a seriss branch of RLC slemsnts.,
- Use the ‘Branch bvpe” pararmeter ko add ar rermove elemenks From Ehe bramch.
Parame rers
Branch type: | ~
Resistance (Ohms):

Brattery -

Cancel Help | Apply |

Figure 22: Battery model
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2.24 Engine model

The friction torque and inertia components of the engine are only modeled here.

cranking load behavior of the engine can be simulated using this model.

B042"pi)

The

e

engine_inertia

Constants

’\/ double

Machine_speed_miradises)
Integratert
Pulleyd

rad-rpm3
Friction Tarqua
rad-ipm
Lpee{ Tiriction
Out2
reftheta
Engine Tarque
KTs
1ipulley_ratio double » double
=1

Dizcrete-Time

Figure 23: Engine model

2.2.5 Hybrid ECU model

1ipulley_ratio
Load Tarque

Pulley

Function of Hybrid is the main control system of the whole vehicle which send

command to all other ECU in the vehicle. In this simulation CAN message is only simulated.

Please note that motor controller are controlled only by Hybrid ECU through CAN message as

shown below.

STATE

HECU_CAN_RX

uints

- uints uirir3

dogble  wint1g
(&3]

Wy = Wt 28
Oy=0us>§
Ey=Eu
Shitt
Avithmetic

Frodust patz Type Convesion it 16

fixedpointseale

= 50

Data Type Conversiont

uints uirits
s

Data Type ConversionZ

¥

iEE]
CAN_PCM_MSG_BUFF

wineg] (143
FCh_hiSE_BUFF_{

¥

¥

(0 o 00 0 o0 0 oo urts &)
OTC_CALIB WS G_BUFF_{

DTC_CALIB_MSG_BUFF

Figure 24: hybrid ECU model
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23 Modeling of Controller

Modeling of the Controller includes PCB circuitry, Microcontroller and its Software
algorithm. The complexity of this controller model is that the hardware component of the PCB
are modeled to an extent of its logical functions with an aim to be able to auto-code directly
from subsystem of the <model>.mdl file of the model used in the MIL simulation. Processor
execution timing and interrupts are also modeled in MATLAB Simulink which are as per the
specific configuration of the 18F microcontroller used. This is one of the most interesting parts
of this dissertation project that it is one typical way of modeling, which could help designer
working on the same model for both simulation and auto-coding. Part of software subsystem
to be auto-coded will be discuss on the later part, and porting of generated code to the

microcontroller platform code will also be discuss on Code generation chapter of this report.

Segregation of electrical circuitry part of the controller PCB are done as it is on the
physical PCB, and part of the digital circuitry inside the microcontroller are all model on its
logical aspect on module-wise subsystem. Software parts of the system are then model inside
as one subsystem around the hardware and digital electronics subsystem model. This type of
modeling would help to solve software bugs before actual implementation. It also gives an

idea of the hardware-software interface, hardware functionality of the peripherals.

2.3.1 ASSUMPTION IN CONTROLLER MODELING

1. Active component of the electronics like capacitor, inductor, charging and discharging
are not model. Only logical functions of the chips and the circuit are modeled.

2. Some logical functions of some chips are not considered for simplicity.

3. Sampling rate is fixed to 1 usec, fixed-step. This is done due to better PWM
generation of 10/7.8 KHz (100/128 usec period), we can have 1/0.7v% resolution of
duty.

4. Electromagnetic interference and electrostatic discharge are not considered.

5. Filter circuit functions like filtering delay etc are neglected in the model.

6. Configuration registers setting of MCU and its peripherals are fixed.
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PCB
CIRCUIT

MATLAB
MODEL

Figure 25 : Controller PCB model, and traceability

As shown in the figure above, modeling of functionality of PCB circuitry and IC are
possible by looking into the actual the functional requirements in the simulation. All the PCB

circuitries are modeled and are put to separate subsystems.
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PCB consists of subsystem listed as below:-
1. Current shunt monitor.
2. Digital input circuit.
3. Field short circuit detection.
4. Hall sensor signal circuit.
5. Heat sink temperature sensor circuit.
6. I-Trip signal Battery circuit.
7. Jumper circuit.
8. MCP2515 CAN Controller circuit.
9. MCU 18F4431 Chips.
10. MOSFET driver H-Bridge circuit.
11. Relay driver circuit.
12. Spare input signal circuit.
13. Three-phase Bridge driver circuit.
14. PWM signal filter circuit.

15. Voltage sense signal circuit.

Since, we neglect the filtering logic in our modeling and simulation, we could directly

connect input and output in many subsystem as shown in the next section.
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2.3.2

2.3.3

Current shunts monitor Model

< double T
Allegro_sensor_4 1_SENSE_BAT
Ty ok » T
Allegro_sensor_1 1_SENSE_RIDC_DC_12VOLT
(e 5
Allegro_sensor_2 1_SENSE_Y/DC_DC_CURRENT
Ty dosble T
Allsgro_sensor_3 1_SENSE_BDC_DC_SD

CURRENT 3HUNT MONITOR

Ifwe usefor current sensin

butyou should remove R79, R&2

Gircut_Diagram

Figure 26 : Current shunt monitor circuit Model

Hall sensor signal circuit model

HALLO HO
(D
HALL1 H1

i;m

oL ™

REGND houkd b= shorted 10 156 contralisr Body

Figure 27 : Hall sensor signal circuit model
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234 Digital Input Circuit Model

1 double

DIG_IN_1

»( 1
g8
DIG_IN_CAN1

@ double

DIG_IN_2

(2 )

DIG_IN_CAN2

@ double

DIG_IN_3

p( 3 )

DIG_IN_CAN3

Figure 28 : Digital Input Circuit Model

2.3.5 PWM Signal Filter circuit Model

=
&

0

>
S

0

»
&

0

=
&

0

>
<

0

»
%

A4 R3! 0E
s

AN
DW=
W © =

o =

__ a5 g16 17 £18 £19 £20

finF inF AnF [inF finF finF
| DGND

DGHD

Circuit_Diagram1

Figure 29 : PWM Signal Filter circuit Model
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2.3.6 Spare input signal circuit model

(e >

DIG_IP3 DIG_IP_SIG_3
> double »( 2

DIG_IP4 DIG_IP_SIG_4

Circuit_Diagram1

Figure 30 : Spare input signal circuit model

2.3.7 MCP2515 CAN Controller circuit model

7
SPITX(SDO)

WCPEET oo s

')

TXCAN

Figure 31: MCP2515 CAN Controller circuit model
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2.3.8 Relay driver output circuit model

The main function of Relay driver is to latch out serial data from SPI to a parallel

logic, which are modeled as shown below.

Figure 32 : Reléy driver output circuit model

2.39 Field short circuit detection circuit model

As shown in figure 10, the field shunt resistor voltage is taken as input to this circuit
which is a very low voltage, and is amplify and given to a comparator circuit. It is then
compare with a know threshold voltage which is selected depending on trip current required.
Since the H-Bridge driver chip shutdown does not latch the SD signal, microcontroller output

latch is provided to latch through software.

Chroun_Dimgram

Figure 33 : Field short circuit detection circuit model
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2.3.10 Heat Sink Temperature sensor interface model

Thermistor sensor from the power inverter heat sink is connected to the circuit shown
below. Threshold is set using potential divider circuit which is model the same way in a

MATLAB Simulink model.

dddddd

vces

Circuit Diagram1

Figure 34 : Heat Sink Tempe}ature sensor interface model

2.3.11 I Trip Signal Battery circuit model

This subsystem senses the specific threshold voltage (over voltage) of battery, which

give trip signal to the 3-phase driver chip.

||
Scope
® double V|_|
o= | boolean D)
n

|_SENSE_BAT

‘ I-TRIP SIGNAL BATTERY ‘

R253

Circuit_Diagram1

Figure 35 : I Trip Signal Battery circuit model
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2.3.12 Jumper Circuit Model

Jumper on the PCB which route anyone of the signal exclusively to uC pin.

3 double
DIG_IP_SIG_3

boolean double
SYN_PULSE/SPARE1
J21_setting

3 —-double

PULSE

double

DIG_IP_SIG_4

SYN_INDEX/SPARE2
J22_setting

> double

RINDEX

NOTE : J21,J22 setting
1- pass input 1
0- pass input 2

Circuit_Diagram1

Figure 36 : Jumper Circuit Model

2.3.13 MOSFET driver H-Bridge circuit Model

Two FAN73832 are used to driver two leg of MOSFET in complimentary with dead-
time, and with a shutdown pin controlled through uC and trip circuit as in figure 21. Shutdown

logic model are shown in the subsequent figure 26 and 27.

T ) uints PWM/N HB1_HIGH [FUntE
H_BRIDGE_PWM1 H-Bridge_HO1
sD HB1_Low |8
H-Bridge_LO1
FAN73832_1
PWMI/IN HB1_HIGH
H_BRIDGE_PWM2 H-Bridge_HO2
»{so HB1_LOW
Boolean H-Bridge_LO2
(3 )H-BRIDGE_SD FANT3832_2

NOTE: Deadtime effect of R63,R64 will not be
considered in this simulation because
the dead time is on scale of 500nsec, and
our simulation step size is 1 usec

Circuit_Diagram

Figure 37 : MOSFET driver H-Bridge circuit Model
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PWM/IN

s
e
HB1_HIGH
uintg Switch
bodlean Constant
SD
= NOT boolean
Logical
Operatort ; s >
- HBT_LOW
Switch1 -
Figure 38 : FAN73832_1 shutdown logic model
!PWM/IN
uint8
<N
HB1_HIGH
uint8 Switch -
ea" Constant
SD
»| NOT boolean
» '—
Logical
Operator1 < uintd
<
HB1_LOW
Switch1 -

Figure 39 : FAN73832_2 shutdown logic model

2.3.14 Voltage Sense Circuit Model

Power board battery voltage signal are wire directly to the PCB, which are higher
voltage (say 48V) and are needed to be divided down to uC sensible voltage level using

potential divider circuit as shown below

double -
[ > double -7
VBAT_TRAC voltage v
VBATSEN

doubl

2.2

R92(kohm)

VoA

VOLTAGE SENSE SIGNAL

R93(kohm) | ose

- i

VBAT TRAC

K VBATSEN

. o
e 58
p= Ro2l 70 A e

Figure 40 : Voltage Sense Circuit Model
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2.3.15 Three Phase Bridge driver circuit Model

IR2132 the three phase driver chips are model on its functional excluding the bootstrap

capacitor and diode. Fault latch and fault shutdown logic are modeled as shown below in the

consecutive figures below.

[ e e o GED)
T 71
[ e R (T
T e
(FoyEme alw 0
at a1
e e P T
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THREE PHASE ERIDGE DRIVER

o1 Usteu
1 i s 3

1 bz Posvar
i 5

1 o7 Posia 72
B DaTSeRLP

cet| T Re
P

=

33E 16

&
i f— T ——— =
cso Ty s = pT 33 FEG | bt
o £ o [ S ﬁf
. o — ua
o Hﬂ i
R i desms
DN = 4

Circun_Diagram1

Figure 41 : Three Phase Bridge driver circuit Model

CHIP IR 2132 Functional block diagram

J) 4 SET
AN INPUT PULSE
GENERATOR
—  SGNAL ||, NERAT
A2 | _GENERATOR SHIFTER
RESET
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e 1 L— ¢ sonar |, GENERATOR
GENERATOR [—— SHIFTER
o RESET
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FAULT ?‘ SET B3
CLEAR FAULT - e = GENERATOR o
I Locic LOGIC SIGNAL _ [ 4 =rhall B EEEE R ——p{ ORIVER HO3
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Vs3
Voo é !
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VOLTAGE
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COMPARATOR
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CURRENT
I AMP
CA-
Vss ({)—P
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Figure 42 : IR3132 functional diagram
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Fault Latch are reset by giving all 3 low input together for sometime as modeled below

figure, state-chart is used to model fault state latch.

OFF1] 0
off| o D NOTE : Bootstrap capacitance simulation not taken into account

boolsan
boolean
Logical
Operator 1 boole:
- untd -NOT boolean 4 > boolean .;@
HINT Switch HO1
Switch1
» book
oole:
uintB boolean 1 ; 4 boolean =@
HINZ Logical Switch2 > HO2
ogica Switchs
Operator? -
o booke .
uintg boolean 1 .: 1 :. E boolean .;@
Switchd L
HING oacal e SwitchT Hos
perator
-4 boo
uints o boolean _!I" — P boolean o
[ B NOT 4 — »{ )
LINT Lomeal Switch6 P To1
o Dg"ia 5 Switchd
perator.
> boo -
;@Msn _EI"'SM ] > E boolean .;@
LIN2 Switchd bl LO2
oﬁl;tzlm Swichtt
o booke N
uintd - boolea 1 __"l boolean -
(g e » NOT » | » {5 )
LING Lomeal Switch10 03
o Dg"ia 5 Switch3
perator AND -bonkean
Logical
Operator
D boolean i .
ITRIP h el »(7 )
rip_reset Fault_Activelow
Fault_Latch
Figure 43 : IR2132 functional model
ar \DLEV )
P entry-latch=1;
:
trip_in==1]
i
VN
SO TRIP_LATCH
v entry latch=0;

Figure 44 : IR2132 Latching model
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2.3.16 MCU 18F4431 Chips Model

This subsystem consists of the CPU and the peripheral digital electronics inside
the physical uC chips, as shown in the figure below. CPU functionalities are model as
software which acts as the main control software from where uC C-code will be generated.

Each of the peripheral modules is also modeled on a separate subsystem as shown in figure 33.

MICROCONTROLLER PHERIPHERAL MATLAB MODEL

Data Bus<g~

- RADIAND
Data Lateh SR Ravant
= RNz e (AP INDX.
° @ Data RAM - ~[X] RAJIAN3NRer +/CAPZIQEA
APSIOER
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REUPWMO

=[] RBIPWMI
REZPWM2

+[] REIPWM3
RE4/KBIOPWMS.
RBS/KBI 1P /PCME)

OSCICLKORAS

Address Latcn

Program Memory|

Deta Latch

RBE/KBIZPGC
X ReTEIzPeD

RCOT1OSOMICKL
| RCUT10SICCP2FTTA®

] REAINT1/SDISDA
=] ResanT21SCKOSCLE)

4 ro7pwmr
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~& revant
~X rezans

o sc | 43 methn=s s

1
HS 105 % DAuDo, Avss
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v Y b ¥ ¥ P!

1
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Figure 45 : Microcontroller model scheme

2.3.16.1 MCU ADC Block modeling

18F4431 chip ADC channel are group into 4 groups- A, B, C and D. Two channels at a
time can be sampled together, and conversion can be done consecutively and can be routed to
a 4 FIFO buffer as shown below. In this ADC modeling in MATLAB, we neglect this

complexity of FIFO and channel multiplexing. So, direct conversion logic is modeled for each

ADC channel.
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A/D BLOCK DIAGRAM

WCFG=<1:0>
AVDD AVSS J
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ACSCM —4
ANT > ACMOD
AN5T} »
E{ ¢ Analog
AN3/VREF+ IZII » Musx SiH-2 y
ANT B ¥ o1
ﬁ SH o<
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Note 1: ANS5 through ANS are available only on PIC18F4X31 devices.

Figure 46 : MCU ADC block diagram

@ double .
- X | double .l double . . uint16 ExportedGlobal .
Vin g adcvalue uint1 'd®t
- adc_ou
Product1 Saturation Data Type Conversion
double .
1024 x double

10-bit luti "
it resolution Dvidst

double

Vref

Figure 47 : ADC channel conversion and sampling model

ADC modeling is done for each 5 channels used which are used for sensing analog
signal of currents and voltage signals. Table below highlights the ADC channels used with

details, and modeling is same for each channel as given in above figure 35.
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Table 4 : ADC channel assignment

ADC ADC Port 18F Pin | Signal symbols | Signal Descriptions
Channel | Grouping | Group No

ANO A RAO 19 I_SENSE_R R-phase current

ANS5S B RAS 24 I SENSE_Y Y-phase current

ANS A RE2 27 I_SENSE_B B-phase current

AN7 D RE1 26 VBAT_SEN Bus Voltage

ANG6 C REOQ 25 I_SENSE Bus Current
2.3.16.2 MCU Input Capture Block Modeling

Input channel (IC1) includes a special event trigger that can be configured for use in
Velocity Measurement mode. Its block diagram is shown in Figure below. IC2 and IC3 are
similar, but lack the special event trigger features or additional velocity-measurement logic. A

representative block diagram is shown in Figure below. Please note that the time base is

TimerS5.

INPUT CAPTURE BLOCK DIAGRAM FOR IC1

CAP1 Pin
Noise
Filter

M
%g

FLTCK<2:0>

CAP1M<3:0> Q clocks

MUX]
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velcap?) VELM
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—» IC1_TR
Special

Clock/
Reset/
Interrupt
Decode
Logic

| Event

P» Reset Timer5 Logic 2

Reset
Control

CAP1BUF_clk

First Event

Q Clocks

CAP1M<3:0>

Note 1: CAP1BUF register is reconfigured as VELR register when QEI mode is active.
2: QEIl generated velocity pulses, vel_out, are downsampled to produce this velocity capture signal.

Timer [ Timer5 Reset
Reset
Control

CAPXREN ——¥
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Figure 48 : MCU Input Capture block for IC1




INPUT CAPTURE BLOCK DIAGRAM FOR IC2 AND IC3

Capture
Clock

-y

CAPZICAPS Pin CAPxBUFT-Z

and
Nuise rrescater| | 5303, [
7 Filtor 1,4,16 Select 1 MRS
Cnable
3 _ s
14
FLTCK=2:0> cAPxM<3:0>(1)
L e ICxIF(M

Capture Clock/ | ¢ apxur cik
Reset/ =
Interrupt

Dccodeo

1 ogic Resel Timer TMRS5 Reset

> Resel
Control

Q clocks CAPxM=3:0-("

CAPxRLCN®)

Note 1: IC2 and IC3 are denoted as x=2 and 3.
2: CAP2BUF is enabled as POSCNT when QEI mode is active.
3: CAP3BUF is enabled as MAXCNT when QEI mode is active.

Figure 49: MCU Input Capture block for IC2 and 1C3

Here, capture triggering module and line-to-data are model, all other complexity are
not model, but timer 5 special event reset is model in figure 44 using a state-chart, details can

be found on Timer 5 module modeling in section 2.3.15.4.

cap1

h 4

o

capl

{2 ;umtﬂ P cap2 hall_status uint8

cap2 hall_status
Gy oo
cap3
signals to data
P capi
allCAP_trigger pulse
All_Capture_interrupt_trigger
P cap2
o CAP1_trigger_rising boolean »{ 3 )
cap3 CAP1_trigger_rising

Capture ISR trigger generator

Figure 50: Input capture model
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n uint8 > uints uint8
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Figure 51: Signal line to data converter model
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Figure 52: Capture trigger generator model

TIMERO BLOCK DIAGRAM IN 8-BIT MODE

TIMERO timer Module Modeling (for ISR 1 msec Interrupt)
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Figure 53: MCU timer 0 block diagram
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Timer O is modeled as a pulse generator which gives rising edge of pulse at specific
interval of time, and is used to trigger the timerO0 ISR subsystem inside the software

foreground subsystem.

[ W Source Block Parameters: Pulse Generator =
Pulse Generator
Output pulses:
if (t >=PhaseDelay) &8 Pulse is on
¥(t) = Amplitude
else
Y =0
end

boolean Pulse type determines the computational technique used.

T1_ISR_trigger
S Time-based is recommended for use with a variable step soiver, while Sample-
Rulke DataTypeiConversion based is recommended for use with a fixed step solver or within a discrete portion

Generator of amodel using a variable step solver.
Parameters
Fulse type:
Time (t): |Use simulation time [=]
Amplitude:

NOTE: Please note the Pulse generator is based on sampling rate, L

so take a note in changing sampling rate of simulation Goraior i e =i

TMR1_cnt_tmsec

Pulse width (number of samples):

1

Phase delay (number of samples)

o

Sample time:
-1

[7] tnterpret vector parameters as 1-D

[ ox ][ canel |[ reb

Figure 54: Timer O interrupt generation model

2.3.16.4 TIMERS MODULE MODELING

TIMERS BLOCK DIAGRAM (16-BIT READ/WRITE MODE SHOWN)
TECKI

Internal Data Bus

AN

Foscid
Internal
Clock

Sleep Input

TMRECS Timer5
TEPS1:TEPS0 On/Off
TESYNC
TMR5ON |
8
Write TMRSL
i Read TMR5L
Special Event TMR5
Trigger Input ————={ 1
from IC1
Timerk Reset ———— === =
Timer5 Reset - 0 16
(external)
Reset Comparator
Logic
SetTMREIF -———————  Special
Event |-—e—I

Logic

Special Event
Trigger Output

Figure 55 : MCU Timer 5 Block diagram
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Timer 5 module block diagram as is inside the microcontroller is shown above. Timer

5 is used for hall sensor signal change time counter, which is used for speed calculation.

Overflow and resetting of timer are taken care inside the software foreground subsystem,

resetting is done on every instant of hall change, and overflow is taken care using timerS

overflow interrupt.

NOTE: Timer resolution is 1 usec i.e sampling rate of the model

—»(1D

T5_count

1
- Reset count
reset z
Unit Delay2 %
2 P Timer_ON overflow|
timer_ON

Timer_overflow_Check3

T5_overflowISR_trigger

Figure 56 : Timer5 overflow and count model

This part of the model is not consider in the software since it works on the digital

peripheral of the uC digital electronics, but are configure through special function register

setting, during the initialization phase of uC peripheral registers. This subsystem is sampled at

base model sampling rate i.e. lusec, which is the resolution of the counter.

TIMER5_OFF

overflow=0;

¢ PEBEEHS

Figure 57

entry:count=0;

NOTE: This model simulate timers of 18F4431, considering sampling time as tick time.
since tick time = 1 usec, so fixed step = 0.000001.

count is uint16 , so it count upto ((2*16)-1) usec .6 65.535 msec

TIMERS_ENABLE
.| entry:count=0;overflow=0;

]

during:count++;

[Timer_ON|]

z
T
[ITimer_ON] | / Normal_count

2
\ {overflow

{overflow=0}}. v

\

\ [Reset==1] (Reset_detected
[ “| entry:count=0;
[count==65535]

Overflow_detected i
“~__| entry:count=0;

=13}
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2.3.16.5 MCU Power Control PWM Module Modeling

POWER CONTROL PWM MODULE BLOCK DIAGRAM

Internal Data Bus

= 8 -
R PWMCONO
PWM Enable and Mode
5
<] PWMCON1

8
P DTCON Dead Time Control

8
<~ FLTCON Fault Pin Control

8
<—7=>[ OVDCON=<DIS> PWM Manual Gontrol

PWM Generator #3(11

|
] _Semparator |———= [ Pwmr
5 PwMe

5 PwmMs

8
PWM Generator|
> L " <
n T qic DU. PwmM4
rator Block

| PWM Generator]| Channel 1 7] PWM3
Dead Time Generator

and Override Logic —1 PWMZz

'

4 PWM Generator] Channel 0
— — & Pwmi
[1 Dead Time Generator
PTPER Buffer +—| and Qverride Logic —£q PWMO
s N
7 PTCON ] FLTA
7] FITB
SEVTDIR Postscaler
a8
S SEVTCMP PTDIR

Note 1: Only PWM Generator #3 is shown in detail. The other generators are identical: their details are omitted for clarity.

2: PWM Generator #3 and its logic, PWM channels 6 and 7, and FLTB and its associated logic are not implemented
on PIC18F2X31 devices

Figure 58 : MCU PWM module block diagram

Power PWM module block diagram of 18F4431 is shown above, which consists of
configuration and functional register, along with the PWM generator, dead-time generator and
the output driver blocks. The special event trigger and dead-time generator are not model in
this model. Complimentary logic and output override logic are digitally wired inside output
driver block which are control through PWMCONO, OVDCOND and OVDCONS register.
OVDCOND and OVDCONS registers are used to define the PWM override options. The
OVDCOND register contains eight bits, POVD7:POVDO that determine which PWM I/O pins
will be overridden. The OVDCONS register contains eight bits, POUT7:POUTO, that
determine the state of the PWM I/O pins when a particular output is overridden via the POVD
bits. The POVD bits are active-low control bits. When the POVD bits are set, the
corresponding POUT bit will have no effect on the PWM output. In other words, the pins
corresponding to POVD bits that are set will have the duty PWM cycle set by the PDC
registers. When one of the POVD bits is cleared, the output on the corresponding PWM I/O
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pin will be determined by the state of the POUT bit. When a POUT bit is set, the PWM pin
will be driven to its active state. When the POUT bit is cleared, the PWM pin will be driven to

its inactive state. The above mention logic is model as below.

7 st
OVBCOND

B
yyyyyyyyyyyyy

uuuuuu

Cutput Logic

COMPLINENTARY LOGIC.

D

Whiperiod_trigger

Figure 59 : PWM module model

The PWM generator block is model in state-chart as given with a base sampling rate of
1 usec. PWM period interrupt trigger pulse is also modeled, along with this PWM period

could be set externally depending on the PWM frequency used for switching the MOSFET
(say 10 KHz, 100usec).

7 UPDATE_CHECKING

¢~ DUTY_GENERATOR Kperiod_interrupt_trigger=1;pwm_intt_PS_cnt=0;}
{pwm_duty_old=pwm_duty;pwm_update=0;} y [period_count>=Tperiod] [pwm_interupt_en==1]
) OFF {pwm_intt_PS_cnt++;}
entry:pwm_out=0; 73,
UPDATE during:period_count++;
period_interrupt_trigger=0;

%

¢ BEEEE¢ES e |8

\ [owm?i ir;tt_A'PS_cnt::pwm_mtt_PS]
\\ {pwm_intt_P$_cnt=0

‘\ “ perl \d_\nter; Et_mgger:ﬂ 3
) [Pwm_duty_old!=pwm_duty] S S~ \«g’/
[ / {pwm_update=1;} N \H;(«T
{period_colnt=03—— |

~ [
| [pwmiupdaje:ﬂ
i \  {pwm_duty/ old=pwm_duty;
\_ pwm_updgte=0;}

\. ON
Nk entry:period_count=0;pwm_out=1;
during:period_count++;
[period_count>=pwm_duty_old] period_interrupt_trigger=0;

Figure 60 : PWM generator and Period interrupt triggering logic

J [pwm_duty!=0]
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The output override control block are model in consecutive figures 49 through 51 and

are self explanatory. Complimentary logic is model as given below which are control by

PWMCONO (bit3, bit2, bitl and bit0) register. If else

Simulink blockset is used to do that operation as shown.

duty(

P Extract 5it )
PWMCONO

Extract Bits

P Extract Bit 1

Extract Bits1

Extract Bit 2

¥

Extract Bits2

Extract Bit 3

b 4

Extract Bits3

signal routing block call switch in

™
E ,E boolean =®
'Switch il
Logical =@
Operator2 PWM1
> boal
|4 nolean o
> } »{ 1)
Switch1 PNz
Logical
Operatort :@
PWM3
™
: ,S boolean =@
Switch2 P
Logical .
Operator3 '%
: ,E boolean =®
Switch3 PN
Logical
Operatord {5 )
PWMT

ufxl

ufecl_E1

ufxl_E2

ufix1_E3

Figure 61 : Complementary logic block
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PWM awgna\E@
PWM s\gnaﬂ@

AWM signals| 8
OVDCONDislst OVDCQNS_QH‘ O NOTE : Complimentary mode switching not included
A MsgnaM@
= H PWI s\gna\i@
demuxUINT8_1 demuxUINTS_2 PWM \gna\Z@
< oz © © < oz © © 0 Ln4 1 [High
] - H H 3 -1 H H Pwm\gnau@
PWM s{gnal0 =
’ C? 1 ] » (1
> Switch Py
-l
Suitcht
< 2D
Switch2 P
i
3
—Swiens i 3
PUM2
N Switchd
i
|
e N
PWM3
Switché
o
-4l
! H
>
Switchg P
f
b
Switchg —
1 »(5 )
Suitch10 PvS
(i
»l
Switch11
i >
i Suitch12 PS5
Switeh3
»f 5
i Switch14 P
Switch15

Figure 62 : Output Logic block

OVDCOND, OVDCONS are 8 bit register, where each bit field represents the override
setting for each channel of PWM signal. So, demux block is model as given below to latch out

data to signal lines for controlling PWM output override in figure 50.

Vy =Vu* 287 Bitwise
.— Qy=Qu>>7 »| AND ;@
In1 Ey=Eu Ox1 outs
Shift Bitwise
Arithmetic Operator
Vy=Vu*2*-6 Bitwise
Qy=Qu>>6 »| AND »(7)
Ey =Eu 0x1 Out?
Shift Bitwise
Arithmetic 1 Operator1
Vy =Vu* 25 Bitwise
Qy=Qu>>5 | AND »( 6 )
Ey =Eu 0x1 Outé
Shift Bitwise
Arithmetic2 Operator2

Vy =Vu* 24 Bitwise

Qy=Qu>>4 »| AND »(5)
0x1

Ey=Eu

Out5
Shift Bitwise
Arithimetic3 COperatord
Vy =Vu*2A-3 Bitwise
Qy=Qu>>3 B AND »(2)
Ey=Eu Ox1 Outd
Shift Bitwise
Arithmetic4 Operator4

Vy = Vu * 2A-2 Bitwise

Qy=Qu>>2 » AND > 3
0x1

Ey=Eu

Shift Bitwise
Arithmetic5 Operator5
Vy = Vu * 2A-1 Bitwise
Qy=Qu>>1 | AND »(2)
Ey=Eu 0x1

Shift Bitwise
Arithmetic6 Operator6
Bitwise
P AND »(1)
0x1
Bitwise
Operator7

Figure 63 : De-multiplex Byte block
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2.3.16.6 SOFTWARE MODEL

This subsystem is from where we generated the code which goes directly to the
microcontroller. C code to be dump to microcontroller are auto-coded using real-time
workshop from this level of subsystem. It consists of foreground and background subsystems
which are communicated by global storage blocksets of Simulink, and some of the signal are
loop back through unit delay block. Foreground are interrupt which are executed on timer or

external event, background at task are function which are executed on the forever while loop

inside the main function in C programming.

= S — .
Data Sire Data St curetotr] gnanie
QxS -
- s =
= HBRIDGE Trip Outoutt
TR AD

T
(kL

Memory1d

DATA STORE Blockset are used for foreground and
background process communication.
NOTE: Becareful !! If you edit anything part of the system
which has access to datastore read/write blockset

oS nger

52 STATUS MSG_BUFF

133 DATA_VISE_BUFF

= 153 DTC WSE_8UFF

call gt

Figure 64 : Software model (Background and Foreground Subsystem)
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2.3.16.6.1 FOREGROUND SUBSYSTEM MODEL

Foreground subsystem consist of event based and timer based trigger subsystem. Event
based trigger subsystem comprises of Hall event capture, PWM period event capture interrupt,
and Trip event interrupt. Timer based trigger subsystem comprises of Timer(Q periodic
interrupt and Timer5 overflow interrupt. All subsystems in the foreground subsystem are

trigger based subsystems.

(CEOPWMPeriodISR Trigger

CapturelSR _ trigger

hal_status

Commutation_lookup_status_ist

Current_limiting.
NOTE: Current_limiting subsystem is triggered every rising edge of PWM

T5_overfowlSR_trigger

INT1_ISR_trigger

Timers_Overiow_ISR INT1_ISR_FieldShort

{8 )T1_ISRTrigger

Faul2132_tripin

Latch_out_Fault_2132

Timer0 ISR

Figure 65 : Foreground subsystem model

2.3.16.6.1.1 Capture ISR model

This subsystem is trigger on every hall change on any of the hall sensor signals
generated through the peripheral subsystem of the uC. The source of this subsystem input
could be referred in section MCU input capture block modeling, and MCU Timer 5 module.
Under this subsystem there are four subsystems-Hall checks, Latch logic, commutation and

update speed count.
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Trigger

hall_reversal

Data Store
Write3

hall_error

Data Store
Write2

hall_status

4

Trip_reset Hall_Checks

4
Latch_Logict

commutation_enable

3

»

Commutation_lookup_status_isr

commutation

NOTE : Excution fime on 18F4431 = 60 usec

Relational
Operator

Gonstant

T5_count

Update_Speed_Count

Figure 66: Capture ISR model

2.3.16.6.1.1.1 Hall Check model

Under this system the hall sequence is monitor all the time, whenever there is wrong

sequence or reversal, output signal is made high accordingly.

| AND

Relational

o—

{1

Qperator

—

Logical
Operator

hall_status

[132557025546]

Next_data

<A

hall_reversal

»{(_2

Logical
[402551625573] NOT Operator2
Prev_data Relational i
L |
Selectort Operator2 Opg?;?gﬂ

,—| Logical
-,] =2 Operator3

Compare OR
To Constant

Logical

>’?5| Qperatord

Compare
To Constant1

Figure 67 : Hall error check model
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| always be low
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L H
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]
E
B
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[
E

4 | MNormal Forward motion

0

L I -1
IEIIEIIEIE]

NOTE: There will be 12 possible cases in reverse direction also, but it is not taken into accounf

Figure 68 : Hall error conditions analysis

Hall sensor signal are analyze on each of the probable condition when shorted to

ground or shorted to supply as shown in figure above. Accordingly the hall check algorithm is

modeled.
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2.3.16.6.1.1.2 Latch logic model

This state-chart is same with the latch logic given before, it will hold the fault status

until reset signal appear.

LOwW
entry:latch_out=0; trip_in==1]

iy \
LATCH
entry:latch_out=1;
[trip_reset==1]

Figure 69 : Latch logic model

) BEEEE e

2
H

¢

2.3.16.6.1.1.3 Commutation model

During motoring operation, the switching pattern should be change on every hall signal
change. This subsystem switches the pattern of switch configuration depending on hall sensor
signal. Occurrence of hall error will switch off all MOSFET. This subsystem is enabled only
when commutation enable flag is raise from the background state control chart. Note that only
pattern of MOSFET switching are only decided by PWM override which is controlled from

this subsystem.

NOTE:Refer to commutation_lucas.s file in Design document, reverse commutation not taken into account
Enable

6 B}
IMPORTANT NOTE: This patter can be change by interchanging the Phase name as desire
Constant
14 O]

NOTE: commutation_lookup_status will have value-for

(@D, > > Without Phase Advance
hall_error 0-RB
Switcht RB_phase > TR
3-BY
Constant3
RY_phase = 7-BR
Constantd YA
hall_status :OFEWSS onstant N FRA
Constant6 .
BY_phase = Commutation_ookup_status_ist >
with phase backward :‘(B p— Constant5 N Commutation_lookup_status_isr
0-RY Constant10 HIL test sequence
1-BY OFF_phase e 0 -R+Y-
3-BR Constant9 1-B+Y-
7-YR YR_phase » 3-8
6-YB Y+R
Constant11
4.RB onstan BR_phase — 8-y
Constant7 Multiport
Switch

Figure 70: Commutation model
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2.3.16.6.1.1.4 Update speed count model

Timer 5 is used to measure the time between one electrical cycles of the machine, so
this subsystem is enable on whenever hall status is 1 as shown in capture ISR model. Note that
there will be 6 electrical cycle for mechanical one rotation for a 12 pole machine. TS5 counter
count a tick of 1 usec resolution in the microcontroller hardware. So, the accumulated count is
read and noted to a global storage variable as shown below. But, there might be a case that, T5
16-bit counter overflow before hall status change to 1. In this case, a timer 5 overflow counter
value will be updated on timer 5 overflow interrupt routine. 16 bit count value and number of
overflow (8-bit) should be combined to 32-bit counter as shown below. So, speed count value
of 32-bit is used in background to calculate speed in rpm.

Enable

NOTE RPM calculation to be done not on foreground

g isgSpeed_cnt_buff

Switch1 Data Store
Writed

» ~=0
[
Compare
To Zero

1 P{in1

T5_count

isgSpeed_cnt_ovfCnt P in:

Data Store
Read3 Combine_16bit_n_8bit

ole

Outt f|——

Figure 71: update speed count model

Whenever timer5 has been overflow or overflow count is not zero, the overflow

counter will be reset.

isgSpeed_cnt_ovfCnt

Data Store
Write

Figure 72: combine 16bit and 8bit to 32bit
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2.3.16.6.1.2 Current Limiting Subsystem Model

This is the main control model which controlled the motor current using PID
algorithm, and then controls torque. This subsystem will be trigger on every PWM period, so
if the PWM period is 10/7.8 KHz, it will be trigger at instances of 100/128 usec. All phase
current and bus current are sensed and converted to fixed-point engineering value (ampere) as
shown in the figure below as a four small subsystems on left hand side. Other two subsystems
are over current fault checking and the PID controller. Most subsystems in this current
limiting subsystem are enabled at all time except that PID controller is enabled only when
flagged by background state control. Any current faults will immediately shutdown the PID
control which intern shut off the motor. Direct PWM duty control option is provided which
directly control armature PWM duty over CAN interface for debugging and system checking

during development.

=

NOTE: Gurent,_imiting subsystem s iggered evey rising edge of PN

int_BusCurent_adc
curent scaling fiedpirti et Faul
() N
tip_resst
uneniFoulCheds H
Compare
ToZew
Am_outy_diedt
Constaniz
[,
hall_satus Al drecPiady
S N : A _pamdity '.
am_pama
Suitcnt gty
Suten

1_SENSE B_sdo,

¥t
PlsnutdownComplete

curent scalng fixedgoinié

NOTE Exxecution fime = 150-165 usecin 1874431 8hihzr

Figure 73: PWM interrupt or Current control model
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Current limiting subsystem consists of current scaling block for each channel,
fault checking and latch logic for each current channel, and the PID controller. Let us go

through each of the block and study the functions of it one by one.

2.3.16.6.1.2.1 Current Scaling in Fixed point block model

ADC converted value need to be scaled to ampere value for the strategy, so fixed point
scale value is chosen depending on the sensor specification, and are multiply with the ADC
offset corrected value. ADC offset correction are done using initial start-up ADC value when

the uC is first switch-on.

(D q Buscument
BusCurrent_adc _ - BusCurrent_A
Product1
init_BusCurrent_adc

Display

0.739820075

convertion factor1 Data Type Conversion1

conv factor1

Display2

Convertion Factor1

Figure 74: current scaling model

2.3.16.6.1.2.2 Current Fault checking and latching algorithm block model

Current value are check on both positive and negative extreme values, so if over
current occurs on any current signal, a specific bit in the current fault variable is set. So,
current fault can be uniquely identified. Each current limit checks are done on exclusive sub-
state, which means that all checking are done paralleled within one sampling, and then if any

fault occurs, it jumps to fault latch state and cannot jump back unless trip reset event occurs.
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Current_within_Limit
entry:currentfaulL atch=0;BCminCnt=0;BCmaxCnt=0;RPminCnt=0;RPmaxCnt=0,YPminCnt=0;

YPmaxCnt=0;BPminCnt=0;BPmaxCnf=0;

\

"//BLISCUUEFILM\N
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o () [BCminCnt==1] i
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[Rphase_current<min_current]
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RPminCni=0;}

[RPmlﬂCnIZW 3

:"<I’3usCurrem_MAX

2 {currentfaultLatch [=0x04;

| [bus_current-max_current]

Q< [BCmaxCnt==1] g

2 {currentfaultlatch [=0x02;

BCmaxCnt=0;} i
{BCmMaxCnt=1;}

& RphaseCurrent_MAX

[Rphase_current=max_current]

5! [RPmaxCnt==1]
feurrentfauttLatch |=0x08;
RPmiaxCnt=0;}
[RPM3xCnt=1:}

;"thaseCurrentﬁM\N

[Yphase_current<min_current]

’:Q [YPminCnt==1]

“'/ BphaseCurrent_MIN

[Bphase_current<min_current]

I Q [BPminCnt==1]

H {currentfaultLatch [=0x10;
PminCnt=0;}
WPWJHCHFW 3
{currentfaultLatch |=0x40;
2 PminCnt=0;} :
{BPnimCmﬂ 3

/ YphaseCurrent_MAX

[Yphase_current=max_current]

5 ! [YPmaxCnt==1]
feurrentfaultLatch [=0x20;
YPriwaxCnt=0;}
{YPmaxCnt=1;}

§ BphaseCurrent_MAX

[Bphase_current=-max_current]

31 [BPmaxCni==1]
feurentfaultLatch [=0x80;
BP: Cnt=0;}
{BPmaxCnt=1;}

-

[currentfauitlatchl=0]

[trip_reset==1]

Figure 75: current fault checks and latch state-chart

Current_Fault_Latch

2.3.16.6.1.2.3 PID CONTROL BLOCK MODEL

Note that we are controlling the block current; feedback to PID controller is a block
current. The feedback block current is derived from the phase current depending on the hall
status signal using mutiport switch as shown below. This feedback is filter using FIR filter so
as to reduce commutation and switching transient for better feedback signal. Reference current
is set through a global storage variable through CAN message from background. Reference
filtering using exponential filter is used to reduce jerk in the motor during switch on and off
the motor. Shutdown signal and hall error signal will automatically reset the reference block
current to zero reference. The tunable parameter like Kp, KiTs and Kd/Ts are accessed using a

global storage variable as shown in figure below.
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hall_status
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RphaseCurrent_A
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BphaseCurrent_A i
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Ref_in Ref_out == 0 ™ o >
overCurrent_fault ~ (2
Logical Switch1 Compare - PlshutdownComplete
Operator To Constant Logical

shutdown_PID

ReferenceFilter

Operatar?

Data Store
Readé

IMPORTANT: Carefully assigned the correct hall-state-current switching in the above mutiport switch
CAUTION: Wrong assigned could burn power Board

’

Ref current_Local

2.3.16.6.1.2.3.1

Figure 76: PID controller block model

Feedback Filter block model

Block current feedback is filter as mentioned using 1*" order FIR filter, and is

implemented using unit sample delay, addition and shift arithmetic as shown below.

- sfix16 _End »

Fil_in

Shix16 _End > -

Fil_out

1 |sfixie Era >l
z Wy = WU T 20
Y = WU ~
sfix16_End » Qy=Ques
Ey=Eu
P+ Shift
Arithmetic
FIR Fliter

Figure 77 : Feedback FIR filter model
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2.3.16.6.1.2.3.2 Reference Filter block model

Smooth reference signal is implemented using an exponential smoothening algorithm
as shown below. Since our processor is an 8-bit fixed-point processor, we implement using

shift arithmetic, addition-subtraction and unit delay blocks as shown below.

G
Ref_in
Vy=Vu
P Qy=Qu>>6 »—
Ey=Eu
Shift P+
Arithmetic1 Unit Delay
1 Vy=Vu
- < “—» Qy=Qu>>6 P Convert
z Ey=Eu Ref_out
Shift Data Type Conversion1
Arithmetic
Figure 78: Reference ramp down model
2.3.16.6.1.2.3.3 PID Control block model

PID controller is implemented in a different way due to the computation constraint of
the CPU. All variable are implemented in a fixed point number. To reducing the
computational complexity, KiTs and Kd/Ts are directly given as a tunable parameter. Anti-

windup reset is also implemented, along with control output saturation block.
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. siixtg gm0 | [ ufixe Enig )
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error_reset!
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Figure 79: PI controller model
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2.3.16.6.1.3 TIMERT1 ISR model

Timer 1 is used for maintaining fixed time step by all algorithms in the background.
Timer 1 is configured to interrupt the CPU every 1 msec interval which do the sampling of
shown below. The 3phase bridge driver trip latch logic is also executed in this subsystem.

Latch state-chart is shown in consecutive figure below.

Trigger

T1_tick_cnt T1_tick_cnt |
Data Store Data Store
Read Write

Fault2132_tripin

Logical Data Type Conversion8 h_out
Operator B trip_reset Latch_out_Fault_2132
) Latch_Logic
&5
Trip_reset
Figure 80: Timer 1 ISR model
® l
o)
ot LOW
entry:latch_out=0; trip_in==1]
LATCH
entry:latch_out=1;
o [trip_reset==1]
=

Figure 81: IR2132 Trip Latch state-chart

57



2.3.16.6.1.4 INT1 ISR (Field short circuit detection) model

When field shunt resister voltage drop is high, it create an interrupt on INT1 pin of the
uC through the hardware circuitry as shown in Figure 33 : Field short circuit detection

circuit model, so a Field H-Bridge trip flag is set, which will shutdown the system from other

subsystem.
Trigger
set Data Store
Write
NOTE: When Trip is detected, Trip output should be made high to Latch the SD pin of FAN73832 low
2.3.16.6.1.5 TimerS Overflow ISR model

Timer 5 as mentioned before is used for speed calculation; the hall signal is used as a
reference to read the count value from timer 5. But if hall change doesn’t occur for sometimes
the timer 5 will overflow which create an interrupt, and overflow count will be incremented as

shown below.

(et e |
Trigger

isgSpeed_cnt_ovfCnt ;/1-:\ » | isgSpeed_cnt_ovfCnt
Data Store Saturation Data Store
Read Write1

set

Figure 82: Timer 5 overflow ISR model
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2.3.16.6.2 BACKGROUND SUBSYSTEM MODEL

The while loop routine in C is consider as background which will be continuously
looped/executed when there is no interrupt to be process by CPU. But in this model we
executive two subsystem as shown below in a time slice scheduling algorithm. A time slice is

control by a timer] 1msec interrupt.

10msec_scheduler

do_first_comm

call_alt_init

PCM_MSG_BUFF

Relay/Lamp_drive

commutation_snable

DTC_CALIB_MSG_BUFF

ISG_DATA_MSG_BUFF

Commutation_lookup_status_bg

1SG_DTC_MSG__BUFF
CAN_Manager_10msec

pi_shutdowncomplete

ISG_state_control_10msec

Figure 83: Background subsystem model

2.3.16.6.2.1 Time slice Scheduler model

It scheduled the two subsystem- CAN manager and State control subsystems in
a fixed time slice fashion of 50-50 for both. A slice of Smsec is provided for each subsystem.
This time slicing distribute the CPU time for other task and ISR to execute with better

throughput.
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Figure 84: Time slice scheduler

2.3.16.6.2.2 CAN Manager Model

CAN message frame are process in this subsystem, all frames are array of bytes and
are combined if required to the required data types. Reserve CAN frame for future used are

also shown below.

Trigger
_ i
(1 000000 0
CAN_VolSatPoint 1SG_STATUS_MSG_but ISG_STATUS_MSG_BUFF
D 1SG_DATA_MSG_buft ISG_DATA_MSG_BUFF
CAN_SlewRate _DATANSG!

)
155 DTC_MSG_boF 1SG_DTC_MSG__BUFF

» (1

CAN_OphodReq

Data Type Conversiond

> , Convert »
PCM_MSG_BUFF_inca g US|

Data Type Data Store
T e onversion Write3
|_Frames(3Bytes) Data Type Conversions Inherited2

duty_dataType

Data Type Comersion Convert
u

Data Type Conversion3

S|
Avithmetic Ref_Block_current_A

uint16 current_setpoint

-&PCM_MSG_BUFF Ref

PCM_MSG_BUFF

Data Type Data Store
Conversion Wiite2
Inherited 1

Data Type Conversion1 —_—
Ref_curent_Local

uint16.

Data Type

Data Store
Writet

Ce
oor T G LBt
Arithmetic1
CANfault_resetCmd bl DA
CANfault_resetCmd

ExtractByte_fromArray

D
DTC_CALIB_MSG_BUFF

ExtractByte_fromAuray1

Figure 85: CAN manager model

60



2.3.16.6.2.3 State Control Subsystem model

This is the main control body of this software model. The state-flow based control is
used where each of the system state are defined clearly with relevant to the control
requirement. In this subsystem, fault manager is put before state control to have a proper fault
control. Other background task like speed calculation, battery voltage scaling, relay driver

output control are modeled as shown by same subsystem in the below figure.

_
Trigger

[,
CANfaUTL rmsetCmd < TEANTaul_reseicma]
Gotos

T
OverCument_Fault

L3
Lateh_out_Fault 2122

FAULT MANAGER

Figure 86: State control subsystem model

2.3.16.6.2.3.1 Voltage scaling in fixed-point model

ADC value of the Bus voltage is converted using a specific scaling factor as shown

below.

COMMENT: This fixed point scaling is at 246 scale , 50 higher than this scaling factor cannot be used
ince at max value of adc i.e 1024 276 = 2716 , usigne dint will overflow causing absurd resuit

o
Convertion factor

1
7
Vottage_adc Busvoltage_V

[ ] |
Factor
|

Displayé

Convertion Factorz

Figure 87: Voltage scaling model
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2.3.16.6.2.3.2 Speed calculation model

Speed in rpm (revolution per minute) is deduced in this subsystem from timerS count

value and overflow count value as shown below.

SPEED LIMITATION

speed < 9.5367 rpm will not be measure

20-bit counter (1usec resolution)

> I 5l

{1

~=isgopeed_rpm sgSneed mm

Divide? Saturation Switch3 Switch

isgSpeed_cnt_ovicnt

Data Store
Read

isgSpeed_cnl_bull

Data Store
Read2

Switch2

0

Resef_speed

Switch1

NOTE: Time taken for 1 sector =x* (1* 102 -6 ) , where x= timer count at 1 usec resolution,
Therfore, Time taken for 1 rotation = x * (1 * 10~ -6) * 6,
S0, RPM = 60/ (Time taken for 1 rotation),
RPM=60/(x * (1 * 104 -6) * 6 ).

SCALING CONSTANT = 1077.

Figure 88: speed calculation model

2.3.16.6.2.3.3 Fault manager model

Faults are classified depending on the type and nature of fault. Fault manager is one of
the important sub-systems in safety critical control system design. In this development, many
of the hardware fault detection circuitry are design and implemented in the controller
hardware, but function fault can also be identified in controller software. On the occurrence of
fault, the state controls will shutdown the system depending upon the criticality of fault. Minor

fault can also exist in a system where the system can still function with it.
Fault classifications are shown below:-
1. Hardware Fault
a. Heat sink trip.
b. Field H-Bridge Trip.

c. IR2132 fault.
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2. Motor Fault
a. Motor Lock.
b. Overcharge.
c. Hall error.
d. Over-speed.
3. System Fault.
a. Over-voltage
b. Under-voltage
c. Bus over-current on positive direction.
d. Bus over-current on negative direction.
e. R-phase over-current on positive direction.
f. R-phase over-current on negative direction.
g. Y-phase over-current on positive direction.
h. Y-phase over-current on negative direction.
1. B-phase over-current on positive direction.
j. B-phase over-current on negative direction.
4. Minor Fault
a. Hall reversal

b. CAN node not detected.
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2.3.16.6.2.3.4

Control state-chart consists of three main state- idle state, motor state, and alternating
state. The default entry or reset state is the idle state, which consist of fault reset sub-state.
Whenever switch-off event or fault occurs in a system, it will come to this idle state. One
intermediate state is put between the motor state and idle state, called current reference ramp
down state, to have a smooth shutdown of PID controller by ramping down the reference

signal exponential refer Figure 78: Reference . Note that this subsystem will be sampled

every 10 msec instances.

NOTE: Ths ol shoui bs sanpled 3t 10 msec, since state ransifon fine ars ficed up Wil the sampivg

ISG Control state-chart model

[ CHART_FAULT RESET J

[{pi_shutdowncomplete==f)(currentctr_enable==0)]

CURRENT_REF_RAMP_DOWN
entry:shutdown_pi=1:
isg_state=7; @;J&LTERNATOR
{eall_alt_init=1
enable=0;

[(OpMode_request==GENERAT]

[(OpMode_requesti=GENERATE) || (hardware_fauit 1=0) | {motor_fault 1=0) | {system fault 1=

IF_phas

1 Commutation_lookup_status_bg=OF
It==0) && (motor_fault==0)&&{system call_alt_init=0,
Td_du %
[(OpMode_request!=CRANK) || (hardwiare (motor_fault 1=0) | (system_faul} 1=Glax_ TNITIALIZE_ALTERNATOR
entryisg_state=11;
exitcall_alt_init=0;
{d_cuty=0.90 \ 1
do_frst_comm=0;) ﬁLTﬁCONTROL
entry-isg_state=12.
FIELDWINDING_ON
[field_on_cnt>field_ONdelay] FLD_CONTROL
{
{
do_frst_comm=1
currentetr_enable=1 3 r
FIRST_COMM
{do_frst_comm=0:
commutation_enable=1}
LRC
COMM_N_GURRENT_GTRL

&
B IDLE
== entry:
b=t g_state=0;
= commutation_enable=0;
currentetrl_enable=0:
Ad_duty=0-
shutdoun_pi=0:
N
owe
£
[(OpMode_request==CRANK)8R(hardware_fau
ﬁG’MOTDR
entry:shutdown_pi=0;
exit
fd_duty=0;
do_frst_comm=0;
2.3.16.6.2.3.4.1

The isg state number is maintained throughout the operation for diagnostic purpose,

Figure 90: ISG state control chart

IDLE state

the isg state value for this state is 0.

2.3.16.6.2.3.4.1.1

This is a sub-state of idle state where fault can be reset in idle state on fault reset event

from CAN message.

Fault Reset sub-chart



@HART_FAULT_RESET \

[CANfault_resetCmd==1]
{motor_lock=0;
over_voltage=0;}

_ Y Y,

Figure 91: Fault reset chart

Ep BHEEEE Y| |e |®

2.3.16.6.2.3.4.2 Motor state
When CAN command from Hybrid ECU is motor command, the state control jump
from idle state to this motor state.
2.3.16.6.2.3.4.2.1  Field-winding on sub-chart

On entry to motor sub-state, it jumps directly to field winding ON sub-state and stay
for fixed amount of time i.e. field on delay time, which is a calibration parameter. The isg state

number is changed to 1.

/FIELDWINDING_ON \
entry:field_on_cnt=0;isg_state=1;
during:field_on_cnt++;

& BEBEE o @

\ /
Figure 92: Field winding delay sub-chart

2.3.16.6.2.3.4.2.2  First Commutation sub-chart

When the motor is turn on, PWM output override should be first set from background
so that duty set by Current control from foreground will be effective. So, depending on the hall
status PWM output override is set in this sub-chart as shown below. And the isg state value is

set to 2.
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FIRST_COMM
NOTE: Commutation at the at the start before Hall interrupt is trigger

entry:isg_state=2;
IF condition1 THEN action1
ELSEIF conditien2 THEN action2

/* Commutation check_hall_status */ Eb%%:mwﬂ
[hall_status==0] >O

1

{Commutation| lookup_status_bg=RB_phase:}
[hall_status==1]

b EEE EE e @

=

{Commutation_lookup_status |bg=RY_phase;}

g
2
A 4
[hall_status==3] DQ
z {Commutation_lookup_status_bg=BY | phase;}
[hall_status==7] Without Phase Advance
1 @) 0-RB
2 1-RY
{Commutation_lookup_status_bg=BR_phase:} ?:E'fg
[hall_status==8] 6-YR
1 1-v8
2 {Commutation_lookup_status_bg=YR_phase;} HIL test sequence
[hall_status==4] 0B
' 3 -B+R-
i {Commutatjon_lookup_status_bg=YB| phase;} Z iﬁ?ﬁ
4 -R+B-
{Commutation_lookup_status_bg=0FF_phase;}

\_ /

Figure 93: First commutation sub-chart

2.3.16.6.2.3.4.2.3 Commutation and current control sub-chart

Once first commutation is done the motor will rotate, and the foreground PID control
come into effect to control the block current by updating armature PWM duty. And also
change of commutation on hall status change will be handled by commutation subsystem in
foreground at the same time. The background state control will be jumping to this sub-state,
and continuously check the lock condition. The isg state will be set to 3, and if the machine
rotate and speed appear it will jump to motor run sub-state, and then set isg state to 5. If the

load torque is high with respect to the set reference current, lock can happen i.e. isg state 4.

ﬁM M7N7CU RRENTﬁCTRL NOTE: This block execute every 10msec g \

MOTOR_LOCK l

(&)

during:lock_checks++; \{Iock_checks=0;}

MOTOR_RUN
entry:isg_state=5;

IDLE
E}ntry:lockchecks=0;isgstate=3; [lock_checks>=150]

4 BEEBEE e

[isg_speed_rpm==0]

LOCK_FLT
entry:motor_lock=1;isg_state=4;
[isg_speed_rpm>0]

N Y
\_ /

Figure 94: commutation and current control sub-chart
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2.3.16.6.2.3.4.3 Alternator state

Normal alternator operation is achieved by switching off all the MOSFET and
controlling the field current by H-bridge. The back emf generated by the machine should be
higher than the battery voltage, so that power can flow from engine to battery, or machine to
battery. All motor functions like current control will be off, and only field current is control
thereby controlling the charging voltage i.e. the Bus voltage. So, field control and load
response control state-chart comes into action together during this operation. The isg state is

set to 11 and then 12. State 11 is for initialization of alternating operation.

2.3.16.6.2.3.4.3.1  Field Control sub-chart (Alternator mode)

" FLD_CONTROL

‘BAT_VOL_LESS_SPV -
[Bﬁévelgagefv>set7po| nt_vol]

[Busvoltage_V=set--point_vol] BAT_VOL_MORE_SPV
e B entry:sample_cnt=0;

¢ BEEEE /o8

[sample_cnt>=25]

"FLD_CUT_OFF
entry:
fld_duty=0;
over_voltage=1;

Figure 95: Field control sub-chart

2.3.16.6.2.3.4.3.2 Load response control sub-chart (Alternator mode)

CURR_IN_MOTOR [bus_current_A>0] //fixed point type alternator +ve current
entry:fid_duty = 0.40;
i
@RR_IN_ALT \

[bus_current_A<=0]

¢ BEBEEY e |o|®

[ BATT_VOL_LOWER_THAN_SETPOINT

Busvoltage_V>set_point_vol]

[Busvcltage_v<set_pcint_vgl\
2-{ BATT_VOL_HIGHER_THAN_S' ETPOIBT

T
1

[fld_duty>Fld_duty_MIN]
{fid_duty-=Q7T0_1unit}

Figure 96: Load response control sub-chartl
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[fld_duty=Fld_duty_MAX]
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N " CURR_MORE_10 N,
e {Ad_duty+=QTO_1unit:}
[bus_curren CURR_LESS_MAX
1. [bus_current_A>max_curren a

T2
[fld_dluty=< FldidutyiMAX]'\t\u er hmm\rl
g 0

{fld_duty+=QT0_1unit} [CURR MORE_MAX j

[bus_current_A=<max_curren ]

7
[fld_duty=Fld_duty_MIN]/lower limiting
tfc_duty-=QT0_1unit}

Figure 97: Load response control sub-chart2

The alternator mode of control is out of the scope of this present dissertation report,
and also MIL and HIL validation is not done for this mode of operation. It will be a future
improvement and on-going development, where synchronous rectification algorithm or

boosting operation will also be done. So, we will skip at this point for the time being.
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3 CHAPTER 3: MODEL-IN-LOOP SIMULATION

3.1 Concept of MBD for MIL

In Model-Based Design (MBD) there would be a system model at the center of the
development process. The significant feature of this design is that it facilitates quicker and
more cost-effective development of dynamic systems. With built-in mathematical functions
and routines these tools are optimized for designing and analyzing control strategies through
off-line simulation. Moreover these tools can be integrated with real-time hardware which
means integrating traditional off-line simulation with real-world testing. MATLAB Simulink
facilitates designing of the control algorithm and also helps in executing off-line simulation on
the desktop. But it doesn't mean that with software simulations all the distinctive behaviors of

an actual dynamic environment can be accounted for.

The Model-in-the-loop simulation captures the specified behavior of the model that is
to be implemented in C code later on. These simulated results are validated with the
requirements. Also it acts as the verification reference for the next stages of development
cycle. Since the model acts as the design document, it reduces the defects slippage due to

translation of requirements to design.

. . .
3.2 Simulation configuration
% Configuration Parameters: control_sim_v2p3_1/Configuration {Active) @
Select: Simulation kime -
- Solver . .
- Data Import Expart Stark kime: 0.0 Stop kime: | 0.5
- Optirization X
<. Diagnostics Solver options
- Sample Time N =
H Type: |Fixed-stej Solver: |odeS (Dormand-Prince: 3
i~ Data Yalidity bt P E' ( ) |Z|
i Type Corversion Fixed-step size (fundamental sample time): | 0,000001
i Connectivity
é"'CDmpatlblllty Tasking and sample time options
iModel Referencing
- Saving Perindic sample ime constraint: Unconstrained E|
-Hardware Implementation . i .
.- Model Referencing Tasking mode Far perindic sample times: Auta E|
—--Sil:'nulatinn Target Automatically handle rate transition for data transfer
i Symbals
e Cystom Code Higher priority value indicates higher task priority
—|-Real-Time Warkshop
i Repart
i Comments
- Symbals .
P m 3
J [ oK ] ‘ Cancel | | Help Apply

Figure 98: MIL configuration parameter
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Model in loop (MIL) simulation is performed in MATLAB Simulink with the
configuration as shown in Figure 98: MIL configuration parameter above. The fixed step
sampling rate of 1 usec is used in the simulation with solver ode5 (Dormand-Price). The
simulation is performed at fixed-step discrete environment. 1 usec fixed-sampling is chosen to
have a better PWM duty resolution and also for the based time count for the timer tick.

SimPower system block is also given a good result with this sampling rate.

The limitation and assumption of the simulation are defined in the previous chapter in

section 2.2.2.1 above and section 2.3.1 above.

3.3 SIMULATION RESULTS

System model are checked here, and a specific functions or integrity of whole model
are checked. The controller model is validated to functional level with respect to phase block
current control. Some fault conditions are also simulated here. Control parameter like the PID
controller tunable parameter like Kp, Ki, Kd are tune in MIL level simulation. The plan
dynamics are observe and accordingly controller are modeled as shown in chapter 2 of this

report.

3.3.1 Lock condition from start

By setting the load torque very high with respect to the block current reference, current

control at lock condition is observed as shown below.

PI Controller Reference current - 110 Amp, LOAD TORQUE = 50Nm, motor is lock for
IN MODEL IN LOOP SIMULATION 1.5 sec and then shut down as shown below

100 — —

Phase Current
(Ampere)

100 — —

|
TIME

Figure 99: Lock condition from start (MIL)
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3.3.2 Motor torque higher than load torque

When the Load torque set in the plan model is lesser than the torque produce by the
specific controlled phase current, the motor will rotate showing a change in phase current
direction due to commutation cause by rotation. Below result shows the phase current at
20Nm Load torque and block current reference to 150 Ampere, it has been observed that

commutation causes spike in the current, but is latter controlled by PID controller.

REFERENCE CURRENT - 150 A
OF PI CONTROLLER LESS LOAD TORQUE, motor start Rotating

T T T T T I
S
150 —
100 —
50 — f/ —
Phase Current n /’ 1
(in Ampere) \
50— \‘\
LR
50—
1 1

TIME

Figure 100: motor running (MIL)
3.3.3 Lock condition while running

When load torque is made suddenly high during the running condition of the machine,

rotor can get locked as shown below and the controller shutdown once it detect lock fault.

LOAD TORQUE INCREASE SUDDENLY MACHINE GETS LOCK RESULT IN MIL SIMULATION
I I I

Phase Current
(Ampere)

TIME

Figure 101: Motor lock while running (MIL)
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4

4.1

CHAPTER 4: BUILD PROCESS

Tool chain

The tool chain of this project is shown in the figure below.

MATLAB ( MIL Simulation and ERT-RTW Code Generation)

MATLAB ( MIL Simulation)

PCB Hardware Simulation

EEE>
4EEE

Plan Model with Simpower system
Blocks

"..'I

RTW CODER
ert.tlc
¥ . -
s
v’ . B
. .
l. []
o ' MPLARB ( Integration for Compilation) .
AZL file .
MPSIM(CHIP-LEVEL SIMULATION) i
: Hand Coded C file and H file

asap2userlib.tlc file
MODIFY

....\MATLAB'R2008b'toalh
ox\rtw'targetsiasap2'asap

2luser

4'........‘llllllll CL

Platform Code CCP Code

> =

=>

Hi-Tech PICC18 STD Compiler

-
: A
. L ]
B .
s .
”
v .
MATLAB SCRIPT RUN (ASAP2Complete.m) o
:
ALl MAP File HEX File
(et fie ] *HEX File
B ) =
o )
5
. o
v . e
Complete A2L file | [HEX File 1 A
messssecssssssssssssesensesnnsanasl ¥
£ : :
> : .
.
. I Flash Tool
. 3 —
L] .
B 4
. :
- -

roerrnenne

oo [ANYL oo
OME

h 4

Measurement and Calibration System

Labview ME&C or INCA Tool

HVWF

OR
ETAS CARD

Figure 102: Development tool chain
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4.2 Real-time workshop build process

Auto-coding is done using embedded real-time workshop; the same MIL model is used
in which a specific M-script [Appendix I] is run before code generation to copy out software
part of the model to a new model from where actual code is generated. The generated code is
located at specific location which consists of the C source code, and A2L file which contains a
measurement and calibration variable data description file with address token. The generated
code along with hand-code are combine in MPLAB integrated development environment, and
are compiled using Hi-tech PICC18 C compiler, and then flash to uC using ICD2/ ICD3 in-
circuit debugger. Map file generated after compiling contains the address of variable in RAM
as well as on Flash memory. The A2L file containing the address token must resolved by some

method discussed later topic in this chapter.

4.2.1 Subsystem for code generation

As mentioned, code generation is done from a specific part of the model subsystem
(ISGECUSoftware) as highlighted in the figure below. Other part of the model will not be

used for code generation; it is used only for MIL simulation.

=1 control_sim vip3 1*

File Edt WView Smuastion Format Took Help
D& Blesd|os|r o Nommal -] B B S REE®
Modsl Browses ¥ x

~
= B 156 Motor Plan Model (Inchude Engine Cranking model)
5] BatenPackage
+ 3] Engre Model
B3] Hybeid_ECLH
+ 3 1SG_MACHINE
+ 3 PowefBoard
= 3] 156_CONTROLLER_PCB
+ %] CURRENT SHUNT MONITOR CIRCUIT
+ 2 DIGITAL_INPUT_CIRCUIT
+ 2] Field_ShaiCha_Detection
+ B HALL SENSOR SIGMAL CIRCUIT
+ 2 HEAT SINK TEMPERATURE SENSOR INTERFACE
+ B |_TRIP_SIGNAL_BATTERY_CIACUIT
+ 2 JUMPER CIRCUIT
+ 5 MCP2515 CAN CONTROLLER CIRUIT
= B MCU_1EF8431Chips
& Cocuit_Diagram1
& Device Detection Logic
= 3 ISGECUSoitware:
= B Background
2 10meec_scheduer
4 ] CAM_Manages 10msec
¥ 3] I5G_state_conteol_10msec
= 3] Foeground
% 3 Caplwe ISR
% 3] Cunerd_lmiing
B INT1_ISR_FieldShost
+ 3 TineDISR
3 TinerS_Oveifiow_ ISR
B MCU ADC channel_Bus Volage
£ MCU ADC channsl_BusCumert
#] MCU ADC channel|_SENSE_B/DC_DC_SD
. MCU ADC ehannal|_SENSE_R/DC_DC_12/0LT
i MOU ADC channel |_SENSE_Y/DC_DC_CURRENT
+ B MCU Caphure input .

E

22 oded

Figure 103: subsystem for code generation
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4.2.2 Source code and A2L file generation

4.2.2.1 Configure optimization for code generation

Optimization option of MATLAB for block simulation and code generation are

configure from the optimization dialog of configuration parameter. All most all optimization

options are checked as shown below for better code footprint.

%} Configuration Parameters: control_sim_v2p3_1/Configuration (Active)

Select:
-~ Solver
i~Data Import/Export
P ization
F-Diagnostics
Sample Time
Data Validity
Type Conversion
Connectivity
Compatibility
Model Referencing
Saving
Hardware Implementation
~Model Referencing
Fo-Simulation Target
Symbols
Custom Code
£1-Real-Time Workshop
Report
Comments
Symbals
Custom Code
Debug
Interface
Code Style
Templates
Data Placement
Data Type Replacement
Memary Sections
=--HDL Coder
Global Settings
Test Bench
EDA Toal Scripts

Simulation and code generation

[¥] Block reduction

[¥] Implement logic signals a5 boolean data {vs. double)

[¥] Inline parameters

Code generation

Parameter structure: | Hierarchical
Signals
[ Enable local block outputs [¥] Reuse block outputs
[¥] 1gnore integer downcasts in folded expressions  [¥] Inline invariant signals
[¥/] Eliminate superfluous local variables (Expression folding)
[] Minimize data copies between local and global variables

Loop unraling threshald: |5

[¥] Use memcpy for vector assignment Memcpy threshold (bytes):

Data initialization
[#] Remove root level 1/0 zero initialization

[¥] Remove internal data zero initialization

Integer and fixed-point

[¥] Remove code from floating-point to integer conversions that wraps out-ofrange values

[¥] Remove code that protects against division arithmetic exceptions
Statefiow

[&] Use bitsets for storing state configuration

Accelerating simulations
Compiler optimization level: |Optimizations off (faster builds)

[] verbose accelerator builds

[¥] Use memset to initialize floats and doubles to 0.0

[¥] Optimize initialization code for model reference

[¥] Use bitsets for storing boolean data

==

[¥] Conditional input branch execution

[¥] signal storage reuse

] [ concel | [ b =

Figure 104: configure optimization

Since microchip PIC18 was used, Embedded Target preference is set as below.

% Configuration Parameters: control_sim_v2p3_1/Configuration (Active)

Select:

- Solver

- Data Import/Export
- Optimization
—|-Diagnostics

Embedded hardware (simulation and code generation)
Device vendor:  |Microchip

Device type: PIC13

MNumber of bits: char: 8
long: 32
Byte ordering: Little Endian

Signed integer division rounds to: |Zero

shift right on a signed in

Emulation hardware (code generation only)

[¥] None

=)
A
[=]
ENE
16
8
Help Appl

Figure 105: configure hardware implementation
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Code generation in MATLAB RTW is fully control by target language compiler of

MATLAB which can also be configured depending on requirement using TLC programming.

Ready-made ert.tlc is available on MATLAB, which is used directly here as shown.

£ Configuration Parameters: control_sim_v2p3_L/Configuration (Active)

Select: Target selection
- Solver
System target fle: | ert.tc
-~ Data Import/Export ot o b
~Optimization Language: c
£} Diagnastics 3 e e
S Description: Real-Time Workshop Embedded Coder (no auto configuration)
Dab ety Buid process
“Type Conversian
~Connectivity Compler optimization level: | Optimizations on (faster runs) [~
~Compatibility
Mocel Referencing TEs0EimE
Saving Makefile configuration
~Hardware Implementation
- Model Referencng [7] Generate makefile
[2)-Simulation Target Mt
Symbols
Custom Code Template makefile:
[E8Real-Tme Workshop
Repat Data spedification override
Comments
Symbols [] 1gnore custom storage classes [7] 1anore test point signals
Custom Code
"Debug Generate code only
“Interface

Gemacd) .

(]

9 [

) ) |

Help

] [_apoy

)

Figure 106: Configure RTW target link compiler

4.2.2.2 Configure measurement variable

Signal name should be assigned for all measurement variables using signal properties

widget as shown in figure below.

x|
jonal name: [hall_status how propagated signals [off v ]
T ¥ Signal name must resalve to Simdlink signal abject |
Logging and accesshbi Freal-Time Workshop | Dacumentation
CapturslSR_trigger I e | |
I~ Log signaldata JF° Test pont
RIGHT CLICK ON SIGNAL
= Logaing name
“Ehall_staius cu

hall_status = | copy Juse sicnalnagle ~] [hall_status
Delete

Highlight To Seures

-€T5_count Highlight To Destination data pointstolast:  [5000
T5_count = E
= Signal & Scops Manager .. )
T5_overflowlSR_trigger Giede 8 chrneciiviower, ) oK Cancel Help Apply
PWhPeriodISR_Trigger
Signal Properties...
Uinearization Painks
{6 =
[ — [=ES)

Ele Edt View Took add Help

D= & B@EX H

MEw B Z £00 BR SR

R R Y

Search: [by Name =] Name: | & searh
MModel Hierarchy ‘ <ontents of; Base Workspace Gt thalll cleten
= EJsimulink Root -
P — s e Data type: [auko =
25~ Bcontrol_sim_w2p3_t 0 Tperod b | Complexity  [aut =
iMode! workspace 0 tout
&b Code Far contrel_sim_v2p3_t e —— Sample time: [-1 Sample mode: [auto =
@ Advice for control_sim_vzp3_1
- [F2]15G Matar Plan Model (Include Er Blto Inital vae: | WS T
ErEglis6_conTROLLER FCB £ MCPESIS_eror auto
FSICLRRENT SHONT MONITOR | £ 16 s fio oot Cade generation options
e feframa_meur_creurr -E commutation_enable auto ~| |[5torase dass: Texporteadibal k] |
G- PofField_ShortCke_Detection e 5 =i
A2 HALL SENSOR SIGHAL CIRCLY | |
< ;l_‘ contents | search Results Revert ) ey
GENERATED A2L FILE
1 stacus

= MELSTREMENT

Figure 107: configure measurement variables
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Note that the same signal should be created on model explorer widget before selecting
checkbox (signal name must resolve from Simulink signal object) and object should be created
under mpt.Signal object. Signal properties like dimension, complexity, sampling time,
sampling mode, minimum, maximum, initial value, units and storage class can be configured
from model explorer widget itself. Storage class for measurement variables should be defined

as exported global, which will be generated as a global variable in C.

4.2.2.3 Configure Calibration parameter

Calibration parameters are used in the model using constant block whose name are
resolve from model explorer widget, using mpt.Parameter object whose properties like value,
dimension, complexity, minimum, maximum, units, storage class and header file name. It can
be assigned as shown in figure below. Note that storage class should be assigned as constant

volatile which will be allocated to flash memory or as an initialize RAM variable.

=158

Constant

x|

CukpUE the constant specifisd by the 'Constant valus’ paramster, IF ‘Constant
value' is a vector and "Interpret vector parameters as 1-Df is on, kreat the constant
wvalue as a 1-D array. Otherwise, output a matrix with the same dimensions as the
constant value.

o>

| vy=vuson

CAN_ModeNotDetected

)

] Oy = 0u <<
Ey=Eu

Shift
Avrithmetic?

4l ]

man | signal attributes |

Canstankt value:

P resetin A= pavameters as 1-D
over_voltage, Samplinh mode: [S5mple Based =1
— o
Busvoltage_v V
min_Busvoltage it
min_Busvoltags under_voltags| /\) e G Help I
max_Buswoltage upperlimit /
max_Busvoltage
BusWoltageC hecks
CONSTANT BLOCK OF SIMULINK
Display [
(===
I (=[5
Eile Edit Wiew Tools Add Help
D2 | #B@X HEHMEEMZ Foe @@ SR F =4
Searchi [ by Mame | Mame: [ = search
Model Hierarchy - | e e mpt.Parameter: max_Busvoltage DEFAULT VALUE
=-[£3]simulink Root I I:
value: a0
ffpase workspace [Mame [pataType J [van=] [
= Wlcontrol_sim_vepa_1 £ hall_error auto Data type: | Fixdt(0,16,27-9,0) I=| 22
HbrigdeTrip  aute
usvoltage Fisdt(D, 16, 2 Complexity: [real
-E PCH_MSG_BUFF  uintB Meimum [120
+-[F2]15G Motor Plan Model (Include Engit £ DTC_CALIE_MSG_... Uinks Units olt
=-[ofisa_conTROLLER_PCE = ISG_STATUS_MSG... uints
- FElcURRENT SHUNT MoNITOR CIl £ 15G_DATA_MSG_B... uinkd S CEREEER SRS
- PelpraITAL_INPUT_CIRCUIT = 15G_DTC_MSG__Bu UInkS I;,mage class: [Canstuslatile (Custarn) = I
- PolField_shortcke_Detection = T1_tick_cnt aute s
w-Po]HALL SENSOR STEMAL CTRCUTT EH rv_phase 1 HEADER FILE NAME
- PolHEAT StKc TEMPERATURE SEM: | F B _phase z Header File: calib_param I
H T I,

GENERATED C SOURCE CODE

Figure 108: Configure Calibration parameters

—— GENERATED AZL FILE

max 5

ADRESS TOKEN
Emax Busvoltagc@
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4.2.24 Saving workspace variable

All variables and parameters which are created on model explorer are all located at the

workspace, which are save to a specific mat file as shown below.

O & x [ Variable Editor - simout.signals.values Workspace “wpOoa x
30 B BE BB s/ B || Sx HOB O ex & 5 86| [ - seck s
“Mame Value Min  Max
[ &) Arm_duty direct  <Ix1 mpt.Parameter>
2w\ MATLAE_Model\HIL_testdata\TL_vary _lockdetect)pae¥¥est . mat'): D) Arm_pwmduty <bd mpt.Signal>
’ BR_phase 3 3 3

BY_phase 2 2 2
&) BlockCurrent_& <L mpt.Signal>
&) BphaseCurrent A <Ix1 mpt.Signal>

m

. &) BusCurrent A <Ll mpt.Signal>
B R e = Sus(urlr:nt,aa; :ii mp:.?gr’\a:i NOTE:
us_voltage_ads mpt.Signa .
= M P2d All workspace variable
Savein: | MATLAB_Model j cf B Busvoltage V <1x1 mpt.Signal >
R CAN_NodeNotDet.. <Ixl mpt.Signal> are save at matlab.mat
I Name Date modified Type Commutation loo... <x1mpt.Signal>
B
Rec;;f;‘ms control_sim_v2p3_1_ert_rtw 3/16/2012919AM  Filefolder |[Commutation_lee.. <Ll mptSignal>
GULof_Naming_Guideline_Project 3/5/20121049 AM  File folder E“m“:—b"w”t'm': ‘E“"‘p:;mmzw
— urrent_UpperlLimit <1x1 mpt.Parameter>
HIL testdats 3/29/2012909 AM  File fold,
|3 LSt = NeTOE T _CALIB_MSG_... <l mptSignal>
o images SAI0ATAM  Flefolder o "o e ™ 0 T el
ISGECUSoftware_ert rhw 3520121049 AW Filefolder [cioi opr <t mpt Signals
=l KALMAN_BAttery 32/012244PM  Filefolder [Field ON_delay <Ll mptParameters
Libraries MODEL 3/5/20121049 AM  Filefolder [Fld_duty_MAX <L mptParameter>
A rtwdeme_ssap2_ert_rtw 3/5/20121049 AM  Filefolder [Fld_duty MIN <Ixl mptParsmeters
e slprj 3/5/201210:48 AM  File folder | [Fld_duty_direct <Ll mpt.Parameter>
CompUer ] ymatlab 3/E2012047 AM  MATLAR | | [SG_DATA MSG_B... <1l mpt.Signal>
. 56 DTC_MSG_B.. <lxl mptSignals
‘..,1 5G_STATUS MS6... <L mptSignal>
Skt Immand History » 02 x
) 0 ' || “uiopen(' ' tmpasadvengOl! AE_Workplacs_01)\Motor_For_Nild Hybrid|HIL'averags model_*

F:-17 PH —%

File name: ’@ j Save %E—— 3/z8/12
=]

fruiope: D:\PAUL''S\ISG_Torque Boost\TAISG Software vOpZ MHISTAR duty_ from Labvie
Save astype [MATfies (mat) Cancel M e ol - — - SRS el Erom ]
- 8/1z 5:07 -3

B ey TTT i-help wnlot

Figure 109: saving workspace variable

4.2.2.5 Configure A2L Header for 18F4431 ECU

A2L header file for the ECU like CCP version, CAN message baud rate, ID of CRO
and DTO, memory alignment, RAM and FLASH address range specification etc. are added or
define in <asap2userlib.tlc> located at ... \toolbox\rtw\targets\asap2\asap2\user in the

MATLAB installation directory.

Example: /pegin TP_BLOB
/* CCP version */ 0x201
/* Blob version */ 0x202
/* CAN msg ID - send */ 0x7F1 /* CCP_CRO*/
/* CAN msg ID - recv */ 0x7F2 /*CCP_DTO*/
/* station address */ 0x200
/* byte order */ 1

/begin CAN_PARAM
/* crystal frequency */ 0x1F4
/* timing register 0 */ 0x41
/* timing register 1 */ 0x25
/end CAN_PARAM
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4.2.2.6 Build all for code generation

As mentioned code generation is done from a subsystem of main model. To
accomplish this code generation from a specific subsystem of model with work space variable,
an m-script [Appendix I] has been written which automate the code build process. This m-

script is run as shown below.

4\ MATLAB 77.0 (R2008b)
File Edit Debug Parallel Desktop Window Help

H =] & EEN A u ﬁ? ﬂ @ | Current Directory: | Di\paul\ISG_Torque_Boost\TAISG_Software_vip2_MHISTAR_duty from_Labview\MATLAB_Madel
Shorteuts [2] How to Add  [2] What's New

M | Editor - paul_data_phasecurrent.m Rl M m Variable Editor - simout.signals.vall
«MATIAEModel » v @ o &[T H | s RBY | o T-Aepr| B -8 EBE BB | sk b
D Name Date M... BB - 10 EENN (R 1.1 % | o o 0.
. control_sim_v2p3_1 ert_rtw 3/16/1... =
GUL_of_Maming_Guidelin... 3/5/12.. 2 st TAISG Software wOpZ MHISTAR duty from Labview|MATLABE Mode=l'HIL testdatalTL_w
HIL_testdata 3f29/1... Bl
| images 3/5/12 .., 4 —
. ISGECUSoftware_ert_rtw 5
KALMAMN_BAttery & t
. MODEL i est.Y(1,4) .Data)/100) ) *100, 'r') 5Eed phase
. rbwdemo_asap2_ert_rbw 3/5/12 ... = est.Y(1,5) .Data)/100)) *100,'c')$¥=llow phase
. slprj 35713 ... i test.Y (1, &) .Data)/100)) *100, 'k' ) $Blus Phase
%] back_ermf.mdl 3/28/1... || 10
code aeneration.asy 11/7/1... 1L
|ﬂ code_generation.m | IMH-I lgLICKt,-ESt,.T-l,BI .Data) toffset) ,'c")
[®| control_sim_wvpa_L Open Enker I
ﬂ control_sim_v2p3_1 s N f1,9) .Data) toffset),'y¥')
: Run File
|| control_sim_v2p3_2,
ﬂ control_sim_v2p3_2_s View Help F1 1,10) .Data) +offset) ,'b')
3‘] currentsensor_sim.md Open as Text
31 filter_custom.madl Open Qutside MATLAB 1,7) .Data)+offset), 'c')
ﬂ filter_custom_1.mdl
%] ISGECUSoftware.mdl Rename F2 (1,1} .Data) +offset), 'c')
[®) ISGECUSoftware_11, Delete Delete f1.€).Data)+offset)*0.01,'b")
4] ISGECUSoftware_sfun

Figure 110: build using M-script

4.3 Integration of source code in MPLAB

All source codes, some generated from MATLAB and some hand-written code are
integrated together in MPLAB IDE environment. Generated codes of RTW lies on a specific
directory on MATLAB model folder refer section 1.4 above, and the platform code in specific
location. As the main MPLAB project lies in the main directory, all codes are link from here.
Hi-tech C STD compiler is used to compiled and linked, and then generated executable hex
and map file for further use in the tool chain. Hex file will be dump to microcontroller and

map file will be used for complete A2L file generation shown in the later section of this report.
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4.3.1 Configuration fuses of microchip 18F4431

There is specific fuse setting to be done during flashing the code to microchip product,

those fuses setting can be coded by using Hi-tech C compiler directives as shown below

| D:\paulISG_Torque_Boost\TAISG Software_v0p2_MHLSTAR_duty_from_Labview\Platform_code\platform.h =] =]
—

Written for Hi-Tech PICC1E compiler wX_XX
A

n

#include  <piclB. h>
#include  <htc h>
/**Configuration bits of 18F4431, this bits are a fuses which are program once during flashing**/
ne CONFIG1 18F4431 __CONFIG(1,IESODIS s FCMDIS s HSPLL);
#define CONFIGZ 1874431 __CONFIG(2,BORDIS & BORV27 & BWRTDIS & WDTDIS & WDIWINDIS);
ne CONFIG3 18F4431 __CONFIG(3,PWMOUTDIS & LOWPOLHI s HIPOLHI s SSPRL & T1STD & PWM4RBS & XCLKACS: MCLREN & FLTARCL);
ne CONFIG4_18F4431 __CONFIG (4, DEBUGDIS & LVPL: i STVRDIS) ;
ne CONFIGS_18F4431 __CONFIE (5, UNPROTECT) ; K ) Configuration Bits EI
ne CONFIGE_18F4431 __CONFIG (&, WRTEN) ;
[7] Configuration Bits set in code.
#4//BCB L. Q%ww#kit DHASE # ik # + 4 GUDCOND* # 4 +++OVDCOND* ###Hall position:
£/ Eds {OVDCOND=0x20 ; OVDCONS=0x1E ire Address Value Field ategory Setting
//%de {OVDCOND=03xR0 ; OVDCONS=0x1D; } /70 300001 05C Oscillator Sele HS oscillator
//%d {OVDCOND=0x88;OVDCONS=0x35;}  //1 FCHEN Fail-Safe Clock Fail-Safe Clot
A = {43 IESC Internal Extern Internal Exte:
:g:gg:tgﬁ;ggig:s;gi‘si ’i, 300002 F9 PWRTEN Power-up Timer | PWRT disabled
e : - : = BOREN Brown-out Reset Brown-out Rese
PHASE ALLOFF {OVDCOND=0x80;OVDCONS=0x3F; } BORV Bcem fOnL I_KESE‘: YEOR ?Et Loid.
e 300003 FE WDTEN Watchdog Timer 1 WDT disabled e
WDES Watchdog Timer @ 1:32768 - y

Figure 111: fuse setting of 18F

4.3.1.1 Initialization code

All initialization function of MCU peripherals are done at the starting of the main as

the usual C coding methodology as shown below.

MPLAB_TAISG,
Fil= Edit Views Project Debugger Programmer Tools Configure  Window  Help

DEE| L mm Sdmn P

Checksum: 0xefd9 ===

= IB|[X] | m G:\PaunnTAISG_Software_vOp2_MH1STAR_duty_from_Labview\Platform_codetm

| Compilerswitch h | platformh || platiorm.c | 1SGECUSeftware.e | copeonnect h | copoonnect e | calb_param b || twtypes.h | REGS2515.c| REGS2615.h | main_cade.c*

JrrrmmsEnnTRamsarTAnER A et T HAIN BROGRAN=FrTrnrasssrrrnanag

= 3 MPLAB_TAISG_project_vopo.mcp
= [ Source Files
copeonnect.c l Elvoia maini)

CHIPSEZ2.c | <
delay.c |
ISGECUSoftwars.c
ISGECUSoftware_data.c
main_code.c

SWDTEN=0; //disable watchdog
init_PORTs(]://set ports and signal directions
init_3SP () :

init_PPUM(] :

PHLSE_ALLEOTTOMON

platform.c HBRIDGE_TRIF_OF=0;//ACTIVE HIGH,switch on field
[£ reGszsis.c Delay ms (100} ;//Charge Bootstrap capacitor
=23 Header Filss | PHLSE_ALLOFF:[ . ]
autobuid.h | PPWM_OVD_UPDATE () :
[2] calib_param.h Delay _ms(10):[ ]

cepeannect.h I init_timer0i):

CHIP9E22.h I init_hall capturei):

CompilerSwitch.h init BNALODG () :

[B] delay.h I CAN2515 INT=0:

[£] 1sGEcUSoftware.h /CENZ515 INT put make it as input
ISGECUSoftware_private.h Hi 0:¢/CANZ51S INT on falling edge.
ISGECUSOFtware_types.h : //CANZS1S interrupt enable
0:¢/HBrideTrip on falling edge.

platForm.h

REG52515.h I //HBridge Trip

eIk l //HBrideTrip interrupt enable.

r—. INT1P=1://HErideTrip interrupt priority.

(21 Obiset Files PPWHM_OVD_UPDATE (| -

(3 Library Files ISGECUSoftware_initialize (] :
chip9822out=0x00;

(0 Other Files
< | IPEN-1;
*; I PEIE-1;
Files Symbals
I ‘ GIEL
pranic) PIC18F4431 i nowzdoc bank 0 Ln 300, Col L INS  WR

Figure 112: initialization of peripherals
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4.3.2 Interrupt code - integration

The Two interrupt priorities- low and high priority functions are shown below. All
interrupts are pre-configured and interrupt flag are checked, and depending on the interrupt
event the specific subroutine code will be executed. The subsystem model in foreground of
Simulink model which has been generated as a one C function, will be called inside this flag
(not seen - code folding ON). So, inside this the input to the subsystem will be updated and
then function will be called and then out will be updated as shown in figure Figure 114:

Integration of input and output of subsystem below.

B G:\Paul\TAISG_Software_yOp2_MH1STAR_duty_from_Labview\Platform_code\main_code.c =13
CompilerSwitchh | platform.h | platiorm.c | ISGECUSoftware.c | copeonnect.h | ecpoonnect.c | calib_param b | rmwtypesh | AEGS2515.c | REGS2515.h | main_code.c x|
115 SrmmrEmTammaTAETRE TR R R INTERRUPT = rrsresrarrarrrnns 7 =
116 Bveoid interrupt my isr highivoid) [Gi\PaulTAISS Software_vOpz_MHISTAR_duty_from_LabviewiPlatform_code\REGSZ51
117 4  //FORTE|=0x0Z;
118
119 = if(INT1IF==1) //HBridge Trip]//Falling esdge onlyl.]
1z7 ] AT ((IC1IF==1) || (ICZQEIF==1) | | (IG3DRIF==1))// Hall sSensors interrupt on hall event[ .|
171 (=] if (INTOIF)//CAN 2515 Interrupt|
178 //PORTE £=~0x02 ;
179
150 Ly
161 Elvoid low_priority interrupt my_isr_low(void)
152 +
153 ff7ETTs Timer O Code *7%%%/imsec
184 = if (THROIF)[ ]
207 (e2] 1f(TMRSIF==1)//1lusec resolution, 16-bit timer, timerout at esmsecl . )
213 I 1L (ADIF==1)
212 v { ADIF=0;
pis ey GODOME  =0;
z1s 4/ 4/ PORTE|=0x02:
Yz 17 I adc_sum=0:
218 i for (i=0;i<d;i++]
219 s ¢
220 5 ADCON1= i | Ox10;
221 £ ade_sumt= | (unsigned ine) ADRESH<<S) | (unsigned int) ADEESL:
zz2 i i
223 o adc_val=ade_sum<<é; //make 015, at the same time dividing by 4.
224 = if (PTIF==1)//Execution Time 130usec at =adc averaging, 170usec at normall ]
270 3
271
72 o
< >

Figure 113: ISR subsystems integration

%/ DApauNISG Torque Boost\TAISG Software v0p2 MHLSTAR duty f

mile L

SAMpling rate or
update rate

Figure 114: Integration of input and output of subsystem
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4.3.3 Background code - integration

The while loop routine in C main file is directly the background subsystem in our
MATLAB model, so integration of the background subsystem in MPLAB model is done by
calling the C functions of the background subsystem in the while loop of C main file as

shown below. All input subsystem are update from hardware peripheral of the uC and then

function are called, and then output of subsystem are again updated to the peripheral hardware

of the uC.

B G:\Paul\TAISG_Software_vOp2_MH1STAR_duty_from_Labview\Platform_code\main_code.c N i=1[E3]
CompilerSwiteh.h | platform.h | plattorm.c | ISGECUS oftware.c | ccpeonnect.h || copoonnect.c | calib_param.h | rtwiypes.h | REGS2515.c | REGS2515h | main_code.c” ﬂ
517 B while (1] =
ERE:] &l ¢ if({T1l_tick ent >= 10)//every 10 msec

319 i AAMATLAE Function input update

320 Tl _tick cnt=0:

321 hall status=( (PORTA>>2) &0x07) 2

2z2 A/R{T)okms = S000chms*exp[3420K* (1/T-1/298)], SEMIE module

223 //at 100c R{T)=4%95chms, trip happens

324 (=] if (RCO==0) //sensor not yet install in hardware,active low

325 {

326 heatsink trip=1:

327 3 B

328 r

329 CAN NodelNotDetected=MCP2515 DeviceNotFound:

330 AfLateh out_Fault 2132: from...Read Fault every lmsSec and Latch  (call in lmsec ISR)

331 -7 B

332 A/MATLAE Function

333 ISGECUSoftwa_ CAN Manager 10msec () :

334 ISGECT_ISG_state_control_ l0msec ()

5335 ISG_st,at,e_cht,rol_lesec:_Updat,e(]:f/lf state block iz used

336 A/MATLAE Function output update

5337

338 = if (isg state == 0]

5339 i B

340 PHASE ALLOFF:

Fa1 B

522 F ¥

543 = if (do_first comm == 1)//do first commutation

Gaa { - B

5345

546 = switch(Commitation lookup_status_lbo)

547 | { B B

34(8 case 1 :PHASE RY: . bt

Figure 115: background code integration

4.34 Building in MPLAB and Flash to ECU

Building of the whole code is done in MPLAB and the hex code is flash using the
ICD3 as shown in the tool chain diagram above. Note that ASAP2 driver in ECU is
implement along with this source code which is called the CAN Calibration protocol (CCP).
The ready-made driver code has been plug-in to the build process with slight modification.

Flashing through CAN is not included with the implemented CCP protocol.
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4.4 Complete A2L file generation

For generating complete A2L file, asap2Complete.m [Appendix II] file should be run,

but this script required a specific format of map file for resolving address token in the A2L file

generated on RTW build. So, this specific map file format is generated from original map file

using Perl script [Appendix III]. To automate the whole process a GUI is design using

GUIDE (graphical user interface development environment) as shown below.

GUIDE of MATLAB (Front-end design Tools)

DEH| &£« & Bhd B

=0l x|

R Select

Push Button

[ ASAP2 Browse Panel

ASAP2BrowseButton
= Slider o—— B

@® Radio Button
Check Box

Click above Button for Selecting AZL File

M-SCRIPT (code written here)

Fie Edt Text Go Cel Tooks Debug Desktop Windaw
Dol | §2RYe | &D
Bg| - e+

Editor - Ex}

- dh = 23
+ i x| o3 | @

=t Edit Text

MAP Browse Panel

MAPBrowseButton

w1 Skatic Text
3 Fop-up Menu
El Listbox:

Toagals Button

Click above Button for Selecting AZL File

[E Table
Il aves

%] Panel Generate Mew AZL

78] Button Group

=X Active Contral

Tag: ASAPZBrowseButton

Current Paint: [459, 313]

Position: [19, 75, LS, 26]

% hobject

kil %4 —-- Executes on button press in ASAPZB

handle to ASAPZErowseButton

a0 =
a1 % eventdata reserved - to be defined in
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84 — global ASAPZpathname;
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Figure 116: ASAP2 complete GUIDE development

When the script runs, it prompt for file browser- A2L, map, and hex file as shown.

Once all files are given, a complete A2L file will be generated by pressing generate button.
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Figure 117: ASAP2 complete GUI when run
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4.5

Control, measure and calibrate are the basic important word which comes in
development of any complex control software. Here we will discuss how the control is

implemented for HIL testing, and also how measurement and calibration of ECU are done.

4.5.1

INCA tool or Labview M&C' tool can be used as a tool for measurement and
calibration through CAN interface using CCP protocol. The tools offer a wide variety of
functions including precalibration of function models on the PC, ECU flash programming,
measurement data analysis, calibration data management, and automated optimization of ECU
parameters. The generated calibration and measurement data can be processed and evaluated

continuously. PID controller parameter tuning has been done extensively using this tool.

4.5.2

GUI is designed in Labview as shown below for a manual CAN command message

sending node like a Hybrid ECU in vehicle. So an interface connection using a CAN-USB

Run-

time control

Measurement and calibration

Hybrid ECU simulating Node

device is used as shown in tool chain figure above.
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Figure 118: Hybrid ECU simulator

! Labview measurement and Calibration tool
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5 CHAPTER 5: HARDWARE IN LOOP SIMULATION

5.1 Introduction and challenges in HIL testing

Hardware-in-the-loop (HIL) simulation is a technique that is used in the development
and test of complex real-time embedded systems. HIL simulation provides an effective
platform by adding the complexity of the plant under control to the test platform. The
complexity of the plant under control is included in test and development by adding a
mathematical representation of all related dynamic systems. These mathematical
representations are referred to as the “plant simulation”. The embedded system to be tested

interacts with this plant simulation.

A HIL simulation must include electrical emulation of sensors and actuators. These
electrical emulations act as the interface between the plant simulation and the embedded
system under test. The value of each electrically emulated sensor is controlled by the plant
simulation and is read by the embedded system under test (feedback). Likewise, the embedded
system under test implements its control algorithms by outputting actuator control signals.

Changes in the control signals result in changes to variable values in the plant simulation.

In many cases, the most effective way to develop an embedded system is to connect
the embedded system to the real plant. In other cases, HIL simulation is more efficient. The
metric of development and test efficiency is typically a formula that includes the following

factors: 1. Cost, 2. Duration, 3. Safety, 4. Feasibility

Cost of the approach will be a measure of the cost of all tools and effort. The duration
of development and test affects the time-to-market for a planned product. The safety factor
and duration are typically equated to a cost measure. Specific conditions that warrant the use

of HIL simulation include the following:
¢ Enhancing the quality of Testing
¢ Tight development schedules

e High-burden-rate plant

85



¢ Early process human factors development

In hardware-in-the-loop (HIL) testing, the designer can verify the production system
controller by simulating the real-time behavior and characteristics of the final system without
the physical hardware or operational environment. While the system is simulated in real-time
on a test computer the control code can be run on the target controller hardware. Though it is
possible to connect the target hardware with the actual motor, testing against a simulated
motor offers several advantages. When compared to a physical plant, a desktop simulator,
often called a hardware-in-the-loop (HIL) tester, is far more cost-efficient, and easier to
reproduce. The simulated motor also can simulate a variety of operating conditions or even
fault conditions, such as engine stall, that would be difficult, costly, and/or dangerous with the
actual plant. If measured data from HIL simulation deviates from Model-in-the-Loop
simulation, the most likely cause is a bug in the target compiler or a problem with the

processor.

5.2 dSPACE System setup

dSPACE system is used for setting-up hardware in loop simulation. All the signals
interface requirement are drawn on excel spread sheet as shown in figure below. Pin
assignment for each of the signal on controller PCB and dSPACE systems are made. Note that

this HIL is a signal level HIL where high current or high power is not involved.

Figure 119: Hardware interface connection
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The block diagram of the test setup is shown below. Since SimPower system model
used in MIL simulation cannot be directly flash into the dSPACE system due to fast sampling
requirement. A new model equivalent to SimPower system model has been made, and is used
for this HIL simulation. The details of switch model to average model conversion are out of

the scope of this report. Note that we are using an average plan model in our dSPACE system.

dSPACE HIL system is control through Laptop running Control desk software for
monitoring and controlling of Plan parameter at run-time. After the build process the code is
flash to the ECU using ICD3 programmer as shown in the diagram, ECU is named as ‘In-
house ISG Drive Controller’, another Laptop running INCA and LAbview is used to control

and monitor the parameter of the controller ECU.

dSPACE HIL system

Block Diagram of HIL Setup I

dSPACE
connectors

ETASCAN/
NI USB CAN

&
v
--- e Interface circuit
.

T
sl il s

1=t camee

L _Fl

Tt { -

ULl -

i JT

AR e

L

DEVELOPMENT CYCLE I"

DS815-RJ45
Interface

MPLAB/INCA/\ Programmer

I
1
I
I
I Lab view
I
|
I

L

Control Desk

~

Figure 120: dSPACE setup block diagram

5.3 TEST RESULT

B Switching pattern of the PWM signals (7.8/10 kHz switching frequency) generated by
the controller based on hall sensor signals is verified. Motor stalls if the pattern is
incorrect.

B Current control works fine with Fixed-point PID controller
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B PI Tuning considering:-

O Lock (high Load Torque= 60-100 Nm).

U Rotating with fixed Load Torque and fixed reference current.

U Varying load torque with fixed reference current.

U Varying reference current (causes speed variation) at constant Load condition.
B All the condition shown below replicated the MIL simulation result with a slight

different in the waveform which is an effect of discrete sampling.

5.3.1 Lock condition from start

LOAD TORQUE = 50Nm, motor is lock for

PI Controller Reference current: 110 Amp, IN HARDWARE IN L OOP SIMULATION 1.5 sec and then shut down as shown below

Ittt glithale tedegth, T LT T NG N RUT| N RUN RV IR RARTON WO |9 ot gl ittt sttt AU N GO G AT Moath ittt

100—

Phase Current
(Ampere) 0

-100—

| | | | | |
TIME

Figure 121: Lock condition from start (HIL)

5.3.2 Motor torque higher than load torque

REFERENCE CURRENT - 150 A
OF PI CONTROLLER LESS LOAD TORQUE, motor start Rotating
200—

160—

100—

Phase Current
(in Ampere) 0

-100—

-160—

TIME

Figure 122: motor running (HIL)
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5.3.3

Phase Current
(Ampere)

5.34

Lock condition while running

LOAD TORQUE INCREASE SUDDENLY MACHINE GETS LOCK

RESULTIN HIL SIMULATION

150

100

50

0
50
-100
-150

TIME

Figure 123 : motor lock while running (HIL)

Comparison of control at different rpm

Analysis has been done at two different rpm of the machine, the nature of block current

control behavior is observed. It has been found that sampling rate of the PID controller effect

the accuracy of control at different speed. The block phase current control at lower rpm is

much better compare to a higher rpm as shown by figure below.
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Figure 124: control behavior at different rpm
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5.3.5 Fault test

Fault is classified uniquely as listed below and test conditions are created through

dSPACE Plan model and the following test has been observed, and are all passed.

B Hardware Fault

U Heat-sink Trip. (Controller over temperature)

U H-Bridge Trip.

O 2132_Fault Trip.

O Motor over Temperature.
B  Motor Fault.

U Motor Lock.

O Overcharging Voltage.

U Hall error.

O Over Speed.
B System Fault.

U Bus under Voltage.

U Bus over Voltage.

U CAN Fault.

U Current Fault.

B Bus Negative over Current

Bus Positive over Current
RPhase Negative over Current
RPhase Positive over Current
YPhase Negative over Current

YPhase Positive over Current

BPhase Negative over Current
BPhase Positive over Current
B  Minor Fault.

U Hall reversal.

U CAN Node not detect

90



It is observed that the controller doesn’t latch the fault when over-current is detected.
These types of problems have been resolved by making Latching logic in software. Any Fault
occurrences will shutdown the system immediately except for minor fault. Software response

for all the fault conditions has been checked.
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6 CHAPTER 6: CONCLUSION

6.1 Result comparison of HIL and MIL

Each of the waveform observed in the MIL and HIL has the same Load torque and
control reference. Since, we are developing a motor controller software in which current is the
main control parameter, so all result are made on the observation of the armature winding
phase currents. The torque produce by the motor is also directly proportional to the amount of
phase current applied. The nature of the waveform between MIL and HIL result is shown in
the consecutive section below on three different cases. If we observe the nature of HIL result,
it is clearly showing that the nature of their waveform is curlier than MIL waveform due to
lower sampling rate. The MIL offline simulation was done at 1 usec sampling, but the HIL
with dSPACE runs at 100usec sampling which is at the order of 100 differences. But note that

control algorithm runs at the same rate in time in both MIL and HIL.

o4
6.1.1 Lock condition
PI Controller Reference current - 110 Amp, LOAD TORQUE = 50Nm, motor is lock for
IN MODEL IN LOOP SIMULATION 1.5 sec and then shut down as shown below
100 {— —
50— —
Phase Current o
(Ampere)
S0 —
100 — —
I
TIME
PI Controller Reference current - 110 Amp, LOAD TORQUE = 50Nm, motor is lock for

IN HARDWARE IN LOOP SIMULATION 1.5 sec and then shut down as shown below

Rt s il sadin ettt Retiapthe Fatch b ottt sisissdt ot st st i Woaeth Trathatithelt

100—
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-100{—

| | 1 | | | |
TIME

Figure 125: Lock conditions compare MIL and HIL
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6.1.2 Motor torque higher than load torque

REFERENCE CURRENT - 150 A
OF PICONIROLLER RESULT OF MIL SIMULATION LESS LOAD TORQUE, motor start Rotating
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Figure 126: motor running compare MIL and HIL

6.1.3 Lock condition while running

LOAD TORQUE INCREASE SUDDENLY MACHINE GETS LOCK RESULT IN MIL SIMULATION
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Figure 127: motor lock while running compare MIL and HIL
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6.2 DISCUSSION

We have discussed all the development process which we will be coming across in the
model based development and validation of motor controller software, before an actual
deployment to Test Bench or Vehicle. All throughout this development and validation activity,
the software bugs in the model has been continuously corrected. It has been observed that MIL
can be a very good validation tool for functional behavior of the system, due to this reason I
have hit hard the modeling section of this report on modeling of microcontroller functionality
which is a unique approached, and also helps in porting the generated source codes in the
microcontroller IDE environment. Porting of a generated code of different ISR function can be
difficult, but this approach helps in easy porting since we consider the microcontroller
execution instants during modeling or MIL itself. Also, HIL validation help to find many
hardware issue in the circuit as well as in the platform code. Fault injection into the plan which
cannot be generated or dangerous at the actual physical environment like over-current testing

can be done.

6.3 FUTURE WORK

This development has cover only the motoring function of the TAISG machine
functionalities, but the other functions like generating mode (normal charging, synchronous
rectification, and boosting operation) are the future scope of this work. But with this tool chain
setup in hand, it would really fasten the development of other functions of the system which
are to be implemented and tested. Also, this HIL setup can be used as a based setup for further

full hybrid HIL simulation.
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APPENDIX I

FILENAME: code_generation.m (m-script)
clear all
clc

delete ('ISGECUSoftware.mdl'); % Delete previous copy of the model
close_system('ISGECUSoftware');% Close if open

open_system('control_sim v2p3_1"');%OPEN the main model

clear

load ('matlab.mat');

$To use MATLAB commands to change data in a model workspace,

$first get the data from Modelworkspace for the currently selected model:

hws = get_param('control_sim v2p3_1', 'modelworkspace');

hws.DataSource = 'MAT-File';

hws.FileName = 'MWparams';

hws.saveToSource; % MWparams.mat file will be save in working directory
hws.DataSource = 'MDL-File'; $%Attached back modelworkspace variable with
Model

$CREATE new Model from where we are going to generate the code
new_system('ISGECUSoftware');
save_system('ISGECUSoftware');

%COPY CONFIGURATION SETTING to a new Model

$The following example creates a copy of ModelA's active configuration
$object and attaches it to ModelB, changing the name if necessary to be
unique.

$The code is the same whether the object is a configuration set or
configuration reference.

myConfigObj = getActiveConfigSet ('control_sim v2p3_1"');

newConfigObj = attachConfigSetCopy ('ISGECUSoftware', myConfigObj, true);

%$COPY a Subsystem named 'ISGECUSoftware' from Base model

$control_sim v2p3_1.mdl to new model 'ISGECUSoftware.mdl'
Simulink.SubSystem.copyContentsToBlockDiagram('control_sim_v2p3_1/ISG_CONTR
OLLER_PCB/MCU_18F4431Chips/ISGECUSoftware', 'ISGECUSoftware');

%$CLOSE the Main Model

save_system('control_sim_v2p3_1");
close_system('control_sim_v2p3_1");

$save, close and open new model create from specific subsystem
save_system('ISGECUSoftware');

close_system('ISGECUSoftware');

open_system('ISGECUSoftware');

%$Set ACTIVE COPNFIGURATION TAKEN FROM MAIN MODEL
setActiveConfigSet (gcs, 'Configurationl');

save_system('ISGECUSoftware');

%$LOAD Model workspace data to new Model 'ISGECUSoftware.mdl' Model

workspace
hws = get_param('ISGECUSoftware', 'modelworkspace');
hws.DataSource = 'MAT-File';
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hws.FileName = 'MWparams';

hws.reload;

hws.DataSource = 'MDL-File'; $%Attached modelworkspace variable with Model
delete MWparams.mat %delete the local copy of modelworkspace variable
%$load workspace_variables.mat;

$DELETE TRIGGER BLOCK for Code Optimization
Total_Trigger_blocks=find_system('ISGECUSoftware', 'blocktype',
'TriggerPort');

delete_block (Total_Trigger_blocks) ;

$DELETE 10msec_scheduler BLOCK for Code Optimization
delete_block ('ISGECUSoftware/Background/10msec_scheduler');
save_system('ISGECUSoftware');

$RTW code Generation

rtwbuild ('ISGECUSoftware');
save_system('ISGECUSoftware');
close_system('ISGECUSoftware');
%$delete ISGECUSoftware.mdl;

APPENDIX II

FILENAME: asap2Complete.m (M-script)
function varargout = ASAP2Complete(varargin)

% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;

gui_State = struct('gui_Name', mfilename,
'gui_Singleton', gui_Singleton,
'gui_OpeningFcn', @ASAP2Complete_OpeningFcn,
'gui_OutputFcn', @ASAP2Complete_OutputFcn,

'gui_LayoutFcn', 1,
'gui_Callback', [(1);
if nargin && ischar (varargin{l})
gui_State.gui_Callback = str2func(varargin{l});
end

if nargout
[varargout {1l:nargout}]
else
gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT

gui_mainfcn(gui_State, varargin{:});
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% ——— Executes just before ASAP2Complete is made visible.
function ASAP2Complete_OpeningFcn (hObject, eventdata, handles, varargin)
This function has no output args, see OutputFcn.

o\

% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

o\

varargin command line arguments to ASAP2Complete (see VARARGIN)

[)

% Choose default command line output for ASAP2Complete
handles.output = hObject;

[)

% Update handles structure

guidata (hObject, handles);

set (handles.GenerateButton, "Enable', 'off'");

set (handles.ASAP2BrowseButton, 'Enable', 'on');

set (handles.MAPBrowseButton, 'Enable', 'off"'");

% UIWAIT makes ASAP2Complete wait for user response (see UIRESUME)
% uiwait (handles.figurel);

% ——— Outputs from this function are returned to the command line.
function varargout = ASAP2Complete_OutputFcn (hObject, eventdata, handles)
varargout cell array for returning output args (see VARARGOUT) ;

o\

% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

\o

¥ Get default command line output from handles structure

varargout{l} = handles.output;

% ——— Executes on button press in ASAP2BrowseButton.

function ASAP2BrowseButton_Callback (hObject, eventdata, handles)

% hObject handle to ASAP2BrowseButton (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

global ASAP2filename;
global ASAP2pathname;

[ASAP2filename, ASAP2pathname] = uigetfile('*.a2l', 'Pick an A2L-
file');
if isequal (ASAP2filename,0) || isequal (ASAP2pathname,0)
set (handles.ASAP2StaticText, 'String', 'User pressed cancel');
else

set (handles.ASAP2StaticText, 'String', ['User selected ',
fullfile (ASAP2pathname, ASAP2filename)]);
if isequal (cd,ASAP2pathname)
error (' #####File on Current Directory****');
else
copyfile(fullfile (ASAP2pathname, ASAP2filename),ASAP2filename);
end
set (handles.ASAP2BrowseButton, 'Enable', 'off"');
set (handles.MAPBrowseButton, 'Enable', 'on');
end
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% ——— Executes on button press in MAPBrowseButton.
function MAPBrowseButton_Callback (hObject, eventdata, handles)

% hObject handle to MAPBrowseButton (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

global MAPfilename;
global MAPpathname;
PerlFile = 'convertMAP_Hitech.pl';
[MAPfilename, MAPpathname] = uigetfile('*.map', 'Pick an MAP-file');
if isequal (MAPfilename,0) || isequal (MAPpathname, 0)
set (handles.MAPStaticText, 'String', 'User pressed cancel');
else
set (handles.MAPStaticText, 'String', ['User selected ',
fullfile (MAPpathname, MAPfilename)]);
set (handles.GenerateButton, 'Enable', 'on');
set (handles.ASAP2BrowseButton, 'Enable', 'off"');
set (handles.MAPBrowseButton, 'Enable', 'off"');
if isequal (cd,MAPpathname)
error (' #####File on Current Directory****');
else
copyfile(fullfile (MAPpathname, MAPfilename),MAPfilename);
% Call PerlFile from operating system
result = perl(PerlFile,MAPfilename);
%$Copy hex-file also for just for easy reference

[hexfilename, hexpathname] = uigetfile('*.hex', 'Pick an HEX-
file');
if isequal (hexfilename,0) || isequal (hexpathname, 0)
disp ('User pressed cancel')
else

disp(['User selected ', fullfile (hexpathname,

hexfilename)]);
copyfile(fullfile (hexpathname, hexfilename),hexfilename);

end
end
end
% ——— Executes on button press in GenerateButton.
function GenerateButton_Callback (hObject, eventdata, handles)
% hObject handle to GenerateButton (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

global MAPfilename;
global ASAP2filename;

asap2post (ASAP2filename, ['temp_',6 MAPfilenamel]);
disp ("******* A2], File Created in working directory ****xxx1).
set (handles.genstatusStaticText, 'String', "*****x* A2], File Created in
working directory *****x*xx*x1);
set (handles.GenerateButton, "Enable', 'off');
%$Delete after all
delete(['temp_',MAPfilename]);
delete (MAPfilename) ;
$delete (ASAP2filename) ;
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APPENDIX III

FILENAME: convertMAP_Hitech.pl (perl Script)

#***Hitech C compiler MAP file Compatible to MATLAB A2L file generation****
frAAAAA% RUN THIS SCRIPT BY INPUTING MAP FILE OF HI-TECH COMPILER*******xk*%
FrRAFAAAAAXXXXYSE THIS OUTPUT FILE MAP FILE TO asSap2pOSth .m**xxxxxskskskskkkkkkkk
# **x%x* CREATED ON : 13-AUG-2011, 11:45PM IST KKK KKK KK KKK KA KK K KKK Kk

SMAPFileName = $ARGV[0];# File input name'MPLAB_TAISG_project_vO0OpO.map'; #
SoutputFileName = "temp_" . S$SMAPFileName; # File output name

open (MAPFILE, S$MAPFileName)

|| die "PERL Error: Couldn't open MAP file: ", S$MAPFileName, ".\n";
undef $/; S$MAPFileString = <MAPFILE>; $/ = "\n";
close (MAPFILE) ;

# — Replace consecutive white-space characters with a single space
$MAPFileString =~ s/\s+/\n/g;

@FileArray =split(/\n/, SMAPFileString);

# — Convert MAPFileString to MAPFile Hash Table

open (OUTPUTFILE, (">" . SoutputFileName))
| | die "PERL Error: Couldn't open output file: ", SoutputFileName, "\n";

$Length=scalar (@FileArray) ;
print "Length of Array =", $Length,"\n";
$n=0;
Scount=0;
$foundSymbol=0;
while ($n < $Length) {
if((SFileArray[$n] eqg "Symbol")&& ($foundSymbol==0)) {
print "Found Symbol Table at ",$n,"—-——-",$FileArray[$n],"\n";
$SymbolIndexnumber=5$n;
$foundSymbol=1;
}
if((SFileArray[$n] eqg "Table") && ($foundSymbol==1))
{ print "Found Symbol Table at ",$n,"-——-",S$FileArray[$n],"\n";
$SymbolIndexnumber=5$n;
$foundSymbol=2;
}
if ((S$foundSymbol==2))
{
push (@NewFileArray, $FileArray[$n]);
#print "New Array [",S$count,"]-——-",S$NewFileArray[Scount],"\n";
Scount++;

Sn++;
}
if ($foundSymbol!=2) {
print "\n***xFxxxFxxkxF*Prong Input filer*******Not a Hi-tech PICC1l8 MAP
filex***x*\n";
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else

$SNewLength=scalar (@NewFileArray) ;
print "\nLength of New Array =", $NewLength,"\n";

SNewLength=$count;

$n=0;

Scount=0;

while ($n < $NewLength) {

print "New Array [",$n,"]-——-",S$NewFileArray[Sn],"\n";

if((SNewFileArray[$n] eq "bss") || ($NewFileArray[S$Sn] eq
"bigbss") | | ($NewFileArray[Sn] eqg "data") || ($NewFileArray[S$n] eq
"bigdata") | | ($SNewFileArray[$n] eqg "const"))

{
SNewFileArray[$n-1] =~ s/"_//qg;
push(@FinalFileArray, $NewFileArray[$n-1]); # Push Variable Name
push (QFinalFileArray, "\t"); #Push Tab
Secuadress="0x".$NewFileArray[$n+1]; #augment '0x'
push(@FinalFileArray, Secuadress); # Push Address of Variable
push(@FinalFileArray, "\n"); #Push new line
Scount=$count+4;
print "H##HFFFFAAELEE", Scount, " index", $Sn, "\n";

}

Sn++;

}

#NewFileArray contain contain only the required data but still types
name need to remove
SNewLength=$count;

n=0;
;riné WA\ ** %k kK k& ok ok ok ok ok k ok ok k ok k ok GEMT —FINAL* ¥ * * %k %k xkk xkxx*x\n\n";
while ($n < $NewLength) {
print "Final Array [",S$n,"]-——-",S8FinalFileArray[$n],"\n";
Sn++;
}
print "\n\nxEFEEE KKK ALK KKK KA XA KFINALK X HF Kk ok xx kK kxxxx\n\n";

SFinalbuff=join("",Q@FinalFileArray) ;
print "\n\n";

print $Finalbuff;

print "\n\n";

print $Finalbuff;

print OUTPUTFILE S$Finalbuff; #Print to FILE
rename S$SoutputFileName, S$SMAPFileName;

print "\n\nComplete MAP file generation....... \n";
close (OUTPUTFILE) ;
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