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Abstract 

 

This thesis is mainly expository and all the chapters contains little bit 

original calculations. The title of this thesis is “STUDIES ON 

COSMOLOGICAL MODELS WITH INFLATION AND COUPLED 

OF SCALAR FIELD”. This thesis deals with -The Fundamental of 

General Relativity, On the cosmological models, Classical & 

Quantization problem, An exact scalar field inflationary cosmological 

model which solves Cosmological constant problem, The scalar field 

potential, Scalar field cosmology in phase space, Inflation in homogenous 

& isotropic space-time, Inflation in non-minimally coupled theories &  

inflation via  modified gravity.  

We have seen that the Friedmann models, if they are regarded as 

physically valid, predict that the density of mass-energy must have been 

very high in the early epoch of the universe. We have studied about the 

inflationary universe which is the modification of the standard hot Big-

Bang model and also the solution of the problems which arise in the FRW 

model. We find that over a broad range of initial conditions, the predicted 

value of the inflation driven by a scalar field, which must be coupled to 

the curvature if the Einstein equivalence principle has to be satisfied. 

In recent years, there have been some interests in studying the 

mathematical and physical interpretations of different models and 

theories of cosmology. The purpose of this research is firstly to study the 

physical and mathematical properties of the known solutions and 

secondly to attempt to find out new physically inserting solutions, with 

particular references. 
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-34

 m
2
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3
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General Introduction 

This thesis is mainly expository and the entire chapters contain an 

elaborate calculation. As the title implies that the thesis is concerned with 

the “STUDIES ON COSMOLOGICAL MODELS WITH 

INFLATION AND COUPLED OF SCALAR FIELD”. As is so, we 

must preview on FRW model and inflationary model. The FRW model is 

meant the Friedman-Robertson-Walker model. The Robertson-Walker 

model (Robertson 1933) provides a major application of Einstein‟s 

general theory of relativity in cosmology. The discovery of Friedman 

solution (Friedman, 1922) within the framework of homogenous & 

isotropic  universe models allowed the cosmological considerations to be 

treated in a mathematical manner which was a subject so far dominated 

by largely speculative ideas about the overall structure of the universe. 

The major assumptions used in arrival at the Robertson-Walker geometry 

are the large scale homogeneity and isotropy of the universe. The 

homogeneity in space means that the universe is roughly the same at all 

spatial points and that the matter is uniformly distributed all over the 

space. This is an assumption difficult to check, even though the universe 

is clearly inhomogeneous at the local scales of stars and star clusters, it is 

generally argued that an overall homogeneity will be achieved only at a 

large enough scale   in a statistical sense only. It is possible to have 

observational tests on the assumption of isotropy, that is, the universe 

must be the same in all directions. One could check the distribution of 

galaxies in the different directions together with their apparent 

magnitudes and red-shifts and also the distribution of radio forces 

similarly. Such observations are again interpreted frequently as providing 

an evidence for isotropic distributions of matter in the universe from our 

vantage point.   
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Cosmology has entered one of the most exciting episodes in its history, 

with an unprecedented increase in the quantity and quality of 

observational data being collected. 

The study of the cosmos in the form of classical scientific astronomy 

using mathematical descriptions is traced back to early seventh century 

AD. From seventh to fourteenth century, Persian mathematicians and 

astronomers Kharazmi (780–850), Biruni (973–1048), Khayyam (1048–

1131), Tusi (1201–1274), and Kashani (1380–1429) each contributed a 

lot to the field of astronomy. Their contributions were further developed 

and improved by European astronomers Copernicus (1473–1543), 

Galileo (1564–1642), and Kepler (1571–1630) over the next three 

centuries. Sir Isaac Newton’s theory of gravitation revolutionized 

astronomical calculations by late sixteenth century (in 1687, Newton 

published his Principia). Newtonian mechanics made it possible to 

formulate the motion of all celestial bodies in the solar system and 

beyond. 

New discoveries and theories within the last century have drastically 

changed our understanding of the cosmos. With the advent of Einstein’s 

General Theory of Relativity and the observational discovery on the 

expansion of the Universe by Slipher, as well as Hubble’s discovery of 

Hubble‟s law (indicating that far galaxies are receding from us) as early 

as 1920s, cosmology became a much more distinct science than 

astronomy. In 1922, Alexander Friedmann’s solutions to Einstein‟s 

equations formulated the evolution of a relativistic expanding or 

contracting dynamic Universe. The more advanced models are now 

known as Friedmann–Lemaitre–Robertson–Walker (FLRW) models of 

cosmology due to many enhancements and contributions from other 

cosmologists. 
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From 1930s onward, the Big Bang theory formed the basis for explaining 

the expansion of the Universe. However, the original Big Bang theory 

endured three problems, namely, the smoothness problem, the horizon 

problem, and the flatness problem. The first problem asks why the matter 

is uniformly distributed in the Universe. The second problem concerns 

the large-scale uniformity of the observable Universe. Finally, the third 

problem asks why the Universe is close to being spatially flat.  

With the introduction of the Inflationary Model of cosmology in 1980s 

by Alan Guth, the three problems of the Big Bang cosmological model 

were solved. According to inflationary cosmology, the size of the 

Universe expanded exponentially to an extremely huge number (10
60

) of 

its original size. This happened in a very short time from 10
-35 

to 10
-32 

s 

after the Big Bang. Collectively, the Big Bang model and Inflation 

Models of cosmology described the origin and expansion of the Universe.  

The modern form of inflationary cosmology is due to A.Linde, A. 

Albrecht and P. Steinhardt. In Guth‟s original model the inflation field 

was assumed to be trapped in a false vacuum and assumed a local value 

which is minimum. The inflation field comes out from the local minimum 

value by quantum tunneling and as universe inflates, tunneling takes 

place. However, these ideas when pursued gave empty universe and 

therefore rejected. Guth further tried to improve the idea but they led to 

others difficulties. In modern cosmology inflation is one of the essential 

ingredient for building cosmological models of the early universe. It is 

now understood that it can solve satisfactorily some of the outstanding 

problems of the standard big bang cosmology. The basic idea of inflation 

is that there was an epoch in the early universe when the vacuum energy 

density of the universe dominated leading to an accelerated expansion of 

the universe. 
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By the mid-1990s, new observations led to new models of cosmology. 

The modern Standard Model of Cosmology, which is generally accepted 

among cosmologists, integrates the following theories, models, and 

concepts: a fixed background space-time, the General Theory of 

Relativity, Dark Matter, Dark Energy, initial conditions at Big Bang (best 

described by Inflationary Models), and the Standard Model of particle 

physics. Although the Standard Model of Cosmology has its own 

outstanding problems such as Dark Matter and Dark Energy, and issues 

with inflation, yet it explains all the observations. 

Scalar fields play a fundamental role in many scientific disciplines and 

applications. The increasing computational power offers scientists and 

digital artists‟ novel opportunities for complex simulations, 

measurements, and models that generate large amounts of data. One of 

the most studied issues in Cosmology is the dynamics of cosmological 

scalar fields, mostly because of their usefulness in providing models for 

different needed processes in the evolution of the universe. 

Scalar fields are the most widely used dynamical dark energy models 

where late time acceleration can be obtained by adjusting the slope of the 

scalar field potential around suitable epoch. But the cosmological 

evolution of these models is severely constrained by very accurate 

cosmological observations. From the measurements of temperature 

anisotropy in the cosmic microwave background (CMB) radiation, the 

distance to last scattering is very well determined. This restricts the 

equation of state for the scalar field to be very close to ω = −1 at present. 

The work presented here has been largely derived from the books by 

Jamal Nazrul Islam : “The Introduction to Mathematical Cosmology”, 

Cambridge University press 2002 ;  “Global Aspects in Gravitation and 
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Cosmology” by Pankoz S. Joshi, Oxford University Press,Inc.,New York 

; “Gravitation Gauge Theories and the Early Universe” by B.R, Iyer ,N. 

Mukunda  and  C.V Vishveshwara ; “Principles and Applications of the 

General Theory Relativty” by Steven Weinberg ; “An Introduction to 

Cosmology” by Jayanta Vishnu Narlikar forward by Sir Fred Hoyle, 

Cambridge University Press 2002, General Relativity and Cosmology for 

Undergraduate by Professor John W. Norbury, Physics Department, 

University of Wisconsin-Milwaukee.; “Particle Physics and Inflationary 

Cosmology”, by Andrei. Linde, Department of Physics,Stampford 

University, Stamford CA 94305-4060, USA ; “Cosmological Inflation 

and Large Scale Structure”, by  A. Liddle ,University of Sussex :David 

H. Lyth , University of Lancaster: Cambridge University press ; “The 

New Physics” edited by Paul Davies, the professor of Theoretical 

physics, The University of Adelaide: Cambridge University press ; 

“Cosmology”: “The origin and Evolution of Cosmic Structure” by Peter 

Coles , Astronomy Unit Queen Mary and Westfield College: University 

of London, United Kingdom and Francesco LUCCHIN Department of 

Astromina, University di Padova ,Italy. 

 

This thesis is mainly a review work of established ideas. The entire thesis 

consists of eight chapters except the general introduction. This 

introductory chapter does not contain any mathematical work. It is almost 

ornamental. Every chapter has got an introduction of its own. The various 

chapters are organized as follows: 

 Chapter-1 of this thesis deals with “The Fundamental of General 

Relativity” 

In this chapter we shall assume familiarity with the special theory of 

relativity. Two inertial observers ie. two observers who move uniformly 

in a straight line relative to each other, describe nature in identical term. 



19 
 

Certainly, aesthetic demands, that is, nature would not show preference 

between two observers with any type of relative motion. This implies that 

we must search for a more general principle of relativity, demanding 

invariance, not merely under more general transformations arising out of 

non-uniform for relative motion of two observers. This was one 

motivation for going over from Special Relativity to General Theory of 

Relativity  

 

 Chapter-2 of this thesis deals with “On the Cosmological models” 

In this chapter we discuss about the cosmology & different types of 

cosmological models that gives an overall ideas of the universe.  

Cosmology is concerned with the extragalactic world. It is the study of 

the large-scale structure of the universe extending to distances of light 

years, a study of the overall dynamical and physical behavior of billions 

of galaxies spread across vast distances and of the evolution of this 

enormous system over several billions years. 

In this chapter we have derived the Robertson-Walker metric with the 

energy-momentum tensor as that of a perfect fluid in which in which the 

matter is at rest in the local frame. While the Robertson-Walker metric 

incorporates the symmetry properties and the kinematics of space-time, 

the Einstein equations provide the dynamic that is the manners in which 

the matter and the space-time in turn, are affected by the forces present 

the universe. Here we try to discuss briefly about why we need to study 

the microwave background, the origin of the cosmic microwave 

background.  Then we transform the terms from scalar to ratio. 

 Chapter-3 of this thesis deals with “Classical & Quantization 

problem” 
 

In this chapter we discuss about the Classical Klein-Gordon Field, 

Equation of states, Velocity & acceleration equation Cosmological 

constant and its alternative derivation by using the Lagrangian equation. 

Limiting solution are solved here with derivation also for the condition of 

the kinetic and potential energy. We also discuss & calculate exactly 

solvable model of Inflation, Cosmological constant & scalar field, 

Density fluctuation, Equation of state for variable cosmological constant, 

Wheeler-DeWitt equation, Quantization.  
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 Chapter-4 of this thesis deals with “An exact scalar field 

inflationary cosmological model which solves Cosmological 

constant problem” 
 

In this chapter we will show a method to construct an infinite number of 

exact scalar field inflationary cosmological models. This model predicts 

existence of dark matter/energy and gives an extremely accurate estimate 

of present energy density of dark matter and energy. Along with 

explanations of graceful exit, radiation era, matter domination, this model 

also indicates the reason for present accelerated state of the universe. 

 

 Chapter-5 of this thesis deals with “The Scalar field potential” 

In this chapter we will study cosmological scaling solutions in spatially 

flat isotropic model. We assume that scaling solutions describe a perfect 

fluid with equation of state )1(,)1(   MMM wp and scalar field   

with the potential V( ). Then we derive exact form of the scalar field 

potential. We introduce a scaling solution which was derived in the 

previous chapter. We construct a field potential assuming that a perfect 

fluid dominates. We will show this simple fact in case of a power-law 

expansion for a general cosmological background governed by the 

Friedmann equation. Form of the resulting general solution has 

informative features. 

 

 Chapter-6 of this thesis deals with “Scalar field cosmology in phase 

space” 
 

In this chapter we approach the spatially homogeneous and isotropic 

cosmology of scalar fields minimally coupled to gravity from the phase 

space point of view. Although dynamical system methods have been 

widely used in cosmology since the 1960s and this type of analysis has 

been performed for non-minimally coupled scalar fields and general 

scalar-tensor or f(R) gravity 

The purpose of this paper is to discuss these general features, specifically 

the geometry of the phase space, the existence, nature, and stability of the 

fixed points, and the late-time behavior of the solutions, without 

specifying the form of the scalar field potential energy density, and 



21 
 

instead making some generic assumptions on its behavior (boundedness, 

presence of asymptotes, etc.). 

Then we choosing the Hubble radius L = H
−1

 as system‟s IR cutoff, we 

implement the connection between the holographic dark energy and 

scalar fields models. We review interacting HDE with Hubble radius as 

systems‟ IR cutoff. In this section we reconstruct the analytical form of 

the potentials as a function of scalar field, and the dynamics of the scalar 

fields as a function of time, by suggesting a correspondence between 

holographic energy density and scalar field models old dark energy.  

 

 Chapter-7 of this thesis deals with “Inflation in homogenous & 

isotropic  space-time” 
 

In this chapter we introduce the inflationary paradigm as a solution to the 

flatness and horizon problem of standard (pre-inflationary) Big Bang 

cosmology. We describe the simple scenario in which inflation is 

modeled by means of a single scalar field which rolls slowly on its 

potential. 

 

 Chapter-8 of this thesis deals with “Inflation in non-minimally 

coupled theories & inflation via modified gravity”  
 

In this chapter we introduce a non-minimal coupling between the 

inflation field and gravity. This leads to several interesting consequences 

which we explore. In particular it leads to a lowering of the tensor-to-

scalar ratio r, as compared to minimally coupled models in general. The 

models we present throughout the remainder of the thesis all feature a 

non-minimal coupling term and the results will be derive. 

Next we consider The Chaotic inflation in slow-roll approximation, 

Cosmological Constant associated with chaotic inflation & inflation 

within f(R)-theories of gravity. In particular we consider the Starobinsky 

model of inflation, and find that it is connected to matter scalar field 

models with a non-minimal coupling to gravity. We then consider 

quantum induced marginal deformations of the Starobinsky action, and 

find that such deformations significantly shift the predicted tensor-to 

scalar towards higher values. At last we discuss sources for these 

corrections.   
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1.1  Introduction: 

General Relativity is one of the most important theoretical developments 

of the 20
th
 century. It is a theory about the structure and dynamics of 

space time itself, and its interaction with matter. Einstein‟s extraordinary 

intuition led him, in 1915, ten years after the development of special 

Relativity, to suggest-something which was verified soon after by a 

number of important experimental measurements-that the gravitational 

„forces‟ as perceived by the Newtonian approach was incorrect, and that 

the correct approach was to assume that this „forces‟ was the result of 

nonzero curvature of space time, which itself was the consequence of a 

non-trivial mass distribution. This is the main idea behind Einstein‟s 

theory of gravitation, the so-called General Relativity [42]. 

There are important differences from Newtonian Gravitation. For 

instance, a satellite orbiting around a massive body in Einstein‟s theory of 

General Relativity is floating freely, without the influence of any force, 

following a geodesic curve in the curved space time induced by the 

presence of the massive body. This is in sharp contrast to the Newtonian 

approach, where the inverse-square law gravitational force characterizes 

the satellite motion. Moreover, General relativity, being a relativistic 

theory ,i.e. a natural extension of special Relativity for non flat space 

times, shares all the novel ingredients of the latter, such as the lack of 

objective simultaneity of events, the existence of a limiting velocity, that 

of light  in vacuum etc, which were absent in the Newtonian approach. 

Nevertheless, for consistency, there is a limit in which Einstein‟s theory 

reproduces partially some of the results of Newton‟s theory (e.g. for large 

distances away from the gravitational centers of attraction the orbits 

resemble those predicted by Newton). 
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Despite the 85 years that passed since Einstein put forward his famous 

equations, the theory of General Relativity remains a Classical theory of 

the gravitational field, whose quantum version is still an elusive object of 

intense and exciting theoretical debate. This should be contrasted with the 

rest of the fundamental interactions in Nature (electromagnetic, weak and 

strong) whose quantum field theories are sufficiently developed and 

confirmed by Experiment to a great extent. Nevertheless, the classical 

theory of Einstein‟s gravity has been verified by experiment to a point 

that no one doubts today about its validity, at least for sufficiently low 

energy scales that describe a big portion of the observable universe to 

date. It should be noted, though, that there are still some predictions of 

this classical theory, namely gravitational waves, whose experimental 

confirmation is still lacking, and for this purpose important satellite and 

terrestrial experiments are currently under construction or design. 

1.2 The Principle of Equivalence: 

The Principle of equivalence of Equivalence rests on the equality of 

gravitational and inertial mass, demonstrated by Galileo, Huygens, 

Newton, Bessel and Eotvos. Einstein reflected that as a consequence, no 

external static homogenous gravitational field could be detected in a 

freely falling elevator, for the observers, their test bodies, and the elevator 

itself would respond to the field with the same acceleration. This can be 

easily proved for a system of particles N, moving with no relativistic 

velocities under the influence of forces F(xN – xM) (e.g. electrostatic or 

gravitational forces) and an external gravitational field g . 

The equations of motion are 

  )(
2

2

MNMN

N

N xxFgm
dt

xd
m     … … … (1.1) 
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Suppose that we perform a non-Galilean space-time co-ordinate 

transformation 

2

2

1
gtxx      ,   tt           … … … (1.2) 

Then g will be canceled by an inertial „force‟, and the equation of motion 

will becomes 

 



)(

2

2

MNM
N

N xxF
td

xd
m     … … … (1.3) 

Hence the original observer O who uses coordinates xt, and his freely 

falling friend Owho uses tx   will detect no difference  in the laws of 

mechanics, except that O will say that he feels a gravitational field and 

O  will say that he does not. The equivalence principle says that this 

cancellation of gravitational by inertial force  (and hence their 

equivalence) will obtain for all freely falling systems, whether or not they 

can be described by simple equations such as (1.1). 

We are not yet ready to state the principle of equivalence in its final 

forms, because the preceding remark dealt only with a static 

homogeneous gravitational field. Had  g depended on x or t, we should 

not have been able to eliminate it from the equations of motions by the 

acceleration (1.2). For example, the earth is in free all about the sun, and 

the most part we on earth do not feel the sun‟s gravitational field, but the 

slight in homogeneity in this field (about1 part in 6000 from noon to 

midnight) is enough to raise impressive tides in our oceans. Even the 

observers in Einstein‟s freely falling elevator would by falling radially 

towards the centre of the earth, and hence would approach each other as 

the elevator descended. 
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Although inertial forces do not exactly cancel gravitational forces freely 

falling systems in an inhomogeneous or time-dependent gravitational 

field , we can still expect an approximate cancellation if we restrict our 

attention to such a small region of space and time that the field changes 

very little over the region. Therefore we formulate the equivalence 

principle as the statement that - 

At every space-time point in an arbitrary gravitational field it is possible to 

choose a “locally inertial coordinate system” such that, within a sufficiently 

small region of the point in question, the laws of nature take the same form as 

in uncelebrated Cartesian coordinate systems in the absence of gravitation. 

There is a little vagueness here about what we mean by “the same form as 

in unaccelerated Cartesian coordinate systems”, so to avoid any possible 

ambiguity we can specify that by this we mean the form given to the laws 

of nature by special relativity. There is also a question of how small is 

“sufficiently small”. Roughly speaking, we mean that the region must be 

small enough so that the gravitational field is sensibly constant 

throughout it, but we cannot be more precise until we learn how to 

represent the gravitational field mathematically 

Occasionally one finds references to a “weak principle of Equivalence” 

and a “Strong Principle of Equivalence.” The strong Principle of 

equivalence is just what I have already stated, with “laws of nature” 

meaning all the laws of nature. The weak principle is the same, but with 

“laws of nature” replaced by “laws of motion of freely falling particles.” 

That is the weak principle is nothing but a restatement of the observed 

equality of gravitational and inertial mass, whereas the strong principle is 

a generalization of these observations that governs the effects of 

gravitation on all physical systems. 
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The experiments of Eotvos, Dicke and their predecessors provide direct 

verification only of the weak Principle of Equivalence, but they provide 

some indirect evidence for the strong principle. The mass of different 

substances arises in different proportions from the masses of the neutrons 

and protons plus electrons of which they are composed and from the 

strong and electromagnetic forces that bind these particles together, so the 

ratio of gravitational to inertial mass will be equal for all these substances 

only if it is equal for their constituents. Wapstra & Nijgh have shown that 

the limits set by Eotvos on any possible inequality in the ratio of 

gravitational to inertial mass for glass, cork, antimonite, and brass imply 

that this ratio is equal for neutrons and protons plus electrons to 1 part in 

6× 10
5
 and equal for neutrons and binding energies to 1 part in 1.2× 10

4
 . 

To this accuracy an observer in a freely falling coordinates system will 

detect no gravitational forces on neutrons, Hydrogen, or their binding 

energies. It would be difficult to conceive of a theory that satisfies this 

requirement and does not go all the way to the strong principle (that no 

gravitational effects of any sort can be felt in a locally inertial frame.) 

We might, however distinguish two versions of the strong principle of 

equivalence, a “Very strong principle,” which applies to all phenomena 

except gravitation itself. Certainly the experiments of Eotvos & Dicke are 

not accurate enough to say whether gravitational binding energies affect 

inertial and gravitational masses in the same way. This equation might be 

settled by studying the motion of a small body in orbit about a large body 

that is itself in free fall in a gravitational field. For instance the 

gravitational binding energy of the earth contributes a fraction – 8.4 ×10
-

10
 of its total mass, whereas the gravitational binding energy of an 

artificial satellite contributes a very much smaller fraction of its mass. 

Thus if (to take an extreme case) the (negative) gravitational bindings 
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energy contributes fully to the inertial mass but not at all to the 

gravitational mass, then that for the earth by a fraction 8.4 ×10
-10

. The 

earth is in free fall, with the gravitational attraction of the sun balanced by 

the inertial forces owing to the earth‟s revolution. The gravitational and 

inertial forces on the satellite owing to the presence of the sun and the 

earth‟s revolution are equal (neglecting for a moment the distance 

between the satellite and the earth‟s center of mass) to the gravitational 

and inertial forces on the earth times the ratio of gravitational or inertial 

masses, so these two forces are not in balance for the satellite, the 

gravitational forces being greater than the inertial force by a fraction 8.4 

×10
-10

 . The acceleration owing to the sun‟s gravity is at the orbit of the 

earth about 6 ×10
-4

 of the acceleration owing to the earth‟s gravity at the 

surface of the earth. So we conclude that if the gravitational binding 

energy of the earth contributed fully to its inertial mass but not at all to its 

gravitational mass, then an artificial satellite in a low orbit about the earth 

would feel an effective attraction toward the sun equal to about 5.4 ×10
-13 

times its gravitational attraction toward the earth. This tiny effect would 

be entirely masked by “tidal” forces because the satellite is far from the 

center of mass of the earth and there is no prospect of its being measured. 

This is a pity, because it is precisely the very strong assumption that the 

Principle of equivalence applies to gravitational fields[63]. 

1.3 Gravitational Forces: 

Consider a particle freely under the influence of purely gravitational 

forces. According to the Principle of equivalences, there is a freely falling 

coordinate system ξ
α 

in which its equation of motion is that of a straight 

line in space-time, that is, 

0
2

2




 

d

d
    … … … (1.4) 
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With dτ the proper time 


  ddd 2

    … … … (1.5) 

Now suppose that we use any other coordinate system x
μ 
, which may be a 

Cartesian coordinate system at rest in the laboratory , but also may be 

curvilinear, accelerated, rotating, or what we will. The freely falling 

coordinates ξα are functions of the x
μ
 and equation (1.4) becomes [63], 

0
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Multiply this by 





x
 and use the familiar product rule 





















x
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This gives the equation of motion 

0
2

2










d

dx

d

dx

d

xd
    … ... … (1.6) 

Where 
  is the affine connection, defined by  



















xx

x 2

     … … … (1.7) 

The proper time (1.5) may also be expressed in an arbitrary coordinate 

system, 
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


















 dx

x
dx

x
d 2

    … … … (1.8) 


 dxdxgd  2

      … … … (1.9) 

Where 
g  is the metric tensor, defined by 









 








xx
g       … … … (1.10) 

For a photon or a neutrino the equation of motion in a freely falling 

system is the same as (1.4), except that the independent variable cannot 

be taken as the proper time (1.5), because for massless particles the right-

hand side of (1.5) vanishes. Instead of η we can use ζ = ξα , so that (1.4) 

& (1.5) become 

0
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2




 

d

d
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
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d
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Following the same reasoning as before, we find that the equation of 

motion in an arbitrary gravitational field and an arbitrary coordinate 

system is 

0
2

2










d

dx

d

dx

d

xd
    … … … (1.11) 

0
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


d

dx

d

dx
g      … … … (1.12) 
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With 

  and g  given as before by (1.7) & (1.10). 

Incidentally, in both (1.6) and (1.11) we do not need to know what η and 

ζ are in order to find the motion of our particle,, for these equations when 

solved give x
μ
(η)   

x
μ
(ζ) , and η or ζ can be eliminated to give x(t). The purpose of (1.9), is 

tell us how to compute the proper time, whereas the purpose of (1.12) is 

to impose initial conditions appropriate to a massless particle. In 

particular, Equation (1.12) tells us that the time dt for a photon to travel a 

distance dx is determined by the quadric equation 

02 0

2

00  ji

ij

i

i dxdxgdtdxgdtg  

With i and j assumed over the values 1, 2, and 3. The solution is 

    … … … (1.13) 

And time required for light to travel along any path may be calculated by 

integrating dt along the path. 

The values of the metric tensor g and the affine connection 
  at a 

point X in an arbitrary coordinate system x
μ
 provide enough information 

to determine the locally inertial coordinate‟s ξ
α
(x) in a neighborhood of 

X. First, we multiply equation (1.7) by 







x
. And use the product rule 

 

Thereby obtaining the differential equations for ξ
α 
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
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       … … … (1.14) 

The solution is  

.....))((
2

1
)()(  











 XxXxbXxbax      … … … (1.15) 

Where 

)(xa    ,        … … … (1.16) 

From equation (1.10) we also learn that  

)(Xgbb 




        … … … (1.17) 

Thus given 


  and g  at X , the locally inertial coordinates ξ
α
 are 

determined to order (x - X)
2
 , except for the ambiguity in the constants a

α
 

and . The 

b  are determined by equation (1.16) up to a Lorentz 

Transformation










 bb  , so the ambiguity in the solution for ξ
α
 (x) 

just reflects the fact that if ξ
α 

are locally inertial coordinates, then so are 



 c  . Hence, since  


  and g  determine the locally inertial 

coordinates up to an inhomogeneous Lorentz transformation and since the 

gravitational field can have no effects in a locally inertial coordinates 

system, we should not be surprised to find that all effects of gravitation 

are comprised in 


  & g  . 
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1.4   The Principle of General Covariance: 

The Principle of General Covariance states that a physical equation holds 

in a general gravitational field, if two conditions are met: 

1. The equation holds in the absence of gravitation; that is it agrees 

with the laws of special relativity when the metric tensor g  

equals the Minkowski tensor   and when the affine connection 


  vanishes. 

2. The equation is generally covariant; that is, it preserves its form 

under a general coordinate transformation xx  . 

To see that the Principle of General Covariance follows from the 

Principle of Equivalence, let us suppose that we are in an arbitrary 

gravitational field, and consider any equation that satisfies the two above 

conditions. From condition-2 we learn that the equation will be true in all 

coordinate systems if it is true in anyone coordinate system. But at any 

given point there is a class of coordinate systems, the locally inertial 

systems, in which the effects of gravitation are absent. Condition-1 then 

tells us that our equations holds in these systems and hence in all other 

coordinate systems. 

It should be stressed that general covariance by itself is empty of physical 

content. Any equation can be made generally covariant by writing it in 

anyone coordinate system , and then working out what it looks like in 

order arbitrary coordinate system .Indeed from childhood we have 

become familiar with the appearance of physical equations in non-

Cartesian systems, such as polar coordinates. The significance of the 

Principle of general covariance lies in its statement about the effects of 

gravitation, that a physical equation by its general covariance will be true 

in a gravitational field if it is true in the absence of gravitation. 
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The meaning of general covariance can be brought forward by comparing 

it with Lorentz invariance. Just as any equation can be made generally 

covariant, so any equation can be made Lorentz –invariant, by writing it 

in one coordinate system and then working out what it looks like after a 

Lorentz transformation. However, if we do this with a non-relativistic 

equation like Newton‟s second law, we find after making it Lorentz –

invariant that a new quantity has entered the equation, which of course is 

the velocity of the coordinate frame with respect the original reference 

frame. The requirement that this velocity not appear in the transformed 

equation is what we call the Principle of Special Relativity, or “Lorentz 

invariance” for short, and this requirement places very powerful 

restrictions on the original equation. Similarly, when we make an 

equation generally covariant, new ingredients will enter, that is the metric 

tensor g and the affine connection 


 . The difference is that we do 

not require that these quantities drop out at the end, and hence we do not 

obtain any restrictions on the equation we start with; rather we explot the 

presence of g  and 


  to represent gravitational fields. To put this 

briefly; The Principle of General Covariance is not an invariance 

principle, like the Principle of Galilean or Special Relativity, but is 

instead a statement about the effects of gravitation and about nothing else. 

In particular, general covariance does not imply Lorentz invariance - 

there are generally covariant theories of gravitation that allow the 

construction of inertial frames at any point in a gravitational field, but 

that satisfy Galilean relativity   rather than Special Relativity in these 

frame. 

The Principle of General Covariance can only be applied on a scale that is 

small compared with the space-time distances typical of the gravitational 
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field, for it is only on this small scale that we are assured by the Principle 

of Equivalence of being able to construct a coordinate system in which 

the effects of gravitation are absent. For instance, the radius of the moon 

is not so very much smaller than the earth –moon separation, so we 

cannot accurately calculate the motion of the moon by finding generally 

covariant equations that reduce to the correct equations for a freely 

moving moon in the absence of gravitation. We can, however, treat the 

moon as a ball of rock and calculate its motion by applying the Principle 

of General Covariance to determine the gravitational forces on each 

infinitesimal element of the lunar mass [63]. 

1.5  Metric in a Gravitational Field: 

Suppose that space-station in the shape of a wheel has been constructed in 

a region of space far from other attracting bodies and that it is set rotating 

in its plane about its centre with angular velocity ω .An observer O, 

wearing a space-suit is located outside the station and does not participate 

in the rotary motion; his frame of reference is therefore inertial. O 

watches C, a member of station‟s crew, measuring the dimensions of the 

station using a metric rule. C first measures the radius of the station from 

its centre to its outer wall by laying his rule is moving laterally 

throughout the measuring process, but this motion does not affect its 

length in his frame and he will accordingly agree with the radius r 

recorded by C. C next lays his rule around the outer wall of the station 

and records a perimeter p .During this process, however, O sees the rule a 

factor
2

22

1
c

r
 . He will accordingly correct the length of the perimeter 

found by C to the value
2

22

1
c

r
p


 . Since O‟s frame is inertial, Euclidean 

geometry is valid for all space measurements referred to the frame and he 

must find that  
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     … … … (1.19) 

This last equation indicates that C will discover that the Euclidean 

formula rp 2 is not valid for measurements made in rotating frame of 

the space-station. But C is entitled to regard the station frame as being at 

rest, provided he accepts the existence of a gravitational field which will 

account for the centrifugal and Coriolis forces he experiences. We 

conclude that relative to a frame at rest in such a gravitational afield, 

spatial measurements will not be in conformity with Euclidean geometry 

[31]. 

By the principle of equivalence the conclusion which has been reached 

concerning the non-Euclidean nature of  space in which there is present a 

gravitational field of the centrifugal-Coriolis type, must be extended to all 

gravitational field. However, in the case of a field such as that which 

surrounds the earth, it will not be possible (as it is for the centrifugal-

Coriolis field) to find an inertial frame of reference relative to which the 

field vanishes and for which the spatial geometry is Euclidean. Such 

afield will be termed irreducible. Even in an irreducible field, however , a 

frame can always be found which is inertial for a sufficiently small region  

of space and a sufficiently small time duration. Thus, within a space-ship 

which is not rotating relative to the extragalactic  nebulae and which is 

falling freely in the earth‟s gravitational field, free particles will follow 

straight –line paths at constant speed for considerable periods of time and 
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the condition will be inertial. A coordinate frame fixes in the ship will 

accordingly simulate an inertial frame over a restricted region of space 

and time and its geometry will be approximately Euclidean. 

Since a rectangular Cartesian coordinate frame can be set up only in a 

space possessing a Euclidean metric, this method of specifying  the 

relative positions of events must be abandoned in an irreducible 

gravitational field (except over small regions as has just been explained). 

Instead, the positions and times of all events will be specified by 

references to a very general type  of frame which we can suppose 

constructed as follows : Imagine the whole of the cosmos is filled by a 

fluid whose motion is arbitrary but non-turbulent (i.e. particles of the 

fluid which are initially close together , remain in  proximity to one 

another ). Let each molecule of the fluid be a clock which runs smoothly, 

but not necessarily at a constant rate as judged by a standard atomic 

clock. No attempt will be made to synchronize clocks which are separated 

by a finite distance, but it will be assumed that, as this distance tends to 

zero, the reading of the clocks will always approach one another. Each 

clock will be allocated three spatial coordinate‟s ξ
1
, ξ

2
, ξ

3
 according to 

any scheme which ensures that the coordinates of adjacent clocks only 

differ infinitesimally. The coordinate‟s ξ
α
  of a clock will be supposed 

never to change. Any event taking place anywhere in the cosmos can now 

allocated unique space-time coordinates ξ
i
(i=1,2,3,4) as follows: (ξ

1
, ξ

2
, 

ξ
3
) are the spatial coordinates belonging to the clock which happens to be 

adjacent to the event when it occurs, and ξ
4
 is the time shown on this 

clock at this instant. 

We shall now further generalize the coordinates allocated to an event. Let 

x
i
(i=1,2,3,4) be any functions of the ξ

i
 such that, to each set of values of 
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the ξ
i
 there corresponds one set of values of  the x

i
 and conversely. We 

shall write 

x
i
= x

i 
(ξ

1
, ξ

2
, ξ

3
, ξ

4
)    … … … (1.20) 

Then the x
i 
also, will be accepted as coordinates, with respect to a new 

frame of reference, of the event whose Coordinates were previously taken 

to be the ξ
i
. It should be noted that, in general each of the new coordinate 

x
i
 will depend upon both the time and the position of the event, i.e. it will 

not necessarily be the case that three of the coordinate‟s x
i
 are spatial in 

nature and one is temporal. All possible events will now be mapped upon 

a space δ4 , So that each event is represented by a point of the space and 

the x
i
 will be the coordinates of this point with respect to a coordinate 

frame δ4 will be referred to as the space-time continuum. 

It has been remarked that, in any gravitational field, it is always possible 

to define a frame relative to which the field vanishes over a restricted 

region and which behaves as an inertial frame for events occurring in this 

region and extend ending over a small interval of time .Such a frame will 

be falling freely in the gravitational field and will accordingly be referred 

to as a local free-fall frame. Suppose, then that such an inertial frame S is 

found for two contiguous events. Any other frame in uniform motion 

relative to S will be inertial for these events. Observers at rest in all such 

frames will be able to construct rectangular Cartesian axes and measure 

the proper time interval dη between the events. If, for one such observer, 

the events at the points having rectangular Cartesian coordinates 

(x,y,z),(x+dx , y+dy , z+dz) occur at the times t, t + dt respectively, then 

   … … … (1.21) 

The interval between the events ds will be defined by 

)(
1 222

2

22 dzdydx
c

dtd 
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22222222  dcdzdydxdcds     … … … (1.22) 

The coordinates (x,y,z,t) of an event in this quasi-inertial frame will be 

related to the coordinates x
i
 defined earlier, by equations   

x =x (x
1
, x

2
, x

3
, x

4
)      etc.    … … … (1.23) 

And hence                        
i

i
dx

x

x
dx




     … … … (1.24) 

Substituting for dx ,dy , dz, dt in equation (1.24), we obtain the result 

   … … … (1.25) 

Determining the interval ds between two events contiguous in space-time, 

relative to a general coordinates frames valid for the whole of space-time. 

The space-time continuum can accordingly be treated as a Riemannian 

space with metric given by equation (1.25). 

1.6   Motion of a Free Particle in a Gravitational field: 

In a region of space which is at a great distance from material bodies, 

rectangular Cartesian axes Oxyz can be found constituting an inertial 

frame. If time is measure by clocks synchronized within this frame and 

moving with it, the motion of a freely moving test particle relative to the 

frame will be uniform. Thus if (x,y,z) is the position of such a particle at 

time t, its equation of motion can be  written  

    … … … (1.26) 

Let ds the interval between the events of the particle arriving at the point 

(x,y,z) at time t and  the contiguous event of the particle arriving at (x+dx 

ji

ij dxdxgds 2

0
2

2

2

2

2

2


dt

zd

dt

yd

dt

xd
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,y+dy ,z+dz) at t + dt  .Then ds is given by equation (1.22) and if υ is the 

speed of the particle, it follows from this equation that  

  dtcds 2

1
22    … … … (1.27)  

Since υ is constant, it now follows that equations (1.26) can be expressed 

in the form 

0
2

2

2

2

2

2


ds

zd

ds

yd

ds

xd
   … … … (1.28) 

Also from equation (1.27) it may be deduced that  

0
2

2


ds

td
    … … … (1.29) 

Equation (1.28) & (1.29) determine the family of world-lines of free 

particles in space-time relative to an inertial frame [31]. 

Now suppose that other reference frame and procedure for measuring 

time is adopted in this region of space, e.g. a frame which is in uniform 

rotation with respect to an event in this frame might be employed (x
1
, x

2
, 

x
3
, x

4
) be the coordinates of an event in this frame. The interval between 

two contiguous events will then be given by equation (1.25). If an 

observing using this frame releases a test particle and observers its 

motion relative to the frame, he will denote that it is not uniform or even 

rectilinear and will be able to account for this fact by assuming the 

presence of a gravitational field. He will find that the particle‟s equations 

of motion are 

0
2

2


ds

dx

ds

dx

ds

xd kj
i

jk

i

   … … … (1.30) 
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This is a tensor equation defining a geodesic and valid in every frame if it 

is valid in one. But in the xyzt-frame, the gij are all constant and the three 

index symbols vanish. Hence, in this frame, the equations (1.30) reduce 

to the equations (1.28) & (1.29) and these are known to be true for the 

particles motion. We have shown, therefore, that the effect of a 

gravitational field of the reducible variety upon the motion of a test 

particle can be allowed for when the form taken by the metric tensor   gij 

of the space-time manifold is known relative to the frame being 

employed. This means that the gij determine, and are determined by, the 

gravitational field. 

The ideas of the previous paragraph will now be extended to regions of 

space where irreducible gravitational fields are present. It has been 

pointed out that, for any sufficiently small region of such space and 

interval of time, an inertial frame can be found and consequently the 

paths of freely moving particles will be governed in such a small region 

by equations (1.30). It will now be assumed that these are the equations 

motion of free particles without any restrictions, i.e. that the world-line of 

a free particle is a geodesic for the space-time manifold or that the world-

line of a free particle has constant direction. This appears to be the natural 

generalization of the Galilean law of inertia whereby, even in an even in 

an irreducible gravitational field, a particle‟s trajectory through space-

time is the straightest possible after consideration has been given to the 

intrinsic curvature of the continuum. It will then follow that the motions 

of particle falling freely in any gravitational field can be determined 

relative to any frame when the components gij  of the metric tensor for 

this frame are known. Thus the gij will always specify the gravitational 

field observed to be present in a frame and the only distinction between 

irreducible and reducible  fields will be that, for the latter will be possible 
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to find a coordinate frame in space-time for which the metric tensor has 

all its components zero except 

g11 = g22 = g33 =1   &    g44 = - c
2 
     … … … (1.31) 

Whereas for the former this will not be possible. 

Since the Christoffel symbols vanish in a frame which is geodesic at 

some point of space-time, in such a frame equation (1.30) reduce to 

0
2

2


ds

xd i

  over a small neighborhood of the point. If, in addition, the 

frame is chosen to be quasi-Euclidean with metric (1.22), equation (1.26) 

will be valid over the neighborhood and a freely falling body will have 

very nearly uniform motion such a frame can therefore be identified with 

a local freely falling frame. 

1.7   Derivation of the Field Equations: 

The field equations for gravitation are inevitably going to be more 

complicated than those for electromagnetism. Maxwell‟s equations are 

linear because the electromagnetic field does not itself carry charge, 

whereas gravitational fields do carry energy and momentum and must 

therefore contribute to their own source. That is, the gravitational field 

equations will have to be nonlinear partial different equations, the 

nonlinearity representing the effect of gravitational itself [63]. 

In dealing with these nonlinear effects we are guided once again by the 

Principle of Equivalence. At any point X in an arbitrarily strong 

gravitational field. We can define a locally inertial coordinate system 

such that 

    ( )     … … … (1.32) 

(
     ( )

   
) x = X  = 0 … … … (1.33) 
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Hence for x near X, the metric tensor gαβ can differ from  
  

 only by 

terms quadratic in x – X. In this coordinate system the gravitational field 

is weak near X, and we can hope to describe the field by linear partial 

differential equations. And once we know what these weak-field 

equations are, we can find the general field equations by reversing the 

coordinate transformation that made the field weak.  

Unfortunately, we have very little empirical information about the weak-

field equations. This is not for any fundamental reason, but rather because 

gravitational radiation is so weakly generated and absorbed by matter, 

that it has not yet certainly been detected. 

First let us recall that in a weak static field produced by a non relativistic 

mass density, the time -time component of the metric tensor is 

approximately given by  

        (   ) 

Here  is the Newtonian potential, determined by Poisson‟s equation 

         

Where G is Newton‟s constant, equal to 6.670       in c.g.s. units. 

Furthermore, the energy density     for non relativistic matter is just 

equal to its mass density 

        

Combining the above, we have then 

                  … … … (1.34) 

This field equation is only supposed to hold for weak static fields 

generated by non relativistic matter, and is not even Lorentz invariant as 

it stands. However, (1.34) leads us to guess that the weak-field equations 

for general distribution      of energy and momentum take the form 
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                 … … … (1.35) 

Where     is a linear combination of the metric and its first and second 

derivatives. It follows then from the Principle of Equivalence that the 

equations which govern gravitational fields of arbitrary strength must 

take the form    

                   … … … (1.36) 

Where     is a tensor which reduces to     for weak fields. 

In general, there will be a variety of tensor     that can be formed from 

the metric tensor and its derivatives, and that reduce in the weak-field 

limit to a given    . Let us imagine     to be expanded in a sum of 

products of derivatives of the metric, and classify each term according to 

the total number N of derivatives of the metric components. (For 

example, a term with N = 3 could be linear in the third derivatives of the 

metric, or a product of a first derivative with a second derivative, or a 

product of three first derivatives.) The whole of     must have to 

dimensions of a second derivative, so each term of type N  2apperas 

multiplied with a constant having the dimensions of length to the power 

N – 2; such terms will become negligible for gravitational fields of  

sufficiently large or small space –time scale if N > 2 or N < 2, 

respectively. In order to remove the ambiguity in       we shall assume 

that the gravitational field equations are uniform in scale, so that only 

terms with N = 2 are allowed. 

Let us review what we know about the left-hand- side of the field 

equation (1.36): 

(A) By definition,     is a tensor. 
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(B) By assumption,     consists only terms those are either linear in 

the second derivatives or quadratic in the first derivatives of the 

metric. 

(C) Since     is symmetric, so is       

(D) Since     is conserved (in the sense of covariant differentiation) 

so is        

    
 

= 0        … … … (1.37) 

(E) For a weak stationary field produced by non relativistic matter 

the 00 component of (1.36) must reduce to (1.34), so in this 

limit 

 

oogG 2

00       … … … (1.38) 

These properties are all we will need to find       

We saw that the most general way of constructing a field satisfying (A) 

and (B) is by contraction of the curvature tensor    
 . The antisymmetry 

property of     
  shows that there are only two tensors that can be formed 

by contracting Rλμυκ ; that is, the Ricci tensor Rk     
  and the curvature 

scalar R =     
 

. Hence (A) and (B) require     to take the form    

      1       C2       … … … (1.39) 

where  1 and  2 are constants. This is automatically symmetric, so (C) 

tells us nothing new. Using the Bianchi identity gives the covariant 

divergence of     as  

    
 
  (

  
 
   )     
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So (D) allows two possibilities: either  2 = - 1/2, or   υ vanishes 

everywhere. We can reject the second possibility, because (1.39) and 

(1.36) give  

    
 
  ( 1 + 4 2)R = -8G    

 
 

Thus if   υ R/x
υ
 vanishes, then so must     

 
/x

υ
, and this is not the 

case in the presence of inhomogeneous non relativistic matter. We 

conclude then that  2 =  1/2, so (1.39) becomes 

       1 (    
 

 
    )    … … … (1.40) 

Finally we use the property (E) to the constant C1. A non-relativistic 

system always has 00TTij   , so we are concerned here with a case 

where 00GGij   or using (1.40), 

RgR ijij
2

1
  

Furthermore, we deal here with a weak field, so  g , The curvature 

scalar is therefore given by 

0000
2

3
RRRRR KK   

Or,   002RR      … … … (1.41) 

Using (1.41) and (1.32) in (1.40) , we find 

  … … … (1.42) 

To calculate R00 for weal field we may use the linear part of a Rλμυκ, given 

by  

 

00100 2 RCG 















































xx

g

xx

g

xx

g

xx

g
R

2222

2

1
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When the field is static all time derivatives vanish, and the components 

we need become 

00000 R   ,    
ji

oo
ji

xx

g
R



 2

00
2

1
  

Hence (1.42) gives  

00

2

1000000100 )(2 gCRRCG ii   

And comparing this with (1.38) , we find that (E) is satisfied if and only if 

C1 = 1 

Setting C1in equation (1.40) completes our calculation of Gμυ : 

RgRG 
2

1
         … … … (1.43) 

With (1.36) this gives the Einstein Field equations 

 GTRgR 8
2

1
     … … … (1.44) 

An alternative form is sometimes useful. Contracting (1.44) with g
μυ

 

gives, 

                                     


GTRR 82   


GTR 8               … … … (1.45) 

And using this in equation (1.44), we have 

     … … … (1.46)  

Of course we can also go from (1.46) back (1.45) and (1.44), so (1.44) 

and (1.46) should be regarded as entirely equivalent forms of the Einstein 

Field equations. 

In a vacuum Tμ vanishes, so form (1.46) we see that the Einstein field 

equations in empty space are just 

)
2

1
(8 

  TgTGR 
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 0R     … … … (1.47) 

In a space-time of two or three dimensions this would imply the 

vanishing of the full curvature tensor Rλμυκ and the coonsequent absence 

of a gravitational field. It is only in four or more dimensions that true 

gravitational fields can exist in empty space. 

We might be wiling to relaz assumption (B), and allow to contain terms 

with fewer than derivatives of the metric. The freedom to use first 

derivatives does not allow any new term is possible,equal to gμυ times a 

constant λ. The field equations would then read 

 GTgRgR 8
2

1
  

The term 
g  was originally introduced by Einstein for cosmological 

reasons (which have since disappeared); for this reason,   is called the 

cosmological constant. This term satisfies the requirements (A), (C) and 

(D), but does not satisfy (E), so   must be very small so as not to 

interfere with the successes of Newton‟s theory of gravitation. 

1.8   The General Static Isotropic Metric: 

For the moment we put aside Einstein‟s equations and what is the most 

general metric tensor that can represent a static isotropic gravitational 

field. By “static & isotropic” we mean that it must be possible to find a 

set of “quasi-Minkowskian” coordinates x
1
, x

2
, x

3
, x

0
  t , such that the 

invariant proper time
 

 does not depend on t, and depends 

on x  and dx  only through the rotational invariants dx
2
, x.dx ,& x

2
 . The 

most general proper time interval is then [63], 

2222 )().)((.)(2)( dxrCdxxrDdxdtxrEdtrFd     … … … (1.48) 

 
 dxdxgd 2
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Where F,E,D and C are unknown functions of  2

1

).( xxr    

(e.g. , 332211. dxxdxxdxxdxx  , etc) 

Ti is convenient to replace x with spherical polar coordinates r,θ,φ 

defined as usual by 

CosrSinx 2

  ,  SinrSinx 2

   ,   rCosx 3
 

The proper time interval (1.48) then becomes, 

))(()()(2)( 2222222222  dSinrdrdrrCdrrDrdtdrrrEdtrFd 

 … … … (1.49) 

We are free to reset our clocks by defining a new time coordinate, 

)(rtt   

Where Φ an arbitrary function of r. This allows us to eliminate the off-

diagonal element gtr by setting  

The proper time (1.49) then becomes 

))(()()( 222222222  dSinrdrdrrCdrrGtdrFd   … ……(1.50) 

Where       









)(

)(
)()(

2
2

rF

rE
rDrrG  

We are also free to redefine the radius r, and thereby impose one further 

relation on the functions F,G and C . For instance, suppose that we define 

22 )( rrCr   

Then the proper time (1.50) takes what is called the standard form 

)()()( 2222222  dSindrrdrAtdrBd     … … … (1.51) 

)(

)(

rF

rrE

dr

d



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Where      )()( rFrB   

2

)(

)(2
1

)(

)(
1)(






















dr

rdC

rC

r

rC

rG
rA  

Alternatively, we could define 

 









r

dr

rC

rG
r

2

1

)(

)(
1exp

 

And (1.50) would than appear in what is called the isotropic form, 

))(()( 2222222  dSinrrrdrJtdrHd    … … … (1.52) 

Where      )()( rFrH                         2

2)(
)(

r

rrC
rJ


  

We shall do most of our work with a metric of the “standard” form: 

)()()( 2222222  dSindrdrrAdtrBd      … … … (1.53) 

(We drop primes on r and t from now on.) The metric tensor has the non-

vanishing components 

)(rAgrr   ,  2rg    ,    ,      … … … (1.54) 

With functions A(r) and B(r) that are to be determined by solving the 

field equations. Since gμυ is diagonal, it is easy to write down all the non-

vanishing components of its inverse: 

)(1 rAg rr  ,   
2 rg

,   
22 )(  Sinrg    , )(1 rBg tt      … … … (1.55) 

Furthermore, the determinant of the metric tensor is –g, where 

g = r
4
 A(r) B(r) Sin

2
θ    … … … (1.56) 


22Sinrg  )(rBgtt 
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so the invariant volume element is 

 ddrdSinrBrArddrdg )()(2    … … … (1.57) 

The affine connection can be computed from the usual formula: 




































x

g

x

g

x

g
g

2

1
 

Its only non -vanishing components are- 

dr

rdA

rA

r

rr

)(

)(2

1
                                    

)(rA

rr   

)(

2

rA

rSinr 



  

dr

rdB

rA

r

tt

)(

)(2

1
  

r
rr

1
 





  
 CosSin  

r
rr

1
 





  



 Cot  

dr

rdB

rB

t

rt

t

tr

)(

)(2

1
      … … … (1.58) 

We also need the Ricci tensor. It is given by 

































 KK

K

KK
xx

R     … … … (1.59) 

Inserting in (1.60) the components of the affine connection given by 

(1.58) we find, 
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






 







 
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
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
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

)(

)(1
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4

1

)(2
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rA

rrB

rB

rA

rA

rB

rB

rB

rB
Rrr        

)(

1

)(

)(

)(

)(

)(2
1

rArB

rB

rA

rA

rA

r
R 







 



  

 RSinR 2
                                                                    

… … … (1.60)





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

 


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

 










 



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)(1
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4

1

)(2

)(

rA

rB

rrB

rB

rA

rA

rB

rB

rA

rB
Rtt  

   for      

(A prime now means differentiation with respect to r.) The result that rR , 

rR , tR , tR  & 
R  vanish, and that  RSinR 2 , are merely 

consequences of the rotational invariance of the metric, whereas  the 

result that rtR vanishes is because we have set our clocks so that the 

metric is invariant under the time-reversal transformation tt  . 

Neither the standard nor the isotropic coordinates are harmonic, but we 

can easily use the results (1.54) and (1.58) for the metric and affine 

connection in standard coordinates to construct harmonic coordinates X1, 

X2 ,X3 ,t. We set 

CosSinrRX )(1  ; SinSinrRX )(2  ; CosrRX )(3   … … … (1.61) 

A straightforward calculation gives then 
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 Where      
2 
is the d‟Alembertian operator. 

Also, the standard time coordinate t satisfies 

2 
t = 0 

Thus the coordinate X1, X2, X3 t are harmonic if R(r) satisfies the 

differential equation  

     … … … (1.62) 

In these harmonic coordinates the proper time (1.53) becomes 

2

4

2

22

2

2

2
22 ).( dXX

R

r

RR

A
dX

R

r
Bdtd 











      … … … (1.63) 

1.9 The Schwarzschild Solution: 

We now apply the Einstein‟s field equation to the general static isotropic 

metric. We use the standard form, that is [62], 

22222222 )()(  dSinrdrdrrAdtrBd      … … … (1.64) 

The field equations for empty space are 

   … … … (1.65) 

The components of the Ricci tensor are given for this metric by equation 

(1.60). We see that will suffice to set  Rrr , Rθθ   and Rtt equal to zero. We 

also see that 


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 
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     … … … (1.66) 

So (1.65) requires that 
A
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A(r) B(r) = Constant     … … … (1.67) 

Furthermore we impose on A and B the boundary condition that for 

 the metric tensor must approach the Minkowski tensor in 

spherical coordinate, that is, 

lim
r

A(r) = lim
r

B(r) =1     … … …  (1.68) 

From  (1.67) & (1.68) we have then 

)(

1
)(

rB
rA      … … … (1.69) 

Since (1.66) now vanishes, it remains to make Rrr and Rθθ vanish. Using 

(1.69) in (1.60) we find 

)()(1 rBrBrR   

 

So it is sufficient to set Rθθ equal to zero, that is, 

  1)()()(  rBrBrrrB
dr

d
 

The solution is  

 rrrB )( Constant    … … … (1.72) 

To fix the constant of integration we recall great distances from a central 

mass M, the component gtt = -B must approach -1-2φ, where θ is the 

Newtonian potential –MG/r. Hence the constant of integration is -2MG, 

and our final solution is, 

r
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




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1)(     … … … (1.73) 
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The full metric is given by 
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  … …(1.75) 

This solution was found by K. Schwarzschild in 1916. 

The Schwarzschild solution is expressed in equation (1.75) in its 

“standard” form. We can also express it in the equivalent “isotropic” 

form, by introducing a new radius variable 
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Substituting this in equation (1.75) gives  
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2.1  Introduction: 

No branch of science can claim to have a bigger area of interest than 

cosmology because of its profound implication of poets, philosophers, 

religious thinkers .Observational cosmology is concerned with the 

physical properties of the universe such as its chemical composition, 

density and rate of expansion as well as the distribution of galaxies and 

clusters of galaxies .Physical cosmology tries to understand these 

properties by applying known law of physics astrophysics. Theoretical 

cosmology involves making models that gives a mathematical description 

of the observed properties of the universe based on physical 

understanding. Mathematics heavily use to find cosmological model from 

Einstein equation or other theories of gravity cosmology also has 

philosophical or even theological aspect in that it seeks to understand 

why the universe has its observed properties . Active areas of research in 

cosmology include the large scale galaxy surveys to map the distribution 

of matter or cosmological scales according to the „redshift‟ distance 

relations the investigation of fluctuation in the temperative of the „Cosmic 

Background Radiation‟ and their implication[43]. 

 

2.2  Cosmology: 

Cosmology from Greak Komos and logia means universe and study 

respectively. Cosmology is the study of the large scale structure and 

behavior of the universe. That is of the universe taken as a whole.The 

term as a whole applied to universe need to precise definition.  

 

 



58 
 

2.3 Cosmological Model:   

A Cosmological Model is a model of our universe which taking into 

account and using all known physically laws predicts correctly the 

observed properties of the universe and in particular explain in details the 

phenomena in the early universe .Such as model must also explain inter 

alia why the universe was so homogenous and isotropic at the epoch of 

last scattering of the cosmic microwave background and how and when 

homogeneities  (galaxies and stars) arose .It should also explain ,whether 

the spatial properties of our universe compared with other conceivable 

universe depend on particular initial condition or whether the laws of 

nature ensure that a stable and quasi permanent universe .Similar to our 

own must have occurred independently of the initial conditions. 

In a more restricted sense cosmological model are exact solution of the 

Einsteinian field equations for a perfect fluid that reproduce the important 

feature of our universe. 

 

There are various cosmological models some of these are mentioned 

below: 

         

              i)  Einstein static model of universe [11]  is  












 )(

1

2222

2

2
222  dSindr

r

dr
Rdtds  

              ii) Friedmann-Lemaitre, Robertson, Walker (FRW) model 

[16,60] or big-bang model or standard model of the universe is  
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










 )(

1
)( 2222

2

2
222  dSindr

kr

dr
tRdtds  

 iii) de-Sitter universe[9] or Steady State  theory or non-standard 

or beyond the standard or alternative to the big-bang model is  

 

)]([ 222222222  dSindrdreRdtds Ht   

 

2.4 Modern Cosmology: 

Einstein static model of the universe was one of the great miss 

opportunities of theoretical physics .If had stuck to his original version of 

general relativity without the cosmological constant he could have 

predicted that the universe ought to be either expanding or contracting 

which means collapsing .As it happened however , it was not realized that 

the universe was changing with time until astronomers like Slipher and 

Hubble began to observe the light from other galaxies visible light is 

made up of waves ,like radio waves only with a much shorter wave length 

. If on pass the light through a prism it is decomposed into its constituent 

wave length or color like rainbow .Slipher and Hubble found the same 

characteristic pattern of wave length or colors as for the light from stars 

in our galaxy but the patterns well all shifted towards the red or longer 

wave length end of the spectrum and not surprisingly different Friedmann 

models enjoyed period of fashion that is period when they were 

considered the least available model for our own universe. However there 

was one school of thought as a simple non-Friedmann model called the 

steady-state solution based on the perfect cosmological principal that is 

universe is unchanging in space and time .Most of  these consideration 
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are largely historical in nature for although the Friedmann models are still 

basic to much of cosmological thinking the more recent decades , our 

Friedmann‟s model has emerged as the best available , at least as far as 

the origin of the universe are concerned and that is the hot big-bang 

model .In this model it is assume that there occurred a cataclysmic event 

called the big-bang .Where the universe sprang into existence and 

expanded away from a singular point .In the earlier phases the universe 

consisted of radiation at incredibly high temperature and densities to the 

universe expanded ,latter on the temperature and density fall and protons 

,electrons and neutrons emerged from the radiation both .Further the 

simple atoms such as hydrogen ,helium emerged first which followed 

later to the heavier elements .This phase can be treated mathematically 

and one of the general success of this abundances of the heavy element 

with observed abundances .     

 

 

Figure: Edwin Hubble & Vesto Slipher 

 

2.5  Standard model of cosmology: 

Recent years have witnessed enormous advance in the quantitative 

understanding of cosmology and the establishment of a Standard 

Cosmological Model. In addition to known forms of matter, Einstein's 

General Relativity and an ansatz for the space-time metric (spatially 
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homogeneous and isotropic), two mysterious elements need to be added 

in order to account for the observations. These give the name to the 

standard, CDM model: Cold Dark Matter (CDM) to explain the 

formation and dynamics of cosmic structures and a Cosmological 

Constant ( ) to account for the dimming of distant supernovae. 

The standard model of cosmology is based on the general theory of 

relativity .Einstein's discovery of general relativity enabled us to develop 

a theory of the universe which is testable and can be falsified. So 

cosmology has become a proper science which can predict events and 

explain observations. The Big Bang model of the universe which is based 

on general relativity and is in fact the standard model of the universe at 

present, has successfully passed several important tests include the 

expansion of the universe.. The standard cosmological model also needs 

to account for the origins of in homogeneities such as galaxies, stars and 

planets. In the early 1980's the inflationary model was and subsequently 

shown to be able to successfully seed galaxy formation .Now this model 

is being put to several tests by CMB experiments such as COBE, WMAP 

and (soon) PLANCK. 

 

The steadily increasing precision and wealth of data and the surprising 

findings call for a revision of the hypothesis made in the construction of 

the Standard Cosmological Model. 

As a logical construction, the standard cosmological model requires six 

hypotheses  

 

Standard Model = GR + FRW+ Initial Conditions + SM +   CDM+  
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1.General Relativity: As gravity is always an attractive interaction, it 

dominates on macroscopic distances and will be crucial for cosmological 

phenomena. 

 

2.Friedman-Robertson-Walker metric: GR is a metric theory governed 

by nonlinear partial deferential equations. A simple ansatz for the metric 

is required, which in the Standard case is based on maximal spatial 

symmetry. 

 

3.(Inflationary) Initial Conditions: The paradigm of cosmic inflation is 

able to provide initial conditions for the perturbations around the 

background metric, explains the observed value of the spatial curvature 

and further supports the choice of the metric. 

 

4.Standard Matter:  The known forms of matter and their cosmological 

effects have to be accounted for, notoriously baryons (nucleons and 

electrons), photons and neutrinos. 

 

5.Cold Dark Matter:  Structure formation requires the presence of a form 

of matter does not interact with light, usually assumed to be a new, 

weakly interacting particle species. 

 

6.Cosmological Constant: The observed acceleration of the universe can 

be explained in a simple way by the presence of an energy density that 

does not evolve in time. 

 

2.6   Derivation of Robertson-Walker metric : 

In term of Cartesian co-ordinate x 1 , x 2 , x 3  , x 4  a 3-surface of constant 

negative curvature is given by an equation  
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                        x 2

1  + x 2

2  + x 2

3   - x 2

4  = - R 2   … … … (2.1) 

Where R is a constant .The contrary of universe is necessary in order to 

ensure that the properties of homogeneity and isotropy. 

  

Let us consider the co-ordinates with their transformation  

 x 1  =  R Sinhχ Sinθ Cosφ 

 x 2 = R Sinhχ Sinθ Sinφ 

 x 3 = R Sinhχ Cosθ 

 x 4 =  R Coshχ 

Therefore we get the spatial line element on the 3-surface is given by, 

 

dσ 2  = dx 2

1  +  dx 2

2  +  dx 2

3   - dx 2

4   … … … (2.2) 

But, 

dx 1= R ( Coshχ Sinθ Cosθ dχ + Sinhχ Cosθ Cosθ dθ - Sinhχ Sinθ Sinθ dθ ) 

dx 2 = R ( Coshχ Sinθ Sinθ dχ + Sinhχ Cosθ Sinθ dθ + Sinhχ Sinθ Cosθ dθ ) 

dx 3 = R ( Coshχ Cos θ dχ - Sinhχ Sinθ dθ ) 

dx 4 = R Sinhχ dχ 

 

Squaring we get, 

 

dx
2

1 = R
2

(Coshχ Sinθ Cosφ dχ + Sinhχ Cosθ Cosφ dθ - Sinhχ Sinθ Sinφ dφ )
2  

  

=R 2 (Cosh 2 χSin 2 θCos 2 θdχ 2 +Sinh 2 χCos 2 θCos 2 θdθ 2 +Sinh 2

χSin
2
θSin

2
θdθ 2 +  2Coshχ Sinθ Sinhχ CosθCos 2 θdχ dθ - 2Coshχ Sin 2 θ 

Cosθ SinhχSinθ dχdθ – 2 Sinh 2 χ Cosθ Cosθ Sinθ Sinθ dθdθ) 

 

dx
2

2 = R
2

(Coshχ Sinθ Sinφ dχ + Sinhχ Cosθ Sinφ dθ + Sinhχ Sinθ Cosφ dφ )
2  
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       =R 2 (Cosh 2 χSin 2 θSin 2 θdχ 2 +Sinh 2 χCos 2 θSin 2 θdθ 2 +Sinh 2 χSin 2

θCos 2 θdθ 2 +  2Coshχ Sinθ Sinhχ CosθSin 2 θdχ dθ + 2Coshχ Sin 2 θ Cosθ 

SinhχCosθ dχdθ + 2 Sinh 2 χ Cosθ Sinθ Sinθ Cosθ dθdθ) 

 

dx 2

3 = R 2 (Coshχ Cos θ dχ - Sinhχ Sinθ dθ ) 2  

             

= R 2 (Cosh 2 χCos 2 θdχ 2 + Sinh 2 χ Sin 2 θdθ 2 -2CoshχCosθSinhχ Sinθ dχ 

dθ) 

 

dx 2

4 = (R Sinhχ dχ) 2  

       =  R 2  Sinh 2 χdχ 2  

 

Putting these values in equation (2.1) we get, 

dζ 2  = dx 2

1  +  dx 2

2  +  dx 2

3   - dx 2

4    

 

= R 2 [Cosh 2 χ Sin 2 θ Cos 2 θdχ 2 +Sinh 2 χ Cos 2 θ Cos 2 θ dθ 2 +Sinh 2 χ Sin 2

θ Sin 2 θ  dθ 2 +  2Coshχ Sinθ Sinhχ Cosθ Cos 2 θdχdθ - 2Coshχ Sin 2 θ 

Cosθ Sinhχ Sinθ dχdθ –2Sinh 2 χ Cosθ Cosθ Sinθ Sinθ dθ dθ) + (Cosh 2 χ 

Sin 2 θ Sin 2 θ dχ 2 + Sinh 2 χ Cos 2 θ Sin 2 θ dθ 2 +Sinh 2 χ Sin 2 θ Cos 2 θ dθ 2 +  

2Coshχ  Sinθ Sinhχ Cosθ Sin 2 θdχ dθ + 2Coshχ Sin 2 θ Cosθ Sinhχ Cosθ 

dχ dθ +2Sinh 2 χ Cosθ Sinθ Sinθ Cosθ dθ dθ) + (Cosh 2 χ Cos 2 θ dχ 2 + Sinh

2 χ Sin 2 θ dθ 2 -2Coshχ Cosθ Sinhχ  Sinθ dχ dθ) - Sinh 2 χ dχ 2 ] 

 

= R 2 [(Cosh 2 χ Sin 2 θ Cos 2 θ+ Cosh 2 χ Sin 2 θ Sin 2 θ + Cosh 2 χCos 2 θ - 

Sinh 2 χ)dχ 2  + (Sinh 2 χ Cos 2 θ Cos 2 θ + Sinh 2 χ Cos 2 θ Sin 2 θ+ Sinh 2 χ Sin

2 θ)dθ 2  + (Sinh 2 χ Sin 2 θ Sin 2 θ + Sinh 2 χ Sin 2 θ Cos 2 θ)dθ 2 ] 
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=R 2 [ dχ 2  + Sinh 2 χ dθ 2  + Sinh 2 χ Sin 2 θ dθ 2 ] 

 

=R 2 [ dχ 2  + Sinh 2 χ (dθ 2  + Sin 2 θ dθ 2 )] 

  

 Let us consider,  

 

r = Sinhχ 

                                             

Or, dr = Coshχ dχ 

                                            Or, dr = 
21 Sinh

dr


 

                                            Or, dχ = 
21 r

dr


 

So we get , 

dζ 2  = R 2 [
2

2

1 r

dr


+ 2r ( dθ 2  + Sin 2 θ dθ 2 ) ]   … … … (2.3) 

 

We know that the Einstein-Static model of the universe as follows,  

 

dζ 2  = R 2 [
2

2

1 r

dr


+ 2r ( dθ 2  + Sin 2 θ dθ 2 ) ]       … … … (2.4) 

 

Expression (2.3) & (2.4) can be combined in a single expression by 

including a parameter K in general form that takes the value  1 , 

 

dζ 2  = R 2 [
2

2

1 kr

dr


+ 2r ( dθ 2  + Sin 2 θ dθ 2 ) ]      … … … (2.5) 
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Where 3-space t = constant are Euclidean for k=0, closed with +ve 

curvature for k=1 & open with negative curvature for k=-1. Also the scale 

factor R (t) is often called the expansion factor, sometime for Einstein 

static is treated as the radius of the universe. 

Geometrical Configuration : 

The geometrical configuration of the universe involve R-W Model are as- 

 

                 (i)                                    (ii)                                      (iii) 

 

Figure: Scale-Factor R over Time t 

 

Figure (i) shows how the distance between two neighboring galaxies changes as time 

increases. It starts at zero, increases to a maximum, and then decreases to zero again. In the 

second kind of solution, the universe is expanding so rapidly that the gravitational attraction 

can never stop it, though it does slow it down a bit. 

 

Figure (ii): Shows the Separation between neighboring galaxies in this model. It starts at 

zero and eventually the galaxies are moving apart at a steady speed. Finally, there is a third 

kind of solution, in which the universe is expanding only just fast enough to avoid recollapse. 

 

In this case the separation, shown in Figure (iii), also starts at zero and increases forever. 

However, the speed at which the galaxies are moving apart gets smaller and smaller, 

although it never quite reaches zero. 
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(i) For K=1 the space is called with positive curvature ie. The 

universe is finite or the recolpsing universe. 

 

(ii) For K=0 the universe is flat. 

 

(iii)  For K=-1 the space is open with negative curvature the 

universe is infinite ie. The universe is eternal it will never 

collapse.  

2.7   Non-vanishing affine connection : 

The R-W metric can be written as , 

 

 ds 2  =  dt 2 - R 2 (t)[
2

2

1 kr

dr


+ 2r ( dθ 2  + Sin 2 θ dφ 2 ) ]    … … … (2.6) 
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The Christoffel symbol can be calculated from the equation,  
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
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
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
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2

21  
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
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 . 
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3
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3
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2
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1
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
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
 (- r 2 R 2 Sin 2 θ)} 

             

             = Cotθ  

 3

23  = Cotθ  = 
3

32  

 

Therefore non-zero affine connection of the metric tensor of R-W metric 

using the Chrisstoffel symbol are, 

0

11    21 kr

RR




 ; 0

22  
2rRR   ; 0

33  22SinrRR   

 

1

01   =  
0

10  =  
2

02   =  
2

20  = 
3

03  =  
3

30  =  
R

R
   

1

11  =  
)1( 2kr

kr


 ; 

1

22  =  - )1( 2krr   ; 
1

33  = - 22 )1( Sinkrr         …(2.8) 

2

12  = 
2

21  = 
3

13  = 
3

31 =  
r

1
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2

33  =   -Sinθ Cosθ 

3

23  = 
3

32  = Cotθ    

 

 

2.8 Calculation of finding the value of R00, R11, R22, R33 & R: 

The Ricci tensor is define by the contraction  

 jkR  =   
i

rk   
r

ji  -   
i

ri  
r

jk  +  -   i

ji
kx


   i

jk
ix


 … … … (2.9) 

 00R  =   
i

r0   
r

i0  -   
i

ri  
r

00  +  -   i

0i0


x


   i

00
ix


… … … (2.10) 

Now,  

i
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r
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0
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r
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1
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r
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2
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r

02 +
3
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r
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                 =
0
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0
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1
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1
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2
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2
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3
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3
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                 = 0  + 
R

R
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R

R
 + 

R

R
 . 

R
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 + 

R

R
 . 

R

R
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2
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i
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r
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

x


 =  )    ( 3
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2
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1
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0

00 
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
 

            =  
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
[0 + 

R

R
+ 

R

R
+ 

R
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2
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R

R

R

R 
  

And ,  
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     i

00
ix


= 0 

Now putting these value in equation (2.10) we get ,  

 

00R = 
2
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R

R
 - 0 + 

2
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R

R

R

R 
  - 0 
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R
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i
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r
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
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11
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… … … (2.11) 

Now , 
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Thus from equation (2.11) we get , 
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Similarly we get, 

                      )22( 22

22 kRRRrR    
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                     )22( 222

33 kRRRSinrR    

Therefore, 
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                                                                                                     … … … (2.12) 
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2

2 )(6

R

kRRR
R





     … … … (2.13) 

 

2.9  Different components  of  energy  momentum tensor :  

We have the energy momentum tensor  

  pgUUpT  )(     … … … (2.14) 

We have, 

                         
dt

dx
U


   

1
0

0 
dt

dt

dt

dx
U   &   0321  UUU  

)0,0,0,1(U      &    )0,0,0,1(U  

Again we know from FRW model, 

 

ds 2  =  dt 2 - R 2 (t)[
2

2

1 kr

dr


+ 2r ( dθ 2  + Sin 2 θ dφ 2 ) ] 

00g  = 1   ,   
2

2

11
1 kr

R
g




   ,  22g  = - r 2 R 2   ,  33g  =  - r 2 R 2 Sin 2 θ 

00g  = 1  ,   =  
2
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R

kr
  ,  22g  = 

22

1

Rr


  ,  33g  = 

222

1

SinRr


 

 

Now , 

 

000000 )( pgUUpT    

          =  ( p +ρ ) – p  

          = ρ 

11g
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111111 )( pgUUpT     

         =  0 - 11pg   

         =  - p{
2

2

1

)(

kr
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


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222222 )( pgUUpT    

      =   0 - 22pg  

      =  - p (- r 2 R 2 ) 

     = pr 2 R 2    

 

333333 )( pgUUpT    

        =   0 - 33pg  

        = - p (- r 2 R 2 Sin 2 θ)  

      = pr 2 R 2 Sin 2 θ 

 

Again ,  
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000000 TggT  1 . 1 . ρ = ρ 
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 22

222222 TggT {
22

1

Rr


}.{

22

1

Rr


}. pr 2 R 2   = 

22 Rr

p
 

 33

333333 TggT {
222
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
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1
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
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So we get  , 

00T  ρ                                              00T  ρ 

11T  
2

2

1 kr

pR


             &               11T

2

2 )1(

R

krp 
             

22T  pr
2

R
2

                                22T
22 Rr

p
                … … … (2.15)  

33T  pr
2

R
2

Sin
2
θ                       33T

222 SinRr

p
 

 

Which are the components of the energy momentum tensor. 

 

2.10  Derivation of time-time components : 

 Einstein‟s Field equation [12] are given by, 

 GTRgR 8
2

1
  … … … (2.16) 

Where T  is the energy momentum tensor of the source producing the 

gravitational field and G is the Newtonian gravitational constant. For 

perfect fluid (means that type of fluid which has no viscosity)  T  takes 

the following form, 
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    pgUUpT  )(    … … … (2.17) 

Where ρ is the mass energy density . p is the pressure and U  is the 4-

velocity vector of matter is given by ,  

dt

dx
U


  )0,0,0,1(  

So the  4-velocity are the same as the contravariant given by , 

)0,0,0,1(U  

So that zero-zero component of T  are , 

000000 )( pgUUpT     =  ( p +ρ ) – p  = ρ 

Thus equation (2.16) becomes for zero-zero component , 

000000 8
2

1
GTRgR   

Or,   
R
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 - 2
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kRRR  
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                     Or , 2
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R
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                     Or, 
2

2
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8
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R

R








 
 


2

2

3

8

R
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H 


     … … … (2.18) 
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Which is the solution of Einstein equation for time-time or zero-zero 

component .Again we have Einstein equation, 

 GTRgR 8
2

1
  

For one-one component,  
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R
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


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3

8
8

2
2



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


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G

R )3(
3

4
 


       … … … (2.19) 

Which is the Space-space component. 
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Again, we have Einstein field equation can be written as, 

 GTRgR 8
2

1
  

This can be written as, 

 GTRgR 8
2

1
  

Taking the co-varient derivative on both sides we get, 
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R

krp 
+ 

2rRR  . 22 Rr

p
+ 22SinrRR  .

222 SinRr

p
+           

ρ[
R

R
+

R

R
+

R

R
] = 0 

 

Or, 
R

Rp 
+

R

Rp 
+

R

Rp 
+

R

R3
 = 0 
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Or, 
R

Rp 3
+

R

R3
 = 0 

0)(
3

  p
R

R
      … … … (2.20) 

 

We have equation of state, 

 )1( p    ; 21       … … … (2.21) 

Putting,   op  ,1  

  0)(
3

 p
R

R
 

Or, 
R

R3
 =0 

Or, 



+ 

R

R3
 = 0 

 

Integrating,                    

                 0loglog3log RR   

        Or, RR log3loglog 0   

        Or, 3

0 logloglog  RR  

        Or, 
3

0

 RR  

        
3 R         … … … (2.22) 

Which is known as matter-dominant universe. 
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Putting, 
3

4
 in equation (2.6) we get 

3


p  

Then,  

  0)(
3

 p
R

R
 

   Or,   0
3

4
.

3




R

R
 

   Or,   0
4


R

R




 

Integrating,                    

                   0loglog4log RR   

       Or,  RR log4loglog 0   

      Or, 
4

0

 RR  

     
4 R      … … … (2.23) 

 

Which is the radiation dominant universe. 

 

Combining equation (2.22) & (2.23) generalizes the following relation , 

 3 R  

If we put 2  in equation (2.6) we get p  

  0)(
3

 p
R

R
 

                           Or,  02.
3


R

R
        [ p ] 
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Or, 
R

R6
 =0 

Or, 



+ 

R

R6
 = 0 

Integrating,                    

                 0loglog6log RR   

        Or, RR log6loglog 0   

        Or, 
6

0 logloglog  RR  

        Or, 
6

0

 RR  

      
6 R            … … … (2.24) 

 

Which is condition for that stiff fluid. 

 

2.11  The Cosmic Microwave Background: 

The Big Bang theory predicts that the early universe was a very hot place 

and that as it expands, the gas within it cools. Thus the universe should be 

filled with radiation that is literally the remnant heat left over from the 

Big Bang, called the “Cosmic microwave background radiation”, or 

CMB. 

2.12  Discovery of the Cosmic Microwave Background: 

The existence of the CMB radiation was first predicted by Ralph Alpher , 

Robert Herman and George Gamow in 1948, as part of their work on Big 

Bang Nucleosynthesis [1]. It was first observed inadvertently in 1965 by 
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Arno Penzias and Robert Wilson at the Bell Telephone Laboratories in 

Murray Hill, New Jersey. The radiation was acting as a source of excess 

noise in a radio receiver they were building. Coincidentally, researchers 

at nearby Princeton University, led by Robert Dicke and including Dave 

Wilkinson of the WMAP science team, were devising an experiment to 

find the CMB. When they heard about the Bell Labs result they 

immediately realized that the CMB had been found. The result was a pair 

of papers in the Astrophysical Journal (vol. 142 of 1965): one by Penzias 

and Wilson detailing the observations, and one by Dicke ,Peebles, Roll, 

and Wilkinson giving the cosmological interpretation. Penzias and Wilson 

shared the 1978 Nobel Prize in physics for their discovery [47]. 

 

Figure: Arno Penzias and Robert Wilson (Discovery of the Cosmic Microwave Background) 

Today, the CMB radiation is very cold, only 2.725° above absolute zero, 

thus this radiation shines primarily in the microwave portion of the 

electromagnetic spectrum, and is invisible to the naked eye. However, it 

fills the universe and can be detected we look. In fact, if we could see 

microwaves, the entire sky would glow with a brightness that was 

astonishingly uniform in every direction. The picture at left shows a false 

color depiction of the temperature (brightness) of the CMB over the full 

sky (projected onto an oval, similar to a map of the Earth). The 

temperature is uniform to better than one part in a thousand! This 
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uniformity is one compelling reason to interpret the radiation as remnant 

heat from the Big Bang; it would be very difficult to imagine a local 

source of radiation that was this uniform. In fact, many scientists have 

tried to devise alternative explanations for the source of this radiation but 

none have succeeded[65]. 

 

2.13  Why study the Microwave Background : 

Since light travels at a finite speed, astronomers observing distant objects 

are looking into the past. Most of the stars that are visible to the naked 

eye in the night sky are 10 to 100 light years away. Thus, we see them as 

they were 10 to 100 years ago .We observe Andromeda, the nearest big 

galaxy, as it was about 2.5 million years ago. Astronomers observing 

distant galaxies with the Hubble Space Telescope can see them as they 

were only a few billion years after the Big Bang. (Most cosmologists 

believe that the universe is between 12 and 14 billion years old.) 

The CMB radiation was emitted only a few hundred thousand years after 

the Big Bang, long before stars or galaxies ever existed. Thus, by 

studying the detailed physical properties of the radiation, we can learn 

about conditions in the universe on very large scales, since the radiation 

we see today has traveled over such a large distance, and at very early 

times. 

2.14 The origin of the Cosmic Microwave Background: 

One of the profound observations of the 20th century is that the universe 

is expanding. This expansion implies the universe was smaller, denser 

and hotter in the distant past. When the visible universe was half its 

present size, the density of matter was eight times higher and the cosmic 

microwave background was twice as hot. When the visible universe was 

one hundredth of its present size, the cosmic microwave background was 
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a hundred times hotter (273 degrees above absolute zero or 32degrees 

Fahrenheit, the temperature at which water freezes to form ice on the 

Earth's surface). In addition to this cosmic microwave background 

radiation, the early universe was filled with hot hydrogen gas with a 

density of about 1000 atoms per cubic centimeter. When the visible 

universe was only one hundred millionth its present size, its temperature 

was 273 million degrees above absolute zero and the density of matter 

was comparable to the density of air at the Earth's surface. At these high 

temperatures, the hydrogen was completely ionized into free protons and 

electrons. 

Since the universe was so very hot through most of its early history, there 

were no atoms in the early universe, only free electrons and nuclei. 

(Nuclei are made of neutrons and protons). The cosmic microwave 

background photons easily scatter off of electrons. Thus, photons 

wandered through the early universe, just as optical light wanders through 

a dense fog. This process of multiple scattering produces what is called a 

“thermal” or “blackbody” spectrum of photons. According to the Big-

Bang theory, the frequency spectrum of the CMB should have this 

blackbody form. This was indeed measured with tremendous accuracy by 

the FIRAS experiment on NASA's COBE satellite[65]. 
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Figure: This figure shows the prediction of the Big Bang theory for the energy 

spectrum of the cosmic microwave background radiation compared to the observed 

energy spectrum.  

 

The FIRAS experiment measured the spectrum at 34 equally spaced 

points along the blackbody curve. The error bars on the data points are so 

small that they cannot be seen under the predicted curve in the figure! 

There is no alternative theory yet proposed that predicts this energy 

spectrum. The accurate measurement of its shape was another important 

test of the Big Bang theory. 

 

2.15   Cosmological parameters : 

There are some parameters which define the evolution and dynamics of 

the system qualitatively. In fact a model suggested to explain any 

phenomena is a basic frame which only by defining its parameters can be 

confronted with observations and tested. A good model is a model which 

can explain the evolution of a system can predict correctly the events and 

has also a few numbers of free parameters. Our standard model of 

cosmology (together with its companion theories such as in inflation), has 

also several free parameters which need to be determined from 
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observations. In the standard model, the universe is a perturbed FRW 

space-time with dynamics governed by the Einstein equations. 

 All cosmological components with different densities and different 

equations of state (wi =
i

ip


) , pi is the pressure and ρi is the energy 

density of the ith component) are responsible for the overall dynamics of 

our cosmological system. The Friedmann equation, expressed in terms 

of the cosmological redshift z(t) = 10 
tR

R
 becomes  

2

0

)1(3

02

0

2

)1)(1()1( zz
H

H

i

i

w

i

i
i  

   … … … (2.25) 

Below we briefly comments on some important cosmological parameters- 

 

(i) Hubble parameter: 

The value of the Hubble parameter as a function of redshift was given in 

eq
n
 (2.25). Its present value 

0
)( 0

0 tt

tR

R
H 


 , denotes the expansion rate at 

the current epoch. A recent measurement of the Hubble constant from the 

Hubble Space Telescope Key Project estimated H0 = 72 ± 3(statistical) ± 

7(systematic) km sec
-1

 Mpc
-1

 by using the empirical period-luminosity 

relation for Cepheid variable stars to obtain distances to 31 galaxies. This 

result is in very good agreement with estimates of H0 derived from 

observation of the cosmic microwave background made by the WMAP 

satellite [64]. 
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(ii )Curvature parameter: 

The observed value of the curvature parameter Ω0k = -k/R0
2
H0

2 
= 1-

  ii 0  provides strong support for a spatially flat universe as originally 

predicted by the inflationary scenario .This has important implications for 

the total matter density of the universe. 

 

2.16  Tensor to scalar ratio : 

Inflation generates perturbations by amplifying quantum fluctuations and 

stretching them to astrophysical scales through rapid expansion. The 

simplest inflationary scenarios based on a single scalar field generate both 

scalar field perturbation as well as tensor metric fluctuations (gravity 

waves). 

Fluctuations in the scalar field subsequently result in structure formation 

in the universe via gravitational instability, while the tensor metric 

fluctuations give rise to a relic gravity background. Both tensor and scalar 

fluctuations perturb the CMB. The ratio between the tensor power 

spectrum and scalar power spectrum in the CMB is characterized by the 

tensor to scalar ratio, r. This ratio can be derived by analyzing the cosmic 

microwave background data and comparing with theoretical predictions 

from different inflationary scenarios. In the following we briefly discuss 

the tensor to scalar ratio for a single scalar  field (slow roll) inflation. 

Inflation leads to a period of early acceleration R > 0 during which 

0)
1

( 
RHdt

d
   … … … (2.26) 

in other words, during the inflationary epoch the comoving Hubble 

length, 1/RH  decreases with time[57]. 
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But from equation (2.26) we have  

0.

.)
1

()()
.

1
()

1
(

2

2

2



 

R

R
ie

R

R
RR

Rdt

d

RR

R

dt

d

R
RRdt

d

RHdt

d












 

 We can write R < 0   …. … … (2.27) 

 Where R  is the acceleration  

 

We also know that acceleration can not be less than zero ie. it is positive . 

So from equation (2.27) we can say that  is deceleration. 

Again we have the equation 

 


 )3(
3

4
p

G

R

R






 

From this equation we find a necessary condition for inflation is , 

p3  < 0 

But it is not possible .Because the pressure (p) & density (  ) is always 

positive and so their addition will also be positive.  

 

So we see that, in order to obtain inflation, we need a material with the 

very unusual property of negative pressure (similar to   or any other 

candidate of dark energy, but here it must be a dominant agent by a huge 

factor and also it needs to decay subsequently to baryons, dark matter and 

radiation). Scalar fields are good candidates for our purpose. 

R
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From energy momentum tensor we get , 

  pgUUpT  )(   … … … (2.28) 

 

And we also have , 

)](
2

1
[  

 VgT    … … … (2.29) 

From these equation we get , 

)](
2

1
[  

 Vg  …  (2.30) 

 











xx
pgUUp )( )](

2

1
[  

 Vg      

…  … …(2.31) 

Again we know, 

dt

dx
U


   

1
0

0 
dt

dt

dt

dx
U   &   0321  UUU  

 

)0,0,0,1(U      &    )0,0,0,1(U  

 

for  0  we get from equation (2.31), 


 pgUUp  )(
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 0000)( pgUUp  )](
2

1
[0000








 
 Vg

xx
  

     pp )(  )](
2

1
[ 







 
 V

tt
  

       . )](
2

1
[  

 V  

For , 0  we get, 

 2  )](
2

1
[ 0

0  V  

  2  )](
2

1
[

00









V

xx
  

  2  )](
2

1
[  V  

    = )(
2

1 2  V
  … … … (2.32) 

Which is the density of the dynamic system. 

Again putting 1 we get from equation (2.6) , 

 1111)( pgUUp   

   110 pg  

  11pg  

)](
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[1111
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 p                 … … … (2.33) 

For , 0  we get, 

p  

                            p  

                            p )](
2

1
[  V  

                              p )(
2

1 2  V
  … … … (2.34) 

If we put 3,2,1  then the first part of R.H.S of equation (2.33) will be 

zero because    is a function of  t only. 

Similarly putting 3,2 we will get the same result . 

 

So finally we can write , 

    = )(
2

1 2  V
 

                            p )(
2

1 2  V
       … … … (2.35) 

where )(V  is the potential of the scalar field and 2

2

1
 is its kinetic 

energy. Next, by assuming the scalar field to be the dominant component 

in a spatially flat universe, 

)](
2

1
[  

 V

)](
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1
[  Vo

o 

)](
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1
[ 








V
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
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We can derive the following equations describing the inflationary era: 

2

2

3

8
)(

R

kG

R

R



 

For flat universe, k=0  

So,                           0
3

8
)( 2 

G

R

R
 

                       


3

1
.

3

82 G
H   


3

1
.

1
2

2

plM
H  [ )(

2

1 2  V
] 


2

2

3

1

plM
H  [ )(

2

1 2  V
]    … … … (2.36) 

Where gG
M pl

6

2
10342.48

1    

Which is called the reduced Planck mass .From energy conjurvative we 

have , 


;T =0 

 

 … … … (2.37) 

From equation (2.35) we get , 

    = )(
2

1 2  V
  … … … (2.38) 

                                             0)(
3

  p
R

R

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                               p )(
2

1 2  V
 

Adding,          
2 p           … … … (2.39) 

Differentiating (2.38) with respect to t we get, 

dt

d

dt

d
)( [ )(

2

1 2  V
] 

                             )}({)2(
2

1
 V

dt

d
   

                           
dt

d
V

d

d 



 )}({   

                              )(V    … … … (2.40) 

 

Now putting the values of  (2.39) &  (2.40) in equation (2.37) we get , 

  

0
3

)(
2


R

R
V







 

                                     03)(    HV  

                                     )(3  VH    

                                        


d

dV
H   3    … … … (2.41) 

To satisfy the inflationary condition,  p3  < 0 we must have 

)(2  V which arises for sufficiently flat potentials. It is interesting 
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that even if we start with a non-flat spatially geometry, a suitably flat 

potential makes the curvature term in the Friedmann equation less 

important as inflation gets underway. In fact it is one of the predictions of 

inflation that the geometry of the universe must flatten towards the end of 

inflation which is indeed in agreement with recent CMB observations. 

The most common approach to studying single field inflation is by means 

of the slow-roll approximation. In this approximation we neglect the 2  

term in comparison with V( ) and we also assume that   must be 

negligible in equation (2.41) 


2

2

3

)(

plM

V
H


  

                                  &            )(3  VH   

Where )(V  =
d

dV
 .The slow-roll approximation translates into the 

following rewuirements for the slow-roll parameters   &   
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In the slow-roll approximation the scalar and tensor spectra can be 

written as , 

   … … … (2.42) 

 

    … … … (2.43) 
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Where in each case, the expressions in the right hand side are calculated 

when the scale k is equal to the Hubble radius during inflation. The 

symbol   indicates the slow roll approximation has been used, which is 

expected to be accurate to a few percent. As a result one can compute the 

spectral index in  

1
][)(





 sn

sR
k

k
AkP  

Becomes ,                              261 sn  

One can also compute ngrav for the gravity waves by defining Pgrav(k) 

=Agrav(k/k*)
n

grav  

2gravn  

and the tensor to scalar ratio 

 
grav

R

grav
n

kP

kP
r 816

)( *

*
   

 

which is also known as the consistency equation. The five-year WMAP 

data has given the upper limit on the tensor to scalar ratio r < 0:43 (with 

95% CL), for the standard CDM model assuming a power-law 

primordial spectrum. 

 

2.17  Beyond the Standard model : 

In this section we briefly discuss extensions to the standard cosmological 

model .There are possibilities that our universe may be much more 

complicated than the standard model introduced in the previous section 
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.In addition the standard of cosmology assumes as adiabatic & Gaussian 

initial perturbations .In general primodial perturbations can be both 

adiabatic & isocurvature & the possibility of non-Gaussian fluctuations 

has also been widely discussed in the literature. 

The ionizations history of the universe too can be much more 

complicated than in the standard model which assumes rapid ionization 

.But observational evidence is mixed and may be we have to improve our 

analysis with a better & more complicated approximation which may 

result in a change to our basic set of cosmological parameters. 

Properties of dark matter can differ from the assumptions of the standard 

model where we assume the dark matter has no significant interaction 

with other matter and that its particles have a low velocities .Any change 

in this assumption will directly affect gravitational clustering  & the 

properties of large scale structure .Variation of the fundamental constants 

on cosmological scales can be another extension to the standard model of 

cosmology .We can also ask whether the general theory of relativity is 

valid at all epochs or not Braneworld models and f(R) theories address 

this important issue .Topology of the universe is another open question 

which could add some more parameters to the above points there are two 

very important extensions to the standard model which are within our 

observational reach .The first one is model of dark energy with different 

properties in comparison with cosmological constant &the second one is 

non-power law form of the primordial perturbation spectrum .  

 

2.18 The redshift : 

At first we try to understand how the nebular redshift found by Hubble & 

Humason is accounted for by the Robertson-Walker model .We begin by 
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recalling that the basic units of Weyl’s postulates are galaxies with 

constant co-ordinates x
µ .

We can easily identify the x
µ 
with the (r,θ,θ) of 

the Robertson-Walker spacetime .Thus each galaxy has a constant set of 

co-ordinates (r,θ,θ). This co-ordinate frame is often referred to as the 

cosmological rest frame .As observers we are located in our galaxy which 

also has constant (r,θ,θ) co-ordinate without loss of generality we can 

take r = 0 for our galaxy .Although this assumption suggests that we are 

placing ourselves at the centre of the universe , it does not confer any 

special status on us .Because of the assumption of homogeneity any 

galaxy could be chosen to have r = 0 .Our particular choice is simply 

dictated by convenience . 

Consider a galaxy G ,at (r,θ,θ) emitting light waves towards us .Let us 

denote by t0  the present epoch of observation .At what time should a light 

wave leave G1 in order to arrive at r=0 at the present time t = t0 . 

To find the answer to this question we need to know the path of the wave 

from G1 to us .Since light travels along null geodesics .We need to 

calculate the null geodesic from G1 to us. 

From the symmetry of a speccetime we can guess that a null geodesic 

from r = 0 to r = r1 will maintain a constant spatial direction .That is we 

expect to have θ = θ1 & θ = θ1 all along the null geodesic .This guess 

proves to be correct when we substitute these values into the geodesic 

equations. 

Accordingly we will assume that only r & t change along the null 

geodesic .Next we recall that a first integral of the null geodesic equation 

is simply ds=0 .For the Robertson-Walker line element this gives us, 
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21 kr

Sdr
Cdt


  … … … (2.44) 

 

Since r decreases as t increases along this null geodesic .We should take 

the minus sign in the  above relation .Suppose that the null geodesic left 

G1 at time t1 .then we get from the above relation , 





10

1 0
21)(

rt

t kr

dr

tS

Cdt
     ... … … (2.45) 

 

Thus if we know s(t) & k ,we know the answer to our question . 

However consider what happens to successive wave creates emitted by 

G1 .Suppose that wave creates were emitted at t1 & t1+∆ t1 & received by 

us at t0 & t0+∆ t0 respectively .Then similarly to equation (2.45) we have , 


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tt kr
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tS
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   … … … (2.46) 

If S(t) is a slowly varying function so that it effectively remains 

unchanged over the small internals ∆t0 & ∆ t1  .We get by subtraction of 

(2.45) & (2.46)  
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2.19  The Luminosity distance: 

Since the Friedmann model are frequently used to interpret cosmological  

observations .We will now derive some of the observable quantities in 

these models ,starting with the Luminosity distance .Our aim is to express 

the final answer in terms of the two parameters the characterize a 

Friedmann model : H0 & q0  

 

We use equation   



10

1 0
21)(

rt

t kr

dr

tS

Cdt
 to relate r1  the radial 

coordinates of the galaxy G1 to the time t1 & to its redshift z : 
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Then we have , 
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The Luminosity distance is therefore given by, 

D1 =  r1  S0 (1+z) 

])1()1[(
2

2

1

0

zz
H

C
  

 

2.20  The Hoyle-Narlikar cosmologies : 

We consider a theory of gravitation that may claim to have given the 

most direct quantative expression to Mach‟s principal .This theory was 

first proposed in 1964 Fred Hoyle & J. V. Narlikar .We will refer to it 

here as the HN theory and to the cosmological model based on it as HN 

cosmologies .Throughout this discussion we will set c =1 . 

     

Figure: Fred Hoyle & J. V. Narlikar 

Like general relativity & Brans-Dicke theory the HN theory is formulated 

in the Riemannian spacetime .There is one important difference however 
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between this theory & all the cosmological theories we have discussed so 

far .The difference lies in the fact that general relativity  , the Brans-

Dicke theory & so on are pure field theories .Whereas the HN theory 

arose from the concept of direct interparticle action .The difference 

between the two types of theories is best seen from a description of 

electromagnetism to which we will frequently refer in this section & the 

next comparison until the advent of Maxwell‟s field theory , it was 

customary to describe electric & magnetic interactions as instance of 

direct action at a distance between particles .The success of Maxwell’s  

theory established the concept of action at a distance . 

Since the Mach‟s principal (implying as it does a connection between the 

local and distant) suggest action at a distance even an early convert to it 

like Einstein later became skeptical regarding its validity .Einstein‟s 

objections were based on the belief that action at a distance was supposed 

to be instantaneous and hence inconsistent with relativity .By the early 

1960s however it had become clear that action at a distance can be made 

consistent with relativity and also successfully describe electrodynamics , 

besides having interesting cosmological implications .Since Hoyle & 

Narlikar had played an active role in these development , they naturally 

adopted an action at a distance approach to Mach’s principal . 

Accordingly we use here the some what unfamiliar notation of action at a 

distance .Let us denote by a, b, … … … the particles in the universe ma & 

ea being the mass and charge of the a
th
 particle .As implied by Mach the 

mass  ma is not entirely an intrinsic properties of particle a , it also owes 

its origin to the background provided by the rest of the universe[43]. 

 

 



106 
 

To express this idea quantitatively write, 

ma (A)  = )()( Am
ab

b

a


  

The above expression means the following. 

At atypical world point A on the world line of particle a , the mass 

acquired by a is the nett sum of contributions from all other particle b(  a) 

in the universe .The contribution from b at A is given by the scalar 

function  )(bm  (A) . 

The coupling constant a is intrinsic to the particle a .Notice however that 

if a were the only particle in the universe ma = 0 & we have conclusion 

arrived. 

 

               Action of distance                               Field theory 

 

                     (a)                                                      (b) 

 Figure : (a) In the action at a distance picture the influence from the point A or the 

world line   of particle a is transmitted directly across  spacetime  (along the arrow line) to 

the point  B on the world line of particle b . 

Figure : (b) In field theory the field in the neighborhood of A (shown by shaded region) is 

disturbed the disturbance prorogates across spacetime as a wave in the ambient field & 

reaches the neighborhood of B (also shaded in the shaded region) .The disturbance then exerts 

a force on particle b at B[43].

A 

B 

A 

B 
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2.21  Derivation of de-Sitter model of the Universe : 

For the Robertson-Walker metric in which the matter is in the from of a 

perfect fluid of mass energy density ρ & pressure p .So that energy 

momentum tensor is given by , 

 

  pgUUpT  )(   … … … (2.48) 

With )0,0,0,1(U  as we are in co-moving co-ordinates. 

The cosmological principal which leads to the Robertson-Walker line 

element [15,60] namely, 

ds 2  = c 2  dt 2 - R 2 (t)[
2

2

1 kr

dr


+ 2r ( dθ 2  + Sin 2 θ dθ 2 ) ]   … … … (2.49) 

  

The Einstein modified field equation are, 

 GTgG 8    … … … (2.50) 

Where   is the cosmological constant & T  is the energy momentum 

tensor of the source producing radiation , gravitational matter dust , cloud 

, clusters , super clusters etc. and G is the Newtonian gravitational 

constant which is equal to one & G  is called the Einstein tensor  . 

 

Now putting equation (2.48) in equation (2.50) we get , 

 8
2

1
 gRgR ])[(  pgUUp   
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When 0 , we get 

])[(8
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0000000000 pgUUpgRgR    
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For early universe, ρ = 0 , P = 0  &  k = 0 

So the above equation becomes,                                                                                               
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   Hdt
R

dR
 

   logR   =  Ht  +  logR0 

 

 R   =  R0  exp(Ht) 

Which is called the de-Sitter model or steady-state model of the universe. 

Thus the de-Sitter line element is given by , 

 

)]([ 2222222

0

22  dSindrdreRdtds Ht     … … … (2.51) 

Where, R   =  R0  exp(Ht)  is not an an expantion but the expantion is an 

exponential . 

2.22  The steady-state theory of the universe : 

In 1948 there appeared a strong alternative to the evolutionary 

cosmologies based on general relativity  in the form of the steady-state 

theory .The theory was proposed in two different versions , one by Fred 

Hoyle and the other by Hermann Bondi and Thomas Gold .Both versions 

adopted as a starting point  the “Perfect Cosmological Model” ,meaning 

the assumption that as far as the large-scale features of the universe are 

concerned there is neither a privileged position nor a privileged time : the 

universe is spatially and temporally homogenous .Since Hoyle , Bondi [4] 

and Gold accepted the expansion of the universe , they were forced to 

introduce the radical hypothesis that matter‟s continually created 

throughout the universe assumedly in the form of hydrogen atoms or 

protons & electrons (without the hypothesis the matter density would 

decrease over time , contrary to the perfect cosmological principle) .As 
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shown by Hoyle ,it followed from the theory that the average density of 

matter was given by 
G

H




8

3 2

  

Where G is Newton‟s gravitational constant & the Hubble parameter H 

was a true constant contrary to the situation in the Big-Bang models 

(where H is a measure of the age of the universe) .To cancel the thinning 

out of matter as a result the expansion ,it was necessary to postulate 

creation of new matter at a rate of 3ρHor about 10
-43

g/cm
3
s .This 

exceedingly small value corresponding to the formation of three new 

hydrogen atoms per cubic meter per million years was far too small to 

have direct observational effects .Bondi and Gold further concluded that 

metric of the steady-state universe must be of the same type as in de-

Sitter model of 1917 ie. a flat space (curvature parameter k=0) expanding 

exponentially .It followed that the deceleration parameter ,which is a 

dimensionless measure of the slowing down of the expansion and given 

by 020 ][
RH

R
q


  had the value 0q =-1 . 

 

          

                          (i)                                                        (ii) 

Figure : Thomas Gold , Hermann Bondi & Fred Hoyle (from left)  in both picture (i) & (ii) 

Shortly after the publication of the papers of Hoyle ,Bondi and Gold ,the 

steady-state theory was met with strong opposition the result being a 

protracted controversy the lasted until the mid -1960s.The critics of the 
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theory accused it of building on impulsible hypothesis (such as the 

continual creation of matter) and being unable to account for observations 

.In order to counter these and other objections to the steady-state theory, 

Hoyle proposed to modify it in various ways, whereas the more rigid 

version of Bondi and Gold allowed virtually no changes. William 

McCrea, an early convert to the theory, argued in 1951-53 that continual 

creation of matter could be understood within the framework of standard 

general relativity. According to McCrea, matter creation did not really 

conflict with the law of energy conservation, and the theory also 

promised a unification of quantum mechanics and cosmology.  

As far as observational tests were concerned, the situation remained 

unsettled for several years. The critics of the steady-state theory believed 

it could be shot down quickly, but this turned out not to be the case; on 

the contrary, the theory fared remarkably well. For example, attempts by 

Allan Sandage and his collaborators to test the theory by comparing its 

predicted redshift-magnitude relationship with observations failed to 

yield an unambiguous result. Different world models have different 

deceleration parameters and the steady-state value of q0 = -1 

distinguished the theory from most relativistic models. By measuring the 

redshift and magnitude of distant galaxies it would in principle be 

possible to determine q0, and hence to decide if the steady-state theory 

was allowed. However, although Sandage concluded that 

 q0 > -1 , his data were not good enough to clearly rule out the theory.  

The most serious challenge came from the new science of radio 

astronomy, and in the late 1950s data of radio sources obtained by Martin 

Ryle‟s group in Cambridge indicated an incurable disagreement with the 

prediction of the steady-state theory. A few years later, when the data had 

stabilized, nearly all radio astronomers agreed that they provided 
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conclusive evidence against the steady-state theory. The supporters of the 

theory responded by producing alternative explanations of the radio 

source counts or by suggesting modified steady-state versions designed to 

cope with the problems. For a short while these responses kept the theory 

alive, but not much more.  

In 1965 Robert Wilson and Arno Penzias unexpectedly detected an 

isotropic cosmic background of microwaves at wavelength 7.3 cm, which 

immediately was interpreted as a relic of the hot big bang. In fact, the 

background radiation had been predicted by Ralph Alpher and Robert 

Herman as early as 1948, but without attracting any attention. The 

sensational discovery of 1965 had no natural explanation within the 

framework of classical steady-state theory. In effect, the cosmic 

microwave background killed an already dying theory. However, the 

refutation of the classical steady-state theory, whether in the Hoyle 

version or the Bondi-Gold version, did not imply that the general idea of 

an eternally expanding universe with continual creation of matter had to 

be abandoned.   

 

2.23  Steady-state model: 

Astronomer Fred Hoyle frid a noble way of deploing field equation of 

general relativity starting with original research by Herman-Bondi and 

Thomas Gold  in 1948 .He devised a non-static model of the universe 

whose general appearance remain unaltered forever .This is the steady-

state model of continuous creation .Hoyle extended the cosmological 

principle to arrive at following – 



113 
 

“Not only does the universe appear the same to all observers but it looks 

the same in perpetuity.” 

The steady-state model has no singularity no beginning & no end .Space 

expands exponentially with time forward infinity .The Hubble constant 

(H) does not vary with time as in the evolving models where it decreases 

with time .Galaxies form evolve & disappear while the average density of 

matter in space remain constant . 

To keep the population of galaxies or average density of matter, constant 

.We have to assume that new matter hydrogen is continuously being 

created. 

As we know that Hubble constant 
)(

)( 0

tR

tR
  is an observable parameter .So 

that it must be independent of the present time in a steady-state model. 

 

Letting H denotes the permanent value of the Hubble constant .We have 

thus,                                
)(

)( 0

tR

tR
H


        for all t 

Integrating with respect to t we get, 

 

Ht + c =ln R(t) 

 

  ln R(t) = Ht +c  … … … (2.52) 

But if for t0 

R(t0) = R0 



114 
 

 

 ln R(t0) = Ht0 + c 

 

   ln R0 = Ht0 + c   … … … (2.53) 

 

Subtracting (2.53) from (2.52) we have, 

 

ln R(t) - ln R(t0) = H(t- t0 ) 

 

 )(
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)( ttH
e

tR

tR 
  
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ttH
eRtR


  

 

                                         HteRtR 0)(   

 

                 
HtetR )(

      … … … (2.54) 

Which is the steady-state model of the universe where 
T

H
1

 the red-

shift parameter. 
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3.1 Introduction: 

It is important to emphasize that our discussion in this chapter is based 

entirely on Classical and Quantization concept. 

The critical fact that we shall need from quantum field theory is that 

quantum fields can produce an energy density that mimics a cosmological 

constant. The discussion will be restricted to the case of a scalar field θ 

(complex in general, but real field). As it is presently understood, and 

stated in the most general terms, inflation involves the dynamical 

evolution of a weakly coupled scalar field that was at one time displaced 

from the minimum of its potential. As such, the key to understanding the 

mechanics of inflation is scalar field dynamics in the expanding universe. 

The restriction of scalar fields is not simply for reasons of simplicity, but 

because the scalar sector of particle physics is relatively unexplored. 

While vector fields such as electromagnetism are well understood, it is 

expected in many theories of unification that additional scalar fields such 

as the Higgs field will exit. We now look at what these can do for 

cosmology. We have also use the Klein-Gordon field to describe it. 

In order to make the analysis of the evolution of a scalar field manageable, 

it is necessary to make some simplifying assumptions. For simplicity we 

consider a Higgs field, which take to be a scalar field θ. The goal of this 

chapter is to explain a new potential by applying the scalar field and 

equation of motion and some new interior solutions are provided. 

 

3.2 Classical Klein-Gordan Field : 

The Klein-Gordon field defined with the Lagrangian density [44] , 

)(
2

1 22 
 mLKG     … … … (3.1) 
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The co-variant momentum density is more easily evaluated by re-writing, 
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Thus for the Klein-Gordon field we have, 

      … … … (3.2) 

Giving the canonical momentum 
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The Euler-Lagrange equations give the field equation as   


2m  

or, 

(      
2
  + )2m  = 0   … … … (3.5) 

Which is the Klein-Gordon equation for a free massive scalar field .In 

momentum space 

P
2 
= -      

2
   

Then we get , 

0)( 22  mP  

The energy momentum tensor is, 
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Therefore the Hamiltonian density, 
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                                                             [Considering in Minkowski-space ] 
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 m    … … … (3.7) 

H ])([
2

1 2222  m     [From (3.3)] 

For free particle case namely   
      &     =      

Solving Euler-Lagrangian equation now gives , 

(      
2
  + )2m  +  V   = 0 

                            022  Vm          [   2     
2
] 

The energy momentum tensor is the same as for the free particle case 

equation except for the addition of gµʋV(θ) as in , 
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[ 22  

 VmgT  … …  (3.8) 

Yielding the Hamiltonian density the same as for the free particle case,

  

 00TH ])([
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1 2222  m +V(θ) 
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1 2222  Vm     … … … (3.9) 
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The purely spatial components are , 

)]()(
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1
[ 22  

 VmgT iiiiii      … … (3.10) 

With gii =  - 1 we obtain , 

iiT )(
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2

1 2222  Vm     … … … (3.11) 

Note that even though Tii has repeated indices. 

Let us not assume  i  is implied in this case .That is Tii refers to Tii = 

T11=T22 = T33 and not  Tii = T11 + T22 + T33 . 

 

Let us assume that the effects of the scalar field are averaged so as to 

behave like a perfect fluid. 

Then we make the identification, 

 ooTp  

Or,  ooTp  

 

Where  ρ is the energy density & p is the pressure. 

So, from equation (3.9) we can write, 

 ooTp = )(
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1
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1 2222  Vm 
     … … … (3.12) 

From equation (3.10) we get, 
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Putting i = 1, 
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Putting α = 0, 1, 2 we get, 
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So we finally get,     

          )(
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1 2222  Vm      … … … (3.14) 

           )(
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1
])([
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1 2222  Vmp      … … … (3.15) 

Let us also assume that the scalar field massless and that θ = θ (t) only ie.  

θ  ≠ θ (x) 

So the spatial derivative disappear  

Therefore, we finally obtain, 
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2

1 2  V     … … … (3.16) 

)(
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1 2  Vp     … … … (3.17) 
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3.3  Equation of  states:   

An expression for the rate of change of density  will be needed in terms 

of density ρ & pressure p [44]. 

The first law of thermodynamics is , 

dU + dW = dQ          … … … (3.18) 

Where U is the internal energy, W is the work & Q is the heat transfer. 

Ignoring any heat transfer & written  

dW = Fdr =  pdV 

Where F is the force, r is the distance, p is the pressure & V is the 

volume. Then, 

 dU = - pdV   … … …  (3.19) 

Assuming that ρ is a relativistic energy density means that energy is 

expressed as, 

U = ρV 

Differentiating, 

VVU     

VVVp        [using (3.19)]   … … … (3.20) 

Now writing ,  3rV   implies that  
r

r

V

V  3
  

Thus we get , from (3.20), 

V

v

V

v 



   
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r
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r

r 
 .3.3    

   … … … (3.21) 

3.4  Velocity & Acceleration equation : 

The Friedmann equation which specifies the speed of recession is 

obtained by writing the total energy E as the sum of kinetic plus potential 

energy terms (and using M =  3

3

4
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8
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EG
H 


   … … … (3.22) 

Where the Hubble constant 
r

r
H


  , m is the mass of a test particle in the 

potential energy field enclosed by a gas of dust of mass M, r the distance 

from the centre of dust to the test particle & G is Newtonian constant . 

r

r
 )(3  
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Defining K =
m

E2
   & Writing the distance in terms of the scale factor R 

& a constant length S as   r(t)=R(t) . It follows that, 
R

R

r

r 
  &  

R

R

r

r 
  

Giving the Friedmann equation [from equation (3.22)] 

2

22

3

8
)(

R

KG

R

R
H 


   … … … (3.23) 

This specifies the speed of recession .The scale factor is introduced 

because in general relativity it is space itself .Even though this equation is 

derived for matter ,it is also true for radiation .in fact it is also true for 

vacuum ,with  vacG8  where  is the cosmological constant & vac  is 

the vacuum energy density which just replaces the ordinary density 

.Exactly the same equation is obtained from the general relativistic 

Einstein field equation .According to Guth .K can be rescaled so that 

instead of being negative ,zero or positive it takes on the values -1 ,0 or +1. 

From a Newtonian point of view this corresponds to unbound, critical or 

bound trajectories as mentioned above. From a geometric, general 

relativistic point of view this corresponds to an open, flat or closed 

universe. In elementary mechanics the speed v of a ball dropped from a 

height r is evaluated from the conservation of energy equation as v = 

gr2 , where g is the acceleration due to gravity. The derivation shown 

above is exactly analogous to such a calculation. Similarly the 

acceleration a of the ball is calculated as a = g from Newton's equation F 

= m r , where F is the force and the acceleration is
2

2

dt

rd
r  . The 

acceleration for the universe is obtained from Newton's equation 

Frm
r

Mm
G  

2
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Again using M =  3

3

4
r  & 

R

R

r

r 
  gives the acceleration equation, 
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
   … … … (3.24) 

However because M =  3

3

4
r  was used, it is clear that this acceleration 

equation holds only for matter. In our example of the falling ball instead 

of the acceleration being obtained from Newton's Law, it can also be 

obtained by taking the time derivative of the energy equation. 

Now taking the time derivative of equation (3.23) , 
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Which reduces to equation (3.24) for the matter equation of state (γ = 

0).Exactly the same equation is obtained from the Einstein field 

equations. 

 

3.5  Cosmological constant : 

In both Newtonian and relativistic cosmology the universe is unstable to 

gravitational collapse. Both Newton and Einstein believed that the 

Universe is static. In order to obtain this Einstein introduced a repulsive 

gravitational force, called the cosmological constant, and Newton could 

have done exactly the same thing, had he believed the universe to be 

finite [44]. 

In order to obtain a possibly zero acceleration, a positive term 

(conventionally taken as 
3


) is added to the acceleration equation (3.26) 

as , 

3
)3(
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4 
 p

G

R

R



   … … … (3.27) 

Which, with the proper choice of  can give the required zero 

acceleration for a static universe. Again exactly the same equation is 

obtained from the Einstein field equations. What has been done here is 

entirely equivalent to just adding a repulsive gravitational force in 

Newton's Law. The question now is how this repulsive force enters the 

energy equation (3.23). 

Identifying the force from, 

3


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mr

F
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   … … … (3.28) 
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   … … … (3.29) 
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                   mr
dr

dv

3


  

Integrating, 
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    … … … (3.30) 

This is just a repulsive simple harmonic oscillator. Substituting this into 

the conservation of energy equation, 

                                           E = T + V 
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                                                            … … … (3.31) 

 

Equations (3.31) and (3.27) constitute the fundamental equations of 

motion that are used in all discussions of Friedmann models of the 

Universe. 

Let us comment on the repulsive harmonic oscillator obtained above. 

Recall one of the standard problems often assigned in mechanics courses. 

The problem is to imagine that a hole has been drilled from one side of 

the Earth, through the center and to the other side. One is to show that if a 
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ball is dropped into the hole, it will execute harmonic motion. The 

solution is obtained by noting that whereas gravity is an inverse square 

law for point masses M and m separated by a distance r as given by F =

2r

GMm
, yet if one of the masses is a continuous mass distribution 

represented by a density then F = 
3

4 mr
G


. The force rises linearly as the 

distance is increased because the amount of matter enclosed keeps 

increasing. Thus the gravitational force for a continuous mass distribution 

rises like Hooke's law and thus oscillatory solutions are encountered. This 

sheds light on our repulsive oscillator found above. In this case we want 

the gravity to be repulsive, but the cosmological constant acts just like the 

uniform matter distribution.  

Finally authors often write the cosmological constant in terms of a 

vacuum energy density as vacG8  so that the velocity and acceleration 

equations become, 
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From equation (3.31) & (3.33) we get, 

 2H
   … … … (3.34) 

And, 
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Again we have, 
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1 2222  Vm      … … … (3.36) 
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1 2222  Vmp      … … … (3.37) 

And we know, 

 0)(
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R
   … … … (3.38) 

 

Adding (3.36) & (3.37) we get , 

 

Differentiating equation (3.36) we get, 
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                                     ])([ 2mV   

Now putting the values in equation (3.38) we get , 
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3H = 0 

The difference occurs because we have now incorporated gravity via the 

Friedmann and conservation equation. We shall derive this equation 

again. 

Again assuming the field is massless and ignoring spatial derivatives we 

have, 

03  VH 
   … … … (3.39) 

Notice that this is the equation for a damped harmonic oscillator 

kxV
dx
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2

1
( 2 with )VF  as, 

0 kxxdxm   
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Kolb & Turmer also include a particle creation term due to decay of the 

scalar field, 

 

03  VH      … … … (3.40) 

 

Alternative derivation : 

Consider a Lagrangian for φ which already has the scale factor built into 

it as 
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… … …

 
(3.41) 

 

Where the R
3 

factor comes from R
3
 = g  for a Robertson-Walker 

metric. The equation of motion is, 

 2)( mV  + 0)(3 2  H    … … … (3.42) 

 

However if m = 0 and   = 0 it is the same as 03  VH   

Let's only consider, 

)](
2

1
[ 23  VRL  

 

which results from setting m = 0 and   = 0 in (3.41). The equation of 

motion is, 

 

03  VH   … … … (3.43) 

Identifying the Lagrangian as, 

)(3 VTRL   

 

we immediately write down the total energy density, 
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Taking the time derivative, 
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23   H              [From (3.43)] 

 

& substituting into the conservation equation, 
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 )(3  pH  

We obtain the pressure as, 
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Thus our energy density and pressure derived here agree with our results 

above, 
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Notice that the pressure is nothing more than, 
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3.6   Limiting solution : 

We have the Friedmann equation, 
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Assuming that k = = 0 the Friedmann equation becomes, 
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This equation together with equation,  

03  VH     … … … (3.44) 

form a set of coupled equations where solutions give φ(t) and R(t). We 

solve the coupled equations in the standard way by first eliminating one 

variable, then solving one equation, then substituting the solution back 

into the other equation to solve for the other variable. 

Let's write equation (3.44) purely in terms of φ by eliminating R which 

appears in the form
R

R
H


 . 

We eliminate R by substituting H in equation (3.44), 

  HV 3  

222 9)(   HV 
3
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9 2 G
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2

1
[ 2  V

 

22 2 VV    G 83 2
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1 2  V
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0)2(122 2222    VGVV … … … (3.45) 

        

222 )2(12)(   VGV   

        

  )2(12 2 VGV     … … … (3.46) 

 

0)2(12 2  VVG  
  (Taking only positive) … … (3.47) 

 

Notice that this is a non-linear differential equation for φ, which is 

difficult to solve in general. In this section we shall study the solutions for 

certain limiting cases. 

 

Potential Energy = 0 

Setting V = 0 we then have, 

0
2

1 2   
 
= 2

2

1
           &       0

2

1 2  p = 2

2

1
  

p  

Or,  γ= 3. 

With V = V = 0  then equation (3.45) becomes, 

0)0(1200 222    G  

                                    
42 12   G  

                                    
212   G  

012 2    G    … … … (3.48) 

Which has the solution, 

0)](121ln[
12

1
)( 00  ttG

G
t 


  … … … (3.49) 
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Upon substituting this solution back into the Friedmann equation and 

solving the differential equation we have the process, 
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Integrating, 
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.........)121( 0
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
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[by expansion of e

x
] 

3
1

00 )](121[)( ttGRtR   
   … … … (3.50) 

 

This result may be understood from another point of view. Writing the 

Friedmann equations as, 

 

3

8
)( 22 G

R

R
H






      
&  

          
mR


 

 

Then the solution is always
 

mtR

2

  which always gives 
2

1

t


 

If ρ = constant then the solution is teR 
 
for m < 2, one obtains power 

law inflation. For ordinary matter (m = 3) we have 3

2

tR  , or radiation (m 

= 4) we have and 2

1

tR  respectively.
 

  

Returning to the scalar field solution the density is 2

2

1
   for V=0 

thus differentiating equation (3.49) we get , 
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this yields, 
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3

3

0
0)(

R

R
t   

 

To give the density, 

0
2

1 2   
 

 

Corresponding to m = 6 & thus
 
 3

1

tR   in agreement with, 

3

1

00 )](121[)( ttGRtR     

Note also that this density 
6

1

R
  also gives,

2

1

t
  . 

Thus for a scalar field with v=0 we have  p )3(   & 
6

1

R
  contrast 

this with matter for which p=0 )0(   & 
3

1

R
  or radiation for which 

)
3

1
(

3

1
 p  & 

4

1

R
  . 

However equation 

 

may not be interpreted as a decaying cosmological constant because p  . 

 

Kinetic energy: 

Here we take      0   

V
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So we can write,     p = - ρ 

Or  γ =-3 which is a negative pressure equation of state .Our equation of 

motion for scalar field  

0)2(122 2222    VGVV  

becomes 0V  . 

Which meaning that V=V0 which is constant .Now putting this value in 

Freidman equation we get , 

0

2

2

3

8
V

G

R

R
H















 

which acts as a cosmological constant & which has the solution, 

)(
3

8

0

00

)(
ttV

G

eRtR






    … … … (3.50*) 

Which is an inflationary solution valid for any V .  

3.7  Exactly solvable model of Inflation: 

We shall examine the model of Barrow which can be solved exactly leads 

to power law inflation. The advantage of an exactly solvable model is that 

one can develop ones physical inflation better [44]. 

Any scalar field model is specified by writing down the potential V(θ). 

Barrow’s potential is, 

  eV )(    … … … (3.51) 

Where β & λ are constants to be determined Barrow claims that a 

particular solution to equation (3.47) is, 

tAt ln2)(     … … … (3.52) 
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Where  is just some constant .we check this by putting (3.51) & 

(3.52) in (3.47) we get, 

t

A
t

2
)(   

                              2

2
)(

t

A
t              [Differentiating] 

We get , 

0)2(122 2222    VGVV  
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A
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From the above result we get, 

A

2
  

                                         &          β = -A 

Or, β = A(24πGA -1)   … … … (3.53) 

Note that Barrow is wrong when he writes  A=√  .Also he uses units 

with 8πG=1. 

So equation (3.53) can be written as, 

β = A(3A -1) 

A2



139 
 

having solved for θ(t) we now substitute in ,
3

8
)( 22 G

R

R
H





 

to solve for R(t). 

Substituting, V = 
 

    
  &  

t

A2
  we get, 
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t
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    … … … (3.54) 

So we can write, 

2

1
)(
t

A    

Clearly we reject β = -A .It would give zero density .using β = A(24πGA 

-1)   yields, 

2

224

t

GA
     … … … (3.55) 

Now from equation (3.54) we get, 

GAtR 8  

Where D is some constant .Setting 8πG =1 we have, 

AtR   

In agreement with Barrow‟s solution .Power law inflation results for A > 1 . 
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Inverting solution 
AtR   we have, 

ARct

2

2   

Where   c   is some constant .Substituting this in equation (3.55) we get, 

ARC
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
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                                      Or,   
AR

2

1
  

Which corresponds to weak decaying cosmological constant .For the 

inflationary result A >1 .We have 2
2

 m
A

which corresponds to the 

quantum tunneling solution. 

Again,
AR

2

1
  can also be obtained via  
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We have, 
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Giving,                                  
AR

2

2 1
     … … … (3.56) 

 

3.8   Cosmological constant & scalar field : 

We have, 
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For the case where potential energy V= 0 then we have, P = ρ 

The pressure is positive & therefore we get, 

6

1

R
  

Which can not be interpreted as a cosmological constant. 

For the case where kinetic energy  0
2

1 2    

We have P = - ρ meaning that ρ can be interpreted as a strong 

cosmological constant. 

These results are true in general (assuming m =  =0) as we have not yet 

specified  ( ). 

Let us now consider the Barrow model, 

  eV )(  

We found that, 
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Substituting we get, 
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The general equation of state is 


3
P  giving the Barrow equation of 

state, 

3
2


A
Barrow    … … … (3.57) 

Now in A > 1 we conclude that power law inflation results for A > 1 . 

Substituting this in equation (3.57) we get , 

3Barrow  

Which expect because power law inflation implies 0R .Thus for A > 1 

the Barrow pressure is negative with γ < -1 & 2

23

t

A
Barrow   

corresponds to a weak cosmological constant .Furthermore this 

cosmological constant is variable & decays with time. 

Now we can write, 

A
Barrow

R
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1


    … … … (3.58)

 

3.9   Density fluctuation:
 

An important result that we shall use without proof is that fluctuations of 

the scalar field are given approximately by, 


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Now assuming 0  gives , 
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We know,                                  )
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For the chaotic inflation model 22
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This is an intensely important formula often written as, 
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The density fluctuations observed by COBE are 


 10
-5  

 yielding  m 

= 10
-5 

 Mp . 

The above formula is not very useful for Barrow model where a well 

defined inflation means    m = minflation  is not present .In that case the 

formula is written more usefully as, 

   … … … (3.59) 

3.10  Equation of state for variable cosmological constant: 

In this section we wish to demonstrate that variable cosmological 

constant models have negative pressure. 

Firstly if one assumes,                  
3


P     … … … (3.60) 

Then the conservation law follows as , 
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Let‟s assume that  

m
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Integrating equation (3.61) we have, 
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              v
R

A





3    … … … (3.63) 

Where ,    
m

m
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




3
 and A is a constant given by , 
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Now from equation (3.60) we get the pressure is , 
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This looks like bad news .Assuming that ρv dominate over the first term at 

some stage of evolution it looks like the pressure only get negative for m 

> 3+γ . However there are two things to keep in mind .Firstly the pressure 

P is not the pressure of radiation of matter or vacuum because  





3R

A
& 

3


P  . 

The pressure that we would want to be negative would be the vacuum 

pressure Pγ which shall work out below .Secondly the key point is not as 

much having P negative but rather having  positive. 

The equation, 
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Can still give positive R  even if P is not negative, because the ρv term has 

to be considered .The Friedman equation is , 
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Now putting the value of  from the equation (3.74) in this equation, 
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Having established that a decaying cosmological constant can lead to 

negative pressure .Let us now work out the vacuum equation of state for a 

decaying cosmological constant. 

From equation (3.68) let us define, 
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  … … … (3.70) 

So , vv   ~~   

Giving,                       2
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 … ... … (3.71) 

From equation (3.66) we get , 
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    [Using equation (3.70)]    

                                                                          … … … (3.72) 

Which we should like to write as , 

)~3~(
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
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
 … … … (3.73) 

This is achieved if we make the following definitions, 



148 
 

3

~~ 
P     … … … (3.74)        &     v
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  … … (3.75) 

Which is our vacuum equation of state for a decaying cosmological 

constant. 

We see that for m < 3 we have v
~  & v negative .For a m< 2 we have v  

< -1 which we saw previously is the condition for inflation assuming 

vacuum domination of the density & pressure . 

It is also satisfying to note that the equation of state for the non-vacuum 

component is identical to the equation of sate for a perfect fluid that we 

encountered for models without a cosmological constant. 

3.11   Wheeler-DeWitt equation : 

The discussion of the Wheeler-DeWitt equation in the minisuperspace 

approximation is usually restricted to closed (k=+1) and empty (ρ=0) 

universes. We consider closed, open & flat & non-empty universe .It is 

important to consider the possible presence of matter & radiation as they 

might otherwise changes the conclusions. Thus present below is a 

derivation of the Wheeler-DeWitt equation in the minisuperspace 

approximation which also includes matter and radiation & arbitrary 

values of K [44]. 

The Lagrangian is, 
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With
G4

3
  . The momentum conjugate to R  is 
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  
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  RR2    … … … (3.77) 
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Substituting L & P into the Euler-Lagrange equation , 

0
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is recovered .[Note the calculation of 
R

L
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  is simplified by using the 

conservation equation 
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The Hamiltonian      LRPH    is , 
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Which has been written in terms of R to show explicitly that the 

Hamiltonian is identically zero & is not equal to the total energy as 

before. 

In terms of the conjugate momentum, 
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Which is of course is also equal to zero .Making the replacement 

R
iP



 & imposing 0H  results in the Wheeler-DeWitt equation 

in the minisuperspace approximation for arbitrary K & with matter or 

radiation (ρ term) included gives . 

From equation (3.79), 
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Using 






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C
 the Wheeler-DeWitt equation becomes , 
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This just looks like zero energy Schrodinger  equation with a potential 

given by , 

 

For the empty Universe case of no matter or radiation (c = 0) the potential 

V (R ). For the cases k = +1, 0,-1 respectively corresponding to closed, 

open and flat universes. It can be seen that only the closed universe case 

provides a potential barrier through which tunneling can occur. This 

provides a clear illustration of the idea that only closed universes can 

arise through quantum tunneling. If radiation (γ = 1 and C≠ 0) is included 

then only a negative constant will be added to the potential (because the 

term R
1-γ

 will be constant for γ = 1) and these conclusions about tunneling 

will not change. For matter (γ = 0 and C≠ 0) a term growing like R will be 

included in the potential which will only be important for very small R 

and so the conclusions again will not be changed.) To summarize, only 

closed universes can arise from quantum tunneling even if matter or 

radiation are present. 

 

 

 

3.12 Quantization:  

All of our proceeding work with the scalar field was at the classical level. 

In this section we wish to consider quantum effects. We derived the 

Wheeler-DeWitt equation in minisuperspace approximation. We began 

with the Lagrangian in equation (3.80) 
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and identified the conjugate momentum RR
R

L 






 2  and 

derived the Wheeler-DeWitt equation, after quantizing with 
R
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


  as 
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Notice that our quantization 'didn't do anything to the density."  

 

In the work that we have done in the present chapter we have made an 

effort to write the scalar field as a function of R, ie. φ=φ(R ) and using 

V 2

2

1
    we have written as an effective density ρ(R) for the scalar 

field. Our intention has been to simply insert this ρ(R) into the Wheeler-

DeWitt equation. In our work on inflation we found that for 
mR

1
  

dominating the Friedman equation then inflation occurs for m < 3. If this 

density also dominates ρ+ ρv  in  the Wheeler-DeWitt equation, then a 

tunneling potential will only be present for m < 3. Thus Inflation and 

quantum tunneling require the same condition. This leads us to the 

hypothesis that inflation and quantum tunneling are identical! Or in other 

words, inflation is simply a classical description of quantum tunneling. 

We call this hypothesis Quantum inflation.  

Quantum inflation is easy to validate for ordinary densities, either ρ or ρv , 

that behave like 
mR

1
 . With our discussion of the scalar field we have 

written 
mR

1
 .So it would seem that the idea of quantum inflation also 

works for scalar fields [44]. 

But we know that V 2

2

1
   so from equation (3.82) we get , 
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From this we can deduce that, 
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         &  also                     03  VH        … … … (3.86) 
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The canonical momenta are , 
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The Hamiltonian )( LqpH ii   becomes & also using 
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Where the result H = 0 is obtained by comparing the expression for the 

Hamiltonian to the Friedman equation (3.85) .This Hamiltonian is 

exactly analogues to the Hamiltonian we had ρ instead of  )(
2

1 2  V  
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writing H in terms of the conjugate momentum we have ,
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Which of course is also equal to zero .This equation is re-arranged as,  
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In order to compare to our signal Wheeler-DeWitt equation .Let‟s replace 

 with 
322 R  which results in, 
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Which is exactly analogues to our original Wheeler-DeWitt equation 

.Where we had ρ instead of )(
2

1 2  V . 

Equation (3.91) is quantized by making the replacements. 
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And setting Hψ = 0 to give , 
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Which is Wheeler-DeWitt equation in minisuperspace approximation for 

a quantized scalar field θ . 

We identify the potential as , 
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We can see that the above method of quantizing the scalar field θ directly 

is still consistent with our idea of Quantum Inflation. Recall that ρ(R) and 

V (R) in terms of θ(R) obviously ρ, V and 
2 must have the same R 

dependence. Thus if 
mR

1
  then also 

mR
V

1
  in the same way. Thus our 

potential U(R, θ) will always exhibit a tunneling shape for m < 3. Thus 

Quantum Inflation still works for U(R, θ) when θ is quantized separately. 
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4.1  Introduction: 

Inflation was proposed by Alan Guth although the idea of an exponential 

type expansion was due to Starobinsky and others. The modern form of 

inflationary cosmology is due to A.Linde, A. Albrecht and P. Steinhardt. 

In Guth‟s original model the inflation field Φ was assumed to be trapped 

in a false vacuum and assumed a local value which is minimum. The 

inflation field comes out from the local minimum value by quantum 

tunneling and as universe inflates, tunneling takes place. However, these 

ideas when pursued gave empty universe and therefore rejected. Guth 

[19] further tried to improve the idea but they led to others difficulties. 

Linde and Steinhardt proposed new inflationary model where the 

inflation field varies slowly and undergoes a phase transition of second 

order. New inflationary models do not require the idea of tunneling. Most 

of the modern models depend on the idea of chaotic inflation due to 

Linde. In these models the initial value of the inflation field Φ is set 

chaotically when the universe exits from Planck era. The field then rolls 

downhill and if the potential is enough flat then inflation can take place. 

There is another class of models known as hybrid inflationary models in 

which two fields are considered. These models introduce extra difficulties 

but they can speculate some features of single field models. 

Inflationary cosmology is important because it offers solution to some 

great puzzles of cosmology. The puzzles are Flatness problem, Horizon 

problem and Monopole problem. 

Flatness problem is basically why the density parameter 
C

t



 )(  is 

extremely close to unity i.e. why Ω ≈ 1? Horizon problem is why the 

universe is extremely smooth and isotropic on large scales? Monopole 

and the unwanted relics are the problems associated with standard hot Big 
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Bang Theory. They are trivially solved when Flatness and Horizon 

problems are solved. 

The above problems namely Flatness problem and Horizon problem are 

problems of Standard Big Bang theory are solved by assuming an 

accelerated expansion in early universe for a very short duration. This 

accelerated expansion is named as inflation. The starting time of inflation 

is model dependent. However, it occurred when the universe was 

extremely young. Inflation ended around the time when universe was 10
-

33
 sec old. From this time (10

-33
 sec) radiation domination started. The 

phenomenon of ending inflation and then entering into radiation 

dominated era is known as graceful exit. And its mechanism requires 

explanations. An entirely different mechanism of graceful exit will be 

given in this work. 

Lot of scalar field inflationary cosmological models has been proposed so 

far to explain the above scenarios. Expansion of universe is assumed to 

be driven by a scalar field Φ and an associated potential V (Φ). Many 

forms of potentials have been used to solve the associated field equations. 

In some models a kind of approximation is used to solve the difficult 

equations. This approximation is known as slow roll approximation 

which assumes that the field rolls very slowly. Mathematically this is 

equivalent to assuming  )(2  V  where the overhead dot represents 

derivative with respect to time. A few models find exact solutions to the 

field equations. All the above models explain the mechanism of inflation 

and solve Horizon and Flatness problems. Further it is found that solution 

of these problems is equivalent to produce an e-folding [defined as 
i

f

R

R
ln  

during inflation] N ≥ 65-70. Here Ri and Rf are values of scale factor 

when inflation starts and ends respectively. 
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However these above models fail to explain cosmological constant 

problem and dark matter problem. The cosmological constant problem is 

why the measured vacuum energy density is small by a factor 10
120

 of 

about from its theoretical value. This is in language of Weinberg; “Worst 

failure of an order of magnitude estimate in the history of physics”. 

The dark matter problem is another unsolved puzzle in modern 

cosmology. Our present knowledge asserts that the energy density of 

matter/energy content of our universe is: dark energy ~ 74%, dark matter 

~ 22% and ordinary matter ~ 4%. No cosmological model predicts or 

accounts for this observation. 

Finally, there is the problem of present acceleration of the universe found 

from the observation of distant Supernovae Ia. 

The present work addresses all the above problems listed from the 

beginning and provides solutions in a single framework. Further, the 

solution of cosmological evolution equations are exact and no sort of 

approximations like slow roll approximation etc. is used to derive the 

solutions. 

It may be mentioned here that slow roll is not the necessary and sufficient 

condition of inflation. However, if slow roll is valid, inflation takes place. 

It will be shown in this work that without slow roll one can have plenty of 

exact inflationary models. 

 

4.2 The Scalar field equation and its exact solutions: 

We suppose that after tunneling there exists a scalar field Φ and an 

associated potential V (Φ), which is responsible for the evolution of the 

universe. It is further assumed that initially there existed some other type 

of fields ψi with potentials χ(ψi) . But these fields were hanged up initially 

which means )(
dt

d i

i


  and ])[(

i

i
d

d




   are negligible and they did not 
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contribute to field equations initially. The number and nature of the ψi 

fields are not important for the purpose of cosmological predictions. The 

interactions of the scalar field Φ with other fields are assumed to be 

ignorable and consequently the ψi fields are assumed to interact among 

themselves only.  

Now if the inflation field Φ has no spatial variation and depends only on 

time then we can write the equations of motion of the scalar field and the 

Friedmann equation ignoring the curvature term as: 

From energy conservative we have, 
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;T =0 
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… … … (4.i) 

From equation (4.10) we get, 
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         Adding,         
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Differentiating we get, 
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                              )(V   

Now putting the values in equation (4.i)  we get , 
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
R

R
V





  

                               03)(    HV  

 )(3  VH       … … … (4.iii) 

And from the time-time component we have, 

3

8
2

G

R

R





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

 
                 [ for K = o ] 

                    
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1
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



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




R

R
             [Considering   8πG = 1] 

                    
3

1
2
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


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




R

R
[ )(
2

1 2  V ]          … … … (4.iv) 

Where R is the scale factor, θ is the inflation field and V (Φ) is the 

potential. Overhead dot represents derivative with respect to time and 

overhead prime represents derivative w.r.to θ. 

Equation (4.iii) follows from Lagrangian , 

)())((
2

1
 

 VgLKG     … … … (4.v) 

Solution of equation (4.iii) and (4.iv) are in some ways similar to the 

solution of Diophantine equations in Classical Algebra, where the 

numbers of unknowns are more than the number of equations given.  

Here a method will be shown by which one can find exact solution of 

equation (4.iii) and (4.iv). In principle we will choose an arbitrary 
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function from which we can construct some form of potentials for which 

equations (4.iii) and (4.iv) are exactly solvable. 

The Friedmann & Scalar field equations are, 

3

1
2

2


R

R
[ )(
2

1 2  V ]    … … … (4.1) 

0)(3   V
R

R



     … … … (4.2) 

Where the dots represent derivative with respect to time t and prime 

represents derivative with respect to Φ. 

From equation (4.1) we obtain, 
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[  V    … … … (4.3) 

From equation (4.2) we have,  
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    [Using (4.3)] 
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
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 2)]([  V 2

1

22 )(
2

1
3 








  V           [By Squaring] 
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2422 )(3
2

3
)()(2   VVV 

0)(3
2

3
)()(2 2422    VVV

  
 … … … (4.5) 

To solve this equation let us put   

)( u      … … … (4.6) 

                              )()(
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1
2

1

uu 


 

                            )()()(
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1
2

1
2

1

 uuu 



  
 [By equation (4.6)] 

                         
)(

2

1
 u      … … … (4.7) 

Now putting the values of (4.6) & (4.7) in equation (4.5) we get, 
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

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



  uVuVVuu  
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2

3

4

1 222  uVuVuVu  

012644 222  uVuVuVu    … … … (4.8) 

Here,                       
d

du
u               &       

d

dv
V   

A solution of equation (4.8) is   u = - 2V    … … … (4.9) 

                                         Vu  2     … … … (4.10) 

When equation (4.9) and (4.10) is substituted in equation (4.8) the result 

is verified. 
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Therefore the conclusion is that u = - 2V is a solution of equation (4.8)  

However the solution u = - 2V  is rejected because when this solution is 

substituted in equation (4.3), we obtain, 
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











 vvvvvuvu  

0 R
 

R Constant 

Which is the condition of static universe. 

So to obtain a sensible solution of equation (4.8) let us assume, 

                             u = -2V + θ(φ)      where θ(φ) is an arbitrary function of  φ 

                           Vu 2  

Putting this in equation (4.8) we get, 

012644 222  uVuVuVu  

0)2(12)2(6)2(44)2( 222  VVVVVVV   

012246242484444 2222222   VVVVVVVVV  

0612 22   V      … … … (4.12) 

From this equation we can also find, 

22612  V  
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



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

 














12212

6
)(

222

VV      … … … (4.13) 

Hence we conclude that equation (4.11) is the solution of equation (4.8) 

i.e. solutions of equation (4.1) and (4.2) if V (φ) is given by equation 

(4.13).It is to be noted that equation (4.8) is the consequence of equation 

(4.1) and (4.2). 

The function θ (θ) is of course arbitrary. 

Now from equation (4.3) we have, 
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R
2
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2 ]2[
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]2[
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VuVV 








    [ )( u ] 

)(
6

1
2

1


R

R

   … … … (4.14)
             [using eq

n 
 (4.11)]  

Now we like to calculate the scalar field potential V (θ) in terms of time 

t.  

To do this we write,             θ(φ)=f(t)    ... … … (4.15) 

                                          V(φ)=w(t)    … … … (4.16) 

Since θ depends on t only. 

So equation (4.14) can be rewritten as, 

)(
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1
2

1

tf
R

R



    … … … (4.17)       [by using (4.15)] 

Again we can write, 


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


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

f

dt

df

d
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.)(  
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




 )(
)(

tf
     … … … (4.18) 

So from equation (4.6) & (4.7) we obtain, 
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          [By using (4.13)] 
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u     … … … (4.19) 

ie.        
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6
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2
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
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
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


       [By (4.6), (4.18) & (4.15)]  
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
   

f

f

6

2





     … … … (4.20) 

 Here negative sign is considered for convenience. 

Now from equation (4.13) & (4.16), 
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           [by (4.20)] 
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
      … … … (4.21) 

The above calculations assure that the exact solution of (4.1) and (4.2) 

can be found from the following prescription: 
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Choose an arbitrary function f = f (t). For this arbitrary function f (t) the 

exact solutions of (4.1) and (4.2) are: 

                              )(
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twV
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
                          … … … (4.22) 

                            
f

tf
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




  

We can choose the arbitrary function in an infinite number of ways. 

Hence we can get an infinite number of exact models from (4.22). 

The functions f (t) is arbitrary so that one can have an infinite number of 

choices of f (t) and can have an infinite number of exact solutions. 

 

4.3 The exact scalar field model & solution of flatness & 

Horizon problems: 

We have, 
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        [from equation (4.20)] 
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Therefore we find from (4.2), 
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Now from equation (4.21) we get, 
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It is now easy to verify from (4.24) that, 
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 [using (4.22),(4.23) & (4.25)] 
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Finally one can check in a straight forward way from (4.1) that, 
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Now we will construct an exact inflationary model from the exact 

solutions obtained before.  

Let us choose the arbitrary function f (t) as, 

    

22

2
2

)( B
t

AB
AB

t

A
tf 








  

B
t

A
tf  )(2

1

    … … … (4.26) 

6

)(

23

1
2

2 tff

R

R




6

)(2
1

tf

R

R






170 
 

It has to be remembered that f(t) is arbitrary. 

Then from equation (4.14) & (4.15) we get, 
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Integrating,  0ln
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For 6A  (of course 00 A ) & B > 0 we can observe that 0R  always. 

Therefore the above scale factor gives inflation. We will choose later on 

A such that 6A  & B > 0 . 

Now from equation (4.26) we get, 
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Using equation (4.25) & (4.28) we find from, 
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This Equation (4.29) gives the time dependent form of the potential 

which gives the scale factor R. 
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Next we will find the scalar field θ dependence of the potential in the 

following way:  

From the equation (4.20), we have 
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So that from (4.31) we obtain, 
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Now using equation (4.33) we find from equation (4.29), 
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Equation (4.34) gives the θ dependence of the potential which in more 

compact form can be recasted as, 
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11
B

DeCeV
AA




     … … … (4.35) 

Where,  2

0

2

62
K

AA
C 








  = Constant          &      D = AB K0 = Constant 

In this model we choose the starting time of inflation as ti=10
-43 

second 

i.e. just after tunneling and inflation ends at tf =10
33 

second. Particle 

production in inflationary period is assumed to be negligible and ignored.  

 

Now from equation (4.27) we can find the e-folding during inflation. 

)ln(
6

}ln{ln
)(

6

i

f
tt

B

i

f

t

tA
e

R

R
N

if




 

ie.    )ln(
6

)(
6 i

f

if
t

tA
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B
N     … … … (4.36) 

Now we take B = 10
-17

 sec … … (4.37)    [for inflation to take place 6A  & B > 0] 

&         
sec10

sec10

43

33









i

f

t

t
             … … … (4.38) 

From equation (4.37) & (4.38) we obtain from (4.36), 

4494.2

3025.210
10ln

6

10
~




AA
N  

AN 40.9    … … … (4.39) 
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For inflation to take place 6A . 

If we choose,   A = 7.5 

Then from (4.39) the result is, 5.740.9 N  

                                     ie .    N = 70.5    … … … (4.40) 

Therefore the e-folding one obtains is 70.5, which is perfectly satisfactory. 

 

4.4  Graceful exit and starting of radiation era: 

It was assumed in previous section that inflation starts at sec10 43it and 

stops at sec10 33ft . The mechanism by which inflation stops is like this. 

It was postulated in before, that there were some hanged up fields for 

which i  and )( i were negligible so that they did not contribute to the 

field equations. When inflation starts the inflation field decays. During the 

period of inflation particle production due to decaying inflation field is 

assumed to be negligible and not taken into account. But all of the hanged 

up fields interact among themselves and produce new particles with 

significant negative energy density around the time sec10 34 .The effect of 

these negative energy density particles is to stop inflation at sec10 33ft . 

The newly born fields created by these particles are denoted by
iE . 

The equation of state of dark energy is 



P

  where   ≈ -1. For dark 

matter we assume the same equation of state as dark energy but a 

different negative value of  . Now since   is negative, there exist two 

possibilities i) P > 0, ρ < o or ii) P < 0, ρ > 0. Generally for dark energy 

the second possibility is accepted.  

High energy physics assert that many forms of exotic particles form 

around the time 3410t  second. The natures of the particles depend on 
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the theory concerned and their natures are not very important for our 

purpose. We take it for granted that many forms of exotic particles are 

formed around the time sec10 34

. In analogy with dark energy equations 

of state we take the equation of state of these particles 



P

  as with   

negative. However, we take the first possibility discussed before i.e. we 

take P > 0 and ρ < 0 for these exotic particles. And appearance of a large 

negative energy density field is enough to stop inflation at sec10 33 . 

Because creation of a large number of exotic particles with properties 

P>0 and ρ<o will certainly decrease the energy density and create a 

situation for which an overall condition 3P + ρ> 0 would appear if we 

take 
3

1
1    for these particles, as it turns out that 3P + ρ> 0 for these 

large number of exotic particles. As a result inflation must stop. 

The assumption of negative energy density particles is perfectly 

consistent with the Null energy condition and Strong energy condition.  

The appearance of new negative energy density due to creation of new 

particles does not alter equation (4.1) though they contribute to the 

Lagrangian from this time sec)10~( 33t  . The reasons are, the inflation 

field θ has no appreciable interactions ψi with the fields or with the newly 

born ψEi fields at the time of graceful exit.  

 

But the Friedmann equation assumes a new form from the time of 

graceful exit. Considering the appearance of negative energy density 

particles we find that Friedmann equation assumes its new form at the 

time of graceful exit: 

)(
3

1
2

2


iE

R

R



    … … … (4.41) 
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Where,      )(
2

1 2

iii EEE V  

We neglect further variations of 
iE  and )(

iEV   and they do not interact 

further among themselves.  

Here  iE is the energy density of the new exotic particles formed. The 

negative sign indicates that the energy densities of the exotic particles are 

negative.  

At the time of graceful exit the universe enters into a decelerated phase. It 

is known that the conditions of accelerated phase is 3P+ ρ<0 and that of 

decelerated phase is 3P+ ρ>0. We can therefore assume that the creation 

of new energy density due to newly born particles create an overall 

situation where an overall condition like 3P+ ρ >0 holds from the time of 

graceful exit.  The foregoing discussions illustrate the mechanism of 

graceful exit. An accelerated expansion reduces to a time half power law 

at the time of graceful exit i.e. at sec10~ 33t  . So from this time radiation 

era starts. We can exactly calculate value of  iE  at the time of graceful 

exit using (4.30) and (4.31) and taking 2
1

~ tR  .This is, however 

unnecessary for our purpose. 

 

4.5  Cosmological constant and dark matter/energy problem: 

After graceful exit the expansion of universe continues and the inflation 

field θ goes on decaying. The energy density gradually increases. We 

assume that particles are produced in this phase with properties 0P , ρ>o 

as well as P<0, ρ>o .For the second type of particles if we assume an 

equation of state 



P

  with 
3

1
1     then 3P + ρ < 0 for these 

particles. All energy conditions permit this. We take it for granted that 

these type of particles are produced more than the first type in matter 
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dominated phase. Now Σρ > 0 , since ρ> 0 for both type of particles. The 

overall effect is the appearance of a positive energy density denoted by 

Σρi .Thus total energy density of all created particles after graceful exit 

upto present moment is represented by Σρi.  

With this idea we can now write the Friedmann equation at present 

epoch: 

)(
3

1
2

2

 
iEi

R

R



     ... … … (4.41) 

&            )(
3

1
2

2


iE

R

R



                … … … (4.42) 

Equation (4.41) follows from equation (4.42) by introducing the term 

 i  in R.H.S of equation (4.42). 

Here,   is the energy density of the inflation field. 

ie.  )(
2

1 2  V   

And,    i = energy density of the created particles after graceful exit 

upto present epoch. 

  

And  iE = energy density of exotic particles created just before the 

time of graceful exit.  

It is difficult to calculate  i  but one can safely assume that  i  is 

much less than  iE  so that we can write: 

  *
iEi     … … … (4.43) 

Then equation (4.41) can be recasted as, 
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2

02

2

* 3
3

H
R

R



     … … … (4.44) 

Where H0 is the present value of  Hubble constant. Using the present 

value of H0 as, 

H0 = 2.27 x 10
-18

 Sec
-1

   … … … (4.45) 

We find from (4.44) the present value of  *  as, 

235362

* sec1054.110)27.2(3     … … … (4.46) 

Now we define cosmological constant as the energy density of the 

inflation field (i.e. ρθ) as, 
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2

1 2  V      … … … (4.47) 

From equation, 
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So equation (4.47) becomes,  
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Now taking A=7.5 & B =10
-17

 as earlier, we find, 
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     … … … (4.49) 

Now at t= 4310 sec ie. at Planck epoch 
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                   = 342686 105.0105.71012.28   

                  287 sec1081.2       … … … (4.50) 

At present i.e.  at  sec104.4 17t  

34
34

34

2

17

Pr
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)4.4(
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sec)104.4( 


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
 t

esent    

  343434 105.01070.11045.1    

  234 sec1065.3       … … … (4.51) 

 

Then using (4.50) & (4.51) we get, 
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   … … … (4.52) 

Equation (4.51) gives the present value of cosmological constant and 

equation (4.52) exactly accounts for the so called discrepancy of 120 

orders of magnitude of the value of cosmological constant.  

Since L.H.S of (4.44) represents effective vacuum energy density at 

present, so more precise present value of cosmological constant is given 

by (4.46) and equals 235 sec1054.1  . 

 

Then using this value we find from equation (4.50) 
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    … … … (4.53) 

 

This equation gives more precise ratio of cosmological constant at Planck 

epoch and at present epoch. Now we indentify  * defined by equation 

(4.43) is the energy density of dark matter/energy and calculate its present 

value. The negative sign before  * in (4.43) indicates that energy 

density of dark matter/ energy is negative.  
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Using (4.46) and (4.51) we find the present value of energy density of 

dark matter/energy as, 

 

3534

* 1054.11065.3)(
PrPr

    esentesent
 

        

                3535

* 1054.1105.36    

 

235

* sec1096.34      … … … (4.54) 

Now using (4.51) and (4.53) the present ratio of  * and  is obtained 

as, 

 9578.0
5.36

96.34
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1096.34
34

35
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
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





     … … … (4.55)  

In view of this equation we can safely conclude that 95.78% energy 

density of the inflation field is diminished by the presence of negative 

energy density of dark matter/energy and the rest 4.22% represent 

ordinary matter energy, since for ordinary matter / energy ρ>0. Thus the 

present energy density budget of the universe finds its correct accounting, 

95.78% corresponds to dark matter and energy and 4.22% corresponds to 

ordinary matter and energy. However there is a basic difference in the 

nature of the above energy densities. The energy density of inflation i.e. 

vacuum energy density is positive, while the energy density of dark 

matter/energy is negative. The present, energy density of ordinary matter-

energy equals present vacuum energy density less the magnitude of 

present energy density of dark matter/energy. And as energy densities of 

exotic particles were taken negative, it turns out that constituents of dark 

matter/energy are exotic particles as energy density of dark matter/energy 

is also negative. 
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4.6 Matter domination and present accelerated state of the universe: 

It was explained in previous sections that the mechanism of graceful exit 

is due to formation of some kinds of particles due to interaction of the 

hanged up fields themselves.  

Now during the course of evolution, after graceful exit the energy density 

slowly increases due to further formation of new particles. Unlike exotic 

particles energy density, these particles have positive energy densities. So 

that they add up with inflation energy density ρθ . Cooling also increases 

of the energy density of the universe. And due to this overall increase of 

energy density, the universe gradually enters into matter dominated 

phase, when formation of matter takes place.  

Present accelerated phase is due to further continuation of above features 

i.e. formation of more and more positive energy density particles together 

with cooling etc. It was assumed in before that particles produced after 

graceful exit has the property Σ ρi > 0 in matter dominated phase more 

particles are produced with property ρ > 0, P < 0 than particles with 

property ρ > 0, 0P . The equation of state of the particles with property 

ρ> 0, P< 0 is such that 3P + ρ< 0. Particles with ρ > 0 , 0P  are ordinary 

matter /radiation, whereas particles with ρ > 0, P < 0 along with 3P + ρ< 

0 probably represent unstable particles which have vacuum like properties. 

Now in matter dominated phase as more and more particles are produced 

with property ρ> 0, P< 0, 3P +ρ < 0 , a situation is gradually reached for 

which Σ3P + Σρ < 0 . And acceleration of the universe starts right from the 

moment when Σ3P + Σρ become negative. Such a situation still continues 

for which we observe our universe accelerating presently. It is once again 

mentioned that particles produced in various phases after graceful exit has 
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properties ρ > 0, P < 0 as well as ρ> 0, 0P  , whereas for exotic particles 

which were formed just before graceful exit ρ < 0, P > 0 . 

 

4.7  Conclusion.  

A variety of cosmological models were proposed in last three decades to 

solve the major problems of cosmology. Among these are the Coleman-

Weinberg SU model, models by Pi and Shafi and Vilenkin and many other 

models. All the above models were either a failure or partially successful 

to explain few features only. And all models so far proposed failed to 

explain the mysterious cosmological constant problem.  

Also no model has yet predicted the existence of dark matter and energy.  

The present work solves the mysterious cosmological constant problem 

i.e. the discrepancy of 120 or more precisely 122 orders of the measured 

value of cosmological constant and predicts the existence of dark matter 

and energy. The work removes the ambiguity of definition of 

cosmological constant by clearly defining it as scalar field energy density 

or vacuum energy density and not the energy density of dark 

matter/energy. Further, this model gives extremely accurate estimate of 

present values of vacuum energy density as well as of energy density of 

dark matter/energy. It also solves flatness and horizon problem, gives a 

satisfactory estimate of e-folding which is necessary to solve horizon and 

flatness problems and of course trivially monopole problem[3].  

Finally this work also supplies the explanation for the present state of 

acceleration of the universe. 
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5.1  Introduction : 

In this chapter we will study cosmological scaling solutions in spatially-

flat isotropic model. We assume that scaling solutions describe a perfect 

fluid with equation of state )1(,)1(   MMM wp and scalar field   

with the potential V( ). We then derive exact form of the scalar field 

potential[41]. 

 

5.2  Approximate Features of Scalar Field Dynamics: 

The fine-tuning problem, (the Planck energy density, 1P 10
72

 GeV
4
 and 

the observed value of the dark energy density, (  0.7  C 10
-48 

GeV
4
) 

implies that 120

1

10~ 

P


. Thus   needs to be fine-tuned to the level of 

one part in 10
120

 from the Planck epoch, in order to match the present 

universe. The fine-tuning problem is associated with the cosmological 

constant which induces the exploration of cosmological dynamics of a 

variety of scalar field models such as quintessence, phantoms, tachyons 

and K-essence. Scalar field can mimic dark energy at late times including 

kinematics in the past. Dark energy should have important properties 

allowing it to relieve the fine-tuning and solving coincidence problems 

without interfering with the thermal history of universe. 

The energy density of scalar field may be larger or smaller than the 

background (radiation/matter) energy density ρM. In case it is larger than 

the background density, the scalar field density ρφ should scale faster than 

ρM . In this case the scalar field energy density overreaches the 

background and becomes sub-dominant to it (see Fig.i). It‟s beside course 

of evolution crucially depending on the form of the scalar field potential. 

In order to obtain viable dark energy models, we require that the energy 

density of the scalar field remains insignificant during radiation and 
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matter dominant epochs and occurs only at late times to give accelerating 

universe. The cosmological solutions where the scalar field energy 

density follows that of radiation or matter which satisfies this condition is 

called scaling solutions. The scaling solutions are characterized by the 

relation[41]. 


M


 Constant      … … … (5.1) 

 

     

                            ρ 

 

 

 

 

                            O                                                                       a 

Figure (i): Evolution of scalar field energy density versus the scale factor. ( ρφ 

indicate the dot  line &  ρM  indicate the plane line) 

 

5.3  Cosmological Scaling Solutions: 

A flat universe contains a homogeneous and isotropic barotropic perfect 

fluid and a scalar field φ, with the potential V (φ), density ρ and pressure 

p, satisfies the Friedmann equation,  

)(
3

82

M

G
H 


      … … … (5.2) 

Where energy density and pressure in FRW background  
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)(
2

1 2  V      … … … (5.3) 

)(
2

1 2  VP       … … … (5.4) 

So we can rewrite equation (5.2), 


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



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G
H 


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2

1

3

8 22      … … … (5.5) 

Where H is the Hubble parameter. 

From energy conservative tensor, 

0)(3   P
R

R
  

The fluid equation for matter is, 

)(3 MMM PH       … … … (5.6) 

We have field equation of scalar field density, 

)(3    PH
    … … … (5.7) 

And the total scalar field energy density, 

)(
2

1 2  V 
    
… … … (5.8) 

From equation (5.7), 

)(3    PH  

                                     
)(3 





PH

dt

d
  
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Which is the Klein-Gordon equation. 

The dust perfect fluid has equation of state )1(,)1(   MMM wp we 

assume, 

m

M DR     … … … (5.10) 

Similarly, we can assume scaling solution for scalar field, 

nKR     … … … (5.11) 

Where m and n are index of exponents of the scale factor of matter (m = 

3γ) and of scalar field. We assume in first part of this work that ρφ<<ρ M 

at earlier time. The constant D and K are their density values at present 

time. We let n < m so that the scalar field can dominate at late time. From 

fluid equation, the rate of field density change is, 

)(3    PH  
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23 
 H     … … … (5.12) 

Dividing the fluid equation of the scalar field by ρφ then we get, 











 23  H
     … … … (5.13) 

From equation (5.11) we get, 
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Equating equation (5.13) & (5.14) we get, 
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We see that for a scaling assumption, the ratio between the scalar field 

kinetic energy density )
2

1
( 2   and its total energy density )(   is constant. 

If the kinetic energy dominates, then n = 6 or if the field kinetic term is 

negligible, n = 0. Hence scaling behavior for the scalar field energy 

density lies in a range 60  n . 
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5.4  The potential construction: 

With the scaling solution of  and M , we substitute them into the 

Friedmann equation. Let the perfect fluid with 
m

M R
 
dominate before 

the scalar field, the flat Friedmann equation reads, 
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Where G 82   is the scale factor of the matter density  
m
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Let the constant be zero & defining 
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Dividing equation (5.19) by (5.18) we get, 
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Putting this value in Klein-Gordon equation (5.9), 
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Considering scaling behavior of the   from equation (5.11), substitute it 

into equation (5.15) we get, 
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Now taking,  
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Case (i): when m = n 

When m=n ten equation (5.23) we get , 
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Integrating,                    0)ln(   tA    … … … (5.24) 

And, we have ,  
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Where,   
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The potential has an exponential form and can be comparable to the 

potential found in Lucchin & Matarrese, 
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Case (ii): when m ≠ n: 
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From equation (5.29) we have, 
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So from equation (5.21) we get, 
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Thus the potential can be written down as a power-law form. The act that n 

< m makes the exponent negative & the scalar field grows with time [41]. 

 

5.5  The potential reconstruction at the Early time : 

It is possible to reconstruct the scalar field potential in the case of n < m . 

We use to present value of the scale factor R0 = 1 & the present density 

parameter ΩM,0 the density  parameter, 
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Since  10,0,  M
  & we assumed that,  nKR  hence, 
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From equation (5.15) we can directly write down,
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We have, 
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Which is the time derivative of the field. 

This equation can be re written as,       
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A spatially flat universe containing a perfect fluid and a scalar field φ, 

with the potential V (φ), satisfies the Friedmann equation, 
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From equation (5.37) we get, 
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Again we know,  
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From equation (5.44) we get, 
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The slope of the potential for a tracker condition is,        
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Now from equation (5.47) we get, 
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When n = 6 the potential is zero. The slope and the amplitude of V(θ) is 

θ-dependent. When different barotrpoic fluid dominates, Potential 

acquires different slopes. We should include three fluids and the same 

time in the analysis. That is  
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Which is impossible to find the solution and analytically. One needs to 

employ numerical integration for the potential. Otherwise, between the 

radiation and dust needs to be done numerically. Because the potential 

cannot be solved analytically with simple function of field [41]. 
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6.1  Introduction: 

The standard cosmological model based on the spatially homogeneous 

and isotropic Friedmann-Lemaitre-Robertson-Walker (FLRW) [17] 

metric is very successful at describing many observations at different 

scales. It has become normal to include an inflationary epoch in this 

model during the early universe. Although there is no direct proof that 

inflation actually occurred, and other scenarios should still be considered, 

the 1992 discovery of temperature fluctuations in the cosmic microwave 

background by the COBE satellite provided evidence of a nearly scale-

invariant spectrum of primordial density perturbations of the kind 

predicted by inflationary scenarios. In addition, the study of these 

temperature fluctuations initiated by COBE ushered in an era of 

“precision cosmology” continued with later cosmic microwave 

background experiments, most notably WMAP and PLANCK. Most 

models of early universe inflation are based on scalar fields, and those 

based on quadratic quantum corrections to the Einstein-Hilbert action 

(“Starobinsky inflation”) can be reduced to the study of scalar field 

degrees of freedom. A second revolution in cosmology occurred in 1998 

with the discovery, obtained by studying type Ia supernovae, that the 

current expansion of the universe is accelerated. In the context of general 

relativity, on which the standard  -cold dark matter model is based, this 

acceleration can only be explained with a cosmological constant   of 

extremely fine-tuned, but non-vanishing, magnitude, or with a very exotic 

fluid having pressure P and density ρ related by the equation of state P ≈ 

−ρ, and dubbed “dark energy”. Most models of dark energy are based on 

a scalar field θ (also known as “quintessence”) rolling in a flat section of 

its potential V (θ). Alternative scenarios, seeking to replace the Einstein-

Hilbert action (“f(R)” or “modified” gravity), can again be reduced to the 

dynamics of a scalar field degree of freedom. Both inflation and 



205 
 

quintessence models mandate a general understanding of scalar field 

dynamics in general-relativistic cosmology. Furthermore, a scalar field 

provides the simplest field theory of matter, and although no fundamental 

classical scalar field has been discovered in nature so far (except possibly 

for quintessence), they do provide a toy model useful for understanding 

many basic theoretical features of more realistic field theories, without 

the extra details and complications. As such, scalar field theory also 

constitutes an excellent pedagogical tool used in most relativity 

textbooks. In this paper we approach the spatially homogeneous and 

isotropic cosmology of scalar fields minimally coupled to gravity from 

the phase space point of view. Although dynamical system methods have 

been widely used in cosmology since the 1960s and this type of analysis 

has been performed for non-minimally coupled scalar fields and general 

scalar-tensor or f(R) gravity we could not find in the literature a complete 

and self-contained analysis for the simpler case of relativity with a 

minimally coupled scalar field, apart from specific scenarios 

corresponding to particular choices of the scalar field potential V (θ) .By 

contrast, here we do not commit to any particular scenario, and at most, 

we make general assumptions on properties of the potential (such as 

boundedness or monotonicity), refraining from choosing specific forms 

of the function V (θ). Given that there is no preferred scenario of 

inflation or quintessence, general considerations are valuable. Since the 

relevant equations, which reduce to ordinary differential equations 

(ODEs) in this case, are still non-linear and not amenable to exact 

solution, the phase space view becomes important in gaining a qualitative 

understanding of the solutions without actually solving the field 

equations. It is generally believed that in order to say anything about the 

phase space and the qualitative behavior of the solutions of the equations, 

one must first fully specify the scenario of inflation or quintessence being 
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studied. While this is certainly true if one wants a complete qualitative 

picture of the dynamics, many aspects of the phase space portrait are 

common to most, if not all, scenarios and the study of these aspects, 

without committing to any particular scenario or potential V (θ), is a 

necessary preliminary for more detailed analyses of specific models. The 

purpose of this paper is to discuss these general features, specifically the 

geometry of the phase space, the existence, nature, and stability of the 

fixed points, and the late-time behavior of the solutions, without 

specifying the form of the scalar field potential energy density, and 

instead making some generic assumptions on its behavior (boundedness, 

presence of asymptotes, etc.) [17].  

 

6.2  Background: 

We consider a scalar field minimally coupled to the space-time curvature 

as the only source of gravity in the Einstein field equations. This 

assumption is fully justified in inflationary scenarios of the early 

universe, and only approximately justified in quintessence models of the 

late universe. In the latter case, scalar field dark energy is present along 

with a dust fluid, which combines to determine the dynamics of the 

universe. However, observations suggest that dark energy comes to 

dominate the dynamics very quickly, starting from redshifts z ∼ 0.5, thus 

we can once again neglect the dust fluid and other forms of energy in the 

late regimes. In short, there is plenty of motivation to study scalar field 

cosmology.  

The Lagrangian density of a scalar field θ minimally coupled to the 

spacetime curvature is, 

)(
2

1)(  

 VL       … … … (6.1) 
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Where V(θ) is the scalar field potential. The action for gravity and the 

scalar field is, 
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Where g the spacetime metric, g is is its determinant, and R is its Ricci 

scalar. The action (6.2) is also the action for general scalar-tensor gravity 

in vacuo, after performing a conformal transformation to the Einstein 

frame. The variation of the scalar field action )(4

)(


 LgxdS  

gives the stress-energy tensor[17]. 

 

)(
2

12 )(
)( 
















 Vgg
gg

L
T 


    … … … (6.3) 

A spatially homogeneous and isotropic universe is described by the 

FLRW line element, 
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
     … … … (6.4) 

in comoving coordinates (t, r, θ,ϕ), where R(t) is the scale factor and k is 

the curvature index. The Einstein equations, 

 GTRgR 8
2

1
     … … … (6.5) 

(Where Rμυ is the Ricci tensor and R ≡ R
μ
 μ) reduce to ODEs for the scale 

factor and matter degrees of freedom. It is customary to approximate the 

matter content of the universe with a single perfect fluid with four-

velocity u
μ
 = δ

0μ
 in comoving coordinates, energy density ρ, pressure P, 

and energy momentum tensor 

  pgUUpT  )(     … … … (6.6) 
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The pressure and energy density are usually related by a barotropic 

equation of state P = P(ρ), often of the form P = ωρ where the constant ω 

is called the “equation of state parameter”. The Einstein equations (6.5) in 

the presence of a single perfect fluid reduce to, 
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Where an over dot denotes differentiation with respect to the comoving 

time t. Eqs. (6.7) and (6.8) are called the acceleration equation and the 

Hamiltonian constraint, respectively, and the Klein-Gordon equation (6.9) 

is nothing but the covariant conservation equation 
T  = 0 (when θ ≠ 

const.). The Klein-Gordon equation is not independent of equations (6.7) 

and (6.8) and can be derived from them. Excellent pedagogical analyses 

of the phase space of a FLRW universe coupled to a perfect fluid are 

available in the literature. 

In a FLRW universe, a gravitating scalar field must necessarily depend 

only on the comoving time, θ = θ(t), in order to respect the space-time 

symmetries. Therefore, its gradient  μθ is time-like (or null but trivial if θ 

=const.). In regions where  αθ  αθ < 0, we can introduce the four-vector 
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With uμu
μ
 = −1, and the scalar field is equivalent to a perfect fluid with 

stress-energy tensor of the form (6.6) and energy density and pressure, 
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1 2  V      … … … (6.11) 
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One can define the effective equation of state parameter, 
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The Einstein-Friedmann equations (6.7), (6.8) & (6.9) become, 

)]([
3

8 2 


V
G

R

R
 


              … … … (6.14) 

2

2

2

)(
2

1

3

8

R

k
V

G

R

R
























      … … … (6.15) 

03 



d

dV

R

R



                      … … … (6.16) 

In the following it will be useful to rewrite these equations in terms of the 

Hubble parameter as 
R

R
H
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Where a prime denotes differentiation with respect to θ. These equations 

can also be derived from an effective Lagrangian or Hamiltonian. The 

equations of scalar field cosmology are non-linear and few exact 

solutions are known for particular choices of the potential V (θ). We 

would like to discuss the dynamics of the variables R(t) and θ(t) in as 

much depth as possible without choosing a specific form of V (θ). Before 

we begin, let us note that 

 

• For V (θ) = 0 the scalar field is equivalent to a fluid with stiff equation 

of state P = ρ, which does not seem to be very relevant for inflation and 

late-time acceleration (although it is relevant for matter at nuclear 

densities in the core of neutron stars, and possibly near the Big Bang 

singularity). 

• For V (θ) = V0 = const. the potential reduces to a pure cosmological 

constant  . The scalar field stress-energy tensor (6.3) reduces to 
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       … … … (6.20)  

 

With   = 8πGV0. Further, for θ = θ0 = Constant, one recovers the stress 

energy tensor of a pure cosmological constant. 

 

6.3  Phase space: 

Equations (6.14) and (6.16) describe the evolution of R(t) and θ(t) 

(remember that there are only two independent equations in the set (6.14), 

(6.15),(6.16) if θ is not constant). Equation (6.15) is a first order 

constraint (contrary to Equations (6.14) and (6.16) which are of second 

order). The phase space is, therefore, a 4-dimensional space ),,,(  RR , 
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but the Hamiltonian constraint (6.15) forces the orbits of the solutions to 

live on a 3-dimensional hypersurface, introducing a relation between the 

four variables. For example, one can use the constraint to express   in 

terms of the other three variables, ),,(  RR    

For particular choices of the scalar field potential and especially for k ≠ 0, 

one can change variables to functions of ),,,(  RR which can lead to 

exact solutions or to simpler calculations. In general, however, these new 

variables do not have an immediate or clear physical meaning and are to 

be regarded as a mere mathematical trick to perform calculations. Often 

the results of these calculations cannot be translated explicitly or easily in 

terms of the variables ),,,(  RR However, current observations seem to 

indicate that we live in a spatially flat (k = 0) universe, which is much 

simpler to analyze than the k ≠ 0 case. This is the situation that we 

consider in the following[17]. 

 

6.4  Spatially flat FLRW scalar field cosmologies: 

The description of the phase space greatly simplifies for k = 0 as, in this 

case, the scale factor R(t) appears in the dynamical equations only 

through the combination H
R

R



,the Hubble parameter, which is a 

physical observable obtained by fitting theoretical models to 

cosmological data. Since θ is the only matter field in the theory, it is 

natural from the field theory point of view to choose it as another 

dynamical variable. By choosing H and θ as dynamical variables, the 

phase space reduces to the 3-dimensional space ),,(  H  , but the orbits 

of the solutions of equations (6.17),(6.18),(6.19) with k = 0 are forced to 

move on a 2-dimensional subset of the phase space by the Hamiltonian 

constraint (6.18).  
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Let us examine the structure of the “energy surface” on which the orbits 

are forced to move. We choose to eliminate  by expressing it in terms of 

the other variables (H, θ) in eq. (6.18) with k = 0, which can then be 

viewed formally as a quadratic algebraic equation for  and solved, 

obtaining 

)(2
4

3 2




 V
G

H
      … … … (6.21)  

For certain choices of the potential V (θ), an arbitrary choice of values of 

the pair (H, θ) could make the argument of the square root on the right 

hand side negative. Therefore, in general, there can be a region of the 

phase space forbidden to the orbits of the dynamical solutions, 

 

)}(83:),,{( 2  GVHHF       … … … (6.22) 

 

(“Forbidden region”). This region may or may not exist depending on the 

form of V (θ). There are two portions of the phase space region 

accessible to the dynamics (the “energy surface” corresponding to 

vanishing effective Hamiltonian), corresponding to the two signs of the 

right hand side of eq. (6.1). These sets are symmetric with respect to the 

 = 0 plane of the ),,(  H  space. We call these two subsets of the energy 

surface “upper sheet” and “lower sheet”, corresponding to the positive 

and negative sign, respectively. 

In the upper sheet θ is always increasing )0(   while on the lower sheet 

θ is always decreasing. The two sheets are either disconnected, or always 

join on the plane   = 0, on the boundary of the forbidden region 

 

)}(830:),,{( 2  GVHHFB        … … … (6.23) 
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Figures (i) and (ii) show the upper and lower sheet for the example 

potential V (θ) = m
2
θ

2
/2. The dynamics of the spatially curved (k ≠ 0) 

scalar field universe are confined to either side of the “energy surface” 

corresponding to k = 0 in the phase space-this fact can be deduced by 

reducing the constraint to, 

2

2

4

3
)(2

4

3

GR

k
V

G

H





       … … … (6.24) 

 

 

                              (i)                                                          (ii) 

 

Figure (i): The upper sheet corresponding to the positive sign in eq. (6.21), for the 

quadratic potential V (φ) = m
2
φ

2
/2 (in arbitrary units). 

 

Figure (ii): The surface describing the Hamiltonian constraint eq. (6.21) for the 

quadratic potential V (φ) = m
2
φ

2
/2 (in arbitrary units). The upper and lower sheets 

join at the   = 0 plane to form a cone. 

 

Trajectories corresponding to k > 0 would exist above the k = 0 upper 

sheet (i.e., for larger values of  than those corresponding to the k = 0 

upper sheet) and below the k = 0 lower sheet (i.e., for lower values of ). 

Trajectories corresponding to k < 0 would exist between each k = 0 sheet 

(i.e., for values of  comprised between those given by eq. (6.30). 

Trajectories in a region corresponding to k > 0 cannot cross the k = 0 
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sheet and move to regions corresponding to k < 0, and vice-versa. Such 

dynamical transitions between different topologies of the universe are 

forbidden (the topology of space-time is not ruled by the dynamics). 

 

Finally, the lower dimension of the “energy surface” leads one to believe 

that chaos is impossible in the dynamical system under study. This 

statement is not trivial given that the standard results on the absence of 

chaos in a two-dimensional phase space are proven for a plane, not for a 

curved surface or for a subset of a higher-dimensional phase space 

obtained by gluing two 2-dimensional sheets. However, it is not difficult 

to reduce this situation to the standard case, as has been shown for scalar-

tensor gravity. The theory of a minimally coupled scalar field in Einstein 

gravity is contained in this reference as a special case [17]. 

 

6.5  Equilibrium points: 

Having chosen H and θ as dynamical variables, the equilibrium points of 

the dynamical system (when they exist) are, by definition, of the form 

 and )0,0(),( H  or (H, θ) = (H0, θ0) = (const., const.), and 

they must all lie in the  = 0 plane, and therefore, on the boundary B of 

the forbidden region (if this region exists). These equilibrium points are 

de-Sitter spaces with a constant scalar field. When they exist, they are the 

only de Sitter spaces possible in this theory. In fact, eq. (6.17) with k = 0 

reduces to
24   GH  , and a de Sitter space with H = constant 

necessarily has θ =const. as well. A degenerate case is H0 = 0, which 

corresponds to Minkowski space. de Sitter spaces are important in 

cosmology because they are usually attractors in inflation and 

quintessence models. 

)0,0(),( H
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 For θ =const.  &  reduce to = −V0 ≡ − V(θ0) and 


 gVT 0

)(   

i.e. , to a pure cosmological constant term with  = 8πGV0  [17]. 

The necessary and sufficient conditions for the existence of de Sitter 

fixed points are easily obtained from eqs. (6.17),(6.18),(6. 19) with k = 0 

0

2

0
3

8
V

G
H


      … … … (6.25) 

00 V                      … … … (6.26) 

 

 

Figure (iii): Trajectories converging to a  Minkowski  fixed point ),,(  H = (0, 0, 0) 

for the previous example 

                                

V (φ) = m
2
φ

2
/2. 

 

Which obviously require V0 ≥ 0 (Minkowski space is obtained for V0 = 

0). Equation (6.26) expresses the condition that V (θ) has an extremum or 

a point with horizontal tangent at θ0. Fig.(iii) shows two trajectories, 

corresponding to different initial conditions, converging to a Minkowski 

space attractor point for the example of the V (θ) = m
2
θ

2
/2 potential. 

Attractors (or repellors) could exist as an asymptotic limit in R or θ. To 

check for these we must search for fixed points with infinite values of the 

variables. 

 

)(L )(
T

)(L
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6.6  Fixed points at infinity with a Poincar´e projection: 

Fixed points at infinity can be found by adopting polar coordinates (r, θ) 

with 

 

CosrH      ,        Sinr            … … … (6.27) 

 

and the standard Poincar´e transformation rr  with 

         
r

r
r




1
        … … … (6.28) 

 

Which maps infinity onto the circle of radius r = 1. Since, 
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     … … … (6.29) 
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Sinr

rr

r 






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1)1(2

1
2

        … … … (6.30) 

 

fixed points (H, θ) = (const., const.) correspond to (r, θ) = (const., const.) 

thanks to the linear independence of the sine and cosine functions. The 

dynamical system (6.17), (6.18) & (6.19) becomes, 

we have from (6.18), 
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Now from (6.17) we get, 
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Again, from (6.30) we get,  
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                                                                                      … … … (6.33) 

Setting )0,0(),( H  & )0,0(),( H  yields, 
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      … … … (6.34) 

0V   = 0       … … … (6.35) 

Where θ0 = θ(r0, θ0). In order to satisfy equation (6.34) in the limit r → 1 

we must have either, 

 

               (i) Cos θ = 0, corresponding to H → 0, θ → ± ∞, and V (θ → 

±∞) = 0 (this situation includes potentials V (θ) with compact support). 

 

               (ii) Cos θ = ±1, corresponding to H → ±∞, θ → 0, and V (θ → 

0) = ∞ (i.e., V has a vertical asymptote at θ = 0. This is the case of the 

potentials



1

)( V , α > 0 used in many quintessence models). 
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               (iii) θ ≠ 0, ±π , ±π/2, which allows H → ±∞, θ → ±∞, and V (θ 

→ ±∞) = ∞. This case includes unbounded monotonic potentials such as 

  eVV 0)(  

 

Fixed points corresponding to any of these situations must have a 

potential that asymptotically satisfies equation (6.35) as well as the stated 

conditions. 

 

6.7  Holographic Dark Energy (HDE): 

Holographic dark energy (HDE) models have got a lot of enthusiasm 

recently, because they link the dark energy density to the cosmic horizon, 

a global property of the universe, and have a close relationship to the 

spacetime foam. For a recent review on different HDE models and their 

consistency check with observational data .There are also a number of 

theoretical motivations leading to the form of HDE, among which some 

are motivated by holography and others from other principles of physics. 

A fairly comprehensive motivation is worthwhile to mention that in the 

literature, various models of HDE have been investigated via considering 

different system‟s IR cutoff. In the presence of interaction between dark 

energy and dark matter, the simple choice for IR cutoff could be the 

Hubble radius, L = H
−1

 which can simultaneously drive accelerated 

expansion and solve the coincidence problem. Besides, it was argued that 

for an accelerating universe inside the event horizon the generalized 

second law does not satisfy, while the accelerating universe enveloped by 

the Hubble horizon satisfies the generalized second law. This implies that 

the event horizon in an accelerating universe might not be a physical 

boundary from the thermodynamical point of view. Thus, it looks that 

Hubble horizon is a convenient horizon for which satisfies all of our 
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accepted principles in a flat Friedmann-Robertson-Walker (FRW) 

universe. There has been a lot of interest in recent years in establishing a 

connection between holographic/age graphic energy density and scalar 

field models of dark energy. These studies lead to reconstruct the 

potential and the dynamics of the scalar fields according to the evolution 

of the holographic/age graphic energy density [58].             

In this paper, by choosing the Hubble radius L = H
−1

 as system‟s IR 

cutoff, we implement the connection between the holographic dark 

energy and scalar fields models including the quintessence, tachyon, K-

essence and dilaton energy density in a flat FRW universe.    

 

6.8  HDE with Hubble radius as IR cut-off:     
 

For the flat FRW universe, the first Friedmann equation is, 

)(
3

82

MD

G
H 


      

… … … (6.36) 

Where M &  are the energy density of dark matter and dark energy, 

respectively. Taking the interaction between dark matter and dark energy 

into account, the continuity equation maybe written as, 

 

QH MM   3      … … … (6.37) 

QwH DDD  )1(3        … … … (6.38) 
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Where 
D

D
D

P
w


  is the EoS parameter of HDE, and Q stands for the 

interaction term. It is important to note that the continuity equations 

imply that the interaction term should be a function of a quantity with 

units of inverse of time (a first and natural choice can be the Hubble 

factor H) multiplied with the energy density. Therefore, the interaction 

term could be in any of the following forms:  

(i) DHQ            (ii)   MHQ         (iii)   )( MDHQ    

 

                Hb23               for           DHQ   

          Hub23              for           MHQ                   … … …(6.39) 

          )1(3 2 uHb       for           )( DMHQ    

It should be noted that the ideal interaction term must be motivated from 

the theory of quantum gravity. In the absence of such a theory, we rely on 

pure dimensional basis for choosing an interaction Q. The freedom of 

choosing the specific form of the interaction term Q stems from our 

incognizance of the origin and nature of dark energy as well as dark 

matter. Moreover, a microphysical model describing the interaction 

between the dark components of the universe is not available nowadays. 

We introduce, as usual, the fractional energy densities are, 

   

223 HM P

M
M


    ,   

223 HM P

D
D


     ,    

22 HR

K
K       … … … (6.40) 

We assume the HDE density has the form, 

2223 HMC PD       … … … (6.41) 
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Where c
2
 is a constant and we have set the Hubble radius L = H

−1
 as 

system‟s IR cutoff. Inserting Eq. (6.40) in Eq. (6.36) immediately yields, 

 

2

21

C

C
u


      … … … (6.42) 

Where 
D

MP
u


  is the energy density ratio. From Eq. (6.42) we see that the 

ratio of the energy densities is a constant; thus the coincidence problem 

can be alleviated. 

 Taking the time derivative of equation (6.41) after using Friedmann 

equation (6.36) we get, 

)1(3 2

DDD wuHC        … … … (6.43) 

Combining this equation with equation (6.38) after using relation   

DQ   we obtain, 
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Again by using (6.42) we get, 
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Thus we have three expressions for EoS parameter depending on the 

interaction rate  
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Therefore for constant parameters c and b the EoS parameter is also a 

constant for three cases. In the absence of interaction, b
2
 = 0, we encounter 

dust with wD = 0. For the choice L = H
−1

 an interaction is the only way to 

have an EoS different from that for dust. Since in what follows the analysis 

is similar for three cases, hereafter we consider only the first case, namely 

2

2

1 C

b
wD




  . In this case, the condition wD < 0 is achieved provided c

2
 < 1. 

Besides for c
2 
> 1 − 3b

2
 we have wD < −1/3. Thus this model can describe 

the accelerated expansion if 1 − 3b
2
 < c

2
 < 1. Moreover, wD can cross the 

phantom line (wD < −1) provided c
2
 > 1 − b

2
 [58]. 

6.9  Correspondence with Scalar field models: 

In this section we implement a correspondence between interacting HDE 

by taking Hubble radius as an IR cutoff, and various scalar field models, 

by comparing the holographic density with the corresponding scalar field 
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model density and also equating the equations of state for this model with 

the equations of state parameter of interacting HDE obtained in (6.45). 

 

6.10  Reconstructing holographic quintessence model: 

In order to establish the correspondence between HDE and quintessence 

scalar field, we assume the quintessence scalar field model of dark energy 

is the effective underlying theory. The energy density and pressure of the 

quintessence scalar field are given by, 

)(
2

1 2  V     … … … (6.47) 

)(
2

1 2  VP       … … … (6.48) 

Thus the potential and the kinetic energy term can be written as, 
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              …. … … (6.49) 

      &                    )1(2 w                  … … … (6.50) 

Where 







P
w  In order to implement the correspondence between HDE 

and quintessence scalar field, we identify  = D  and w = Dw . 

 

Inserting equation (6.41) & (6.45) in equation (6.50) we get, 
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Integrating, 
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Where we have set θ(R0 = 1) = 0 for simplicity. Next we want to obtain 

the scale factor as a function of t. Taking the time derivative of Eq. (6.36) 

and using (6.45) we find, 
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Hence equation (6.52) can be re-written as, 



227 
 

K
P tCM

C

b
t 3

2

2

2

ln)
1

1(3)(


  

t
C

b
CM

K
t P ln)

1
1(3

3

2
)(

2

2


      … … … (6.55) 

 

Next we obtain the potential as a function of θ .Combining equation 

(6.45) with equation (6.49) we reach, 
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Using equation (6.53) & (6.55) we obtain the explicit expansion for 
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Now from (6.56) we get, 
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Let us discuss the condition for which the scale factor and hence the 

obtained potential, leads to the acceleration expansion at the present time. 

Requiring R  > 0 for the present time, leads to k < 2/3, which can be 

translated into c
2
 > (1+3b

2
)
−1

. Note that the condition k < 2/3 valid only 

for the late time where we have a dark energy dominated universe. In 

general k depends on c, and for the matter dominated epoch where c is no 

longer a constant, then k is also not a constant and varies with time. The 

obtained exponential potential here is well-known in the literature for the 

quintessence scalar field [58].               

In addition to the fact that exponential potentials can give rise to an 

accelerated expansion, they possess cosmological scaling solutions in 

which the field energy density ρθ is proportional to the matter energy 

density ρm. Exponential potentials were used in one of the earliest models 

which could accommodate a period of acceleration today within it, the 

loitering universe. 
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7.1  Introduction: 

In this chapter we introduce the inflationary scenario of the early 

universe. We will take the cosmological principle and the Einstein 

equations as our starting point and from there on derive the conditions 

needed for inflation. We will then see that inflation may solve the flatness 

and horizon problem of standard Big Bang cosmology, and see how the 

physics may be described by a single scalar field[29].  

 

7.2  Friedmann Equations: 

The dynamics of FRW space-time is characterized by the evolution of the 

scale factor R(t), which is related to the energy-momentum density of the 

universe by the Einstein equation .Without a cosmological constant term 

 g  they read  

 GTRgRG 8
2

1
   … … … (7.1) 

G is Newtonian constant which we shall express in terms of the reduced 

Plank mass Mp which is defined by GM p 82 
 in units  = c = 1. We 

shall often work in units were also Mp = 1. The symmetries of FRW 

space-time reduces the Einstein equations to just two coupled ordinary 

differential equations called the Friedmann equations .To see this 

consider first the Einstein tensor  RgRG
2

1
 . The Ricci tensor 

R  and the scalar curvature R are given by contractions of the 

Riemannian curvature tensor


R . 




















   RR   , 

RgR     

… … … (7.2) 


  is the Christoffel connection which is related to the metric by , 
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Where gij is the spatial part of the FRW metric .We shall model the 

energy-momentum of the universe by a perfect fluid  

  pgUUpT  )(    … … … (7.4) 

 

ρ (t) and p(t) are the energy density and pressure respectively and U
µ 

 is 

the four velocity of the fluid. The fluid is at rest in co-moving co-

ordinates such that the cosmological principle is respected U
µ 

 =(1,0,0,0) 

,hence the energy momentum tensor takes the form  

)](),(),(),([ tptptptdiagT 
      … … … (7.5) 

Inserting this in the Einstein equation we obtain the Friedmann equations 

which are the two promised differential equations  
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Oftentimes the first equation will be called the Friedmann equation while 

the second equation will be called the acceleration. 

We considered the Einstein equations without an explicit cosmological 

constant term  g .This term may be included by 

redefining/decomposing the energy density and pressure 

 

 2~
pM      ,      2~

pMpp        … … … (7.8) 

 

The tilde has temporarily been introduced to denote the contributions 

from matter and radiation. This leads to the notion of a vacuum energy 

 2

pvac M  with negative pressure vacvac p  . 

 

This Friedmann equation then read  
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36
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p

R

R 
   … … … (7.10) 

 

A universe dominated by a cosmological constant provides the simplest 

example of Inflation. We will return to this point shortly. 

 

7.3   Standard Big-Bang Model : 

Now we briefly review the basics of the Standard hot Big Bang model, in 

which the universe is in a thermal radiation dominated state at the earliest 

times. We start by solving the Friedmann equation for the simple cases 

where the universe is dominated by either matter, radiation, curvature or a 
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cosmological constant[29]. To do this, we first consider the time 

component of energy momentum conservation  

0)(3  pH     … … … (7.11) 

We also define the equation of state parameter ω=P/ρ and consider it to 

be constant for simplicity. 

 

Now from equation (7.10) We get , 
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Integrating, 
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                            Or, 0
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The values of w for the different types of stress-energy are listed in table 

(i)  

 ω ρ(R) R(t) R(η) 

Radiation 1/3 4R  

2

1

t  

η 

Matter 0 3R  

3

2

t  

2  

Curvature -1/3 2R  

1t  
 

  -1 0R  

Hte  

H

1
   

00  
T
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Table (i): FRW solutions for a universe dominated by radiation, matter, curvature 

and a cosmological constant. Solutions in terms of conformal time 
R

dt
d    are 

included. 

Where at present time 0t , the scalar factor has been normalized to unity 

R (t0) =1 . 

 

Inserting this in the Friedmann equation  
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Again                         
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Dividing (7.13) & (7.14) we get , 
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Integrating,  

                    )(ln tRcHt     … … … (7.15) 

But if for t0   , 

00 )( RtR   

 

cHttR o  )](ln[ 0  

                   

cHtR o  0ln     … … … (7.16) 

Now subtracting (7.16) from (7.15) we get , 



236 
 

 

)()(ln)(ln 00 ttHtRtR   

)(
)(

)(
ln 0

0

ttH
tR

tR
  

)(

0

0

)(

)( ttH
e

tR

tR 
  

)(

0
0)()(

ttH
etRtR


  

                      
)( 0)(

ttH
etR


     [ 1)( 0 tR ]    ... … … (7.17) 

From the Friedmann equation we also find that the curvature contribution 

may be treated as a fictitious energy with 
2

23

R

kM p

k


  & 3

1
 .The 

solutions for the different types of stress-energy may then be listed as in 

table (i). 

 

If more than one species contribute to the energy density, ρ and p denote 

the sum of all components, 

 i    ,    ipp    ,  
i

ip


 

 

If the species are non-interacting the scaling laws applies throughout the 

expansion such that a flat universe k = 0 initially will be dominated by 

radiation. The energy density of radiation scales both with a volume 

factor 3R  and redshift of wavelength 1R  which combines to give 4R . 

Hence matter which only scales with volume 3R will eventually become 

the dominant constituent. At later times the evolution will be dominated 

by vacuum energy which does not scale at all. Note also that the scaling 

law for matter and radiation implies infinite energy density and 

temperature at an initial singularity 0R  for 0t . This leads to the 

notion of a hot Big Bang at some finite time t = 0 in the past. We have 
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arrived at the hot Big Bang picture of the universe: A cosmological 

singularity at finite time in the past, followed by a hot radiation 

dominated phase, which gradually cools as the universe expands. At later 

times matter will be the dominant constituent and eventually vacuum 

energy[29].  

The Friedmann equation 
22
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critical energy density ρc for which the universe is spatially flat for K=0 
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It is convenient to express the actual energy density ρ as a fraction of the 

critical value by defining the density parameter 
c


  . The Friedmann 

equation then takes the form, 
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Which implies a consistency relation at present time , 

10,0,  k

i

i     … … … (7.20) 

According to observations of the CMB and large-scale structure, the 

present day universe is flat, dominated by dark energy, and has a 

considerable amount of dark matter and only traces of baryonic matter 

and radiation. 

)22(0499.0b   ,  )11(265.0DM   ,  
017.0

016.0685.0 

      ,  0k  … 

… … (7.21) 

The universe went from being radiation dominated to matter dominated to 

30 103
eqR

R  the CMB was emitted to 11000 
recR

R  & dark energy became the 

dominant constituent at 
2

10 
R

R  where the scale factor at present time R0, 

have been included explicitly. 

This concludes our brief review of the standard Hot Big Bang model. 

 

7.4  Flatness problem: 

The flatness problem comes from considering the Friedmann equations in 

a universe with matter and radiation, but no vacuum energy. To state and 

quantify the problem we rewrite the Friedmann equations in terms of the 

critical density  
c


  

We have , 
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Again we know, 
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Now , From equation (7.22) & (7.23)  we obtain , 
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Differentiating we get ,                 
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A flat universe Ω=1 therefore remains flat at all times. This is an unstable 

fixed point if the strong energy condition 1+3w >0 is satisfied (valid for 

radiation 
3

1
 and  =0) 
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Any deviation from flatness is amplified by the subsequent expansion; 

hence the flatness of the universe at present time 10   represents an 

initial fine tuning problem. This is referred to as the flatness problem of 

standard Big Bang cosmology in which the universe is initially dominated 

by radiation and later matter. On the other hand if 1 + 3ω< 0 (valid for 

example for a cosmological constant ω = -1), the universe evolves 

towards flatness: 
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d
   … … … (7.25) 

From (7.23) we see that this leads to accelerated expansion. The flatness 

problem may therefore be solved by introducing a period of accelerated 

expansion prior to radiation domination. The inflationary paradigm does 

exactly that. We may also state the flatness problem and its solution in 

terms of the co-moving Hubble scale (RH)
-1

. From the Friedmann 

equation we infer the following behavior 

 0)( 1RH
dt

d
Expansion towards flatness   … … … (7.26) 

 0)( 1RH
dt

d
Expansion away from flatness   … … … (7.27) 

 

The first condition applies to matter and radiation while the second 

applies to a cosmological constant. A shrinking comoving Hubble scale 

may be taken as the defining feature of inflation, it implies accelerated 

expansion since 
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R
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d 
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       …. … … (7.28) 
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7.5   Horizon problem: 

The isotropy of the CMB pose another problem in standard Big Bang 

cosmology called the horizon problem. The problem arises since the 

surface of last scattering consists of many 410 causally disconnected 

patches as illustrated. It is highly unlikely that each patch, independently 

of the others should produce the same spectrum of black body radiation to 

make the CMB appear isotropic today. To be a bit more precise we 

consider particle horizons RH (t) which are the distance light can travel 

between the initial singularity and time t. Photons travel along null paths 

which for radial trajectories in a flat universe are characterized by dr = 

dt/R. The comoving distance light can travel between times t1 and t2 is 

then 
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1)(

1

1

1

2

1

0

2

1

n

n

n

n
t

t
RRH

n

n

tR

dt
r



 


     for  
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…. … … (7.29) 

Thus the comoving horizon size at time t is )(tRH
~ n

n

tRH





1

1

0 )(  .At present 

time )(tRH
~ 1

0

H  and we see explicitly that the Hubble scale H
-1

 provides 

a good estimate for the size and age of the observable universe if its 

constituents are matter and radiation. 

When we look at the CMB we are observing the universe at scale factor

1100
1recR . 

Today the comoving distance to a point on the surface of last scattering is 

then well approximated by the horizon size 1

0~  Hr  . At recombination 

the comoving horizon size of such a point is 1

0

21

0 10~~)(  HaHtR recrecH
 , 

were we assumed that the universe is matter dominated from trec until 

present time. Hence widely separated points on the surface of last 

scattering have non overlapping horizons at the time of recombination. So 
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far we have compared the radius of two spheres. By including area and 

volume factors we find that the surface of last scattering consist of ~ 10
4
 

disconnected patches and ~ 10
6
 disconnected volumes at the time of 

recombination[29]. 

The horizon problem may be solved by introducing an early period of 

inflation prior to radiation domination. To see this and for later 

convenience we switch to conformal time η defined by 

R

dt
d   

The FRW metric is then conformally related to a static Minkowsky 

metric, 

 

][)( 2222 drdRds      … … … (7.30) 

 

Where we again restricted ourselves to radial propagation in a flat 

universe for the sake of simplicity (Generalization to curved spatial slides 

is straightforward). Conformal time allows us to draw light cones and 

infer casual relationships in a manner similar to that of special relativity. 

With these coordinates the particle horizon is conveniently given by the 

age of the universe in conformal time:  
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00
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1
(ln

)(
    … … … (7.31) 

 

The size is the width of the past light cone projected onto the surface η = 

0 defined by the initial singularity. The integral has been written in terms 

of the commoving Hubble scale (RH)
-1

 which is a more useful scale in 

inflationary cosmology than the particle horizon. We shall follow 

standard conventions and call (RH)
-1

 the horizon. As we have seen it is 
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about the size of the particle horizon during matter and radiation 

domination, but this does not hold in general. We classify co-moving 

length scales λ  with associated wave number k according to their size 

relative to the horizon 

1
RH

k
          scale λ inside the horizon 

1
RH

k
          scale λ outside the horizon 

If a scale is larger than the horizon size causal physics cannot affect it. In 

standard Big Bang cosmology d/dt (RH)
-1

 > 0 such that scales which are 

outside the horizon at earlier times, such as the CMB scale cf. the horizon 

problem, may enter the horizon at later times. It is now clear that the 

horizon problem may be solved by an early period of inflation in which 

d/dt (RH)
-1

 < 0. In this scenario the CMB scale may initially be inside the 

comoving horizon such that causal physics can equilibrate it. However 

during Inflation the scale exits the horizon. When inflation ends the 

standard hot Big Bang commences and the comoving horizon size starts 

growing such that the CMB scale eventually reenters the horizon. In this 

scenario η will get most of its contribution from early times and will be 

much larger than the estimate RH
-1

 provided by standard Big Bang 

cosmology[29]. 

 

Figure(i): Conformal diagram of standard Big Bang cosmology. The past light cone 

at the surface of last scattering does not overlap. This is the source of the horizon 

problem in standard Big Bang cosmology. In the text we estimated the surface of last 

scattering to consist of ~10
4
 causally disconnected patches. 
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The inflationary paradigm may be visualized by the conformal diagram in 

Fig(ii), as we now explain. In standard hot Big Bang cosmology the universe 

is dominated by radiation early on such that there is an initial singularity R

)0( i = 0. However in the inflationary paradigm we assume that prior to 

radiation domination, there is a period of inflation d/dt (RH)
-1
 < 0. For the 

purpose of this discussion we assume that the universe is dominated by a 

cosmological constant in this period. This is the simplest case of inflation. 

Then HteR   and in conformal time the scale factor evolves as 




H
R

1
)( 

    … … … (7.32) 

Hence the initial singularity is pushed to the infinity past in conformal 

time, R → 0 

 

 

Figure(ii): Evolution of the comoving Hubble radius 1/RH in a universe which 

undergoes a period of inflation prior to radiation domination. The comoving Hubble 

radius shrinks dramatically during inflation. This allows the present day horizon to 

lie within a ”smooth patch” that was well inside the horizon at the start of inflation. 

This solves the flatness and horizon problems. 

  

For  η → -  thereby allowing past light cones to overlap. Note that the 

scale factor becomes infinite at η = 0. This is because we have assumed 

pure de Sitter space with H = constant. In this case inflation lasts forever, 

with η = 0 corresponding to the infinite future t →  . In more realistic 
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models, inflation ends at some finite time which is characterized by the 

breakdown as an approximation valid during inflation. In these models η 

= 0 does not correspond to the initial singularity but a transition from 

inflation to radiation dominated expansion called reheating. 

 

7.6  Inflation from a Scalar field: 

In the preceding sections we introduced the inflationary paradigm as a 

solution to the flatness and horizon problems of the standard hot Big 

Bang model. We considered a simple model in which inflation is driven 

by a cosmological constant. This is not a realistic model since the 

universe stays dominated by the cosmological constant at all times such 

that inflation never ends. In order to transition from inflation to radiation 

domination the vacuum-like energy during inflation must be time 

dependent. This is traditionally modeled by introducing a single scalar 

field θ the inflation. We start by 

 

Figure (iii): Conformal diagram of inflationary cosmology. Inflation pushes the 

initial singularity to the infinity past in conformal time, thereby allowing past light 

cones at recombination to overlap. Inflation ends in a reheating phase at τ ~ 0. 

During reheating the vacuum like energy of the inflationary sector is converted to 

other sectors. 
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Considering the action of a scalar field with a minimal coupling to gravity 

)](
2

1

2

1
[ 24   VRMgxdS p        … .. … (7.33) 

Where V(θ) is the potential energy associated with the field. Later we 

will consider the more general case of non-minimally coupled theories in 

which we add the term 
1
/2Rξθ

2
 to the action. The field is split into a 

classical homogeneous background θ (t) and fluctuations δθ (t, x) 

θ (t, x)= θ (t)+ δθ (t, x) 

The near isotropy of the CMB suggest that we may treat δθ(t,x) as small 

perturbations which evolve on a classical homogenous background 

solution given by θ (t) and the FRW metric. In this chapter we are only 

concerned with the evolution of the homogeneous background while 

fluctuations are considered later. The energy momentum tensor is 

 









 )(

2

1
 

 VgT     … … …  (7.34) 

 

For the homogeneous background it is of the perfect fluid form (7.5) with 

 

 

 

If the potential energy of the field is dominant 2)(  V  we recover the 

vacuum like behavior of inflation characterized by negative pressure ω < 

P/ρ accelerated expansion ω < -1/3 and hence shrinking horizon. 
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8.1  Introduction: 

We consider the more general case where an explicit non-minimal 

coupling term ξθ
2
R is added to the action. This leads to several 

interesting consequences which we explore. In particular it leads to 

lowering of the tensor-to-scalar ratio r, a feature which is favored by 

current experiments. It also alleviates the problem of tiny values for the 

inflation self-coupling. A coupling of this type is in general allowed by 

all symmetries of the scalar field sector and gravity. In fact the coupling 

is inevitable, as renormalization of a scalar field in curved space-time 

requires introduction of divergent counter terms of this type[29]. 

Next we consider another approach where inflation is driven directly by 

the gravitational part of the action. This requires one to go beyond 

standard Einstein gravity and consider modified versions, for example in 

the context of f (R)-theories 

 

8.2  Minimal coupling : 

We are mainly interested in models with a non-minimal coupling to 

gravity. However, to appreciate what the non-minimal coupling term 

does, we first consider the case where the inflation is minimally coupled 

to gravity, 

]
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However if we apply the slow-roll condition, 

0)(3   VH   
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Hence the potential energy 44 )(
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

  VV  grows much faster than 

the kinetic energy 
22     as long as the field is far enough out on the 

potential, the slow-roll approximation are self-consistent. 

We apply the slow-roll approximation & obtain from  
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Here, 
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From (8.2) ,  
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Inflation ends when 
pendendV M81)(    

Assuming that the pivot scale *K crossed the horizon 60* N e-folds 

before the end of inflation yields, 
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Hence we obtain inflation at super planckian field values. To stay out of 

the domain of quantum gravity the self-coupling λ needs to be small such 

that the energy density can be much less than the Planck density. In fact, 

matching the potential to the observed value of scalar perturbations 
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The presence of an extremely small parameter is generic to minimally 

coupled models are represents a fine turning problem. 

The values of r & ηS are estimated from  
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            &                     r ~ 0.26     ,    ηS ~ 0.95 

The high value of r places the model well outside the 99.7% CL regiuon 

in the (ηS ,r) plane as measured by Planck & is effectively ruled out. 

 

8.3  Non-minimal coupling : 

Adding a non-minimal coupling term changes the picture .The action now 

reads, 
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We use our previous findings U(χ) = Ω
-4 

 V(θ) where  Ω
-4  
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To find the Einstein frame potential in the large field inflationary region 


 PM
  . 

It is useful to express the potential in terms of both the original field θ, 

defined in the Jordan frame & the canonical Einstein frame field χ. 
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At this point the conformal transformation to the Einstein frame and the 

subsequent field-redefinition has served its purpose. It allowed us to do 

the standard slow-roll approximation and find the slow-roll conditions in 

a simple way. We now reinsert the field redefinition. 
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Erasing also the number of e-folds (8.5) in terms of the Jordan frame field 

θ we get , 
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At first sight the large field approximation  
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be extremely small 1310~  . However, with the non-minimal coupling as 
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Hence the problem of the tiny inflation self-coupling is alleviated, at the 

price however, of a large non-minimal coupling to gravity, which begs 
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&                                            r ~ 0.26     ,    ηS = 0.95 

This lies well inside the 95% CL region as determined by Planck. 

 

8.4  The Chaotic inflation in slow-roll approximation: 

The chaotic inflation model is defined by the potential, 
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Integrating, 
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For m << Mp or for short times we see that )(t  will be approximately 

constant or slowly rolling. We see that )(t  is a decaying exponential on 

time .Thus there will be a “half-time” or “life-time”  associated with 

slow-roll which is define as , 
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0   .That is the amplitude is reduced by 

factor 
e

1
 . 



263 
 

We expect that the slow-roll approximation will be valid for t  

We can obtain )(t  slightly differently. 

Let‟s not assume V=V0 =constant .but only that V22   & 0  . 

Then instead of 024 0 VGV    we can write , 
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In agreement with equation (8.8) for short time .We can further 

investigate the velocity of the slow-roll approximation by evaluating the 

potential as a function of time & checking that it is constant for short 

time. We do this by substituting our solution for  )(t  back into the 

potential. We get, 



264 
 

22

2

1
)(  mV 

 

 12

2

2

0

2 0

2

1
tmM p

emV


  

 32

0

2 0

2

1
tmM p

emV


  



















3
1

2

1

0

2

0

2
tmM

mV
p

 

                     















32

1
00

2
tmM

mV
p

   … … … (8.10) 

Thus we see that for m << Mp or for short times the potential is indeed 

constant. 

For short times (or for m << Mp ) we have verified that θ & V are 

approximately constant. 

This means that 0 & 0V which give exponential inflation. (Also 

0V  .So that P ) 

In order to solve the horizon, flatness & monopole problems .Most 

models requires a high degree of inflation typically amounting to about 

60 e-folds. 

Given R(t) =R0e
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After one lifetime η the number of e-folds is, 
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Notice how the flatness problem is solved in inflation . 

We have , 
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Suring inflation (sloe-roll) V0  stays constant but by the end of inflation , 
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 whereas V0 has remained constant 

.Thus the term 
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k
 is entirely negligible .Inflation  does not give K=0 ,but 

rather gives 0
2
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k
 which is equivalent to k=0 .This is an important 

destination .The universe can have k = 0 or k =1 or k= -1 .No matter what 

the value of k ,it gets diluted by inflation and it is equivalent to a universe 
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with k=0 .Thus within our horizon the universe is flat .Quantum 

cosmology predict that a universe which arises via tunneling must have 

k=1 .This is perfectly okay with inflation which is simply dilutes the 

curvature .Quantum tunneling requires k=1. Inflation actually says 

nothing about the value of k. It simply predicts that 0
2


R

k
  at the end of 

inflation. On Earth, the reason many people believe the Earth is flat is 

because we cannot see beyond the horizon. Up to the horizon it looks flat. 

If we could see beyond the horizon we would see the curvature. Similarly 

for our universe. According to inflation the size of the universe is much 

larger than the distance to the horizon (i.e. as far as we can see) the 

universe looks flat because 
2R

k
 is negligible. If we could see beyond the 

horizon we would see the curvature. And quantum tunneling predicts that 

what we would see would be a universe of positive curvature[29]. 

 

8.5  Cosmological Constant associated with chaotic inflation : 

Let us now calculate the density as a function of R .Now solving the 

equation  

                         

0
3

4

0)(




pM

m
t

eRtR    as (R) t =For t  

0

3

4
0

R

R
e pM

m
t






 

)ln(
3

4

0

0
R

R

M

m
t

p

 


 

)ln(

3

4

1

0

0

R

R

M

m
t

p






 



267 
 

)ln(
4

3

00 R

R

m

M
t

p




   … … … (8.13) 

So we get , 
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Finally evaluating V 2

2
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Recall previously that an inflationary solution requires m < 2 yielding, 
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Using,  Vp  2

2

1
  we obtain  

2
0

2

2
02

0

2

)
12

(
2

1 




pM

p

R

RM
P 








  

We find that for inflation to occur we need  



4

0

pM
  write this as, 




4
0

pM
l  with 1l . 

Then density becomes, 

mp

R

R
l

Mm
R ))(

3

1
(

8
)( 02

22




    … … … (8.15) 

mp

R

R
l

Mm
RP ))(

3

1
(

8
)( 02

22




   … … … (8.16) 

Defining,  
mp

R

RMm
)(

8

0

22


   we write , 

  )
3

1
( 2l      &      )

3

1
( 2lP   


2

2

31

31

l

l
P




  

  



269 
 

The requirement l > 1 yields, 


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Which means negative pressure writing 


3
P gives, 
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3
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These results are in agreement with our previous constraints that in order 

to have positive R  

We needed, 


3
P or 1  

Our chaotic inflation model is the slow roll approximation gives negative 

pressure (but not P=-ρ) & corresponds to a weak decaying cosmological 

constant. 

 

8.6   Inflation via modified gravity: 

This requires one to go beyond standard Einstein gravity and consider 

modified versions, for example in the context of f(R)-theories. 

 

In these theories the action is, 

 

  xdRf
M

gxdS P 4
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2

 LM (gµʋ , ψM)     … … … (8.18) 

 

Where f (R) is an arbitrary function of the Ricci scalar R and LM is a 

matter Lagrangian which is minimally coupled to gravity. This includes 

the Starobinsky model of inflation, which is one of the earliest models of 

inflation. The Starobinsky model features an R
2
-term added to the 

Einstein-Hilbert action, 
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Where M is a new mass scale. We consider the Starobinsky model of 

Inflation in detail below. We begin our discussion by considering the 

field equations associated to the general action. These may be found by 

varying the action with respect to gµʋ , 

 gRFgRfRRF  )()(
2

1
)(       

M

P TMRF 
2)(      … … … (8.20) 

 

Where 
R

f
RF




)(   &   MT

 is the energy-momentum tensor of the matter 

fields. We obtain the Starobinsky-Einstein equation 
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This reveals an extra propagating scalar degree of freedom ψ = F(R) as 

compared to standard Einstein gravity. We will soon see that this extra 

scalar degree of freedom may be used to drive inflation. In Einstein 

gravity the term F(R) vanishes and M

P TgMR 
2  such that the Ricci 

scalar is determined by the matter content in the standard manner [29]. 

 

In the following we consider vacuum solutions with 0MT
. In equation 

(8.20) we will consider the effects of integrating out matter fields. Also 

we consider flat FRW space-time (K=0) with metric, 
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The Ricci scalar is,     
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With H the Hubble constant .Since we are studying inflation we are 

interested in (quasi) de Sitter solutions with H and R constant. In this case 

the term F(R) vanished from the trace equation which then reads, 
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The model 
2)( RRf   solves this condition & gives rise to an exact de-

sitter solution. 

We may consider this is as a correction to Einstein gravity & write, 
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Where M is a mass scale .Then at high R-values where the R
2
-term 

dominates we obtain quasi de Sitter expansion 0)(2)(  RfRRF . This is 

the famous Starobinsky model of inflation. During inflation R decreases 

such that Inflation ends when the quadratic term becomes smaller than 

the linear term R ~M
2
. 

Now we first insert the Starobinsky model and the FRW-metric in the 

field equations (8.20) then we can get the following calculation, 
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For µ = ʋ = 0, 
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So finally we get,  
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The first equation is the (0,0)-component which have been inserted in the 

(i, i)-component to obtain the second equation. When deriving these 

equations it is useful to know that the FRW-metric yields, 
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As we did earlier, we quantify slow-roll by smallness of the Hubble slow-

roll parameters, 
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The first two terms in equation (8.27) may then be neglected. From 

equation (8.26) we find that 212HR   , hence R  can also be neglected. 

The slow-roll approximation then becomes, 
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The term may readily be integrated to obtain the slow-roll solution, 
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Where i denotes the initial conditions .It can be shown that the slow-roll 

trajectory is an attractor in phase space and hence the further evolution is 

largely independent on the Initial conditions, as we discussed in section 

before. Accelerated expansion occurs as long as the slow-roll parameter 

εH  is smaller than unity.         
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Hence inflation occurs for 22 MH  . Inflation ends when εH =1 i.e. 

6

M
H end

. It follows that this corresponds to the time at which the Ricci 

scalar decreases to 2~ MR . 
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8.7  Starobinsky Inflation in the Einstein frame: 

The f(R) theory, 
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    … … … (8.30) 

This equation may be cast in a form that features a potential for the extra 

scalar degree of freedom which appeared above. This can be done by 

considering the following linear representation in terms of a new field y. 
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We set 0MT  since we will insert the Starobinsky model shortly .The 

equation of motion for y is, 
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If 0)(  yf  it follows that y = R & we recover the original action 

equation (8.30). 

By inserting the scalar degree of freedom, 
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Again,    
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Putting these values in equation (8.31) we get, 
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Where,             
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Hence we have obtained and action for the scalar degree of freedom ψ with 

potential V ( ψ) which is equivalent to the f (R)-theory. It appears to have 

the same form as the non-minimally coupled models we considered earlier 
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except that there is no kinetic term. We will discuss similarities and 

differences within the framework of Starobinsky inflation shortly. First 

we proceed by performing a conformal transformation. To do this it is 

convenient to reinsert F(R) and write the action in the form, 
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Let us briefly repeat the steps of the conformal transformation. The 

metric and Ricci scalar transform as 
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The transformed action then reads, 
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We land in the Einstein frame where the action is linear in R̂  if we choose 

F2  

We also see that the action may be canonically normalized by the field 

redefinition, 
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The action finally takes the form from (8.37) we get, 
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We may now follow the same steps as earlier, and analyze inflation using 

the Einstein frame potential within the standard slow-roll paradigm. We 

proceed by inserting the Starobinsky model, 
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The field redefinition then reads 
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Using this relation, the Einstein frame potential i.e. equation (8.38) 

becomes 
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Except for the overall coefficient, this is the same as the large field limit 

of the quartic potential with non-minimal coupling.  
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The two potentials coincide if we make the identification   
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The two potentials coincide if we make the identification, 
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Hence, by using our earlier results we find that the Planck constraint on 

the amplitude of scalar perturbations  
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The slow-roll parameters are the same as for the quartic potential since 

the overall coefficient of the potential drop out in the derivation, 
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Note that the similarity only holds in the large field approximation of the 

quartic potential. 

Setting N* = 60, the Starobinsky model then gives the same values of r 

and ηS which we obtained, 

r ~ 0.0033    ,    ηS  =  0.966 

 

This is in excellent agreement with results from Planck. 
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8.8   Comparison with the quartic potential: 

Let us briefly touch upon the similarities of the Starobinsky model and 

the quartic potential with a non-minimal coupling. We follow which 

provides a nice comparison between Higgs inflation and the Starobinsky 

model[59]. We begin by noting that in the linear representation which we 

considered earlier, the action may explicitly be written as, 
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Note that ψ now has mass dimension 2. The arrow indicates that we may 

obtain the Starobinsky action in the pure f (R) form by integrating out 

using its equation of motion. Consider now the action for the non-

minimally coupled quartic potential[29], 
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During slow-roll inflation the kinetic term is by definition negligible. The 

action then reads 
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Hence the inflation is an auxiliary field in this regime, and may be 

integrated out by means of its equation of motion 
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Inserting this in the Jordan frame action we obtain, 
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Therefore, the non-minimally coupled quartic potential is equivalent to 

the Starobinsky model during inflation. If we make the identification  
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it exactly coincides with the f (R)-representation in (8.42). 
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Of course, this is the same conclusion as the one we drew earlier using 

the Einstein frame actions. However, this representation clarifies that the 

equivalence arises since the kinetic term in the model with the quartic 

potential is negligible during inflation. We implicitly made the same 

approximation when we derived the Einstein frame potential for the 

quartic potential. 
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The approximation was made by going to the large field regime 

 PM  in the field redefinition, 
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It is also important to note that the non-minimal coupling ξ naturally appears 

in the model with quartic potential equation (8.43), whereas it can be 

absorbed in the auxiliary field in the linear representation of the Starobinsky 

model equation (8.44) & (8.42). Hence ξ is redundant in the Starobinsky 

model. This difference arises since there is no kinetic term for the auxiliary 

field in the linear representation of the Starobinsky model [59]. 

Let us now consider the observables of the two models and at what level 

they differ. 

In particular we consider differences in the (r, ηs)-plane by comparing the 

slow-roll parameter εV of the two models. To do so, we compare the 

action of the quartic potential with non-minimal coupling and kinetic 

term equation (8.43) with the linear representation equation (8.44) of the 

Starobinsky model. We compute the slow-roll parameter εV for both 

models in the Einstein frame. 
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The Einstein frame potential U is the same for the two models whereas 

the field redefinition χ(θ), which is related to the kinetic term, differ. 

Recall from 
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That the field redefinition for the model with quartic potential and kinetic 

term is, 
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In the Starobinsky model the term Ω
-2

 vanishes. This is exactly equivalent 

to the large field approximation for the model with quartic potential and 

kinetic term. Of course, we do not perform the large field approximation 

here, since the slow-roll parameters would then coincide. Using 
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as the number of e-folding one may find the following relation between 

the slow-roll parameters 
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The difference is extremely small and we do not expect observable 

differences in the (r, ηs)-plane unless there is a strong dependence on 

model dependent post inflationary physics. 

  

8.9  Marginally deformed Starobinsky Gravity: 

In the previous section we have seen that gravity itself may be 

responsible for inflation. This requires one to go beyond standard 

Einstein gravity, for example by modifying the gravitational action via 

f(R)-theories. In particular we have seen that Inflation occurs in the 

Starobinsky model. We now consider quantum-induced marginal 

deformations of the Starobinsky action. We parameterize the 
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deformations by R
2(1-α)

 where α is a positive parameter smaller than one 

half. The Starobinsky model is recovered for α = 0[59]. 

 As we shall see, deformations of the Starobinsky action may lead to 

sizeable amplitude of primordial tensor modes, even for small α. 

originally we compared the deformed model with the BICEP2 results 

which indicated the presence of primordial tensor modes. In this section 

we compare only with the Planck results and note that independently on 

the validity of the BICEP2 results, it is interesting to know how 

deformations of the Starobinsky model alter the inflationary observables. 

In particular we argue that deformations may arise if a matter theory of 

particle physics is embedded in the gravitational theory. 

8.10  Motivation: 

According to cosmology can be used qualitatively to establish the 

quantization of gravity. In fact, by combining cosmological observations 

with an effective field theory (EFT) treatment of gravity one can start 

estimating the parameters entering gravity‟s effective action. An actual 

discovery of primordial tensor modes can therefore be used to determine 

these parameters at the inflationary scale, which may turn out to be close 

to the grand unification energy scale. 

To lowest order, the effective action for gravity can be parameterized as, 

  .]..........
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Beyond an expansion in the Ricci scalar R, we formally included the 

Weyl conformal tensor C
2
 and the Euler four dimensional topological 

term E. However we can drop E since it is a total derivative.  

Furthermore when gravity is quantized around the Friedmann Lemaitre 

Robertson Walker metric the Weyl terms are sub–leading since the 
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geometry is conformally flat. We are left with an f (R) form of the EFT. 

In particular the first two terms reproduce the Starobinsky model. Higher 

powers of R, C
2
 and E are naturally suppressed by the Planck mass scale. 

If inflation occurs at energy scales much below the Planck scale the EFT 

is accurate. We must, however, take into account also marginal 

deformations including, for example, logarithmic corrections to the action 

above. Because of the similarity between the EFT description of gravity 

and the chiral Lagrangian for Quantum Chromo Dynamics we expect the 

quantum-induced logarithmic corrections to play a fundamental role for a 

coherent understanding of low energy gravitational dynamics at the 

inflationary scale. This is exactly what happens in hadronic processes 

involving pions at low energies. 

 

8.11  Inflation In the modified Starobinsky Model: 

We encode these ideas as deformations of the Starobinsky action 
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Where a is now a dimensionless parameter. Now replacing a with the 

dimension full parameter 

2212

1

PMM
a     &   α = 0 

Then we get, 


 ]

12

1

2
[ )01(204

22

2
4 RM

MM
R

M
gxdS P

P

P  

  ]
12

1

2
[ 20

22

2
4 RM

MM
R

M
gxdS P

P

P  

  ]
6

[
2 24

22
4

MM

R
R

M
gxdS

P

P  

 



290 
 

The equivalence between the Starobinsky model and non-minimally 

coupled large field θ
4
 – inflation allows us to map the deformed 

Starobinsky action into the model with potential 


 4)(


 which we 

considered, 
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During Inflation the kinetic term (i.e.  
g ) is negligible, which as 

we have seen, corresponds to the large field regime   PM  with 

large non-minimal coupling  ξ[29]. The action then reads, 
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This is equivalent to the linear representation of the deformed 

Starobinsky action (8.47) if we make the following identifications, 
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These results are obtained straightforwardly by following the steps 

outlined in comparison with the quartic potential. As we have seen ξ is 

redundant in the linear representation of the Starobinsky model, however 

we will retain the explicit dependence on ξ to ease the comparison 

between the two models. The slow-roll analysis is the same as, 
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)(73.827.00033.0 32  Or     , N* = 60    … … … (8.51) 

                    Φ
4
 –inflation     

 

)(8.1523.1967.0 32  OS     , N* = 60    … … … (8.52) 
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4
 –inflation     

The under braced θ
4
-terms refers to the potential one would obtain by 

setting γ = 0 and the Starobinsky model. The expansions show that the 

(r,ηs)-values of the Starobinsky model are sensitive to even small 

corrections in γ (or equivalently α). In particular we find that 

deformations of the Starobinsky action may lead to primordial tensor 

modes. 

We argued in before that the Starobinsky model and the non-minimally 

coupled quartic potential with kinetic term are probably indistinguishable 

in the (r,ηs)- plane. Note that the same argument holds for the deformed 

Starobinsky model and the deformed quartic potential with a kinetic term, 



292 
 

since the models have the same Einstein frame potential in the large field 

limit[29]. 

In the next Figure generic modifications of the Starobinsky model are 

confronted with Planck data. We observe that cosmology may constrain 

the deformation parameter α, and as we will show shortly, α holds 

information regarding the generic particle content embedded in this 

gravity model of inflation. 

8.12  Field theoretical approach to quantum gravity: 

We now argue that these marginal deformations, expected from a purely 

phenomenological standpoint, arise naturally within a field-theoretical 

approach to quantum gravity. To gain insight we start by expanding 

equation (8.47) in powers of α and write 
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The logarithmic term is reminiscent of what one would obtain via trace-

log evaluations of quantum corrections. There are several possible 

sources for these corrections. They may arise for example by integrating 

out matter fields, or they can arise directly from gravity loops. To sum-up 

the entire series of logarithmic corrections, and hence recover the R
2(1-α)

 , 

we expect that a renormalization group improved computation is 

needed[29]. 

This suggests that we would be able to determine α if a more fundamental 

theory was at our disposal. In the absence of a full theory of quantum 

gravity we start here by comparing different predictions for the 

coefficient of the logarithmic term in equation (8.53) stemming out from. 
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Figure: Comparison with Planck results in the (r, ηS)-plane. The marginally 

deformed Starobinsky model gives the light green region. This region is obtained by 

letting N* and α span the intervals N* = [50,60] and α = [0, 0.15]. We find that the r 

and ηS depends sensitively on the value of α, which is related to the microscopic 

theory dictating the trace-log quantum corrections. 

 

1. Integrating out minimally coupled non-interacting NS real scalar fields 

(only non–conformal invariant matter contributes). 

2. Gravity corrections via the effective field theory (EFT) approach. 

3. Gravity corrections within higher derivative gravity (HDG). 

For dimensional reasons these corrections can be parameterized by an 

2
2 )( RRa


 term, where a is now a function of R/µ

2
, with µ the 

renormalization scale. Explicit computations via heat kernel methods 

show that leading order quantum fluctuations will induce a logarithmic 

form for a as in (8.53). This fact alone immediately shows the link 

between the exponent α and the coefficient of the beta function related to 

the coupling of the R
2
 term, as a scale derivative with respect to the mass 

scale in (8.53) shows. But we can give a better argument noticing that, 

because a depends on the ratio 
2

R  we have aaR R  2  a and one 

can determine the R dependence once the beta function, with respect to µ, 

of a is known. Non–local R
2
 log(�/ µ

2
) quantum corrections can also be 

derived in a similar way. To the lowest order the beta function is 



294 
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a   with C a constant depending on the source of quantum 

corrections considered. After an RG improvement, the equation for a reads, 
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The improvement is related to the appearance of a factor )( 2
Ra on the 

right hand-side of the equation above. If one sets 1)( 2 


Ra on the right-

hand side, we only obtain the first logarithmic correction of (8.53).  

Using (8.54) we construct the log-resumed solution 
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Here R0 = µ0
2
 is a given renormalization scale. We therefore have 

2)4(4 


C
  and the constant a in equation (8.47) is a(R0). If C > 0 this 

would naturally lead to a positive α.  

An explicit evaluation of C gives, 
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36

5
C          HDG 

Remarkably we deduce a positive exponent regardless of the underlying 

theory used to determine the associated quantum corrections to the 

gravitational action. Massive particles (we consider scalars of mass m for 

simplicity) lead to the beta function )1(
)4( 2

2

2 


mC
a  . When the 

renormalization scale is taken to be the Planck mass the effect of the mass 
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term is negligible. Smaller renormalization scales generally tend to reduce 

the value of C and thus of α, but in particular they do not affect its sign. 

 

From (8.55) we deduce that quantum gravitational contributions can 

account, at most, for a 3% increase in r as compared to the original 

Starobinsky model. Therefore any larger value of r can only be generated 

by adding matter corrections. This in turn can be used to constrain 

particle physics models minimally coupled to f (R) gravity. 

Furthermore, as it is evident form Figure, for small r the spectral index 

(ηS) depends strongly on the particular value of α. For example we find 

that if Ns~ 90 or higher, the contour cross outside the one sigma 

confidence level provided by Planck. This corresponds to α ~ 0.02. To 

exemplify our results further, we may compare this with popular models 

of grand unification (GUT) such as minimal SU that features 34 scalars 

and (non) minimal SO featuring (297) 109 scalars. It is clear that only 

models with a low content of scalars are preferred by current 

experiments. Values of r around and above 0.2 can be achieved only by 

allowing for the presence of thousands of scalars. 

This corresponds to the upper part of Figure. 

To conclude, we have found that if inflation is driven by an f (R) theory 

of gravity, a natural form for this function is the marginally deformed 

Starobinsky action provided in (8.47) with a positive α. The size of α is 

related to the microscopic theory dictating the trace-log quantum 

corrections. This form can be tested by current and future experimental 

results and constitutes a natural generalization of the original Starobinsky 

model[29]. 
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