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This dissertation gives a way to apply a model-based design for designing and validation of 
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All the system components including software model, processor execution model, PCB circuitry 

model, inverter model, motor model, engine model and Hybrid ECU functionality are all modeled in 

MATLAB simulink. Each component are modeled first, and then integrated one by one. Model in loop 

simulation (MIL) was performed for different functional checking of the control and also for PID 

parameter tuning. Fault detection logic and injection into the plan environment are also modeled and 

validated in the MIL simulation. 

Code generation using Real-Time workshop of MATLAB from the model used in MIL was 

performed and porting was done to microchip microcontroller. All measurement and calibration 

attribute as taken into account during code generation and porting. Then, Hardware in loop simulation 

(HIL) with the controller hardware was performed for hardware and software integration validation. The 

above simulation done on MIL was again done on HIL system. 
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1 CHAPTER 1: INTRODUCTION 

 

 

Hybrid Car Technology is one of the technologies which could be the solution for 

global environment pollution problems. Such a technology would required many aggregates 

on the power-train of the vehicle which comprises of engine or fuel-cell, battery and motor. 

Hybrid Car can be classified according to the level of hybridization, called hybridization factor, 

the ratio of electric power provided to the wheel of the total power deliver to the wheel. 

Depending on values of the hybridization factor, there can be strong, medium, and mild 

hybridize Car. In a strong hybrid car application, electric motor could alone drive the wheel 

without engine assistance, but in a medium or mild hybrid car application, motor needs engine 

assist.  

We will be focusing on the mild hybrid application where we are using a Claw Pole 

electric machine (TA-ISG) [Fig1] as a motor. In a mild hybrid application, the TA-ISG 

(Torque assist integrated starter generator) machine acts as the starter to crank the engine , 

provides torque assist to engine when the vehicle accelerates [Fig1], and also acts as the 

generator to charge the battery when it doesn’t operate in motoring mode [Fig2]. This mild 

hybrid system using a TA-ISG can be adapted with conventional engine vehicles with only 

minimal system changes using belt system linking to engine. It can provide good improvement 

in fuel consumption. 

 

 

Figure 1: Starting/Torque assist – Battery drives the TA-ISG to start the engine 

 

 

 

1.1 INTRODUCTION AND PROBLEMS 
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Figure 2: Running – Engine charges the battery through TA-ISG 
 

 

 These power-train systems require a complex computerized control system, 

communication, and so handling a hand-written C source codes algorithm would be a 

cumbersome. So, a modern approach of MATLAB model based design was used, where there 

can be a full traceability of model from requirement documents to the actual program codes 

dumped to the microcontroller.  Early finding of software bugs as well as logical mistake can 

be done before actual testing on test bench. So this dissertation project addresses those issues 

using MIL (Model in loop simulation) and HIL (Hardware in loop simulation) validation 

methodology. Today, vehicle manufacturers are moving towards model based software 

development and simulation for easy maintenance and control of the complex control 

algorithm. In this project, we will be focusing on the development and validation of TA-ISG 

controller software in which model-based design approach was adopted and validation process 

using MIL and HIL was used, before deployment to the actual working environment.  

 

 

 

 

Model-Based Design (MBD) is a mathematical and visual method of addressing 

problems associated with designing complex control, signal processing and communication 

systems. It is used in many motion controls, industrial equipment, aerospace, and automotive 

applications. Model-based design is a methodology applied in designing embedded software.  

MBD provides an efficient approach for establishing a common framework for 

communication throughout the design process while supporting the development cycle ("V" 

1.2 MODEL_BASED DESIGN CONCEPT 
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diagram). In Model-based design of control systems, development is manifested in these four 

steps: 1) modeling a plant, 2) analyzing and synthesizing a controller for the plant, 3) 

simulating the plant and controller, and 4) integrating all these phases by deploying the 

controller. The model-based design paradigm is significantly different from traditional design 

methodology. Rather than using complex structures and extensive software code, designers 

can use MBD to define models with advanced functional characteristics using continuous-time 

and discrete-time building blocks. These built models used with simulation tools can lead to 

rapid prototyping, software testing, and verification. Not only is the testing and verification 

process enhanced, but also, in some cases, hardware-in-the-loop simulation can be used with 

the new design paradigm to perform testing of dynamic effects on the system more quickly 

and much more efficiently than with traditional design methodology. 

1.2.1 STEPS IN MODEL –BASED DESIGN 

The main steps in MBD approach are: 

1. Plant modeling. Plant modeling can be data-driven or first principles based. Data-

driven plant modeling uses techniques such as System identification. With system 

identification, the plant model is identified by acquiring and processing raw data from 

a real-world system and choosing a mathematical algorithm with which to identify a 

mathematical model. Various kinds of analysis and simulations can be performed using 

the identified model before it is used to design a model-based controller. First 

principles based modeling is based on creating a block diagram model that implements 

known differential-algebraic equations governing plant dynamics. A type of first 

principles based modeling is physical modeling, where a model is created by 

connecting blocks that represent physical elements that the actual plant consists of. 

2. Controller analysis and synthesis. The mathematical model conceived in step 1 is 

used to identify dynamic characteristics of the plant model. A controller can be then be 

synthesized based on these characteristics. 

3. Offline simulation and real-time simulation. The time response of the dynamic 

system to complex, time-varying inputs is investigated. This is done by simulating a 

simple LTI or a non-linear model of the plant with the controller. Simulation allows 

specification, requirements, and modeling errors to be found immediately, rather than 

later in the design effort. Real-time simulation can be done by automatically 
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generating code for the controller developed in step 3. This code can be deployed to a 

special real-time prototyping computer that can run the code and control the operation 

of the plant. If plant prototype is not available, or testing on the prototype is dangerous 

or expensive, code can be automatically generated from the plant model. This code 

can be deployed to the special real-time computer that can be connected to the target 

processor with running controller code. This way, controller can be tested in real-time 

against a real-time plant model. 

4. Deployment. Ideally this is done via automatic code generation from the controller 

developed in step 3. It is unlikely that the controller will work on the actual system as 

well as it did in simulation, so an iterative debugging process is done by analyzing 

results on the actual target and updating the controller model. Model based design 

tools allow all these iterative steps to be performed in a unified visual environment. 

 

1.2.2 ADVANTAGES OF MBD 

Some of the notable advantages MBD offers in comparison to the traditional approach are:  

� MBD provides a common design environment, which facilitates general 

communication, data analysis, and system verification between development groups. 

� Engineers can locate and correct errors early in system design, when the time and 

financial impact of system modification are minimized. 

� Design reuse, for upgrades and for derivative systems with expanded capabilities, is 

facilitated. 

 

 

 

 

Torque assist Integrated Starter Generator (TAISG) machine [Fig 3] is a claw-pole 

electric machine which has a rotor winding, and brush contact. The rotor flux can be 

individually controlled through H-Bridge in the Power inverter block [Fig 3]. Three phase 

winding armature are controlled through a 3-phase Bridge in the Power inverter block [Fig 3]. 

The rotor position is senses using hall sensors which are coupled to the TAISG machine [Fig 

1.3 TA-ISG MACHINE AND CONTROL CONCEPT 
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3]. Intelligent controller PCB was designed with microcontroller for computerize software 

control which interface with power inverter and machine.  

 
Figure 3: Block diagram of TA-ISG Control 

 

Torque assist Integrated Starter Generator (TAISG) machine [Figure 3] is a claw-pole 

electric machine which has a rotor winding, and brush contact. The rotor flux can be 

controlled using an H-Bridge as shown in the Figure above. The Machine has 12 poles (P) 

armature star winding i.e.  P/2 = 6 electrical cycles. Each electrical cycle will have 6 

commutations sequence according to the table [Table 1] shown below for phase Red(A), phase 

Yellow (B) and phase Blue (C) conductions. 

Table 1: Hall commutation sequences Table 

sequence Hall signal (A,B,C) Phase Conduction 

1 0 A+C- 

2 1 A+B- 

3 3 C+B- 

4 7 C+A- 

5 6 B+A- 

6 4 B+C- 
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1.3.1 COMMUTATION SEQUENCE 

 

Figure 4 shows an example of Hall sensor signals with respect to back EMF and the 

phase current. Figure 5 shows the switching sequence that should be followed with respect to 

the Hall sensors. The sequence numbers on Figure 4 correspond to the numbers given in 

Figure 5. For every 60 electrical degrees of rotation, one of the Hall sensors changes the state. 

It takes six steps to complete an electrical cycle. In synchronous, with every 60 electrical 

degrees, the phase current switching should be updated. However, one electrical cycle may not 

correspond to a complete mechanical revolution of the rotor.  

 

 

Figure 4: Hall sensor signal, back emf, output torque and phase current. 
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Figure 5:  winding energizing sequence with respect to the hall sensor 

 

 

Figure 6: Control block diagram of Armature winding 
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The number of electrical cycles to be repeated to complete a mechanical rotation is 

determined by the rotor pole pairs. For each rotor pole pairs, one electrical cycle is completed. 

So, the number of electrical cycles/rotations equals the rotor pole pairs. Figure 6 shows a 

block diagram of the controller used to control a BLDC motor. Q0 to Q5 are the power 

switches controlled by the PIC18FXX31 microcontroller. Based on the motor voltage and 

current ratings, these switches can be MOSFETs, or IGBTs, or simple bipolar transistors.  

 

Table 2 : Sequence of rotating the motor in clockwise direction  

 

 

Table 3: Sequence of rotating the motor in counter-clockwise direction 

 

 

Table 2 and Table 3 shows the sequences in which these power switches should be 

switched based on the Hall sensor inputs, A, B and C. Table 2 is for clockwise rotation of the 

motor and Table 3 is for counter clockwise motor rotation. This is an example of Hall sensor 

signals having a 60 degree phase shift with respect to each other. As we have previously 

discussed in the “Hall Sensors” section, the Hall sensors may be at 60° or 120° phase shift to 

each other. When deriving a controller for a particular motor, the sequence defined by the 

motor manufacturer should be followed. Referring to Figure 6, if the signals marked by 

PWMx are switched ON or OFF according to the sequence, the motor will run at the rated 

speed. This is assuming that the DC bus voltage is equal to the motor rated voltage, plus any 
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losses across the switches. To vary the speed, these signals should be Pulse Width Modulated 

(PWM) at a much higher frequency than the motor frequency. As a rule of thumb, the PWM 

frequency should be at least 10 times that of the maximum frequency of the motor. When the 

duty cycle of PWM is varied within the sequences, the average voltage supplied to the stator 

reduces, thus reducing the speed. Another advantage of having PWM is that, if the DC bus 

voltage is much higher than the motor rated voltage, the motor can be controlled by limiting 

the percentage of PWM duty cycle corresponding to that of the motor rated voltage. This adds 

flexibility to the controller to hook up motors with different rated voltages and match the 

average voltage output by the controller, to the motor rated voltage, by controlling the PWM 

duty cycle. There are different approaches of controls. If the PWM signals are limited in the 

microcontroller, the upper switches can be turned on for the entire time during the 

corresponding sequence and the corresponding lower switch can be controlled by the required 

duty cycle on PWM. The potentiometer, connected to the analog-to-digital converter channel 

in Figure 6, is for setting a speed reference. Based on this input voltage, the PWM duty cycle 

should be calculated. 

 

1.3.2 CLOSED LOOP CONTROL 

 

The speed/Torque can be controlled in a closed loop by measuring the actual speed of 

the motor, or current along the phases. The error in the set speed/Torque and actual 

speed/torque is calculated. A Proportional plus Integral plus Derivative (P.I.D.) controller can 

be used to amplify the speed/torque error and dynamically adjust the PWM duty cycle. For 

low-cost, low-resolution speed requirements, the Hall signals can be used to measure the 

speed feedback. A timer from the PIC18FXX31 can be used to count between two Hall 

transitions. With this count, the actual speed of the motor can be calculated. For high-

resolution speed measurements, an optical encoder can be fitted onto the motor, which gives 

two signals with 90 degrees phase difference. Using these signals, both speed and direction of 

rotation can be determined. Also, most of the encoders give a third index signal, which is one 

pulse per revolution. This can be used for positioning applications. Optical encoders are 

available with different choices of Pulse per Revolution (PPR), ranging from hundreds to 

thousands. 
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1.3.3 FIELD WINDING CONTROL 

 

Field winding in a TAISG machine are separately control using H-Bridge where we 

can control the amount of current on rotor winding and the direction of current. Figure 7 

shows the detail block diagram as below. 

 

 

Figure 7 : Field winding control block diagram 

 

IGBT or MOSFET driver as shown in the figure above is an H-Bridge driver which 

gives a complementary PWM on each leg of the high and low MOSFET/IGBT.  While PWM1 

is in PWM and PWM0 is low, the complementary PWM will appear on the PWM1H and 

PWM1L signal, and PWM0H will be low and PWM 1L will be high. Thereby, the current will 

be in the direction of A to B in the rotor/field winding, and the amount of current would be 

control using duty on PWM1. 

During motoring operation, a full duty is applied which will give maximum rotor flux 

at specific current direction say A to B. Field duty can also be used to control rotor flux during 

alternating operation and field weakening operation. 

 

1.3.4 HALL SENSOR  

As mounting diagram shown below, magnetic cup is mounted on the rotor, and a fixed 

hall sensor is mounted on the body of the motor. Magnetic cup consist of alternate 6 North 

poles and 6 South poles magnet ring. When the magnetic cup rotate the three hall sensor give a 

sequence of  hall signal as shown in the consecutive figure below. 
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Figure 8 : Hall sensor mounting 

 

 

Figure 9 : Hall sensor pattern at 60 degree apart 

 

The hall sensor at 60 degree apart was used in our machine so the hall sequences will 

be 000(0), 001(1), 011(3), 111(7), 110(6), and 100(4). So, out of the 8 combination hall 

signals 101(5) and 010(2) will not be appearing. There will be 6 hall changes within one 

electrical cycle, so 36 hall changes in one mechanical rotation for 12 pole machine. 
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Specific folder structure is maintained in this project as shown below 

 

Figure 10: Project folder structure 

 

The project folders are maintained in a hierarchical manner do to its complex tool 

chain, and are mentioned below:- 

• Main < project folder>: This main folder can be given any name. This folder 

contains the MPLAB project and its aggregates. It contains sub-folder as 

mentioned below:- 

o MATLAB model: This folder contains MATLAB model and all 

MATLAB related files associated with the model 

o ASAP2POST_TML: This folder contain ASAP2 complete file 

generator M-script, GUI, and contain hex file and A2L files. 

o Platform_code: This folder contains the hand written code like 

platform code-hardware driver.c, ccp.c, etc. 

1.4 PROJECT FOLDER STRUCTURE 
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2 CHAPTER 2: MODELING 

 

Modeling is done on MATLAB Simulink [1] using native blocksets of Simulink 

library.  Modeling a control system involved two parts – Plan model and Controller model. 

Controller model consist of the parts of system on focus, and the plan model consist of the 

remaining system which is on the scope of the design. Since the focus of this development is 

on motor controller PCB design and development, we segregate the Controller PCB part from 

the whole system as a one subsystem named ISG_CONTROLLER_PCB as show in Figure 

below, and the rest of the system including Power inverter, battery, engine and vehicle models 

sit on the plan part of the model. Figure below shows the topmost level model of the 

MATLAB Model, which consist of Plan model and controller PCB model. 

 

Figure 11 :Top-level model containing controller and plan 

2.1 Modeling: 
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Modeling is done on MATLAB Simulink using native blocksets of Simulink library. 

Plan model comprises of power inverter, motor, battery, engine, vehicle ECU, and the Vehicle 

subsystem as shown in [Figure 12]. SimPower System physical blocksets of Simulink library 

are used in the model for power MOSFETs, resistors, inductors, capacitors, and voltage 

sources. Apart from the motor, inverter and battery subsystem, the hybrid ECU and Engine 

cranking Load torque are included. Those hybrid ECU and Engine subsystems are modeled for 

future addition to simulate the whole vehicle dynamics for controller software validation. 

 

Figure 12 : Plan model comprises of different components of vehicle. 

 

2.2 Modeling of Plan Model 



 15 

2.2.1 Power Inverter model 

This model consists of 3 phase inverter, DC link capacitor, H-bridge, H-bridge shunt 

resistor, and current sensors. As shown in figure below, input signal to inverter are switching 

signal of MOSFET. Since these MOSFETs and Diodes are physical model of SimPower 

System it can be connected as like a wired connection in a physical world. The black color 

represents physical wire, and red lines represent Simulink signals. SimPower System sensors 

library blocks like current measurement blocks, voltage measurement blocks are used to give 

feedback signal to controller through current sensor subsystem as shown in gray box below. 

 

Figure 13 : Power Inverter model of the motor controller 

2.2.1.1 Current sensor 

Current sensor subsystem converts the ampere value to sensor output voltage level (0V 

to 5V) as shown below, where 2.5 V represent zero current. 

 
Figure 14: current sensor model 



 16 

2.2.2 Motor model  

 

Motor can be simulated as shown in figure below using SimPower system model and 

logical or mathematical Simulink subsystem model. Armature winding are modeled in star 

configuration using resistors, inductors and voltage sources as shown by black wire 

connection. Back emf is simulated using voltage source which are adjusted from Simulink 

signals subsystems depending upon speed of motor. Back emf is generated using mathematical 

equations from MAIN_SIM_LOOP as shown below. This subsystem consists of Simulink 

subsystem like electromagnetic torque, main simulation loop, hall-sensor and hall-sensor 

simulation subsystems. 

 

Figure 15 : Motor 3-phase star winding simulation with back emf generator. 

 

2.2.2.1 ASSUMPTIONS IN MOTOR MODELING: 

• Magnetic circuit saturation is ignored. 

• Stator resistance, self and mutual inductance of all phases are equal and constant. 

• Hysteresis and eddy current losses are eliminated. 

• All semiconductor switches are ideal. 

• Mutual inductance is not considered. 
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2.2.2.2 Electromagnetic Torque 

The torque generated by the machine depends on the phase current of each winding, 

flux pattern reference and machine constant. 

 

Figure 16: Electromagnetic torque model 

 

The equation shown below is realized in the above model 

Equation 1: Electromagnetic torque equation 

( )ccbbaame IIIKT φφφ ++=  

Where, 

eT    - Electromagnetic Torque 

mK   - Machine constant 

cba III ,,  - Phase current 

cba φφφ ,,  - Flux pattern in per unit 

 

The flux pattern is generated from sinusoidal back-emf subsystem shown in Figure 17: 

main simulation loop subsystem.  
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2.2.2.3 Main simulation Loop subsystems 

 This subsystem consists of two subsystems – torque and speed loop, and sinusoidal 

back emf subsystem. Machine inertia is not considered and is left with constant zero as shown 

below 

 

 

Figure 17: main simulation loop subsystem 

 

2.2.2.3.1 Torque and Speed Loop equation and model 

 

 The core of the simulation lies on the load torque equation shown below 

 

Equation 2 : Torque speed equation 

t
JTTe

∂

∂
=−

ω
l

 

Where, 

eT  - Electromagnetic torque produces by the motor 

l
T  - Load torque applied 

J  - Total inertia which includes Engine inertia, the machine inertia and all other 

component on the shaft. 

t∂

∂ω
 - Angular speed, where, snπω 2=  such that sn  in rps (revolution per sec). 
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The above equation can be realized a MATLAB Simulink model as shown below. 

 

Figure 18: Torque speed equation realization in Simulink. 

 

Load Torque lT  is simulated from the frictional model of Engine, given in the Engine 

subsystem. Load Torque from engine lT  varies with the speed of the crank shaft of the engine 

which is couple to ISG machine using belt and the belt ratio should also be consider in the 

model. 

 

2.2.2.3.2 Sinusoidal back emf generation model 

The back emf pattern can be generated by a sinusoidal signal generator, where phase 

shift are applied for each phase as shown below. Position in radian is taken as an input which 

varies from 0 to 2*pi, and repeat itself. The frequency and amplitude will be decided by the 

speed of the machine. 
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Figure 19 : sinusoidal back emf model 

 

2.2.2.4 Hall sensor 

Hall sensor can be simply model in Simulink using look-up table where the pattern of 

hall signal is generated at different rotor position from 0 to 360 degree. The input to this 

subsystem is a rotor position which varies from 0 to 360 repetitively depending on the 

machine speed. 

 

 

Figure 20 : Hall sensor model 
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2.2.2.5 Hall error simulation 

Hall sensor fault condition can be created by the model shown below. Using this 

subsystem fault can be injected during run-time of the simulation manually. Shorted to Ground 

and shorted to supply of hall sensor signal for each combination can be simulated. 

 

Figure 21: Hall error simulation 

 

2.2.3 Battery model 

Battery is modeled using an ideal voltage source with internal resistance of SimPower 

system block as shown below. Four 12V battery are used which has an internal resistance of 

32 mOhm. 

 
Figure 22: Battery model 
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2.2.4 Engine model 

The friction torque and inertia components of the engine are only modeled here. The 

cranking load behavior of the engine can be simulated using this model. 

 

Figure 23: Engine model 

 

2.2.5 Hybrid ECU model 

Function of Hybrid is the main control system of the whole vehicle which send 

command to all other ECU in the vehicle. In this simulation CAN message is only simulated. 

Please note that motor controller are controlled only by Hybrid ECU through CAN message as 

shown below. 

 

Figure 24: hybrid ECU model 
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Modeling of the Controller includes PCB circuitry, Microcontroller and its Software 

algorithm. The complexity of this controller model is that the hardware component of the PCB 

are modeled to an extent of its logical functions with an aim to be able to auto-code directly 

from subsystem of the <model>.mdl file of the model used in the MIL simulation. Processor 

execution timing and interrupts are also modeled in MATLAB Simulink which are as per the 

specific configuration of the 18F microcontroller used. This is one of the most interesting parts 

of this dissertation project that it is one typical way of modeling, which could help designer 

working on the same model for both simulation and auto-coding. Part of software subsystem 

to be auto-coded will be discuss on the later part, and porting of generated code to the 

microcontroller platform code will also be discuss on Code generation chapter of this report.  

Segregation of electrical circuitry part of the controller PCB are done as it is on the  

physical PCB, and part of the digital circuitry inside the microcontroller are all model on its 

logical aspect on module-wise subsystem. Software parts of the system are then model inside 

as one subsystem around the hardware and digital electronics subsystem model. This type of 

modeling would help to solve software bugs before actual implementation. It also gives an 

idea of the hardware-software interface, hardware functionality of the peripherals. 

2.3.1  ASSUMPTION IN CONTROLLER MODELING 

 

1. Active component of the electronics like capacitor, inductor, charging and discharging 

are not model. Only logical functions of the chips and the circuit are modeled. 

2. Some logical functions of some chips are not considered for simplicity. 

3. Sampling rate is fixed to 1 usec, fixed-step. This is done due to better PWM 

generation of 10/7.8 KHz (100/128 usec period), we can have 1/0.7v% resolution of 

duty. 

4. Electromagnetic interference and electrostatic discharge are not considered.  

5. Filter circuit functions like filtering delay etc are neglected in the model.  

6. Configuration registers setting of MCU and its peripherals are fixed. 

 

2.3 Modeling of Controller 
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Figure 25 : Controller PCB model, and traceability 

 

  

As shown in the figure above, modeling of functionality of PCB circuitry and IC are 

possible by looking into the actual the functional requirements in the simulation. All the PCB 

circuitries are modeled and are put to separate subsystems.  
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PCB consists of subsystem listed as below:- 

1. Current shunt monitor. 

2. Digital input circuit. 

3. Field short circuit detection. 

4. Hall sensor signal circuit. 

5. Heat sink temperature sensor circuit. 

6. I-Trip signal Battery circuit. 

7. Jumper circuit. 

8. MCP2515 CAN Controller circuit. 

9. MCU 18F4431 Chips. 

10. MOSFET driver H-Bridge circuit. 

11. Relay driver circuit. 

12. Spare input signal circuit. 

13. Three-phase Bridge driver circuit. 

14. PWM signal filter circuit. 

15. Voltage sense signal circuit. 

 

Since, we neglect the filtering logic in our modeling and simulation, we could directly 

connect input and output in many subsystem as shown in the next section. 

 

 



 26 

2.3.2 Current shunts monitor Model 

 

  

 
Figure 26 : Current shunt monitor circuit Model 

 

2.3.3 Hall sensor signal circuit model 

 

 
Figure 27 : Hall sensor signal circuit model 
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2.3.4 Digital Input Circuit Model 

 

 
Figure 28 : Digital Input Circuit Model 

 

2.3.5 PWM Signal Filter circuit Model 

 

 
Figure 29 : PWM Signal Filter circuit Model 
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2.3.6 Spare input signal circuit model 

 

 
Figure 30 : Spare input signal circuit model 

 

 

2.3.7 MCP2515 CAN Controller circuit model 

 

 
Figure 31: MCP2515 CAN Controller circuit model 
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2.3.8 Relay driver output circuit model 

The main function of Relay driver is to latch out serial data from SPI to a parallel 

logic, which are modeled as shown below. 

 

 
Figure 32 : Relay driver output circuit model 

2.3.9 Field short circuit detection circuit model 

As shown in figure 10, the field shunt resistor voltage is taken as input to this circuit 

which is a very low voltage, and is amplify and given to a comparator circuit. It is then 

compare with a know threshold voltage which is selected depending on trip current required. 

Since the H-Bridge driver chip shutdown does not latch the SD signal, microcontroller output 

latch is provided to latch through software. 

 
Figure 33 : Field short circuit detection circuit model 
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2.3.10 Heat Sink Temperature sensor interface model 

Thermistor sensor from the power inverter heat sink is connected to the circuit shown 

below. Threshold is set using potential divider circuit which is model the same way in a 

MATLAB Simulink model. 

 
Figure 34 : Heat Sink Temperature sensor interface model 

2.3.11 I Trip Signal Battery circuit model 

This subsystem senses the specific threshold voltage (over voltage) of battery, which 

give trip signal to the 3-phase driver chip.  

 

 
Figure 35 : I Trip Signal Battery circuit model 
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2.3.12  Jumper Circuit Model 

Jumper on the PCB which route anyone of the signal exclusively to uC pin. 

 

 
Figure 36 : Jumper Circuit Model 

 

2.3.13  MOSFET driver H-Bridge circuit Model 

Two FAN73832 are used to driver two leg of MOSFET in complimentary with dead-

time, and with a shutdown pin controlled through uC and trip circuit as in figure 21. Shutdown 

logic model are shown in the subsequent figure 26 and 27. 

 
Figure 37 : MOSFET driver H-Bridge circuit Model 
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Figure 38 : FAN73832_1 shutdown logic model 

 

 
Figure 39 : FAN73832_2 shutdown logic model 

 

 

2.3.14 Voltage Sense Circuit Model 

Power board battery voltage signal are wire directly to the PCB, which are higher 

voltage (say 48V) and are needed to be divided down to uC sensible voltage level using 

potential divider circuit as shown below 

 
Figure 40 : Voltage Sense Circuit Model 
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2.3.15 Three Phase Bridge driver circuit Model 

IR2132 the three phase driver chips are model on its functional excluding the bootstrap 

capacitor and diode. Fault latch and fault shutdown logic are modeled as shown below in the 

consecutive figures below. 

 
Figure 41 : Three Phase Bridge driver circuit Model 

 

 

 
Figure 42 : IR3132 functional diagram 
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Fault Latch are reset by giving all 3 low input together for sometime as modeled below 

figure, state-chart is used to model fault state latch. 

 

 
Figure 43 : IR2132 functional model 

 

 

 
Figure 44 : IR2132 Latching model 
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2.3.16 MCU 18F4431 Chips Model 

 This subsystem consists of the CPU and the peripheral digital electronics inside 

the physical uC chips, as shown in the figure below. CPU functionalities are model as 

software which acts as the main control software from where uC C-code will be generated. 

Each of the peripheral modules is also modeled on a separate subsystem as shown in figure 33.  

 
Figure 45 : Microcontroller model scheme 

 

2.3.16.1 MCU ADC Block modeling 

18F4431 chip ADC channel are group into 4 groups- A, B, C and D. Two channels at a 

time can be sampled together, and conversion can be done consecutively and can be routed to 

a 4 FIFO buffer as shown below. In this ADC modeling in MATLAB, we neglect this 

complexity of FIFO and channel multiplexing. So, direct conversion logic is modeled for each 

ADC channel. 
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Figure 46 : MCU ADC block diagram 

 

 

 

 
Figure 47 : ADC channel conversion and sampling model 

 

ADC modeling is done for each 5 channels used which are used for sensing analog 

signal of currents and voltage signals. Table below highlights the ADC channels used with 

details, and modeling is same for each channel as given in above figure 35. 
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Table 4 : ADC channel assignment 

 

ADC 

Channel 

ADC 

Grouping 

Port 

Group 

18F Pin 

No 

Signal symbols Signal Descriptions 

AN0 A RA0 19 I_SENSE_R R-phase current 

AN5 B RA5 24 I_SENSE_Y Y-phase current 

AN8 A RE2 27 I_SENSE_B B-phase current 

AN7 D RE1 26 VBAT_SEN Bus Voltage 

AN6 C RE0 25 I_SENSE Bus Current 

  

 

2.3.16.2 MCU Input Capture Block Modeling 

 

Input channel (IC1) includes a special event trigger that can be configured for use in 

Velocity Measurement mode. Its block diagram is shown in Figure below. IC2 and IC3 are 

similar, but lack the special event trigger features or additional velocity-measurement logic. A 

representative block diagram is shown in Figure below. Please note that the time base is 

Timer5. 

 

 
Figure 48 : MCU Input Capture block for IC1 
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Figure 49: MCU Input Capture block for IC2 and IC3 

 

 

Here, capture triggering module and line-to-data are model, all other complexity are 

not model, but timer 5 special event reset is model in figure 44 using a state-chart, details can 

be found on Timer 5 module modeling in section 2.3.15.4. 

 
Figure 50: Input capture model 
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Figure 51: Signal line to data converter model 

 

 
Figure 52: Capture trigger generator model 

 

 

2.3.16.3 TIMER0 timer Module Modeling (for ISR 1 msec Interrupt) 

 

 
Figure 53: MCU timer 0 block diagram 
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Timer 0 is modeled as a pulse generator which gives rising edge of pulse at specific 

interval of time, and is used to trigger the timer0 ISR subsystem inside the software 

foreground subsystem. 

 
Figure 54: Timer 0 interrupt generation model 

 

 

2.3.16.4 TIMER5 MODULE MODELING 

 

 
Figure 55 : MCU Timer 5 Block diagram 
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Timer 5 module block diagram as is inside the microcontroller is shown above. Timer 

5 is used for hall sensor signal change time counter, which is used for speed calculation. 

Overflow and resetting of timer are taken care inside the software foreground subsystem, 

resetting is done on every instant of hall change, and overflow is taken care using timer5 

overflow interrupt. 

 

 
Figure 56 : Timer5 overflow and count model 

 

 

This part of the model is not consider in the software since it works on the digital 

peripheral of the uC digital electronics, but are configure through special function register 

setting, during the initialization phase of uC peripheral registers. This subsystem is sampled at 

base model sampling rate i.e. 1usec, which is the resolution of the counter.  

 

 
Figure 57 : Timer 5 overflow and count state-chart 
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2.3.16.5 MCU Power Control PWM Module Modeling 

 

 
Figure 58 : MCU PWM module block diagram 

 

Power PWM module block diagram of 18F4431 is shown above, which consists of 

configuration and functional register, along with the PWM generator, dead-time generator and 

the output driver blocks. The special event trigger and dead-time generator are not model in 

this model. Complimentary logic and output override logic are digitally wired inside output 

driver block which are control through PWMCON0, OVDCOND and OVDCONS register. 

OVDCOND and OVDCONS registers are used to define the PWM override options. The 

OVDCOND register contains eight bits, POVD7:POVD0 that determine which PWM I/O pins 

will be overridden. The OVDCONS register contains eight bits, POUT7:POUT0, that 

determine the state of the PWM I/O pins when a particular output is overridden via the POVD 

bits. The POVD bits are active-low control bits. When the POVD bits are set, the 

corresponding POUT bit will have no effect on the PWM output. In other words, the pins 

corresponding to POVD bits that are set will have the duty PWM cycle set by the PDC 

registers. When one of the POVD bits is cleared, the output on the corresponding PWM I/O 
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pin will be determined by the state of the POUT bit. When a POUT bit is set, the PWM pin 

will be driven to its active state. When the POUT bit is cleared, the PWM pin will be driven to 

its inactive state. The above mention logic is model as below. 

 

 
Figure 59 : PWM module model 

 

The PWM generator block is model in state-chart as given with a base sampling rate of 

1 usec. PWM period interrupt trigger pulse is also modeled, along with this PWM period 

could be set externally depending on the PWM frequency used for switching the MOSFET 

(say 10 KHz, 100usec). 

 
Figure 60 : PWM generator and Period interrupt triggering logic 
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The output override control block are model in consecutive figures 49 through 51 and 

are self explanatory. Complimentary logic is model as given below which are control by 

PWMCON0 (bit3, bit2, bit1 and bit0) register. If else signal routing block call switch in 

Simulink blockset is used to do that operation as shown. 

 

 
Figure 61 : Complementary logic block 
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Figure 62 : Output Logic block 

 

OVDCOND, OVDCONS are 8 bit register, where each bit field represents the override 

setting for each channel of PWM signal. So, demux block is model as given below to latch out 

data to signal lines for controlling PWM output override in figure 50. 

 
Figure 63 : De-multiplex Byte block 
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2.3.16.6 SOFTWARE MODEL 

 

 This subsystem is from where we generated the code which goes directly to the 

microcontroller. C code to be dump to microcontroller are auto-coded using real-time 

workshop from this level of subsystem. It consists of foreground and background subsystems 

which are communicated by global storage blocksets of Simulink, and some of the signal are 

loop back through unit delay block. Foreground are interrupt which are executed on timer or 

external event, background at task are function which are executed on the forever while loop 

inside the main function in C programming. 

 

 
 

Figure 64 : Software model (Background and Foreground Subsystem) 
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2.3.16.6.1 FOREGROUND SUBSYSTEM MODEL 

Foreground subsystem consist of event based and timer based trigger subsystem. Event 

based trigger subsystem comprises of Hall event capture, PWM period event capture interrupt, 

and Trip event interrupt. Timer based trigger subsystem comprises of Timer0 periodic 

interrupt and Timer5 overflow interrupt. All subsystems in the foreground subsystem are 

trigger based subsystems. 

 

 
Figure 65 : Foreground subsystem model 

 

2.3.16.6.1.1 Capture ISR model 

This subsystem is trigger on every hall change on any of the hall sensor signals 

generated through the peripheral subsystem of the uC. The source of this subsystem input 

could be referred in section MCU input capture block modeling, and MCU Timer 5 module. 

Under this subsystem there are four subsystems-Hall checks, Latch logic, commutation and 

update speed count. 
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Figure 66: Capture ISR model 

2.3.16.6.1.1.1 Hall Check model 

Under this system the hall sequence is monitor all the time, whenever there is wrong 

sequence or reversal, output signal is made high accordingly. 

 
Figure 67 : Hall error check model 
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Figure 68 : Hall error conditions analysis 

 

Hall sensor signal are analyze on each of the probable condition when shorted to 

ground or shorted to supply as shown in figure above. Accordingly the hall check algorithm is 

modeled.  
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2.3.16.6.1.1.2 Latch logic model 

This state-chart is same with the latch logic given before, it will hold the fault status 

until reset signal appear. 

 
Figure 69 : Latch logic model 

 

2.3.16.6.1.1.3 Commutation model 

 

During motoring operation, the switching pattern should be change on every hall signal 

change. This subsystem switches the pattern of switch configuration depending on hall sensor 

signal. Occurrence of hall error will switch off all MOSFET. This subsystem is enabled only 

when commutation enable flag is raise from the background state control chart. Note that only 

pattern of MOSFET switching are only decided by PWM override which is controlled from 

this subsystem. 

 

 
Figure 70: Commutation model 
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2.3.16.6.1.1.4 Update speed count model 

Timer 5 is used to measure the time between one electrical cycles of the machine, so 

this subsystem is enable on whenever hall status is 1 as shown in capture ISR model. Note that 

there will be 6 electrical cycle for mechanical one rotation for a 12 pole machine. T5 counter 

count a tick of 1 usec resolution in the microcontroller hardware. So, the accumulated count is 

read and noted to a global storage variable as shown below. But, there might be a case that, T5 

16-bit counter overflow before hall status change to 1. In this case, a timer 5 overflow counter 

value will be updated on timer 5 overflow interrupt routine. 16 bit count value and number of 

overflow (8-bit) should be combined to 32-bit counter as shown below. So, speed count value 

of 32-bit is used in background to calculate speed in rpm. 

 
Figure 71: update speed count model 

 

Whenever timer5 has been overflow or overflow count is not zero, the overflow 

counter will be reset. 

 

 
Figure 72: combine 16bit and 8bit to 32bit 
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2.3.16.6.1.2 Current Limiting Subsystem Model 

 

 This is the main control model which controlled the motor current using PID 

algorithm, and then controls torque. This subsystem will be trigger on every PWM period, so 

if the PWM period is 10/7.8 KHz, it will be trigger at instances of 100/128 usec. All phase 

current and bus current are sensed and converted to fixed-point engineering value (ampere) as 

shown in the figure below as a four small subsystems on left hand side. Other two subsystems 

are over current fault checking and the PID controller. Most subsystems in this current 

limiting subsystem are enabled at all time except that PID controller is enabled only when 

flagged by background state control. Any current faults will immediately shutdown the PID 

control which intern shut off the motor. Direct PWM duty control option is provided which 

directly control armature PWM duty over CAN interface for debugging and system checking 

during development. 

 
 

Figure 73: PWM interrupt or Current control model 
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 Current limiting subsystem consists of current scaling block for each channel, 

fault checking and latch logic for each current channel, and the PID controller. Let us go 

through each of the block and study the functions of it one by one. 

 

2.3.16.6.1.2.1 Current Scaling in Fixed point block model 

ADC converted value need to be scaled to ampere value for the strategy, so fixed point 

scale value is chosen depending on the sensor specification, and are multiply with the ADC 

offset corrected value. ADC offset correction are done using initial start-up ADC value when 

the uC is first switch-on. 

 
Figure 74:  current scaling model 

 

 

2.3.16.6.1.2.2 Current Fault checking and latching algorithm block model 

 

Current value are check on both positive and negative extreme values, so if over 

current occurs on any current signal, a specific bit in the current fault variable is set. So, 

current fault can be uniquely identified. Each current limit checks are done on exclusive sub-

state, which means that all checking are done paralleled within one sampling, and then if any 

fault occurs, it jumps to fault latch state and cannot jump back unless trip reset event occurs. 



 54 

 
Figure 75: current fault checks and latch state-chart 

 

 

2.3.16.6.1.2.3 PID CONTROL BLOCK MODEL 

 

Note that we are controlling the block current; feedback to PID controller is a block 

current. The feedback block current is derived from the phase current depending on the hall 

status signal using mutiport switch as shown below. This feedback is filter using FIR filter so 

as to reduce commutation and switching transient for better feedback signal. Reference current 

is set through a global storage variable through CAN message from background. Reference 

filtering using exponential filter is used to reduce jerk in the motor during switch on and off 

the motor. Shutdown signal and hall error signal will automatically reset the reference block 

current to zero reference. The tunable parameter like Kp, KiTs and Kd/Ts are accessed using a 

global storage variable as shown in figure below. 
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Figure 76: PID controller block model 

 

 

2.3.16.6.1.2.3.1 Feedback Filter block model 

 

Block current feedback is filter as mentioned using 1
st
 order FIR filter, and is 

implemented using unit sample delay, addition and shift arithmetic as shown below. 

 

 

 

 
 

Figure 77 : Feedback FIR filter model 
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2.3.16.6.1.2.3.2 Reference Filter block model 

 

Smooth reference signal is implemented using an exponential smoothening algorithm 

as shown below. Since our processor is an 8-bit fixed-point processor, we implement using 

shift arithmetic, addition-subtraction and unit delay blocks as shown below. 

 

 
 

Figure 78: Reference ramp down model 

 

2.3.16.6.1.2.3.3 PID Control block model 

PID controller is implemented in a different way due to the computation constraint of 

the CPU. All variable are implemented in a fixed point number. To reducing the 

computational complexity, KiTs and Kd/Ts are directly given as a tunable parameter. Anti-

windup reset is also implemented, along with control output saturation block.  

 
Figure 79: PI controller model 
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2.3.16.6.1.3 TIMER1 ISR model 

 

Timer 1 is used for maintaining fixed time step by all algorithms in the background. 

Timer 1 is configured to interrupt the CPU every 1 msec interval which do the sampling of 

shown below. The 3phase bridge driver trip latch logic is also executed in this subsystem. 

Latch state-chart is shown in consecutive figure below.  

 

 
Figure 80: Timer 1 ISR model 

 

 

 
 

Figure 81: IR2132 Trip Latch state-chart 
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2.3.16.6.1.4 INT1 ISR (Field short circuit detection) model 

 

When field shunt resister voltage drop is high, it create an interrupt on INT1 pin of the 

uC through the hardware circuitry as shown in Figure 33 : Field short circuit detection 

circuit model, so a Field H-Bridge trip flag is set, which will shutdown the system from other 

subsystem. 

 

2.3.16.6.1.5 Timer5 Overflow ISR model 

Timer 5 as mentioned before is used for speed calculation; the hall signal is used as a 

reference to read the count value from timer 5. But if hall change doesn’t occur for sometimes 

the timer 5 will overflow which create an interrupt, and overflow count will be incremented as 

shown below. 

 
 

 

Figure 82: Timer 5 overflow ISR model 
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2.3.16.6.2 BACKGROUND SUBSYSTEM MODEL 

 

The while loop routine in C is consider as background which will be continuously 

looped/executed when there is no interrupt to be process by CPU. But in this model we 

executive two subsystem as shown below in a time slice scheduling algorithm. A time slice is 

control by a timer1 1msec interrupt.  

 
Figure 83: Background subsystem model 

 

2.3.16.6.2.1 Time slice Scheduler model 

 It scheduled the two subsystem- CAN manager and State control subsystems in 

a fixed time slice fashion of 50-50 for both. A slice of 5msec is provided for each subsystem. 

This time slicing distribute the CPU time for other task and ISR to execute with better 

throughput. 
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Figure 84: Time slice scheduler 

 

 

2.3.16.6.2.2 CAN Manager Model 

 

CAN message frame are process in this subsystem, all frames are array of bytes and 

are combined if required to the required data types. Reserve CAN frame for future used are 

also shown below. 

 
Figure 85: CAN manager model 
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2.3.16.6.2.3 State Control Subsystem model 

This is the main control body of this software model. The state-flow based control is 

used where each of the system state are defined clearly with relevant to the control 

requirement. In this subsystem, fault manager is put before state control to have a proper fault 

control. Other background task like speed calculation, battery voltage scaling, relay driver 

output control are modeled as shown by same subsystem in the below figure. 

 
Figure 86: State control subsystem model 

 

2.3.16.6.2.3.1 Voltage scaling in fixed-point model 

 

ADC value of the Bus voltage is converted using a specific scaling factor as shown 

below. 

 

Figure 87: Voltage scaling model 
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2.3.16.6.2.3.2 Speed calculation model 

Speed in rpm (revolution per minute) is deduced in this subsystem from timer5 count 

value and overflow count value as shown below. 

 

 
Figure 88: speed calculation model 

 

2.3.16.6.2.3.3 Fault manager model 

 

Faults are classified depending on the type and nature of fault. Fault manager is one of 

the important sub-systems in safety critical control system design. In this development, many 

of the hardware fault detection circuitry are design and implemented in the controller 

hardware, but function fault can also be identified in controller software. On the occurrence of 

fault, the state controls will shutdown the system depending upon the criticality of fault. Minor 

fault can also exist in a system where the system can still function with it.  

Fault classifications are shown below:- 

1. Hardware Fault 

a. Heat sink trip. 

b. Field H-Bridge Trip. 

c. IR2132 fault. 
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2. Motor Fault 

a. Motor Lock. 

b. Overcharge. 

c. Hall error. 

d. Over-speed. 

3. System Fault. 

a. Over-voltage 

b. Under-voltage 

c. Bus over-current on positive direction. 

d. Bus over-current on negative direction. 

e. R-phase over-current on positive direction. 

f. R-phase over-current on negative direction.  

g. Y-phase over-current on positive direction. 

h. Y-phase over-current on negative direction. 

i. B-phase over-current on positive direction. 

j. B-phase over-current on negative direction. 

4. Minor Fault 

a. Hall reversal 

b. CAN node not detected. 
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Figure 89: Fault manager model 
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2.3.16.6.2.3.4 ISG Control state-chart model 

Control state-chart consists of three main state- idle state, motor state, and alternating 

state. The default entry or reset state is the idle state, which consist of fault reset sub-state. 

Whenever switch-off event or fault occurs in a system, it will come to this idle state. One 

intermediate state is put between the motor state and idle state, called current reference ramp 

down state, to have a smooth shutdown of PID controller by ramping down the reference 

signal exponential refer Figure 78: Reference . Note that this subsystem will be sampled 

every 10 msec instances. 

 

 
Figure 90: ISG state control chart 

 

2.3.16.6.2.3.4.1 IDLE state 

 The isg state number is maintained throughout the operation for diagnostic purpose, 

the isg state value for this state is 0. 

2.3.16.6.2.3.4.1.1 Fault Reset sub-chart 

This is a sub-state of idle state where fault can be reset in idle state on fault reset event 

from CAN message. 
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Figure 91: Fault reset chart 

 

 

2.3.16.6.2.3.4.2 Motor state 

When CAN command from Hybrid ECU is motor command, the state control jump 

from idle state to this motor state. 

2.3.16.6.2.3.4.2.1 Field-winding on sub-chart 

On entry to motor sub-state, it jumps directly to field winding ON sub-state and stay 

for fixed amount of time i.e. field on delay time, which is a calibration parameter. The isg state 

number is changed to 1. 

 
Figure 92: Field winding delay sub-chart 

 

2.3.16.6.2.3.4.2.2 First Commutation sub-chart 

When the motor is turn on, PWM output override should be first set from background 

so that duty set by Current control from foreground will be effective. So, depending on the hall 

status PWM output override is set in this sub-chart as shown below. And the isg state value is 

set to 2. 
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Figure 93: First commutation sub-chart 

 

2.3.16.6.2.3.4.2.3 Commutation and current control sub-chart 

Once first commutation is done the motor will rotate, and the foreground PID control 

come into effect to control the block current by updating armature PWM duty. And also 

change of commutation on hall status change will be handled by commutation subsystem in 

foreground at the same time. The background state control will be jumping to this sub-state, 

and continuously check the lock condition. The isg state will be set to 3, and if the machine 

rotate and speed appear it will jump to motor run sub-state, and then set isg state to 5. If the 

load torque is high with respect to the set reference current, lock can happen i.e. isg state 4. 

 
Figure 94: commutation and current control sub-chart 
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2.3.16.6.2.3.4.3 Alternator state 

Normal alternator operation is achieved by switching off all the MOSFET and 

controlling the field current by H-bridge. The back emf generated by the machine should be 

higher than the battery voltage, so that power can flow from engine to battery, or machine to 

battery. All motor functions like current control will be off, and only field current is control 

thereby controlling the charging voltage i.e. the Bus voltage. So, field control and load 

response control state-chart comes into action together during this operation. The isg state is 

set to 11 and then 12. State 11 is for initialization of alternating operation. 

2.3.16.6.2.3.4.3.1 Field Control sub-chart (Alternator mode) 

 

 
 

Figure 95: Field control sub-chart 

 

2.3.16.6.2.3.4.3.2 Load response control sub-chart (Alternator mode) 

 

 
 

Figure 96: Load response control sub-chart1 
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Figure 97: Load response control sub-chart2 

 

The alternator mode of control is out of the scope of this present dissertation report, 

and also MIL and HIL validation is not done for this mode of operation. It will be a future 

improvement and on-going development, where synchronous rectification algorithm or 

boosting operation will also be done. So, we will skip at this point for the time being. 
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3 CHAPTER 3: MODEL-IN-LOOP SIMULATION 

 

In Model-Based Design (MBD) there would be a system model at the center of the 

development process. The significant feature of this design is that it facilitates quicker and 

more cost-effective development of dynamic systems. With built-in mathematical functions 

and routines these tools are optimized for designing and analyzing control strategies through 

off-line simulation. Moreover these tools can be integrated with real-time hardware which 

means integrating traditional off-line simulation with real-world testing. MATLAB Simulink 

facilitates designing of the control algorithm and also helps in executing off-line simulation on 

the desktop. But it doesn't mean that with software simulations all the distinctive behaviors of 

an actual dynamic environment can be accounted for. 

The Model-in-the-loop simulation captures the specified behavior of the model that is 

to be implemented in C code later on. These simulated results are validated with the 

requirements. Also it acts as the verification reference for the next stages of development 

cycle. Since the model acts as the design document, it reduces the defects slippage due to 

translation of requirements to design. 

 

 

Figure 98: MIL configuration parameter 

3.1 Concept of MBD for MIL 

3.2 Simulation configuration 
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Model in loop (MIL) simulation is performed in MATLAB Simulink with the 

configuration as shown in Figure 98: MIL configuration parameter above. The fixed step 

sampling rate of 1 usec is used in the simulation with solver ode5 (Dormand-Price). The 

simulation is performed at fixed-step discrete environment. 1 usec fixed-sampling is chosen to 

have a better PWM duty resolution and also for the based time count for the timer tick. 

SimPower system block is also given a good result with this sampling rate. 

 The limitation and assumption of the simulation are defined in the previous chapter in 

section 2.2.2.1 above and section 2.3.1 above. 

 

System model are checked here, and a specific functions or integrity of whole model 

are checked. The controller model is validated to functional level with respect to phase block 

current control. Some fault conditions are also simulated here. Control parameter like the PID 

controller tunable parameter like Kp, Ki, Kd are tune in MIL level simulation. The plan 

dynamics are observe and accordingly controller are modeled as shown in chapter 2 of this 

report. 

3.3.1 Lock condition from start 

By setting the load torque very high with respect to the block current reference, current 

control at lock condition is observed as shown below. 

 

Figure 99: Lock condition from start (MIL) 

3.3 SIMULATION RESULTS 
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3.3.2 Motor torque higher than load torque 

 

When the Load torque set in the plan model is lesser than the torque produce by the 

specific controlled phase current, the motor will rotate showing a change in phase current 

direction due to commutation cause by rotation. Below result shows the phase current at 

20Nm Load torque and block current reference to 150 Ampere, it has been observed that 

commutation causes spike in the current, but is latter controlled by PID controller. 

 

Figure 100: motor running (MIL) 

3.3.3 Lock condition while running 

When load torque is made suddenly high during the running condition of the machine, 

rotor can get locked as shown below and the controller shutdown once it detect lock fault. 

 

Figure 101: Motor lock while running (MIL) 
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4 CHAPTER 4: BUILD PROCESS 

 

 

The tool chain of this project is shown in the figure below. 

 

Figure 102: Development tool chain 

4.1 Tool chain 
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Auto-coding is done using embedded real-time workshop; the same MIL model is used 

in which a specific M-script [Appendix I] is run before code generation to copy out software 

part of the model to a new model from where actual code is generated. The generated code is 

located at specific location which consists of the C source code, and A2L file which contains a 

measurement and calibration variable data description file with address token. The generated 

code along with hand-code are combine in MPLAB integrated development environment, and 

are compiled using Hi-tech PICC18 C compiler, and then flash to uC using ICD2/ ICD3 in-

circuit debugger. Map file generated after compiling contains the address of variable in RAM 

as well as on Flash memory. The A2L file containing the address token must resolved by some 

method discussed later topic in this chapter. 

 

4.2.1 Subsystem for code generation 

 

As mentioned, code generation is done from a specific part of the model subsystem 

(ISGECUSoftware) as highlighted in the figure below. Other part of the model will not be 

used for code generation; it is used only for MIL simulation. 

 
Figure 103: subsystem for code generation 

4.2 Real-time workshop build process 
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4.2.2 Source code and A2L file generation 

4.2.2.1 Configure optimization for code generation 

Optimization option of MATLAB for block simulation and code generation are 

configure from the optimization dialog of configuration parameter. All most all optimization 

options are checked as shown below for better code footprint. 

 

 
Figure 104: configure optimization 

 

Since microchip PIC18 was used, Embedded Target preference is set as below. 

 
Figure 105: configure hardware implementation 
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Code generation in MATLAB RTW is fully control by target language compiler of 

MATLAB which can also be configured depending on requirement using TLC programming. 

Ready-made ert.tlc is available on MATLAB, which is used directly here as shown.  

 
Figure 106: Configure RTW target link compiler 

4.2.2.2 Configure measurement variable 

 

Signal name should be assigned for all measurement variables using signal properties 

widget as shown in figure below.  

 
Figure 107: configure measurement variables 
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Note that the same signal should be created on model explorer widget before selecting 

checkbox (signal name must resolve from Simulink signal object) and object should be created 

under mpt.Signal object. Signal properties like dimension, complexity, sampling time, 

sampling mode, minimum, maximum, initial value, units and storage class can be configured 

from model explorer widget itself. Storage class for measurement variables should be defined 

as exported global, which will be generated as a global variable in C. 

4.2.2.3 Configure Calibration parameter 

 

Calibration parameters are used in the model using constant block whose name are 

resolve from model explorer widget, using mpt.Parameter object whose properties like value, 

dimension, complexity, minimum, maximum, units, storage class and header file name. It can 

be assigned as shown in figure below. Note that storage class should be assigned as constant 

volatile which will be allocated to flash memory or as an initialize RAM variable. 

 
Figure 108: Configure Calibration parameters 
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4.2.2.4 Saving workspace variable 

 

All variables and parameters which are created on model explorer are all located at the 

workspace, which are save to a specific mat file as shown below. 

 

 
Figure 109: saving workspace variable 

 

4.2.2.5  Configure A2L Header for 18F4431 ECU 

A2L header file for the ECU like CCP version, CAN message baud rate, ID of CRO 

and DTO, memory alignment, RAM and FLASH address range specification etc. are added or 

define in <asap2userlib.tlc> located at … \toolbox\rtw\targets\asap2\asap2\user in the 

MATLAB installation directory.  

Example: /begin TP_BLOB 
         /* CCP version       */ 0x201 

         /* Blob version      */ 0x202 

         /* CAN msg ID - send */ 0x7F1  /* CCP_CRO*/ 

         /* CAN msg ID - recv */ 0x7F2  /*CCP_DTO*/ 

         /* station address   */ 0x200 

         /* byte order        */ 1 

           

         /begin CAN_PARAM 

             /* crystal frequency */ 0x1F4 

             /* timing register 0 */ 0x41 

             /* timing register 1 */ 0x25 

         /end CAN_PARAM 

  ………………………………………………………………………………… 



 79 

4.2.2.6 Build all for code generation 

 

As mentioned code generation is done from a subsystem of main model. To 

accomplish this code generation from a specific subsystem of model with work space variable, 

an m-script [Appendix I] has been written which automate the code build process. This m-

script is run as shown below. 

 
Figure 110: build using M-script 

 

 

 

 

All source codes, some generated from MATLAB and some hand-written code are 

integrated together in MPLAB IDE environment. Generated codes of RTW lies on a specific 

directory on MATLAB model folder refer section 1.4 above, and the platform code in specific 

location. As the main MPLAB project lies in the main directory, all codes are link from here. 

Hi-tech C STD compiler is used to compiled and linked, and then generated executable hex 

and map file for further use in the tool chain. Hex file will be dump to microcontroller and 

map file will be used for complete A2L file generation shown in the later section of this report. 

 

4.3 Integration of source code in MPLAB 
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4.3.1 Configuration fuses of microchip 18F4431 

 

There is specific fuse setting to be done during flashing the code to microchip product, 

those fuses setting can be coded by using Hi-tech C compiler directives as shown below 

 
Figure 111: fuse setting of 18F 

4.3.1.1 Initialization code  

 

All initialization function of MCU peripherals are done at the starting of the main as 

the usual C coding methodology as shown below. 

 

 
 

Figure 112: initialization of peripherals 
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4.3.2 Interrupt code – integration 

 

The Two interrupt priorities- low and high priority functions are shown below. All 

interrupts are pre-configured and interrupt flag are checked, and depending on the interrupt 

event the specific subroutine code will be executed. The subsystem model in foreground of 

Simulink model which has been generated as a one C function, will be called inside this flag 

(not seen - code folding ON). So, inside this the input to the subsystem will be updated and 

then function will be called and then out will be updated as shown in figure Figure 114: 

Integration of input and output of subsystem below. 

 
 

Figure 113: ISR subsystems integration 

 

 
Figure 114: Integration of input and output of subsystem 
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4.3.3 Background code - integration 

 

The while loop routine in C main file is directly the background subsystem in our 

MATLAB model, so integration of the background subsystem in MPLAB model is done by 

calling the C  functions of the background subsystem in the while loop of C main file as 

shown below. All input subsystem are update from hardware peripheral of the uC and then 

function are called, and then output of subsystem are again updated to the peripheral hardware 

of the uC. 

 
Figure 115: background code integration 

 

 

4.3.4 Building in MPLAB and Flash to ECU 

 

Building of the whole code is done in MPLAB and the hex code is flash using the 

ICD3 as shown in the tool chain diagram above.  Note that ASAP2 driver in ECU is 

implement along with this source code which is called the CAN Calibration protocol (CCP). 

The ready-made driver code has been plug-in to the build process with slight modification. 

Flashing through CAN is not included with the implemented CCP protocol. 
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For generating complete A2L file, asap2Complete.m [Appendix II] file should be run, 

but this script required a specific format of map file for resolving address token in the A2L file 

generated on RTW build. So, this specific map file format is generated from original map file 

using Perl script [Appendix III]. To automate the whole process a GUI is design using 

GUIDE (graphical user interface development environment) as shown below. 

 
Figure 116: ASAP2 complete GUIDE development 

When the script runs, it prompt for file browser- A2L, map, and hex file as shown. 

Once all files are given, a complete A2L file will be generated by pressing generate button. 

 
Figure 117: ASAP2 complete GUI when run 

4.4 Complete A2L file generation 
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Control, measure and calibrate are the basic important word which comes in 

development of any complex control software. Here we will discuss how the control is 

implemented for HIL testing, and also how measurement and calibration of ECU are done. 

4.5.1 Measurement and calibration 

 

INCA tool or Labview M&C
1
 tool can be used as a tool for measurement and 

calibration through CAN interface using CCP protocol. The tools offer a wide variety of 

functions including precalibration of function models on the PC, ECU flash programming, 

measurement data analysis, calibration data management, and automated optimization of ECU 

parameters. The generated calibration and measurement data can be processed and evaluated 

continuously. PID controller parameter tuning has been done extensively using this tool. 

4.5.2 Hybrid ECU simulating Node 

 

GUI is designed in Labview as shown below for a manual CAN command message 

sending node like a Hybrid ECU in vehicle. So an interface connection using a CAN-USB 

device is used as shown in tool chain figure above.  

 

Figure 118: Hybrid ECU simulator 

                                                 
1
 Labview measurement and Calibration tool 

4.5 Run-time control 
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5 CHAPTER 5: HARDWARE IN LOOP SIMULATION 

 

  

Hardware-in-the-loop (HIL) simulation is a technique that is used in the development 

and test of complex real-time embedded systems. HIL simulation provides an effective 

platform by adding the complexity of the plant under control to the test platform. The 

complexity of the plant under control is included in test and development by adding a 

mathematical representation of all related dynamic systems. These mathematical 

representations are referred to as the “plant simulation”. The embedded system to be tested 

interacts with this plant simulation. 

A HIL simulation must include electrical emulation of sensors and actuators. These 

electrical emulations act as the interface between the plant simulation and the embedded 

system under test. The value of each electrically emulated sensor is controlled by the plant 

simulation and is read by the embedded system under test (feedback). Likewise, the embedded 

system under test implements its control algorithms by outputting actuator control signals. 

Changes in the control signals result in changes to variable values in the plant simulation. 

In many cases, the most effective way to develop an embedded system is to connect 

the embedded system to the real plant. In other cases, HIL simulation is more efficient. The 

metric of development and test efficiency is typically a formula that includes the following 

factors: 1. Cost, 2. Duration, 3. Safety, 4. Feasibility 

Cost of the approach will be a measure of the cost of all tools and effort. The duration 

of development and test affects the time-to-market for a planned product. The safety factor 

and duration are typically equated to a cost measure. Specific conditions that warrant the use 

of HIL simulation include the following: 

• Enhancing the quality of Testing 

• Tight development schedules 

• High-burden-rate plant 

5.1 Introduction and challenges in HIL testing 
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• Early process human factors development 

In hardware-in-the-loop (HIL) testing, the designer can verify the production system 

controller by simulating the real-time behavior and characteristics of the final system without 

the physical hardware or operational environment. While the system is simulated in real-time 

on a test computer the control code can be run on the target controller hardware. Though it is 

possible to connect the target hardware with the actual motor, testing against a simulated 

motor offers several advantages. When compared to a physical plant, a desktop simulator, 

often called a hardware-in-the-loop (HIL) tester, is far more cost-efficient, and easier to 

reproduce. The simulated motor also can simulate a variety of operating conditions or even 

fault conditions, such as engine stall, that would be difficult, costly, and/or dangerous with the 

actual plant. If measured data from HIL simulation deviates from Model-in-the-Loop 

simulation, the most likely cause is a bug in the target compiler or a problem with the 

processor. 

 

dSPACE system is used for setting-up hardware in loop simulation. All the signals 

interface requirement are drawn on excel spread sheet as shown in figure below. Pin 

assignment for each of the signal on controller PCB and dSPACE systems are made. Note that 

this HIL is a signal level HIL where high current or high power is not involved. 

 
Figure 119: Hardware interface connection 

 

5.2 dSPACE System setup 
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 The block diagram of the test setup is shown below. Since SimPower system model 

used in MIL simulation cannot be directly flash into the dSPACE system due to fast sampling 

requirement. A new model equivalent to SimPower system model has been made, and is used 

for this HIL simulation. The details of switch model to average model conversion are out of 

the scope of this report. Note that we are using an average plan model in our dSPACE system.  

 

dSPACE HIL system is control through Laptop running Control desk software for 

monitoring and controlling of Plan parameter at run-time. After the build process the code is 

flash to the ECU using ICD3 programmer as shown in the diagram, ECU is named as ‘In-

house ISG Drive Controller’, another Laptop running INCA and LAbview is used to control 

and monitor the parameter of the controller ECU. 

 

 
Figure 120: dSPACE setup block diagram 

 

 

 

 

 

 

� Switching pattern of the PWM signals (7.8/10 kHz switching frequency) generated by 

the controller based on hall sensor signals is verified. Motor stalls if the pattern is 

incorrect. 

� Current control works fine with Fixed-point PID controller 

5.3 TEST RESULT 
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� PI Tuning considering:-  

� Lock (high Load Torque= 60-100 Nm). 

� Rotating with fixed Load Torque and fixed reference current. 

� Varying load torque with fixed reference current. 

� Varying reference current (causes speed variation) at constant Load condition. 

� All the condition shown below replicated the MIL simulation result with a slight 

different in the waveform which is an effect of discrete sampling. 

5.3.1 Lock condition from start 

 

 
Figure 121: Lock condition from start (HIL) 

 

 

5.3.2 Motor torque higher than load torque 

 

 
Figure 122: motor running (HIL) 
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5.3.3 Lock condition while running 

 

 
Figure 123 : motor lock while running (HIL) 

 

 

5.3.4 Comparison of control at different rpm 

 

Analysis has been done at two different rpm of the machine, the nature of block current 

control behavior is observed. It has been found that sampling rate of the PID controller effect 

the accuracy of control at different speed. The block phase current control at lower rpm is 

much better compare to a higher rpm as shown by figure below. 

 

 
Figure 124: control behavior at different rpm 
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5.3.5 Fault test 

 

Fault is classified uniquely as listed below and test conditions are created through 

dSPACE Plan model and the following test has been observed, and are all passed. 

 

� Hardware Fault  

� Heat-sink Trip. (Controller over temperature) 

� H-Bridge Trip. 

� 2132_Fault Trip. 

� Motor over Temperature. 

� Motor Fault. 

� Motor Lock. 

� Overcharging Voltage. 

� Hall error. 

� Over Speed. 

� System Fault. 

� Bus under Voltage. 

� Bus over Voltage. 

� CAN Fault. 

� Current Fault. 

� Bus Negative over Current 

� Bus Positive over Current 

� RPhase Negative over Current 

� RPhase Positive over Current 

� YPhase Negative over Current 

� YPhase Positive over Current 

� BPhase Negative over Current 

� BPhase Positive over Current 

� Minor Fault. 

� Hall reversal. 

� CAN Node not detect 
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It is observed that the controller doesn’t latch the fault when over-current is detected. 

These types of problems have been resolved by making Latching logic in software. Any Fault 

occurrences will shutdown the system immediately except for minor fault. Software response 

for all the fault conditions has been checked.  
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6 CHAPTER 6: CONCLUSION 

 

 

 

 

Each of the waveform observed in the MIL and HIL has the same Load torque and 

control reference. Since, we are developing a motor controller software in which current is the 

main control parameter, so all result are made on the observation of the armature winding 

phase currents. The torque produce by the motor is also directly proportional to the amount of 

phase current applied.  The nature of the waveform between MIL and HIL result is shown in 

the consecutive section below on three different cases. If we observe the nature of HIL result, 

it is clearly showing that the nature of their waveform is curlier than MIL waveform due to 

lower sampling rate. The MIL offline simulation was done at 1 usec sampling, but the HIL 

with dSPACE runs at 100usec sampling which is at the order of 100 differences. But note that 

control algorithm runs at the same rate in time in both MIL and HIL. 

6.1.1 Lock condition 

 

 
Figure 125: Lock conditions compare MIL and HIL 

6.1 Result comparison of HIL and MIL 
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6.1.2 Motor torque higher than load torque 

 
Figure 126: motor running compare MIL and HIL 

 

6.1.3 Lock condition while running 

 

 
Figure 127: motor lock while running compare MIL and HIL 
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We have discussed all the development process which we will be coming across in the 

model based development and validation of motor controller software, before an actual 

deployment to Test Bench or Vehicle. All throughout this development and validation activity, 

the software bugs in the model has been continuously corrected. It has been observed that MIL 

can be a very good validation tool for functional behavior of the system, due to this reason I 

have hit hard the modeling section of this report on modeling of microcontroller functionality 

which is a unique approached, and also helps in porting the generated source codes in the 

microcontroller IDE environment. Porting of a generated code of different ISR function can be 

difficult, but this approach helps in easy porting since we consider the microcontroller 

execution instants during modeling or MIL itself. Also, HIL validation help to find many 

hardware issue in the circuit as well as in the platform code. Fault injection into the plan which 

cannot be generated or dangerous at the actual physical environment like over-current testing 

can be done. 

 

 

 

 

 

 

 

This development has cover only the motoring function of the TAISG machine 

functionalities, but the other functions like generating mode (normal charging, synchronous 

rectification, and boosting operation) are the future scope of this work. But with this tool chain 

setup in hand, it would really fasten the development of other functions of the system which 

are to be implemented and tested. Also, this HIL setup can be used as a based setup for further 

full hybrid HIL simulation. 

 

 

 

 

 

 

6.2 DISCUSSION 

6.3 FUTURE WORK 
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APPENDIX I 
 

FILENAME: code_generation.m (m-script) 
clear all 
clc 

  
delete('ISGECUSoftware.mdl'); % Delete previous copy of the model 
close_system('ISGECUSoftware');% Close if open 
open_system('control_sim_v2p3_1');%OPEN the main model 
clear 
load ('matlab.mat'); 
%To use MATLAB commands to change data in a model workspace,  
%first get the data from Modelworkspace for the currently selected model: 
hws = get_param('control_sim_v2p3_1', 'modelworkspace'); 
hws.DataSource = 'MAT-File'; 
hws.FileName = 'MWparams'; 
hws.saveToSource; % MWparams.mat file will be save in working directory 
hws.DataSource = 'MDL-File'; %Attached back modelworkspace variable with 

Model  

  
%CREATE new Model from where we are going to generate the code 
new_system('ISGECUSoftware'); 
save_system('ISGECUSoftware'); 

  
%COPY CONFIGURATION SETTING to a new Model 
%The following example creates a copy of ModelA's active configuration 
%object and attaches it to ModelB, changing the name if necessary to be 

unique.  
%The code is the same whether the object is a configuration set or 

configuration reference. 
myConfigObj = getActiveConfigSet('control_sim_v2p3_1'); 
newConfigObj = attachConfigSetCopy('ISGECUSoftware', myConfigObj, true); 

  
%COPY a Subsystem named 'ISGECUSoftware' from Base model 
%control_sim_v2p3_1.mdl to new model 'ISGECUSoftware.mdl' 
Simulink.SubSystem.copyContentsToBlockDiagram('control_sim_v2p3_1/ISG_CONTR

OLLER_PCB/MCU_18F4431Chips/ISGECUSoftware', 'ISGECUSoftware'); 

  
%CLOSE the Main Model 
save_system('control_sim_v2p3_1'); 
close_system('control_sim_v2p3_1'); 
%save, close and open new model create from specific subsystem 
save_system('ISGECUSoftware'); 
close_system('ISGECUSoftware'); 
open_system('ISGECUSoftware'); 

  
%Set ACTIVE COPNFIGURATION TAKEN FROM MAIN MODEL 
setActiveConfigSet(gcs, 'Configuration1'); 
save_system('ISGECUSoftware'); 

  
%LOAD Model workspace data to new Model 'ISGECUSoftware.mdl' Model 

workspace 
hws = get_param('ISGECUSoftware', 'modelworkspace'); 
hws.DataSource = 'MAT-File'; 
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hws.FileName = 'MWparams'; 
hws.reload; 
hws.DataSource = 'MDL-File'; %Attached modelworkspace variable with Model    
delete MWparams.mat %delete the local copy of modelworkspace variable 
%load workspace_variables.mat; 

  
%DELETE TRIGGER BLOCK for Code Optimization 
Total_Trigger_blocks=find_system('ISGECUSoftware', 'blocktype', 

'TriggerPort'); 
delete_block(Total_Trigger_blocks); 

  
%DELETE 10msec_scheduler BLOCK for Code Optimization 
delete_block('ISGECUSoftware/Background/10msec_scheduler'); 
save_system('ISGECUSoftware'); 

  

  
%RTW code Generation 
rtwbuild('ISGECUSoftware'); 
save_system('ISGECUSoftware'); 
close_system('ISGECUSoftware'); 
%delete ISGECUSoftware.mdl; 

 

 

 

 

 

 

 

APPENDIX II 
 

FILENAME: asap2Complete.m (M-script) 
function varargout = ASAP2Complete(varargin) 
% Begin initialization code - DO NOT EDIT 
gui_Singleton = 1; 
gui_State = struct('gui_Name',       mfilename, ... 
                   'gui_Singleton',  gui_Singleton, ... 
                   'gui_OpeningFcn', @ASAP2Complete_OpeningFcn, ... 
                   'gui_OutputFcn',  @ASAP2Complete_OutputFcn, ... 
                   'gui_LayoutFcn',  [] , ... 
                   'gui_Callback',   []); 
if nargin && ischar(varargin{1}) 
    gui_State.gui_Callback = str2func(varargin{1}); 
end 

  
if nargout 
    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 
else 
    gui_mainfcn(gui_State, varargin{:}); 
end 
% End initialization code - DO NOT EDIT 
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% --- Executes just before ASAP2Complete is made visible. 
function ASAP2Complete_OpeningFcn(hObject, eventdata, handles, varargin) 
% This function has no output args, see OutputFcn. 
% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
% varargin   command line arguments to ASAP2Complete (see VARARGIN) 

  
% Choose default command line output for ASAP2Complete 
handles.output = hObject; 

  
% Update handles structure 
guidata(hObject, handles); 
set(handles.GenerateButton,'Enable','off'); 
set(handles.ASAP2BrowseButton,'Enable','on'); 
set(handles.MAPBrowseButton,'Enable','off'); 
% UIWAIT makes ASAP2Complete wait for user response (see UIRESUME) 
% uiwait(handles.figure1); 

  

  
% --- Outputs from this function are returned to the command line. 
function varargout = ASAP2Complete_OutputFcn(hObject, eventdata, handles)  
% varargout  cell array for returning output args (see VARARGOUT); 
% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Get default command line output from handles structure 
varargout{1} = handles.output; 

  

  
% --- Executes on button press in ASAP2BrowseButton. 
function ASAP2BrowseButton_Callback(hObject, eventdata, handles) 
% hObject    handle to ASAP2BrowseButton (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 global ASAP2filename; 
 global ASAP2pathname; 
    [ASAP2filename, ASAP2pathname] = uigetfile('*.a2l', 'Pick an A2L-

file'); 
    if isequal(ASAP2filename,0) || isequal(ASAP2pathname,0) 
       set(handles.ASAP2StaticText,'String','User pressed cancel'); 
    else 
       set(handles.ASAP2StaticText,'String',['User selected ', 

fullfile(ASAP2pathname, ASAP2filename)]); 
       if isequal (cd,ASAP2pathname) 
           error(' #####File on Current Directory****'); 
       else     
            copyfile(fullfile(ASAP2pathname, ASAP2filename),ASAP2filename); 
       end 
       set(handles.ASAP2BrowseButton,'Enable','off'); 
       set(handles.MAPBrowseButton,'Enable','on'); 
    end 
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% --- Executes on button press in MAPBrowseButton. 
function MAPBrowseButton_Callback(hObject, eventdata, handles) 
% hObject    handle to MAPBrowseButton (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 global MAPfilename; 
 global MAPpathname; 
 PerlFile  = 'convertMAP_Hitech.pl'; 
    [MAPfilename, MAPpathname] = uigetfile('*.map', 'Pick an MAP-file'); 
    if isequal(MAPfilename,0) || isequal(MAPpathname,0) 
       set(handles.MAPStaticText,'String','User pressed cancel'); 
    else 
       set(handles.MAPStaticText,'String',['User selected ', 

fullfile(MAPpathname, MAPfilename)]); 
        set(handles.GenerateButton,'Enable','on'); 
        set(handles.ASAP2BrowseButton,'Enable','off'); 
        set(handles.MAPBrowseButton,'Enable','off'); 
        if isequal (cd,MAPpathname) 
           error(' #####File on Current Directory****'); 
        else 
            copyfile(fullfile(MAPpathname, MAPfilename),MAPfilename); 
            % Call PerlFile from operating system 
            result = perl(PerlFile,MAPfilename); 
            %Copy hex-file also for just for easy reference 
            [hexfilename, hexpathname] = uigetfile('*.hex', 'Pick an HEX-

file'); 
            if isequal(hexfilename,0) || isequal(hexpathname,0) 
               disp('User pressed cancel') 
            else 
               disp(['User selected ', fullfile(hexpathname, 

hexfilename)]); 
               copyfile(fullfile(hexpathname, hexfilename),hexfilename); 
            end 
        end 
   end 

  

  
% --- Executes on button press in GenerateButton. 
function GenerateButton_Callback(hObject, eventdata, handles) 
% hObject    handle to GenerateButton (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 global MAPfilename;  
 global ASAP2filename; 

  
  asap2post(ASAP2filename, ['temp_',MAPfilename]); 
    disp('******* A2L File Created in working directory *******'); 
    set(handles.genstatusStaticText,'String','******* A2L File Created in 

working directory *******'); 
    set(handles.GenerateButton,'Enable','off'); 
    %Delete after all 
delete(['temp_',MAPfilename]); 
delete(MAPfilename); 
%delete(ASAP2filename); 
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APPENDIX III 
 

FILENAME: convertMAP_Hitech.pl (perl Script) 
 
#***Hitech C compiler MAP file Compatible to MATLAB A2L file generation**** 
#******* RUN THIS SCRIPT BY INPUTING MAP FILE OF HI-TECH COMPILER********** 
#************USE THIS OUTPUT FILE MAP FILE TO asap2post.m****************** 
# ****** CREATED ON : 13-AUG-2011, 11:45PM IST     ************************ 

 
$MAPFileName = $ARGV[0];# File input name'MPLAB_TAISG_project_v0p0.map'; # 
$outputFileName = "temp_" . $MAPFileName;      # File output name 

  
open(MAPFILE, $MAPFileName)  
  || die "PERL Error: Couldn't open MAP file: ", $MAPFileName, ".\n"; 
undef $/; $MAPFileString = <MAPFILE>; $/ = "\n"; 
close(MAPFILE); 

  
# - Replace consecutive white-space characters with a single space 
$MAPFileString =~ s/\s+/\n/g; 
@FileArray =split(/\n/, $MAPFileString); 
# - Convert MAPFileString to MAPFile Hash Table 

 
open(OUTPUTFILE, (">" . $outputFileName))  
  || die "PERL Error: Couldn't open output file: ", $outputFileName, "\n"; 

  
$Length=scalar(@FileArray); 
print "Length of Array =",$Length,"\n"; 
$n=0; 
$count=0; 
$foundSymbol=0; 
while ($n < $Length) { 
    if(($FileArray[$n] eq "Symbol")&& ($foundSymbol==0)) { 
        print "Found Symbol Table at ",$n,"----",$FileArray[$n],"\n"; 
        $SymbolIndexnumber=$n; 
        $foundSymbol=1; 
     } 
     if(($FileArray[$n] eq "Table") && ($foundSymbol==1)) 
     {  print "Found Symbol Table at ",$n,"----",$FileArray[$n],"\n"; 
        $SymbolIndexnumber=$n; 
        $foundSymbol=2; 
     } 
     if(($foundSymbol==2)) 
     {   
            push(@NewFileArray,$FileArray[$n]); 
            #print "New Array [",$count,"]----",$NewFileArray[$count],"\n"; 
            $count++; 
     }  

  
     $n++; 
} 
if($foundSymbol!=2){ 
    print "\n***********Wrong Input file********Not a Hi-tech PICC18 MAP 

file*****\n"; 
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} 
else 
{ 

  
    $NewLength=scalar(@NewFileArray); 
    print "\nLength of New Array =",$NewLength,"\n"; 

  
    $NewLength=$count; 
    $n=0; 
    $count=0; 
    while ($n < $NewLength) { 
        print "New Array [",$n,"]----",$NewFileArray[$n],"\n"; 
        if(($NewFileArray[$n] eq "bss")||($NewFileArray[$n] eq 

"bigbss")||($NewFileArray[$n] eq "data")||($NewFileArray[$n] eq 

"bigdata")||($NewFileArray[$n] eq "const")) 
        {    
            $NewFileArray[$n-1] =~ s/^_//g; 
            push(@FinalFileArray,$NewFileArray[$n-1]); # Push Variable Name 
            push(@FinalFileArray,"\t"); #Push Tab 
            $ecuadress="0x".$NewFileArray[$n+1]; #augment '0x' 
            push(@FinalFileArray,$ecuadress); # Push Address of Variable 
            push(@FinalFileArray,"\n"); #Push new line 
            $count=$count+4; 
            print "###*****###",$count,"   index",$n,"\n"; 

  
        } 
        $n++; 
    } 
    #NewFileArray contain contain only the required data but still types 

name need to remove  
    $NewLength=$count; 
    $n=0; 
    print "\n\n********************SEMI-FINAL*****************\n\n"; 
    while ($n < $NewLength) { 
        print "Final Array [",$n,"]----",$FinalFileArray[$n],"\n"; 
        $n++; 
    } 
    print "\n\n********************FINAL*****************\n\n"; 
    $Finalbuff=join("",@FinalFileArray); 
    print "\n\n"; 
    print $Finalbuff; 
    print "\n\n"; 
    print %Finalbuff; 

  
    print OUTPUTFILE $Finalbuff; #Print to FILE 
   rename $outputFileName, $MAPFileName; 
    print "\n\nComplete MAP file generation....... \n"; 
    close(OUTPUTFILE); 
} 
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