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ABSTRACT 

 

In this thesis, we study on “SPHERICALLY SYMMETRIC STATIC 
AND NON-STATIC SINGULAR RELATIVISTIC COSMOLOGIES”. 
Soon after the Einstein’s equations were discovered, Karl Schwarzschild 
(1916) found out an exact solution by considering a spherically 
symmetric static metric, then Friedman (1922) showed that the universe 
(non-static) must have originated a finite time ago from an epoch of 
infinite density and curvatures if the evolving matter obeys the 
dynamical equations of general relativity theory, together with the 
assumptions of homogeneity and isotropy, which is the non-static 
singular relativistic cosmology. 

In recent years, these have been some interest in studying the 
mathematical and physical interpretations of different models and 
theories of relativistic cosmology. The project of this research is firstly to 
study the physical and mathematical properties of the known solutions 
and secondly to attempt to find out new physically interesting solutions, 
with particular references.   
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GENERAL INTRODUCTION 

 

This thesis is mainly expository, but the last chapter carries some original 
calculations, which we treat as the new results. 

The title of this thesis is “STUDIES ON SPHERICALLY SYMMETRIC STATIC 

AND NON-STATIC SINGULAR RELATIVISTIC COSMOLOGIES”. 

Spherical symmetry has played an important role in the development of 
general relativity. The exact solutions of Einstein’s field equation which 
provided the decisive experimental verification of the theory, namely the 
Schwarzschild external solution and the Robertson-Walker-Friedman 
cosmological solutions, were found under the assumption that space-time was 
spherically symmetric. 

A space-time is said to be spherically symmetric if colloquially expressed, it is 
possible to rotate it leaving its metric (and any other non-metric fields) 
unchanged. In more precise terms for every rotation R (a 3 3 rotation 
matrix) in the rotation group SO(3), there is an isometry of the space-time 

and the isometries constitute what is called an action of the group, 
meaning that the consumption of the isometries corresponds to the 
composition of corresponding rotations: 

 

In analytic mechanics, one knows the symmetries of a Lagrangian or 
Hamiltonian result in conservation laws. That is, there is a conserved 
quantity, whenever, a symmetry exists. These general principles also exist in 
the general theory of relativity and are used to deduce, from the symmetries 
of Schwarzschild space-time, constants of motion for the trajectories 
(geodesics) of freely falling particle in the gravitational field outside a star. 
The same constants of motion are obtained in a different language in 
differential geometry, where a killing vector in the standard tool for the 
description of symmetry.  

IJSER



GENERAL INTRODUCTION 

 

iv 
 

In general, the spherical symmetry of a space-time can be defined vigorously 
in terms of the killing vectors; there must be three linearly independent space-
like killing vector fields , , in the space-time which satisfy the 
commentator equations: 

, , , , ,  

And there orbits must be closed. Using the properties one could then again 
derive the line element for a spherically symmetric space-time. 

 

NON-STATIC SINGULAR RELATIVISTIC COSMOLOGIES:  

Further attempts were made by Friedman, Lemaitre and Robertson to 
investigate the most general quadratic line element which would describe a 
non-static but isotropic and homogeneous universe. The most satisfactory 
non-static cosmological model was given by Robertson. It is kinematical in 
nature and ignores the usual dynamical equations of general relativity. The 
assumptions of Robertson model are: 

1. There exists a cosmic time which is orthogonal to the spatial geometry 

 

2. The three-dimensional spatial surfaces belonging to  are locally 
isotropic and homogeneous. 

The entire thesis contains nine chapters except the general introduction. The 
introductory chapter does not contain any mathematical work. It is almost 
ornamented. Every chapter has got an introduction. 

The work presented here has been largely derived from the books: 
Introduction to Mathematical Cosmology by Jamal Nazrul Islam [1], 
Cambridge University Press, 2002; Global Aspect in Gravitation and 
Cosmology by Pankaj Joshi [2], Oxford University Press, Inc. New York 
(1993); Gauge theories and the Early Universe by B. R. Iyer, N. Mukunda and 
CV. Vishveshwara [3]; Principles  and Applications of the General theory of 
Relativity by Steven-Wienberg [4]; An Introduction to Cosmology by Jayant 
Vishnu Narlikar [5], Cambridge University Press; Black Hole Astrophysics, in 
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General Relativity by Blandford R.D. and Thorne K. (1979)[6]; An Einstein 
Centenary Survey (ed. S.W.Hawking and W.Israel)[7], Cambridge University 
Press, Cambridge; Spherically symmetric Models in General Relativity, Mon. 
Nof. Astron. Soc.107 P.400. Mach’s Principle and Relativistic Theory of 
Gravitation by Brans C. and Dicke R. H.(1968) [8],phy. Rev. 124, P 925 and 
more, along with other books and papers, all of which have been mentioned 
in the references. 

However, the books and papers cited here the calculations are not given in 
detail many of the steps are omitted. We have carried out most calculations in 
detail and checked the relevant equations in the references mentioned here. 

The various chapters are organized as follows: 

CHAPTER 1 contains “AN OVERVIEW OF VECTOR AND TENSOR 
ANALYSIS”. A vector is a quantity having both magnitude and direction, 
such as displacement, velocity, force and acceleration. The tensors are 
invented as an exclusion of vectors to formalize the manipulation of geometric 
entities. Tensors are geometric objects defined on a manifold, which remain 
invariant under the change of coordinates. There are various matter fields, 
defined on a space-time such as the electromagnetic fields or dust and so on, 
which are represented by the stress energy tensors of space-time. On the other 
hand, the global geometry and curvature of the manifold are described by 
fields such as the metric tensor and the curvature tensor. In the general theory 
of relativity it is required that the form of physical laws must remain 
unchanged under a general transformation of coordinates. 

CHAPTER 2 deals with “THE SPECIAL THEORY OF RELATIVITY”. The 
special theory of relativity leads with systems known as inertial systems, that 
is, the systems which more in uniform rectilinear motion relative to one 
another. According to this “All systems of coordinates are equally suitable 
for description of physical phenomena”. If we extend this principle to 
accelerate systems, i.e. the systems moving with accelerated velocity relative 
to one another, the theory of relativity is called “General Theory of 
Relativity”. This special theory of relativity has two postulates: 

IJSER



GENERAL INTRODUCTION 

 

vi 
 

(1) The fundamental laws of physics have the same form for all inertial 
systems, i.e. for all reference systems at rest or moving with constant linear 
velocity relative to one another. 

(2) The velocity of light in vacuum is independent of the relative motion of the 
two fundamental postulates in the special theory of relativity. The first 
postulate is the exclusion of the conclusion drawn from Newtonian 
mechanics, since velocity is not absolute, but relative which is a fact drawn 
from the failure of the experiments to determine the velocity of earth relative 
to ether. 

We know that the speed of light is not constant under Galilean 
transformations and the first postulate is the conclusion from Newtonian 
mechanics; thus second postulate is not true according to Galilean 
transformations. Actually this is true since the velocity of light calculated by 
any mea is a constant. Thus the second postulate is very important and only 
this postulate is responsible to differentiate the classical theory and Einstein’s 
theory of relativity. According to Einstein, the theory of relativity is applicable 
to laws of optics. Thus for the constancy of velocity of light we have to 
introduce the new transformation equations which fulfill the requirements: 

1. The speed of light C must have the same value in every inertial frame. 

2. The transformation must be linear and for low speeds i.e.   they 
should approach the Galilean transformations. 

3. They should not be based on “Absolute Time and Absolute Space”. 

CHAPTER 3 deals with “THE GENERAL THEORY OF RELATIVITY”. 
The two fundamental theories in physics which have been of great importance 
in studying the behavior of matter are: 

(i) Newtonian theory of gravitation which describes the behavior of one mass 
point on the other and  

(ii) The electrodynamics which describes the behavior of charged matter in 
the presence of electromagnetic fields. 

The special theory of relativity had its only accounts for inertial systems, in 
the region of free space, where gravitational effect, can be neglected. In this 
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system the law of inertia holds good and the physical laws retain the same 
form. The special theory of relativity does not account for non-inertial (i.e. 
accelerated systems). For example the “clock paradox” and universal 
phenomenon of gravitation could not be counted by special theory of 
relativity. Thus naturally we wish to extend the principle of relativity in such 
a way that it may hold even for non-inertial systems and consequently the 
extended theory may explain the non-inertial phenomenon like clock paradox 
and particularly the phenomenon of gravitation. The extended theory is 
known as the general theory of relativity. In developing the general theory of 
relativity it is helpful to the phenomenon of gravitation. 

On the generalization the theoretical predictions led to the small deviations 
from the observed phenomenon in the following cases: 

(a) Advanced of Perihelion of planets: 

The special theory of relativity of gravitation leads to the precession of the 
perihelion of planets; but the precession of a planet observed and that 
accounted by special theory of relativity are not in the same amounts. For 
example, in the case of planet mercury the special theory of relativity accounts 
a retardation of perihelion at the rate 7.2 seconds of arc per century; while 
observations show that the perihelion of mercury advanced at the rate of 43 
seconds of arc per century, thus the effect observed is six times greater in 
magnitude as accounted by special theory of relativity. 

(b) Shift in Spectral Lines: 

The special theory of relativity of gravitation predicts no shift of special lines 
emitted by atoms even in powerful gravitational fields; while observations 
indicate a shift of spectral lines towards red. 

(c) Deflection of Light Rays Due To Gravitational Field: 

The special theory of relativity predicts that when the light rays pass close to 
the sun, they are deflected by an amount of 0.88 second of an arc; but 
observations show that the deflection is 1.75 seconds of arc; which is twice the 
result of special theory of relativity of gravitation. 
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The special theory of relativity, due to these durations from observations, 
every not be considered wrong since for low velocities it reduces to 
Newtonian theory which is valid to a high degree of accuracy. However the 
special theory of relativity of gravitation seems be slightly wrong for the 
phenomenon in which the velocity approaches the velocity of light, because it 
could not account the correct amount of bending of light rays towards the sun. 
The special theory of relativity of gravitation seems to fail for fixed particles in 
the gravitational fields; because it could not predict the red shift of spectral 
lines emitted by atoms even in powerful gravitational fields. The special 
theory of relativity also seems to be wrong for the phenomenon when velocity 
and gravitational field both are present since it could not predict correctly the 
procession of perihelion of planets which is considered to be due to their 
velocity and the strength of gravitational field. 

Thus it is obvious that Minkowskian space-time continuum does not account 
the natural phenomenon of gravitation in non-inertial frames. This is due to 
the fact that in general theory of relativity we consider that in general theory 
of relativity we consider that the motion in gravitational field is some type of 
inertial motion as accelerating the passengers relative to a suddenly stopped 
carriage. The acceleration is due to Newton’s law of inertia, “A body at rest 
remains at rest and a body in motion moves with the same velocity till 
no external force is applied.” This also contains why the acceleration due to 
action of gravity is independent of the mass of the body. As the force of 
gravitation is zero at infinite distance from the mass or attracting bodies; 
therefore it is assumed the space close to the attracting bodies or the mass 
does not follow the Minkowskian space-time continuous. Hence for 
accounting the observed facts of gravitation we have to modify the 
Minkowskian space-time continuum. The observations of gravitational red 
shift on earth-support the modification in Minkowskian space-time structure. 

In Minkowski space-time continuum the line element is given by: 

                                   
,

                                         1  

The modified form of above equation in terms or form is  

                                                                                                                  2  
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Obviously equation (2) may reduce to (1) in special case. Thus in regions far 
from gravitational field the general theory of relativity reduces to special one 
and the Minkowski space-time continuum holds in regions far from 
gravitational field. 

The element in (2) represents the curved geometry. Thus according to general 
theory of relativity the space is curved in a gravitational field. Since the space 
is curved in gravitational field, therefore the geometry of space in a 
gravitational field in Riemannian, for the idea was originally developed by 
Riemann. Thus free motion in a gravitational field for in a non-Euclidean 
space is not straight, but curvilinear. 

Thus if we consider a very small element of this curve, it will be nearly a 
straight line therefore it is very difficult to distinguish the gravitational and 
inertial forces in small regions of space. 

In such regions, a non-inertial co-ordinate system is equivalent to inertial 
system is equivalent to inertial system in which an additional gravitational 
field operates with the same acceleration of falling bodies which is due to 
inertial and non-inertial systems is merely that in the latter the inertial forces 
come into play.  

Hence the theory of gravitation also deals with non-inertial systems unlike 
special theory which deals only inertial systems, due to this reason the theory 
of gravitation is called “General Theory Of Relativity”. 

CHAPTER 4 deals with the “SYMMETRIC SPACE”. As we know that 
Einstein’s exterior equations 0 by setting 0 are a set of coupled 
non-linear partial differential equations for the ten unknown functions . 

The interior equations 8  may involve other unknown 

functions such as the mass-energy density and the pressure. Because of the 
freedom to carry out general coordinate transformations one can in general 
impose four condition on the ten functions . Later we have shown in this 
chapter explicitly how this is done in a case involving symmetries.  

In most situations of physical interest one has space-time symmetries which 
reduce further the number of unknown functions. To determine the simplest 
form of the metric (that is, the form ) when one has a given space-time 
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symmetry is a non-inertial problem. For example, Newtonian theory spherical 
symmetry is usually defined by a centre and the property that all points at any 
given distance from the centre are equivalent. This definition cannot be taken 
over directly to general relativity. In the latter, centre may not be accessible to 
physical measurement, as is indeed the case in the Schwarzschild geometry. 
One therefore has to find some coordinate independent and covariant manner 
of defining space-time symmetries such as axial symmetry and stationary. 
This is done with the help of killing vectors. 

CHAPTER 5 deals with “SPHERICALLY SYMMETRIC 
SCHWARZSCHILD SOLUTION AND ITS PROPERTIES”. The 
Schwarzschild solution represents the geometry exterior to a spherically 
symmetric (which is a function of r only, the radius vector) massive body such 
as a star and has been used extremely to verify the predictions of the general 
theory of relativity experimentally. This is the empty exterior solution where 
the Ricci tensor vanishes and which is matched at the boundary to the interior 
solution inside the body.  

In spite of such predominant global features evident in the structure of 
gravitational theory, most of the calculations were done, until the early 1960s, 
using a local coordinate system defined in the effort was devoted them to 
solving Einstein equations using various simplifying assumptions, which 
form a rather complicated set of non-linear partial differential equations. The 
situations and approach changed considerably when the so called 
“Schwarzschild Singularity” problem came up. The Schwarzschild exterior 
solutions of Einstein’s field equation describe the gravitational field outside a 
spherically symmetric star where there is no matter present and the space-
time is empty. The space-time distance , , ,  coordinates, between the two 
infinitesimally separated events is given by the metric 

1
2

1
2

θ sin θdθ ,                            3  

Here ‘m’ represents the mass of the star and the boundary of the star lies at 
. The range of ‘t’ and ‘r’ coordinates is given by ∞ ∞, and 

∞, and      are the usual coordinates on the sphere. It is clear 
now that if 2  or if equation (3) represents the geometry outside that of a 
point particle of mass m placed at 0, then the above space-time has an 
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apparent singularity at 2  as seen by the divergence of metric component 
in equation(3) and this value. It was through initially that the above represents 
a singularity in the space-time itself and that physics goes seriously wrong at 

2 . It was realized only after considerable effort that this is not a genuine 
space-time singularity but merely a coordinate defect, and what was really 
needed was an exclusion of the finiteness of curvature components at 2 . 
The point is, the coordinate system used above breaks down at this value of r 
and it describes only a patch of the space-time defined by the above 
coordinate range. Such an exclusion covering the rest of the space-time was 
obtained by Kruskal (1960) and Szekeres (1960) and this may be regarded as 
an important insight involving a global approach. 

Similar such developments which could be mentioned here are Alexanderov’s 
(1950, 1967) work on space-time topology and the analysis of the Cauchy’s 
problem in general relativity [20]. 

CHAPTER 6 deals with the “STELLAR EQUILIBRIUM AND 
COLLAPSE”. The theory of stellar evolution states that stars whose masses 
are of the order of the sun’s mass can reach a final equilibrium state as a white 
dwarf, or a neutron star. But for much larger masses, no such equilibrium is 
possible, and in such a case the star will contract to such an extent that the 
gravitational effects will overcome the internal pressure and stresses which 
will not be able to halt further contraction. General relativity predicts that a 
spherically symmetric star will necessarily contract until all matter contained 
in the star (collapses) arrives at space-time singularity at the center of 
symmetry. 

The fundamental motivation for the concept of a black hole comes from an 
examination of the spherically symmetric homogeneous collapse which has 
two outstanding features. Firstly, for a star undergoing a complete 
gravitational collapse, a region of trapped surfaces from below 2 , from 
which no light rays escape to an observer at infinity. Thus, a black hole forms 
in the space-time. Secondly, the ultimate fate of the star undergoing the 
collapse is an infinite curvature singularity 0, which is completely hidden 
with the trapped surface region and the black hole. Here no emission of light 
rays from the singularity could go out any observer at infinity and the 
singularity is causally disconnected from the outside space-time. 
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CHAPTER 7 deals with “SINGULARITIES IN COSMOLOGY”. The 
singularity is not really a tangible object either. According to the General 
theory of Relativity the singularity is a point of infinite space-time curvature. 
This means that the force of gravity has become infinitely strong at the centre 
of a black hole.  Everything that falls into a black hole by passing the event 
horizon, including light, will eventually reach the singularity of a black hole. 
Before something reaches the singularity it is torn apart by intense 
gravitational forces. Even the atoms themselves are torn apart by the 
gravitational forces. The singularity is the region of space-time which cannot 
be explained anyway either by theoretically or mathematically; it can be 
understood only by hypothetically. It is the region from which nothing can be 
communicated with the external world. So, singularity can be regarded as 
nobody knows phenomena. 

After Einstein proposed the general theory of relativity describing the 
gravitational force in terms of space-time curvature and proposed the field 
equations relating the geometry and smaller content of the space-time 
manifold, the earliest solutions found for the field equations were the 
Schwarzschild metric representing the gravitational field around an isolated 
body such as a spherically symmetric star, and the Friedman cosmological 
models.  

Each of these solutions contained a space-time singularity where the 
curvatures and the densities were infinite and the physical description would 
break down. In the Schwarzschild solution such a singularity was present at 

0 where as in the Friedman models it was found at the epoch 0 which 
is beginning of the universe and origin of time when the scale factor R(t) also 
vanishes and also objects are crushed to Zero volume due to infinite 
gravitational tidal forces.  

In the Friedman-Robertson-Walker models, the Einstein equations imply that 
if 3 0 at all times, where  is the total energy density and p is the 
pressure, there is a singularity at 0 which could be identified as the origin 
of the universe. If 0 at all times then it is seen that along all the past 
directed trajectories meeting this singularity, ∞ and also the curvature 
scalars ∞. Again, all the past directed non-space-like geodesics 
are incomplete in the above sense.  
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Thus, there is an essential curvature singularity at 0 which cannot be 
transformed away by any coordinate transformations. In fact, similar 
behaviour has been generalized to the class of spatially homogeneous 
cosmological models as shown by Ellis and King (1974) which satisfy the 
positivity of energy condition 0, 3 0    1 3 ⁄ 0. 

The existences of such singularities where the curvature scalars and densities 
diverge imply a genuine space-time pathology where the usual laws of 
physics must break down. The existences of the geodesics in completeness in 
these space-times imply that, for example, a time-like observer suddenly 
disappears from the space-time after a finite amount of proper time. 

Even though the physical problem posed by the existence of such a strong 
curvature singularity was realized immediately in the solutions which turned 
out to have several important implications towards the experimental 
verification of the general theory of relativity, initially this phenomenon was 
not taken seriously. It was generally thought that the existence of such a 
singularity must be a consequence of the very high degree of symmetry 
imposed on the space-time while deriving these solutions subsequently, the 
distinction between a genuine singularity and a mere coordinate singularity 
became clear and it was realized that the singularity at 2  in the 
Schwarzschild space-time was a coordinate singularity which could be 
removed by a suitable coordinate transformation. It was clear, however, that 
the genuine curvature singularity at 0 cannot be removed by any such 
coordinate transformation. The hope was then that when more general 
solutions are considered with a less degree of symmetry requirements, such 
singularity will be avoided. This issue was sorted out when a detailed study 
of the structure of a general space-time and the associated problem of space-
time singularity was taken up by Hawking, Penrose, and Geroch. 

It was shown by this work that a space-time will admit singularities within a 
very general frame work provided it satisfies certain reasonable assumptions 
such as the positivity of energy, a suitable causality assumption and a 
condition such as the existence of trapped surfaces. It thus follows that the 
space-time singularities form a general feature of the relativity theory. In fact, 
these considerations ensure the existence of singularities in other theories of 
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gravity, which are based on a space-time manifold framework and satisfy the 
general conditions stated above. 

CHAPTER 8 deals with “THE NATURE OF SINGULARITIES IN 
SYMMETRIC SCALAR FIELD COSMOLOGIES”. The nature of 
singularities in general solution of the Einstein equations is a subject about 
which much remains to be learned. Various classes of singularities have been 
defined which represent possible models for general behaviour. Examples are 
curvature singularities, crushing singularities, velocity-dominated 
singularities and isotropic singularities are discussed here. 

CHAPTER 9 deals with, “SCHWARZSCHILD METRIC WITH 
COSMOLOGICAL CONSTANT”. In this chapter we have introduced the 
cosmological constant and applying to the Einstein Field Equation to have an 
exact solution which gives us the limiting conditions of the event horizon.  
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1.1 INTRODUCTION 

As we know vector is an entity, which has both magnitude and direction. 
Tensors are invented as an extension of vectors to formalize the manipulation 
of geometric entities. Tensors are geometric objects defined on a manifold, 
which remain invariant under the change of coordinates. There is various 
matter fields defined on a space-time such as the electromagnetic fields or 
dust and so on, which are represented by the stress-energy tensor of the 
space-time. On the other hand, the global geometry and curvature of the 
manifold are described by fields such as the metric tensor, and the curvature 
tensor. In the general theory of relativity it is required that the form of 
physical laws must remain unchanged under a general transformation of 
coordinates (principle of general covariance). Thus, physical fields are 
represented by various tensor fields on the space-time and the laws governing 
them are expressed as tensor equations which remain valid under arbitrary 
coordinate transformations. When one specializes to an inertial coordinate 
system, these laws reduce to the equations of special relativity. 

 

1.2 VECTOR 

A vector is a quantity having both magnitude and direction, such as 
displacement, velocity, force and acceleration. 

Graphically a vector is represented by an arrow [Fig: 1.1] defining the 
direction, the magnitude of the vector being indicated by the length of the 
arrow. The tall end   of the arrow is called the terminal point or terminus. 

 

   

 

 

                                                    

                                                                     Fig: 1.1 

Analytically a vector is represented by a letter with an arrow over it as  or    
[Fig: 1.1] and its magnitude is denoted by | | or  . In printed works, bold face 
type, such  , is used to indicate as   . In such case we shall denote its 
magnitude by , | |, | |. 

or
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1.3 TENSORS 

In general, a tensor T of , type at  is a multi-linear real-valued 
function on the Cartesian product 

… … ,                                                                            1.3.1  

Where there are r-factors of  and s-factors of . Thus, T acts on one-forms 
and vectors in general to produce a real number. 

If T is a tensor of ,  type at , 

, … , , , … , , … , , , … , .                1.3.2  

Using the multi-linear property of T, the above can be written as  

…
… … … ,                                                 

Where we have defined 

…
… ,… , , , … , ,                                                                       1.3.3  

And  and   are basis vectors at p for  and  respectively. 

The space of all the tensors of type ,  at p is called the tensor product  
and is denoted by 

… … ,                                                        1.3.4  

Where there are r-factors of and s-factors of  . The dimension of  is , 
where  is the dimension of the manifold. This is a vector space of all ,  
tensors over real numbers with the addition of tensors and scalar 
multiplication defined in a natural manner. In particular, a vector is a tensor 
of type  1,0  and a one-form is a tensor of type 0,1 . In terms of the basis 
vectors  and  for the tangent space and cotangent space at , the set  

… … .                     

forms a basis for the tensor product  with all the indices running from 1 
to  . Then, any tensor can be expressed as 

…
… … … , 

Where, the tensor components …
…  are defined as above. Consider now a 

change of coordinates, which causes a change of basis  and 
′

 and 
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similarly,  going to ′ . In particular, let us choose a coordinate basis 
⁄  for   and corresponding basis  for the cotangent space . Then, 

under a change of coordinates, the components of  in the new coordinates 
′

 can be written as 

′ … ′

′ … ′ ′
, … ,

′
, ′ , … , ′  

Since 
′
can be treated as functions of , substituting in the above for 

′⁄ and 
′
gives for the transformed components of the tensor , 

′ … ′

′ … ′

…
…

′

…
′

′ … ′                                                             1.3.5  

Thus, for the transformation of the components of a vector  and a one-form 
 we get  

′
′

,               ′ ′                                                                     1.3.6  

Even when one chooses a general set of basis vectors rather than a choice of a 
coordinate basis, the formula for transformation of the components of a tensor 
can be written in a similar manner. 

If  is a tensor of type , , the contraction of  over a contravariant index 
and a covariant index is defined to be a tensor  of type 1, 1 . For 
example, if we contract over the first contravariant and covariant indices, this 
gives 

…
… … … .                                                1.3.7  

Using the relationships given above for the transformation of components of a 
tensor under the change of basis vectors, it is again possible to see that the 
contraction  is independent of the basis used, that is, it is invariant under 
change of coordinates. Similarly, one could contract   over any pair of a 
contravariant and covariant indices. 

In the space of all tensors of type , at p, the addition of two tensors  and 
′ is defined as 

′ , … , , , … , , … , , , … , ′ , … , , , … ,  

And the multiplication by a real number α is defined by 
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, … , , , … , , … , , , … , .                           

The operation of outer product on two tensors  and ′ of type , and 
′, ′  could now be defined in terms of their components to give a new 

tensor ′ given by, 

′ … ′

… ′
…
… ′ … ′

… ′ .                   

This offers a way of constructing new tensors out of the vectors and dual 
vectors. 

A tensor field of  ,  type on M is an assignment of a tensor of the same type 
at all  in M. Such a tensor field is called  differentiable if all the 
components of T are having the same differentiability as functions of 
coordinates. 

Finally, we discuss the symmetry properties of tensors. Suppose T is a  0,2  
type tensor. Then it acts on pairs of vectors .  to produce a real number   

, . Then T is called symmetric if the result is the same even 
when we change the slots for V and W, that is, 

, , . 

If is a basis for the tangent space, this amounts to the condition     
   , , , which is same as saying that 

 

Similarly, T is called anti-symmetric if 

 

It is convenient to formulate this in terms of symmetric part is written as, 

1
2!

, 

And its anti-symmetric part is written as 

1
2!

. 

Then T is called symmetric if  and it is called antisymmetric 
if  . In general, for a tensor ,…,  of type 0, , ,…,  is defined as 
the sum over all permutations of indices , … ,  divided by !. Thus, for 
example, 
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1
3!

. 

In general, a tensor of type ,  is called symmetric over a collection of 
indices if it equals its symmetric part over these indices, and antisymmetric 
tensors are defined in a similar manner. 

 

1.4 CO-ORDINATE TRANSFORMATIONS 

Let , , … , and , , … ,  be co-ordinates of a point in two different 
frames of reference. Suppose there exists N independent relations between the 
co-ordinates of the two systems having the form, 

, , … ,
, , … ,

                                        
   
, , … ,

                                                                                     (1.4.1) 

Where we can indicate equation (1.4.1) briefly by, 

, , , … ,                                                                                    (1.4.2) 

Where, it is supposed that, the functions involved are single-valued, 
continuous and have continuous derivatives. Then conversely to each set of 

, , … , , given by,  

 , , , … ,            ; 1,2, … ,                                                (1.4.3) 

Here, the relations (1.4.2) or (1.4.3) define a transformation of co-ordinates 
from one frame of reference to another. 

 

1.5 THE SUMMATION CONVENTION 

In writing an expression, such as, , we can use the 
short notation  
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An even shorter notation in simply top write it as, , where we adopt the 
convention that whenever an index (subscript or superscript) is repeated in a 
given term, we are to sum over that index from 1 to N unless otherwise 
specified. This is called the summation convention. 

Clearly, instead of using the index I we could have used another letter, say p, 
and the sum could be write . Any index which repeated in a given term, 
so that the summation convention applies, is called a dummy index or 
umbrall index. 

An index occurring only one N in a given term is called a free index and can 
stand for any of the numbers in equation. , , , … ,  or, 

, , , … , , each of which represent N quantities. 

 

1.6 THE LINE ELEMENT 

We know that the geometry on the surface of a sphere is Riemannian. 
Consider a point P on the surface of a sphere of unit. Its position is given by 
two angular co-ordinates , , θ being the co-latitude  and φ be 
the longitude . If θ is constant and φ varies from 0 to 2π, the point 
P moves along the small circle of radius sin . If φ is constant and θ varies 
from 0 to π, the point P moves along the meridian large circle NPS (Fig:1.2a). 
If ,  is a neighboring point on the sphere at an infinitesimal 
distance from P (Fig: 1.2b) then we have, 

                                                                                                     1.6.I)  

is customary to regard relations like equation (1.6.1) as defining a line 
element. Equation (1.6.1) is known as the line element on the surface of a 
sphere or a line element of a two-dimensional Riemannian space. 

If however, we were considering two neighbouring points on a plane with co-
ordinates , , , , the line element would be, 

                                                                                                      1.6.2  

As the geometry on the plane is Euclidean, we can say that equation (1.6.2) is 
a line element of a two-dimensional Euclidean space. 

On comparison of equation (1.6.2), we see that there are many points of 
similarity between them, e.g. both are quadratic in differentials of the co-
ordinates. However, there is one striking difference. The one feature that 
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distinguishes a line element of Riemannian space from that of a Euclidean 
space, is that the co-efficient of the quadratic terms (some of them at least) are 
functions (not constant functions) of the co-ordinates in a Riemannian space. 
We begin our study of space-time with this distinction in mind. 

                                

                          

                                                                    Fig: 1.2 

 

In a four-dimensional space-time, let , , , be the co-ordinates of an 
event. A neighbouring event will have the co-ordinates ,
2, 3 3, 4 4. We take the line element as a quadratic in 
, , , . 

Therefore, 

2 2 2
  2 2
2  

Or, we may write it as, 

                                                                                      1.6.3  

Where  are 10 functions of “position” out of 16 terms and 6 terms are 
symmetric, i.e. of the four variables , , ,  symmetric in i & k so that 

. 
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1.7 THE FUNDAMENTAL TENSOR (THE METRIC TENSOR) 

We now turn to the basic line element . We have seen that  
is a vector and so  is a contravariant tensor of rank two. Add to this the 
basic geometric requirement that  is an invariant and we have all the 
ingredients of the quotient law to show that  must be a second rank 
covariant tensor. This tensor determines the nature of the corresponding 
Riemannian geometry and so it is often called the fundamental tensor or the 
metric tensor. 

Consider the 16 functions  arranged as a 4 4 matrix . If the 
determinant of this matrix is not zero, it will have an inverse matrix. Call the 
inverse matrix  . If follows from the rules of inversion of metrics that 

; where  is the kronecker delta. We first show that   is a tensor. 

To show that  is a tensor, we use the quotient law. Let  is an arbitrary 
tensor. Then the product, 

  

Which is a tensor, and so by the quotient law  becomes a tensor. 

 

1.8 CONTRAVARIANT VECTOR 

Consider a set of n quantities , , ………… ,  in a co-ordinate system of 
variables , , ………… ,  and let these quantities have n other 
quantities , , ………… ,  in other co-ordinate system of variable 

, , ………… , . If these quantities obey the transformation relation, 
then we have, 

               ; 1,2, …………  

Which by the conventions adopted can simply be written as, 

                                                                                                               1.8.1  

Then the quantities  are said to be the components of a contravariant vector 
or a contravariant tensor of first rank. 
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Any n functions can be chosen as the components of a contravariant vector in 
a system of variables  .  

Then, multiplying equation (1.8.1) by  and taking the sum over the index μ 
from 1 to n, we get, 

 

         

      

 

                                                                                                          1.8.2  

Here equation (1.8.2) represents the solution of equation (1.8.1). 

Also, the transformation of differentials  and  in the co-ordinate system 
of variables  and  respectively then we get, 

                                                                                                          1.8.3  

As equation (1.8.1) and equation (1.8.3) are similar transformation equations. 
We can say that the differentials  from the components of contravariant 
vector whose components in any other system are the differentials  of that 
system. Also we conclude that the components of a contravariant vector are 
actually the components of a contravariant tensor of rank one. 

Let us now consider a further change of variables from  to ′  then the 
components ′  must be given by, 

′
′

            

                                                              
′

                          1.8.1   

                                                             
′

                                                      1.8.4  
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The equation (1.8.4) has the same form as equation (1.8.1). This indicates that 
the transformations of contravariant vector form a group. 

 

1.9   COVARIANT VECTOR 

Consider a system of n quantities , , ………… ,  in a co-ordinate system of 
variables  i.e. , , ………… ,  and are related to n other quantities 
, , ………… ,  in another co-ordinate system of variables  i.e. 
, , ………… , . If these quantities obey the transformation equations, 

then we have, 

                               ;              1,2, ……… ,  

Which by the conventions adopted can simply be written as,  

                                                                                                               1.9.1  

Then the quantities  are said to be the components of a covariant vector or a 
covariant tensor of rank one. 

Any n functions can be chosen as the components of a covariant vector in co-
ordinate system of variables  and equation (1.9.1) determine the n-
components in the new system of variables . 

Multiplying equation (1.9.1) by  and taking the sum over the index μ from 
1 to n then we get, 

                         

                                     

                                  

                             

                                                                                                            1.9.2  

Here equation (1.9.2) is the solution of equation (1.9.1). 
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Let us now consider a further change of variables from  to ′ . Then the 
new components  must be given by, 

′
′

 

              
′

 

                                                                 
′

                                                 1.9.3  

The equation (1.9.3) has the same form of equation (1.9.1). This indicates that 
the transformation of co-variant vectors form a group. As,  

Ψ Ψ
 

         
∂Ψ

 

It follows from equation (1.9.1) that Ψ form the components of a covariant 
vector whose components in any other system are the corresponding partial 
derivatives   Ψ  . This covariant vector is called grad . 

 

1.10   SCALARS OR INVARIANTS 

Suppose  is a function of the co-ordinates  i.e.  and let  denote the 
functional value under a transformation to a new set of co-ordinates  i.e.  

 . Then  is called a scalar or invariant with respect to the co-ordinate 
transformation if   

                 

                   

. .                             

Clearly, a scalar or invariant does not change under any change of co-
ordinates. It is also called a tensor of rank zero. 
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1.11   COVARIANT DIFFERENTIATION 

Let a scalar field derivative ,  is a covariant vector. Now  is a vector, its 
derivative with respect to  is denoted by , . Is it a tensor? 

Now we examine how ,  transform under a change of co-ordinates system. 
Hence, 

′ ′                                  

                                          ′
, ′                                                                 1.11.1  

Here differentiating equation (1.11.1) with respect to ′ , then, we get, 

′

′ ′ , ′                           

                                                   , , ′ , ′ ′                                           1.11.2  

Here the second term on the right is not transform as a tensor. Thus ,  is not 
a tensor. Now we can however modify the process of differentiation to get a 
tensor. Here the second derivative of equation (1.11.2) is denoted by , ′ ′. 

In general non zero and indicator that the transformation co-efficient in 
equation (1.11.1) vary with position in space time. Thus when we seek to 

construct to derivative  , we are forced to define it as a limit, 

                                         lim                1.11.3  

However the two terms in the numerator do not transform as vector at the 
same point because of the variation of the transformation co-efficient with 
position in space time. 

Therefore, their difference is not expected to be a vector. This situation is 
illustrated by the following figure 

The vector field has the component  at P and  at Q. If  were 
transported parallel to itself along an infinitesimal curve connecting P to Q, it 
components at Q would be . 
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Fig: 1.3 

 

In the above figure, we see that P  and Q  be two neighboring 
points. With the vectors  at P is moved to Q as its magnitude and the 
direction did not be changed. In the above figure, this is shown by a dotted 
vector Q. The difference between the vector  and this dotted vector 
is another vector at Q. So, we may after all be able to define a process of 
differentiation of vectors , provided we know what happens to  during a 
parallel transport from P to Q and then a simple calculation we get as, 

                                 Γℓ Aℓδx                                                                     1.11.4  

Where the co-efficient Γℓ  are function of space and time, these quantities are 
called the three index symbol or the Christoffel symbols. Now we take the 
difference between continuous and the dotted vector Q is given by 

 

 

                    . Γℓ Aℓδx  

                                                    By using equation  1.11.4  

           Γℓ Aℓ  

                                                                                   1.11.3  

Now we redefine the derivative of vector, 

lim   lim Γℓ Aℓ 
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Therefore, 

                                   , Γℓ                                                                 1.11.5  

In the above manner we can state the above equation in the following form, 

                                  , Γℓ                                                                  1.11.6  

In the above manner we can state the above equation in the following form, 

                                    , Γ ℓ
ℓ                                                             1.11.7  

This derivative, by definition must transform a tensor. It is called a co-variant 
derivative and will be a semicolon, as against the ordinary derivative which 
is denoted by comma. 

Similarly, the rule can be combined and extend the above result as, 

…… ,
…… ……

……

Γ ……
…… Γ ……

…… Γ …… ,
……  

                               Γ ……
…… Γ ……

…… Γ ……
……   

 

1.12   SYMMETRIC AND ANTISYMMETRIC TENSOR 

SYMMETRIC TENSOR 

A tensor is called symmetric with respect to two contravariant or two 
covariant indices if its components remain unaltered upon interchanged of 
indices. This if  the tensor is symmetric in m and p. If a tensor is 
symmetric with respect to any two covariant and any two covariant indices it 
is called symmetric. 

ANTISYMMETRIC TENSOR 

A tensor is called anti-symmetric with respect to two contravariant of two 
covariant indices if its components change sign upon interchange of the 
indices. Thus  the tensor is anti-symmetric or skew-symmetric 
in m and p. If a tensor is skew-symmetric with respect to any two 
contravariant and any two covariant indices, it is called anti-symmetric or 
skew-symmetric. 
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1.13   CONTRACTION 

The operation of contraction consists of identifying a lower index with an 
upper index in a mixed tensor. This procedure reduces the rank of tensor by 
2. 

Thus    is a tensor of rank 2 if  and    are vector. The identification  
gives a scalar. Hence,  

                                                                         1.13.1  

As in special relativity, we define a vector  to be space-like, time-like or null-
like, then according to, 

0,    0,    0                                                        1.13.2  

It is convenient to define associated tensors by the relations, 

      ,                                                                                           1.13.3                              

Thus,     . The operations embodied in equation (1.13.3) are 
called lowering and raising the indices. We may frequently refer to  and  
as the same object. 

From the above manipulations of tensors it is clear the product of two tensors 
is a tensor. A reverse result is sometimes useful I deducing that a certain 
quantity is a tensor. This result is known as the quotient law. It states that, if a 
relation, such as, 

 

holds in all co-ordinate frames, where p is an arbitrary tensor of rank m and R 
is a tensor of rank   then Q is a tensor of rank n. 

 

1.14   THE CHRISTOFFEL SYMBOLS 

The Γ  introduced above is called the affine connection used for connecting a 
vector at p to a vector at neighbouring point Q. We now specialize this 
connection by assuming, 

  Γ Γ                                                  ; 0  
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When connections follow these assumptions, the geometry of space time 
becomes Riemannian geometry. We simplify assumption  to get   Γ  in 
terms of  and its derivatives, 

; , Γ Γ 0                             

Define,  Γ Γ / . Then we have, 

                          , Γ / Γ /                                                                        1.14.1  

                         , Γ / Γ /                                                                         1.14.2  

                        , Γ / Γ /                                                                          1.14.3  

Take 1.14.1 1.14.2 1.14.3  then we have, 

, , , 2Γ /                                   

,           Γ /
1
2 , , ,                         

         , Γ /
1
2 , , ,                       

                         , Γ
1
2 , , ,                                 1.14.4  

Here, Γ  are often written as  and are called the three-index symbols. The 
symmetry in  &   reduces their number from 64 to 40. 

 

1.15 THE RIEMANNIAN-CHRISTOFFEL TENSOR 

Let us consider a point with co-ordinate  and a small closed curve C. Here 
U and V are two neighbouring points on C with co-ordinates  and 

; where  small. 

                                     

 

 

   

                                                            Fig: 1.4 

C  .

P
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Consider a contravariant vector is displaced from U toV parallel to itself. 
The change of its components is given by, 

                                                            Γ                                      1.15.1  

When Γ  and  are computed at U. 

Now the small displacement from P to U is .  

Therefore, 

Γ Γ
Γ

     By Taylor’s expansion                               1.15.2    

Also, 

The vector in equation (1.15.1) represents the vector after its parallel 
displacement from P to U. 

Therefore, 

                             Γ                                              1.15.3  

Where, , , Γ  are all to be evaluated at P. 

Now, substituting equation (1.15.2) and equation (1.15.3) in equation (1.15.1), 
we find, 

              Γ
Γ

Γ                                       

                       Γ Α
Γ

Α Γ Γ Α Γ
Γ

Α        

                      Γ Α
Γ

Α

Γ Γ Α                

      Γ Α
Γ

Α Γ Γ Α                                        

                Γ Α
Γ

Α Γ Γ Α                                     1.15.4  
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Now integrating on both sides of equation (1.15.4) around C we find that,  

∆ Γ
Γνλ
μ

Γ Γ  

                                                                                                                            1.15.5  

But we know that, 

                 0                                                                                                       1.15.6  

And, 

                                       

                    

                                              ; 0                                1.15.7  

Therefore,   

1
2

                                          

               
1
2

      1.14.7  

                                                                                                                           1.15.8  

                                                                                                                     1.15.9               

Now using equation (1.15.6) & equation (1.15.8) we get, 

∆ Γ Γ
Γ

                                

Γ Γ
Γ
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Since is an arbitrary vector, implies that Δ  is also an arbitrary vector. 
Thus, 

Γ Γ
Γ

      1.15.9  

Γ
Γ Γ                                           

Now, interchanging the indices λ & σ in the above equation we get, 

                        
Γ

Γ Γ                                                            1.15.11  

Therefore, adding equation (1.15.10) & equation (1.15.11) we get, 

                        
1
2

∂Γ ∂Γ
Γ Γ Γ Γ                     1.15.12  

But here the bracket expression is anti-symmetric in σ and λ. Therefore 
equation (1.15.12) can be written as,  

1
2

                                                                        

Where,              

        
Γνσ
μ Γ

Γ Γ Γ Γ                                                  1.15.13  

 is called Riemann-Christoffel tensor or simply the curvature tensor, by 
using a closed path. 

Now, using cyclic permutations in the indices ν, λ, σ we get, 

      
Γλν
μ Γ

Γ Γ Γ Γ                                                    1.15.14  

Also using cyclic permutations in the indices λ, σ, ν we get, 

   
Γσλ
μ Γ

Γ Γ Γ Γ                                                      1.15.15  

Here, adding equations [(1.15.13), (1.15.14) & (1.15.15)] we get, 

0                                                                                   1.15.16  
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Here equation (1.15.16) is called cyclic property of the Riemann-Christoffel 
tensor or the curvature tensor i.e. for anti-symmetric affine connection. 

For the contraction of μ & σ the equation (1.15.16) becomes, 

0  

          0                           

          0                            

        0                                  

                                                   

Therefore Ricci tensor  is symmetric for a metric affinity. 

 

1.16 THE RICCI AND EINSTEIN TENSORS 

THE RICCI TENSOR 

The contraction of Riemannian-Christoffel tensor with respect to σ gives the 
second rank covariant tensor, called the Ricci tensor and denoted by . 

Here Christoffel curvature tensor is, 

      Γ Γ Γ Γ Γ Γ                                          1.16.1  

Where, 

Γ  

So, equation (1.15.1) may be written as,  

Γ Γ Γ Γ Γ                             

Also, by the process of contraction we can construct lower-rank tensors 
from   .  

The tensor, 
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is called the Ricci tensor. If we use the locally inertial co-ordinate system, we 
immediately see that 

                            

i.e. Ricci tensor is symmetric tensor. 

 

EINSTEIN TENSOR 

Here the Bianchi identities are given by, 

                             ; ; ; 0                                                1.16.2  

Apply anti-symmetric property in the second term of equation (1.16.2) we get, 

                                 ; ; ; 0                                            1.16.3  

Contracting this with respect to λ & σ we have, 

                             ; ; ; 0                                                 1.16.4  

By definition of Ricci tensor we have, 

                          ; ; ; 0                                                       1.16.5  

Since the derivatives of fundamental tensors are zero, then multiplying the 
above equation by  on both sides, we may write, 

; ; ;
0 

                             ; ; ; 0                                                           1.16.6  

Now, changing the dummy indices ρ & λ to μ we get, 

; ; ; 0                                               

                       2 ; ; 0                                                                          1.16.7  

But, 

; ;                                   

So, the equation (1.15.7) becomes, 
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          2 ; ; 0                                                               

           ;
1
2 ; 0                                                                         

            
1
2 ;

0                                                                           

                             ; 0                                                                                        1.16.8  

Where, the tensor  is called the Einstein tensor. The Einstein 
tensor plays a very fundamental role in the general theory of relativity. 

Again, the covariant form of Einstein’s tensor is given by, 

                                                              

1
2

                                

1
2

                               

 
1
2

                                        

                            
1
2

                                                               1.16.9  

This is the required co-variant form of Einstein’s tensor. 

Also, according to definition of divergence of a tensor we get, 

;                                                

Now, using equation (1.15.8) we have, 

; 0                                                       

Thus, the divergence of Einstein’s tensor is identically zero. 
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1.17 BIANCHI IDENTITIES 

Here for the sake of simplicity we shall use geodesic co-ordinate system and 
establish an important identity known as the Bianchi identity. 

We know at the pole of geodesic co-ordinate system, both kinds of Christoffel 
symbols vanish, but not necessarily their derivatives also. 

i.e.   Γ 0   at the pole p, but   Γ 0. 

At the event of vanishing of the Christoffel symbols at a point the process of 
covariant differentiation reduces to ordinary partial differentiation. 

Now, the mixed curvature tensor at the  of geodesic co-ordinate system is 
given by, 

              Γ Γ                                                                      1.17.1  

 

Taking covariant derivative with respect to ρ of equation (1.17.1) at the pole of 
geodesic co-ordinate system we get, 

; Γ Γ      ; at the pole of P                           1.17.2  

 

Permuting the indices ν, σ & ρ in a cyclic order we get two more equations 
from equation (1.17.1), 

                ; Γ Γ                                                  1.17.3  

               ; Γ Γ                                                   1.17.4  

 

So, adding equations (1.17.2), (1.17.3) & (1.17.4), then we get at the pole , 

           ; ; ; 0                                                                  1.17.5  
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We have proved the equation (1.17.5) at the pole   of geodesic co-ordinate 
system; but since this is a tensor equation, it must hold good in every co-
ordinates system. Further since  is an arbitrary point of Riemannian space 
then equation (1.17.5) is true for all points of Riemannian space and for all co-
ordinate systems. The relations expressed by equation (1.17.5) are called 
Bianchi identities. 

The covariant form of Bianchi identities is obtained by taking inner product of 
equation (1.17.5) with  ; Viz. 

; ; ;
0 

                      ; ; ; 0                                            1.17.6  

 

1.18 MATTER TENSOR FOR A PERFECT FLUID 

From any general co-ordinate system , we transform to a locally inertial 
system . In this system,  

1, 1, 1,1 ;   1  

In the neighborhood of the point where this  systems holds, the perfect fluid 
is characterized by its density and equal pressure in all directions. Therefore, 
the matter tensor in this system has 

;      ;      0,  

Also, in this local frame the fluid is at rest so that 

 

0,        0 

0,                  1 

Now we are ready to find  in the general co-ordinate system. We have the 
transformation  giving, 
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But the law of transformation of  gives, 

                                                                     

 

Also, in the general co-ordinate system the velocity of the fluid is  , then 

                                                                                   

                

. 1 . 0 . 0 . 0                     

 
                                                                        

Here, 

                                       

                                       

This is the required matter tensor for a perfect fluid. 
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2.1 INTRODUCTION 

The special theory of relativity had its origin in the development of 
Electrodynamics. The general theory of Relativity is the relativistic theory of 
gravitation. 

The special theory of relativity makes only a restricted use of the idea that we 
can detect and measure the motion of a given body relative to other bodies, 
but cannot assign any meaning to its absolute motion, i.e. it merely considers 
the relativity of uniform translator motion, in the region of free space, where 
gravitational effects can be neglected. Consequently, by this assumption we 
can conclude that physical laws remain unchanged when subjected to the 
systems in which the law of inertia holds well. But in order to explain the 
“clock paradox” and universal law of gravitation in the special theory was 
extended to the non-inertial systems. On the generalization of the special 
theory of relativity for the gravitational forces, the theoretical predictions were 
not able to explain the observed phenomena. These deviations were due to the 
facts that: 

1) The theory fails for fixed particles in the gravitational field which can 
be clearly observed in the red shift of spectral lines i.e., the atoms are 
fixed and spectral lines emitted by atoms are subjected to strong 
magnetic field. 
 

2) The theory fails for the phenomena in which the velocity is comparable 
to the velocity of light, e.g., bending of light rays around the attracting 
body. 

 
According to the special theory, the bending of light rays passing near 
the sun should be 0.88 seconds of arc while in actual observation it is 
1.75 seconds arc. 

 

3) The theory fails in the case when the velocity and gravitational field 
both are present as in the case of precession of perihelion of Mercury. 
 
The advance of the perihelion of Mercury is predicted by the special 
theory to be at the rate of 7.2 seconds of arc per century while the 
actual advance is 43 seconds of arc per century. 

The predictions given in special theory of relativity therefore, must be 
modified. As we see that the special theory of relativity deals with only the 
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systems knows as inertial systems. In special theory, all the physical laws in 
nature are supposed to be invariant with respect to co-ordinate 
transformation. But this invariance is limited to inertial systems only, if we 
extend the above statement by saying that all the physical laws in nature are 
invariant relative to any co-ordinate transformation, i.e., for non-inertial 
systems also. Then this results the general theory of relativity. The study of 
gravitational phenomenon’s with the help of the general theory of relativity 
gives small deviations from those obtained from the special theory and these 
deviations have been verified by experimental results.  

 

2.2   POSTULATES OF SPECIAL THEORY OF RELATIVITY 

The postulates of special theory of relativity are given below: 

 
(i) The nature laws must preserve their forms relative to all observers 

in a state of relative uniform motion. 
According to this postulate, velocity is not absolute but relative. It is 
a fact drawn from the failure of Michelson and Morley experiment 
which was performed to determine velocity of earth through either. 
 
 

(ii) The velocity of light in vacuum is independent of the velocity of 
observer or the velocity of source. 
 

According to Galilean transformations, this postulate is not true. In fact, it is 
confirmed experimentally that the velocity of light calculated by any method 
of constant. The second postulate is important in the sense that it gives a clear 
distinction between classical theory and Einstein theory of relativity. 

 

2.3 LORENTZ TRANSFORMATIONS IN SPECIAL RELATIVITY 

A frame of reference (or co-ordinate system) in which a freely moving body 
(or rest particle) proceeds uniformly with constant velocity along a straight 
line or remains at rest is called an inertial frame. In brief we may say, “an 
inertial frame is one in which Newton’s first law is true.” Newton says that, 

“If force does not act then the rest object which are at rest and the moving 
object which are at move relative to one another.” 
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If two frames of reference move with uniform motion relative to each other 
and if one of them is an inertial frame then the other is also an inertial frame. 
Because in this system, two every free motion will be linear and uniform. 

Let us consider two frames of reference be parallel to each other. Let  and ′ 
be two inertial frames of reference, where ′is moving with uniform velocity u 
along ′-axis relative to . Two observers situated at the origin and ′. 
Observe any point  from the systems  and ′respectively. The event  
determined by co-ordinates , , , and ′, ′, ′, ′  by observers  and 
′respectively. Each co-ordinate ′, ′, ′, ′  is a linear function of , , , . 

 

 
                                             ′ 
 

  .   
                                                ′    
 
                                                        
              
                                                             ′                        , ′ 

                               

      ′    

        

Fig: 2.1 

 

Let us assume,  

′                                                                                                                         2.3.1   

′                                                                                                                         2.3.2   

′                                                                                                                                     2.3.3   

′                                                                                                                                      2.3.4  

Suppose at the instant  0, a light source situated at the common origin , ′ 
in , ′ radiates a pulse of short durations. In time t, light will occupy a sphere 
whose centre is  in  and whose radius is ct. 
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                                                                                          (2.3.5) 

Similarly for the system ′ we have, 

′ ′ ′ ′                                                                                                 2.3.6                            

Thus the substitutions for ′, ′, ′, ′  from equations (2.3.1), (2.3.2), (2.3.3), 
(2.3.4), in equation (2.3.6) we get equation (2.3.5). This will be true if  

 ′ ′ ′ ′  

Where, k is the constant depending on u i.e., . It can be shown in 
fact  1. Therefore, 

                   ′ ′ ′ ′                                      

           ,         ′ ′                    

           ,        [By using (2.3.1) & (2.3.2)] 

          ,       2 2  

  , 2 2 0  

Now equating the co-efficient of  , ,  in the above equation we get,  

         0                                                                                      2.3.7                             

And 

         2 2 0                                                    
      , 0                                                                                         (2.3.8)                             

And 

         1 0                                                                                               2.3.9                             

Here the origin ′ is given by, 

                    ′ 0          [By using (2.3.2)] 

Therefore, 

                                0 

                        ,     
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                 ,                                                                                                     

              ,                                                                                             

                    ,                                                                                                     2.3.10                        

From equation (2.3.7) we get, 

                                 

,   1                                                                                     

, 1 1                                                         

1                   By using  2.3.10                       

Also from equation (2.3.9) we have, 

                            

  ,   
1

1                                                                                    

                 ,      √ 1                                                                                     2.3.12                        

Now, substituting the values of , ,  in equation (2.3.8) we get, 

       1
1

1 — 0                                       

      , 1
1

1          Squaring on both sides  

    ,         1
1

1                                                                          

, 1                                                                             
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,    1                                                                                                                 

,    1 1                                                                                                             

,   
1

1

                                                                                                                 

When 0; ′ 0; ′ 0, ′, ′ then from equation (2.3.2)  

we get 1, implies that  is positive. 

    
1

1

                                            

 

Hence from equation (2.3.10) we get, 

1

1

                           

       

1

                                               

 

Also, from equation (2.3.11) we get, 

1
1

1

              

1 .
1

1
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1                               

                            

                                      

1

1

                                       

When 0; ′ 0; ′ 0, ′, ′ then from equation (2.3.1) 

We get 1, which implies that  is positive. 

     
1

1

                                                       

Again, from equation (2.3.12) we get, 

1 1

1

1 

1 1

1
1          

           
1

1                    

               
1
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1

                      

             
1

1
                      

       .
1

1

                     

When ; ′ 0; ′ 0, ′, ′ then from equation (2.3.1) 

We get 0. Therefore this does not tell us anything about origin. 

Now, substituting all the values of , , ,  in equation (2.3.8) we get,  

1

1 1 1

1

1

0 

,     
1

1 1 1

1

1

                    

 

Since the R.H.S is (–ve), so that in the L.H.S the value of  must be negative. 

     

1

         

Now, putting the values of , , ,  in equation [(2.3.1), (2.3.2), (2.3.3), (2.3.4)]  

we get, 

′
1

1

.

1
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1

1 1

                   

                                             

1

                                                                      2.3.13  

  ′

1

.
1

1

.        

1 1

                      

                                            
1

                                                                    2.3.14  

                                     
                                         ′                                                                                       2.3.15                           

    and                           ′                                                                                       2.3.16                            

 

Which are the required Lorentz transformation equations. 

Also, 

When  then both  and  can be neglected. So the above Lorentz   
transformations becomes,  

 ′                                                                                                                             2.3.17  

 ′                                                                                                                 2.3.18  

′                                                                                                                             2.3.19   

′                                                                                                                              2.3.20   

Which are the required Galilean transformation equations. 
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3.1 INTRODUCTION 

The special theory of relativity is applicable only to a special class of observers 
namely, to inertial observers. The Minkowskian space-time structure cannot 
be used to describe natural phenomena in a non-inertial frame. So there arises 
the necessity of extending the kinematical framework so that it applies 
generally. This extension should enable us to treat physics from any reference 
frame, inertial or non-inertial. Such a generalization of the theory is called 
general relativity. 

General Relativity, a theory of gravity that describes the relationship between 
matter space-time, is the cornerstone of modern models of the universe. 
Cosmological models based on general relativity present up with two 
radically different alternatives for the nature of the universe and its fate. 

 

3.2 THE PRINCIPLE OF EQUIVALANCE 

 In order to introduce the effects of gravitational field in the relativistic theory 
of gravitation, Einstein gave a principle known as the Principle of 
Equivalence. 

A force which appears only due to acceleration of the non-inertial frame is 
called the inertial force. In order to introduce the effects of gravitational action 
Einstein pointed out that the inertial acceleration is similar to gravitational 
acceleration. By this analogy, Einstein gave the principle of equivalence 
which states, “In the neighborhood of any given point it is absurd to 
distinguish between the gravitational field produced by the acceleration of 
masses and the field produced by accelerating an inertial frame of reference”. 
i.e. the gravitational mass and the initial mass both are same to each other.  

In other words, “A system which is stationary in a gravitational field of 
strength g is physically equivalent to a system which is in gravitational free 
space but accelerated in the opposite direction with an acceleration of g” is 
known as the Principle of Equivalence. 

According to the Principle of Equivalence, a uniform field can be replaced by 
a single system of reference. Hence all frames of reference become equally 
suitable for the description of physical laws. The principle of equivalence is 
true for electrical and optical phenomena as well. For example, if a ray of light 
follows a rectilinear path with respect an inertial frame of reference ′, it is 
found that the same ray of light no longer follows the rectilinear path  with 
respect to another system of reference ′, which is an accelerated motion. 
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From this it follows that the rays of light in general, follow the curvilinear 
paths in gravitational fields. So, the Principle Of Equivalence is a very 
powerful tool in the general theory of relativity. 

Mathematically, 

 If  is the inertial acceleration of the body due to application of inertial force 
 then by Newton’s 2nd law of motion we have,  

                     

Where  is the inertial mass of the body and may be written as and then, 

                                                                                                                           3.2.1  

Also, if  is the acceleration of a body in a gravitational field of attraction  , 
then 

                                                                                                                            

Where  is the gravitational mass of the body and may be written as  and 
then, 

                                                                                                                      3.2.2  

Since according to the principle of equivalence the inertial and gravitational 
forces are of the same nature and obey the same laws and by suitable choice of 
accelerated frame of reference a desired gravitational field can be produced, 
i.e. the Principle Of Equivalence implies, 

                            

                                               . .           By using  3.2.1  &  3.2.2                     

Thus the Principle Of Equivalence necessarily implies the equality of the 
inertial and gravitational masses of the same body. One consequence of this 
equality of inertial and gravitational masses is that all bodies in the same 
gravitational field of force fall with acceleration. The equality of gravitational 
and inertial masses has been experimentally verified to a very high degree of 
accuracy by   in 1896, 1908 and recently by Dicke in 1962. 

The preposition of equality of inertial and gravitational masses is sometimes 
itself known as the Principle Of Equivalence. 
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3.3 THE PRINCIPLE OF COVARIANCE 

According to special theory of relativity the laws describing any phenomena 
in free space must be independent of the velocity of particular observer who 
makes measurements and must have the same form and contents; when 
referred to different sets of Cartesian axes which are in uniform relative 
translator motion. In the general theory, we make full use of general idea of 
relativity of all kinds of motion. 

Here the laws must be expressible in a form which is independent of the 
particular space time co-ordinate chosen or in other words, laws of nature 
remain invariant with respect to any space time co-ordinate system. This 
statement is called the Principle Of General Covariance. 

So we must express all our laws by means of covariant equations that make no 
use of a particular co-ordinate system. This we do by use of tensor calculus, 
because the expression of a law by a tensor equation has an exactly the same 
form in all systems of co-ordinate. As we see the modified of the equation 

                                                                

In tensor form is: 

                                                                     , 1,2,3                    

We see that the fundamental tensor  is a covariant tensor of rank two 
obeying the transformation law, 

                                  ′
′ ′

                                                                       

Where the dashed quantities are used belong to the new co-ordinate 
system  ′  . Suppose the physical laws of nature in    co-ordinate system are 
represented by the equation, 

                      
                                                                                                                               3.3.1                            

Then we can write the transformation law for this tensor as, 

                 ′ ′
′

′

′

′
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′

′
                           

                         
′

′
By using  3.3.1  

               
′

′
. 0                                          

                      . .      ′ ′ 0                  

    
                                            ′ ′                                                                                  3.3.2                         

Thus we see that the tensorial quantities follow the general covariant laws. 

 

3.4   GEODESIC CO-ORDINATES 

The co-ordinate system  is called geodesic co-ordinate system with the pole 
 if all the Christoffel symbols are zero at the point , i.e. for geodesic co-

ordinates,  

Γ , Γ 0, at the point . 

This indicates that at the pole of a geodesic co-ordinate system the first order 
covariant derivatives reduce to the corresponding ordinary derivatives.  

For example, consider the covariant derivative of  with respect to  we get, 

; Γ Γ                                           

                          , at the pole   of geodesic coordinate  System. 

Therefore, necessary and sufficient condition that a given co-ordinate system 
be geodesic with pole at  . 

We know, 

                      Γ Γ                                                       3.4.1  

Interchanging  and   co-ordinate systems, we get 
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Γ Γ                                                 

, Γ Γ                                                           3.4.2  

For a given value of , is a scalar function of  and hence  is a covariant 
vector. 

Let,  

;                                                              

Hence equation (3.4.2) becomes, 

                       Γ Γ                                                              3.4.3  

But, 

Γ ;                                                                     

; ,
                                      

;                                            

Hence equation (3.4.3) becomes, 

                          Γ Γ                                                           3.4.4  

But, 

Γ ;                                                                      

; ,
                                       

  ;                                              

Hence equation (3.4.3) becomes, 

                                         ; Γ                                                         3.4.5  
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Now, let  be a geodesic co-ordinate system with the pole at  , then we get, 

                                            Γ 0,  at the pole , 

Therefore equation (3.4.4) becomes, 

; 0                                                          

This gives the necessary condition for a given co-ordinate system to be 
geodesic. Conversely suppose that, 

                                             ; 0,    at the pole . 

Therefore equation (3.4.4) becomes, 

                            Γ 0,                                                      3.4.6  

As    and    are arbitrary then we have, 

                                               

                                    Γ 0,                                                                       3.4.7  

Which implies that  is a geodesic co-ordinate system with pole at  . Hence 
the necessary and sufficient condition that a given co-ordinate system be 
geodesic with the pole at , is that their second covariant derivatives with 
respect to space co-ordinates must vanish at   . 

 

3.5   GEODESICS 

Geodesics are curves in a manifold analogous to straight lines in Euclidean 
space. One way of characterizing a straight line is as the shortest curve 
between two points and this characterization could be used in a Riemannian 
manifold, where the length of a curve defined. It may be arises technical 
difficulties. To avoid this we adopt another characterization of a straight line, 
namely its straightness, as our guide to defining geodesics. We may 
characterize a curve in a manifold as being a geodesic, if there exist a 
parameterization of it such that the tangent vectors constitute a parallel field 
of vectors along the curve. Such a parameter is called affine parameter. 

 Let us consider, S be the length of the curve measured from the fixed point 
then the length  of the element of arc joining the points  and  is 
given by, 
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                                                                                                         3.5.1  

                                                
⁄
                                              3.5.2  

 

                                       

 

             

 

 

                                                         

Fig: 3.5 

 

Therefore, 

                                            
⁄

                                                               

                                            
⁄

                                                   3.5.3  

The length s of the arc joining the points which corresponds to the values  
and  of the parameter is given by, 

⁄

                

                                                                                                                              3.5.4  

Where  

                                         
⁄

                                                           3.5.5  

 If the integral,   be the extremum then φ satisfies Euler’s Equation. 
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i.e.  

                                   0                                                                    3.5.6  

From equation (3.5.5) we have, 

⁄

                                     

,
⁄

                                           

Therefore, 

1
2

⁄
                     

1

2
⁄                 

                                        
1
2

                                                                     3.5.7  

Again, 

1
2

⁄
               

                            
1

2
⁄        

1
2

              

1
2

                                

                    
1
2

since p &      y  

                                     
1

                                                                                  3.5.8  

Now, putting the above values of equation (3.5.7) & equation (3.5.8) in 
equation (3.5.6), we get, 
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1
2

1
0                  

,
1
2

1 1 1
0 

,
1
 2

1 1 1
0          

,   
1
2

0                             

           ,    
1
2

                                 3.5.9  

Now multiplying both sides of equation (3.5.9) by  we have, 

,
1
2

  

,      ,                                                       

               ,    Γ                                                                              3.5.10  

Now, choosing  so that  and 0, then equation (3.5.10) becomes, 

Γ 0                                                        

            , Γ 0                                                                  3.5.11  

This is the equation for a geodesic. 

Thus a geodesic can be defined in an affine space and the parameter S is affine 
parameter. 

Now, multiplying the above equation (3.5.11) by  we have, 

                Γ 0                                         3.5.12  

But from the metric tensor, 

Γ
1
2 , , ,  
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1
2 , , ,  

     
1
2 , , ,     

                                                 
1
2 , , ,                                  3.5.13  

So, the equation (3.5.12) becomes, by using (3.5.13), 

1
2 , , , 0                    3.5.14  

 

But, 

, ,                                               

 

Then the above equation (3.5.14) becomes, 

1
2
2 , , 0                               3.5.15  

Also, 

,                                            

And 

,                                             

 

So, the equation (3.5.15) becomes, 

1
2

0 

,
1
2

0 
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,       
1
2

0                                               

,      
1
2

0                                               

,            2 0                                           

,             0                                                                             

                                                 3.5.16  

 

Although equation (3.5.16) can be derived from the equation (3.5.11) but later 
cannot be derived from the former. 

 

For a class of geodesics, equation (3.5.16) is not true and these are the null 
geodesics which have the property the distance the between the adjacent 
points variables i.e.  0. In this case we cannot parameterize the curve by 
parameter S (which is always zero) but have to use a distinct parameter λ. 

                                                           . .     

0                

Here,  is the tangent vector whose magnitude is zero. For non-zero 

geodesics one can show that the tangent vector  satisfies, 

                                               Γ 0                                                 3.5.17  

 which is known as null geodesic. 
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3.6   GEOMETRY OR GEOMETRICS 

The geometry that we have studies in schools is known by the name of 
Euclidean geometry after the great mathematician Euclid (3rd century B.C.) 
who collected the known geometrical Knowledge of his day and arranged it in 
a logical sequence of axioms and theorems. His axioms were like self obvious 
truths. One and only one straight line passes through two given points or all 
right angles are equal. These are examples of his self-obvious axioms. But then 
he introduced one axiom which could not be classified as self-obvious. This 
has come to be known as the parallel postulate. It is clear that, this is not at all 
“self-obvious” and Euclid himself hesitated a great deal before accepting it as 
an unproved assumption. We may note that several well-known theorems of 
our school geometry are based on the validity of this axiom, e.g. the theorem 
about the sum of the three angles of a triangle being two right angles. 

The hesitation which Euclid experienced in accepting the parallel postulate as 
an unproved assumption troubled later mathematicians for more than 1500 
yrs. Geometer after geometer attempted to prove this postulate on the basis of 
the other axioms of Euclid but with no success. Ultimately, a Russian 
mathematician, Lobachevsky in 1829, first conceived the idea that, it may be 
possible to prove that the parallel postulate cannot be proved! And proved he 
succeeded in doing so. He replaced Euclid’s postulate by the following. Given 
a straight line and an outside point, two straight lines can be drawn parallel to 
the given line and pass through the given point. He did not find any logical 
flaw following from this assumption and thus, developed a perfectly logical 
geometry known as “Lobachevskian geometry”, where the sum of three 
angles of a triangle is always less than two right angles. 

About 25 years later, Riemann developed geometry. He changed Euclid’s 
postulates about straight line and replaced the parallel postulate by the 
following. Given a straight line and a point outside it, no straight line can be 
drawn parallel to the given straight line and pass through the concept of 
parallel straight lines is absent. The geometry is known as “Riemannian 
Geometry”. In this geometry, the sum of three angles of a triangle is always 
greater than two right angles. 
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3.7 THE METRIC TENSOR AND CONNECTION 

One desires to have a notion of distance between any two infinitesimally 
separated points of a space-time manifold. Such distances should locally 
reduce to those defined by the special theory of relativity that is, those given 
by a flat metric with an indefinite signature on the Minkowski space-time. 
This is because special relativity is the theory which has been shown to be 
valid by experiments and hence must hold at least when confined to local 
regions in the space-time which correspond to the measurements of space and 
time intervals at the laboratory scale for an observer. Thus, the distances 
between events in a space-time need not necessarily be positive. 

This is achieved by assuming the existence of an indefinite metric tensor field 
defined globally on M as a 0,2  type, symmetric, tensor field. Thus, the metric 
tensor must act on pairs of vectors to produce a number and it is symmetric in 
its indices. Choosing a coordinate basis this can be written as 

                                                ,                                                        3.7.1  

Where ⁄ , ⁄ . If V and W are any two vectors, this gives 
, . This is often written conventionally in the form of an 

expression giving the distance between two infinitesimally separated points in 
space-time as 

                                                                                                           3.7.2  

For a single vector V,  ,  gives the magnitude of V, which is . 

Another property assumed for the metric tensor is that it is non-degenerate, 
that is, there is no non-zero vector 0 such that , 0 for all vectors 

. This amounts to saying that the matrix  is non-singular and hence 
there must be an inverse matrix  such that  

.                                                

Hence, the tensors   and   provide an isomorphism or a unique 
correspondence between the space of covariant and contra-variant vectors in 
the following sense: 

,          .                         

Similarly, we can also write for a second rank tensor T, 

,    ,     .     
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In particular, we have  

,       

and the Kronecker delta  transform as component of a tensor. Thus,  and 
 are identical tensors. 

The tensors ,  or  are to be regarded as representations of the same 
geometric object because these are uniquely associated tensors. Such an 
isomorphism between the covariant and contra-variant arguments is 
essentially equivalent to the procedure of ‘raising’ and ‘lowering’ of indices as 
pointed out above. In fact, the multi-linear map 

:  

can also be viewed as a linear correspondence from  to  in the sense of the 
mapping . , . The non-degeneracy of the metric tensor implies that 
this map is one-one and onto and thus  establishes a one-one correspondence 
between vectors the dual vectors. The components are the one-form 
components uniquely associated with the vector components . 

Suppose M is an n-dimensional manifold with  being the metric tensor 
defined on it. Then, at any  one could always choose an orthonormal 
basis  such that the metric components  have the diagonal form 

1,… , 1, 1, … 1 . 

If the metric has the form  1, … , 1  then it is called positive definite. 
In that case,  , 0 implies 0. On the other hand, it is called a 
Lorentzian metric if the form is 

                                     1, … , 1, 1 .                                                  3.7.3  

Where there are 1  terms with +1. This is an indefinite metric in the sense 
that the magnitude of a non-zero vector could be either positive, negative or 
zero. Then is called time-like, null, or space-like, depending on 

                     , 0 ,      , 0, , 0                                  3.7.4  

An indefinite metric divides the vectors in  into three disjoint classes, 
namely the time-like, null, and space-like vectors. The null vectors form a 
cone in the tangent space  which separates the time like vectors from the 
space like vectors (Fig. 3.2). 
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When the manifold has dimension four, and when it is equipped with a 
globally defined Lorentzian metric tensor field, it is called a space-time 
manifold.  

The signature of the metric tensor is defined as the number of its positive 
eigen values minus the number of negative eigen values. Thus, a space-time is 
a four-dimensional differentiable manifold with a Lorentzian metric globally 
defined which has the signature +2. 

 

 

                                                                            Time 

   

 Timelike curve 

                  Timelike vector    

                                                                              Null vector 

                                                                                               Space  

 

 

 

 

Fig 3.2 : The null cone at a point p in the space-time manifold. The tangent to curve γ is 
time like at all point, which is thus a time like curve. 

 

In fact, in the special theory of relativity, the space-time admits a global 
coordinate frame covering the entire manifold so that the metric has the form 
given by  globally, and the metric coefficients 
are constants throughout  the manifold, which is called Minkowski space-
time. The tangent vector for a particle travelling with a constant velocity less 
then that of light through a point p in such a space-time is represented by a 
time like vector at p. The particle must travel within the future light cone at p 
which satisfies the equation , 0 . 
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This equation gives the set of all null vectors at p representing the photon 
paths. Now, according to the special theory of relativity, no material particles 
and signals could travel at a velocity more than that of light. Thus, the metric 
determines the causal structure of space-time in the sense that an event p is 
causally related to another event q if and only if there is a time like or null 
signal between p and q. All such events lie on or within the double cone at p 
which is defined by the metric tensor in the above manner. 

For a non-flat space-time continuum of the general theory of relativity, the 
metric coefficients are functions of the space-time coordinates and one has to 
solve for the metric as a solution of the Einstein field equations. As far as the 
existence of a Lorentz metric on a space-time is concerned, any paracompact 
manifold will admit a Lorentz metric if and only if it admits a non-
vanishing  line element field, which is an assignment of a pair of equal 
and opposite vectors ,  globally on M at each point [14]. 

Such a line element field is always defined for a non-compact manifold and 
hence a Lorentz metric always exists for the same. For the reasons, we always 
take the space-time to be non-compact and without boundary. 

Let ,  be a space-time γ be a continuous  curve in M. Then γ is called a 
time-like, null, or space-like curve  respectively if the tangent vector to γ is 
time like, null, or space like respectively at all points of γ. A curve which is 
either time like or null is also sometimes called a non-space like curve. The 
tangent space magnitudes defined by , namely,  

| , | ⁄ , 

can be related to the magnitudes or distances on the manifold as below. 
Suppose X is the tangent vector along γ such that  ,  has the same sign at 
all points of . Then the arc length between  and  along 
the curve is given by 

                         | , | ⁄                                                        3.7.5  

The above as well as the relation (3.7.1) are equivalent to the expression              
, which represents the infinitesimal arc length along γ.In 

Euclidean spaces one has the notion of parallel transport of any given vector X 
defined by the condition that in going from a point p to another point q, both 
the magnitude and the direction of X must not change. If along some curve 
the magnitude and direction of the tangent vector remain unchanged, such a 
curve is called a straight line along which the tangent vector is parallel 
transported.  
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In Euclidean space, if a vector is parallel transported from a point p to another 
point q along two different curves, the result will be the same, independent of 
the path taken. However, this will not be case for a general affine manifold 
(Fig 3.3). 

For a general differentiable manifold, such a notion of parallel transport of 
vectors is defined by introducing the concept of a connection on M. Let  be a 
vector field on M. First we introduce the notion of a derivative operator  on 
M which gives the rate of change of vectors or tensor fields along the given 
vector field X at p for all points of M.  

If Y is another vector field at p then the operator  maps Y into a new vector 
field  such that the following conditions are satisfied: 

(1)  ;           ,  

(2)  ;  for real functions f and g 

(3)   

                                
Fig 3.3: In a differentiable manifold, the result of parallel transport of a vector along a 
curve from point p to q in general depends on the path taken. 

 

A connection  at a point  is a rule which assigns to each vector field X 
at p a differential operator  which maps an arbitrary  vector field Y ay p 
into a vector field  such that the conditions (1), (2), and (3) are satisfied. 
Thus, Y, called the covariant derivative of Y is defined as a type 1,1  tensor 
field which gives a vector  when contracted with the vector X. In such a 
case, the condition (3) above implies 
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                                                                                                 3.7.6  

A  connection  on a  manifold 2 is a rule assigning a connection 
 to each  such that if Y is a  vector field, then Y is a  tensor field 

of type  1,1 . We can write 

                                   ;                                                                               3.7.7  

Here ;  is often called the covariant derivative of the vector . This is 
completely defined by the connection coefficients Γ  which are defined in 
the following manner by choosing the vector fields X and Y to be the basis 
vector fields:  

                                               Γ                                                                     3.7.8  

It is not difficult to see that the above is equivalent to the condition 

                                                , Γ                                                              3.7.9  

Thus, in a coordinate basis we have 

, ⁄ Γ .                  

Consider now the vector  .Defining  

⁄  ,                                

using the rules defining the connection given above, and the relation  

                                        ,                                             3.7.10  

we obtain 

                                 Γ                                              3.7.11  

 

 Comparing this with equation (3.7.7), we can write 

;                                               

 

IJSER



 CHAPTER 3 

   THE GENERAL THEORY OF RELATIVITY 
 

  
     53 

 
   

where      

                               ; Γ                                                                          3.7.12  

It can be seen that the components of the vector  are given as ; . 

 Let us define  

,                                                                 

Then, taking the transformation of coordinates 
′

 when the basis 
vectors transform as ′, it can be seen that ,  does not transform like the 
components of a tensor. 

 Similarly, consider the connection coefficients in the new coordinate system, 
which are given by  

Γ ′ ′
′ ′

, ′ ′ .                                       

Transforming the dashed vectors to the original coordinate system and using 
the condition (2) and (3) above gives in a coordinates basis, 

                                   Γ ′ ′
′

′

′ ′ Γ ′ ′                             3.7.13  

It follows that because of the presence of the second derivative terms in the 
above, the coefficients Γ  also do not transform like the components of a 
tensor. Consider, however,       

; ; ′
′ ′

′         

which implies   

                                 ; ; ′
′

′

′                                                             3.7.14  

Since the above is true for any arbitrary vector  , it follows that ;  are 
components of a tensor. 

Further, if Γ  and Γ are components of two different connections on M, then 
it is not difficult to see, using the coordinate transformations, that the 
quantities  
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C Γ Γ                 

are components of a tensor. 

Given a connection  on M, the torsion tensor T  is defined by the relation  

                                           , ,                                      3.7.15  

Writing the components, 

, Γ Γ .               

This is a type (1, 2) tensor which has the components 

    T Γ Γ .                             

A connection is called symmetric when the torsion tensor vanishes, that is,  

Γ Γ                                

  , ,                             

We shall always work with symmetric connections and assume the torsion 
tensor to be vanishing. 

The notion of connection can be generalized to arbitrary tensor fields to obtain 
a tensor  Of type ,  for any given tensor T of ,  type by assuming 
first that  is linear and obeys the Leibnitz rule. That is, 

   α  β  ;            ,   

And 

                             

for any vector field X .   

Further,  must agree with our usual notion of directional derivative, that is, 

                                 ,                                                 3.7.16  

Finally,  must commute with contractions, that is, 

                             … …
… …

… …
… …                                                                3.7.17   
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As earlier, we can write  

                    … ;
… … …  ,                       3.7.18  

With 

…
…

… ;
… .                                 

Now, by considering the expansion for    it is not difficult to see that 

                                        Γ ,                                                                    3.7.19  

and if ω is a one-form then,  

; ,                                             

with 

                                        ; Γ                                                             3.7.20  

In general, we can write for the covariant derivative of a tensor T , 

     … ;
… …

…

Γ …
… …  Γ … … 

…  .                           3.7.21  

 

Finally, we note that given a Lorentzian metric tensor on M, the condition  
0 defines a unique torsion-free connection on M . Then, 

                                                    ; 0                                          3.7.22  

which implies that  

; 0.                              

In such a case, that parallel transport of vectors must preserve the scalar 
product defined by the metric tensor   and the connection coefficients Γ  are 
determined in terms of the first derivatives of the metric components. 

Since all the information on space-time structure is supposed to be contained 
in the ten metric functions , this is reasonable to expect. 

 One way to see this is the following. Using equation (3.7.21), we can write for 
the covariant derivative of the metric, 
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; Γ Γ  

Now, using the condition ; 0 and defining 

Γ Γ ,                                       

the above can be written as  

; Γ Γ .                     

Using the above and the symmetry property of the connection, we get  

Γ
1
2 ; ; ; .                         

This result can be seen by specializing to the frame of free fall as well. In such 
a frame, all the connection coefficients vanish and the metric is locally that of 
the special theory of relativity. Then,   and the partial derivatives of  
vanish. Thus, from the above equation, for  ;  , we again recover ; 0 
.This, being a tensor equation, must hold in all frames in general and we can 
again proceed as earlier. 

 

3.8 SPACETIME CURVATURE 

The measure of the curvature for any given space-time is exhibited in the non-
commutation of the tangent vectors when parallel transported along different 
curves to arrive at the same space-time point. This is given by the Riemann 
curvature tensor which is defined as a type  1,3  tensor,  

                                                :  .   

In a coordinate basis one could write the Riemann tensor as  

                                                                                                3.8.1  

If we define the vector ,  as 

                                         , ,                    3.8.2  

then the components of the Riemann tensor are given by 

                                         , ,                                                          3.8.3   

Working out the components gives 

IJSER



 CHAPTER 3 

   THE GENERAL THEORY OF RELATIVITY 
 

  
     57 

 
   

                       

            ,                                                                                 3.8.4   

Now, in order to evaluate equation (3.8.3), note that  

      ; ; ; ;                                             3.8.5  

Similarly we have 

            ; ; ;                                                               3.8.6  

Finally, we have 

,
; ; ⁄ ; ;                               3.8.7  

Combining equations (3.8.5), (3.8.6) and equation (3.8.7) we obtain  

  , ; ;                                                                                   3.8.8  

Comparing equation (3.8.4) and equation (3.8.8) gives  

; ; ,                                                                                                    3.8.9  

which is the same as  

                                                                                        3.8.10  

The last equation above could also be taken as the defining equation for the 
components of the curvature tensor. As shown by the left-hand side of 
equation (3.8.10), the Riemann curvature tensor provides the measure of non-
communication of a tangent vector when parallel transported along different 
curves to arrive at the same space-time point. 

In place of the vectors , ,and  let us choose now the basis vectors .   

Then, 

           Γ Γ Γ Γ                                           3.8.11  

Consider now the definition of the components of the Riemann tensor as 
given by equation (3.8.3).   

In particular, if a coordinate basis is chosen then , 0 and we can write 

, ,                     

IJSER



 CHAPTER 3 

   THE GENERAL THEORY OF RELATIVITY 
 

  
     58 

 
   

Then, using equation (3.8.5) and a coordinate basis, the coordinate 
components of the Riemann curvature tensor can be given in terms of the 
coordinate components of the connection as 

                        
Γ Γ

Γ Γ Γ Γ                                              3.8.12  

As pointed out the metric tensor  on  there exist a unique, torsion-free 
connection on M defined by the condition 0, which is equivalent to the 
vanishing covariant derivative of the metric tensor, that is, ; 0. Then 
parallel transport of vectors preserve the scalar product defined by  and  

,   along a geodesic γ, where V is the tangent to γ.  

Then,          

, ,                                     

                              

                                                            , ,                              3.8.13  

Evaluating ,  and  , adding the first and subtracting the 
second from equation (3.8.13) gives, 

Z,
1
2

, , , , , , ,

, ,                                                                                 3.8.14  

Choosing the basis vectors  in place of the vectors X, Y, and Z in equation 
(3.8.14) gives the connection coefficients in terms of derivatives of   and the 
Lie derivatives of the basis vectors,  

            , Γ Γ .                                                                   3.8.15  

Choosing a coordinate basis with , 0 gives the usual Christoffel 
symbols: 

                        Γ
1
2

.                                                     3.8.16  

Hence it follows from equations (3.8.12) and (3.8.16) that the Riemann tensor 
components are expressed in terms of the metric tensor and its second 
derivatives when the connection defined by the metric is used. From now on 
we shall always mean by the connection this unique connection defined by the 
metric tensor. 
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The expression equation (3.8.12) and earlier definitions imply that the 
Riemann tensor has the symmetry given by  

                   ,                                                                                              3.8.17  

which is equivalent to   0. Further, the curvature tensor obeys the cyclic 
identity 0 which can be written as  

               0.                                                                                  3.8.18  

The covariant derivatives of the Riemann tensor satisfy the Bianchi identities 
given by ; =0 which is the same as, 

                              ; ; ; 0.                                                           3.8.19  

A straightforward proof would involve writing down each term above 
explicitly and then substituting from equation (3.8.12) and summing. There 
are certain additional symmetries valid when the connection is the one 
induced by the metric. In this case we have 

                         Γ Γ , ,     Γ   Γ .                   3.8.20  

The Riemann tensor  defined by the metric has the symmetry 

                                         ,                                                                     3.8.21  

which means 0.  

Also, in this case the Riemann tensor is symmetric in the pairs of the first two 
and last two indices, 

                                                                                                                  3.8.22  

The space-time ,  is said to have a flat connection if and only if 0, 
that is, all the components of the Riemann tensor must be vanishing. This is 
the necessary and sufficient condition for a vector at a point p to remain 
unaltered after parallel transport along an arbitrary closed curve through p. 
This is subject to the condition that all such curves can be shrunk to zero, in 
which case the space-time has to be simply connected. In general, the usual 
concept of parallel transport of vectors breaks down in a space-time manifold 
in the sense that given a connection, if we parallel transport a given vector 
along two different space-time curves to arrive at the same point, the resultant 
vector will be different in each case. However, when all the components of the 
Riemann tensor vanish, it can be shown that whenever a vector is transported 
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from one point to the other in the space-time, the result is independent of the 
path taken. In such a case, the connection is also said to happen is the 
vanishing of all the components of the Riemann tensor. When a symmetric 
connection is integrable, the manifold is called flat. 

Further, in the case of the connection being the metric connection, the 
vanishing of all the Riemann tensor components provides a necessary and 
sufficient condition for the space-time metric to be flat; that is, there exists a 
global coordinate system in M such that the metric reduces to the diagonal 
form with values ±1 everywhere. 

The Ricci tensor is defined as a type 0,2  tensor which is obtained by 
contracting the Riemannian tensor in the following manner 

                                                                                                                        3.8.23  

As a consequence of symmetry properties discussed above, it follows that the 
Ricci tensor is symmetric, and also the following holds 

                                       0                                                                                   3.8.24  

A further contraction of the Ricci tensor gives the curvature scalar R, which is 
defined as  

                                                                                                                    3.8.25  

The quantity R has the property that it depends only on  and on their 
derivatives only up to the second order. Further, it is linear in the second 
derivatives of the metric components. The total number of independent 
scalars that could be constructed from the metric and its derivatives up to 
second order is 14.As a consequence of various symmetries listed above, the 
total number of independent components of  reduces to 20 when the 
dimension of the manifold is chosen to be four. For example, when the 
dimension is three,   has six independent components essentially given by 

, and when the dimension is two there is only one independent component, 
which is essentially R. 

Another important tensor one could construct from  is the Weyl tensor , 
which is also sometimes called the Weyl conformal tensor, given as: 

            
1
3

.                                3.8.26  

The symmetry properties of the Weyl tensor follow from the symmetries of 
the Riemann curvature tensor discussed above in that it possesses the same 
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symmetries as the Riemann tensor. Additionally, it can be verified that the 
following identically vanishes 

                          0                                                                                        3.8.27  

The Weyl tensor is that part of the curvature tensor for which all contractions 
vanish for any pair of contracted indices, 

                         0                                                                                                  3.8.28  

If the Weyl tensor vanishes throughout the space-time, that is, 0 at all 
points, then one could show that the metric  must be conformally flat.  

This means that there exists a conformal function Ω , 0 Ω ∞, such that 
one could write 

Ω ,                                                             

Where  is the flat Minkowskian metric. In fact, the Weyl tensor is 
conformally invariant in the sense that under a conformal function 

                                  Ω   

 

                                                                      

 

 

        ν 

 

 

 

Fig 3.4: A one-parameter family of non-space like geodesics with the tangent vector T 
and separation vector V 

 

we have 

                                                                                                                    3.8.29  

Non‐space like 
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It is possible to show that a necessary and sufficient condition for the space-
time metric to be conformally flat is that the Weyl tensor must vanish 
everywhere. 

We finally derive here the geodesic deviation equation, which is also called 
the Jacobi equation. This characterizes the coming together or moving away of 
space-time geodesics from each other as a result of the space-time curvature. 

 Consider a smooth one-parameter family of affinely parameterized non-space 
like geodesics, characterized by the parameters , , where t is the affine 
parameter along a geodesic and  characterizes different geodesics 
in the family with t, ν  (fig:3.4). 

Such non-space like geodesics span a two-dimensional sub manifold on which 
t and ν could be chosen as coordinates. The vectors ⁄ , and V ∂ ∂⁄ ν 
are then coordinate vectors for which  are then coordinate vectors for which 
, 0. Then, since the torsion tensor is vanishing, we have 

 

Which implies . Further, T being tangent to the geodesics, 
0. Now, define the operator D by .  

Then,  

 

Taking another derivatives 

                        

                                                                          3.8.30  

However, by the definition of the Riemann curvature tensor, 

 

Substituting this into equation (3.8.29), 

       

                                

                                                                         3.8.31  
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 .                                                                                                     

The equation  

                                                                                                3.8.32  

is called the Jacobi equation or the equation of geodesic deviation. It is clear 
from the above that 0 if and only if all the components of the Riemann 
tensor are vanishing. On the other hand, whenever some components of the 
same are non-zero, then the neighbouring non-space like geodesics will 
necessarily accelerate towards or away from each other. 

 

3.9 EINSTEIN’S EQUATIONS 

We discuss in this section the Einstein equations on a space-time manifold. 
Throughout our discussion, the space-time is modeled by a pair , , where 
M is a four-dimensional differentiable manifold and  is a Lorentzian metric 
tensor. Further,  will be assumed to have reasonable topological properties 
such as para compactness, connectedness, Hausdorff nature and so on, etc. 
We have been referring to such a model as the space-time manifold. The 
Einstein equations to be discussed here involve the second derivatives of the 
metric tensor. Thus, we assume that the metric components are at least  
functions of the coordinates. All pairs ′, ′  which are diffeomorphic to 

,  are regarded as equivalent and we study ,  which represents this 
entire equivalence class of space-times with equivalent physical properties. 

The principle of local causality and the local conservation of the energy and 
momentum will be accepted as the basic physical postulates for the space-time 
manifold (see for example, Hawking and Ellis, 1973). The basic criterion 
accepted by Einstein while formulating the general theory of relativity was 
that it is the matter distribution which determines the geometry of the space-
time in terms of the Riemann curvature tensor. Next, the motion of any test 
particle in such a gravitational field is always independent of its own mass 
and composition. This is the principle of equivalence, which has been verified 
now to a great degree of accuracy to show that any two objects with different 
masses and different compositions always arrive at the same time on the 
surface of the earth when left from the same height. A logical consequence of 
this fact is that any frame of reference uniformly accelerated with respect to an 
inertial frame of the special theory of relativity is locally identical to a frame at 
rest in a gravitational field. Finally, in general relativity, one postulates the 
principle of general covariance, namely that all the physical laws are 

IJSER



 CHAPTER 3 

   THE GENERAL THEORY OF RELATIVITY 
 

  
     64 

 
   

expressed as tensor equations so that they are valid in a general frame of 
reference and are invariant under arbitrary coordinate transformations. When 
restricted to the frame of free fall, these must produce the laws of special 
relativistic physics. There are matter fields defined on a space-time such as an 
electromagnetic field or dust. All such physical fields will be assumed to be 
represented by a second rank tensor , called the energy momentum tensor, 
in the sense that  would vanish on any open region in the space-time and 
the derivatives defined with respect to the unique connection defined by the 
metric tensor. This is because, for any other connection defined on M. Such a 
stress energy tensor  then describes all matter fields such as an 
electromagnetic field, a scalar field, or a perfect fluid. For example, in the case 
of dust, which is the matter distribution composed of non-interacting material 
particles, the field is characterized by the proper density  of the flow and the 
four velocities of the particles given by  ⁄ , where τ is the proper time 
along the time like trajectory describing the particle world line. The simplest 
second rank tensor constructed from these two quantities is given as  

 

The component     of this energy momentum tensor is given by  

        . 

In a special relativistic frame of reference, this can be interpreted as the 
relativistic energy density of the matter. One can further show that requiring 
this tensor to have zero divergence in such a frame implies the conservation of 
the energy as well as momentum. 

Next, a perfect fluid is characterized by an additional scalar quantity, which is 
the pressure    . In the limit as the pressure vanishes, this must reduce 
to the dust form of matter. Further, one also demands the conservation laws in 
a spherical relativistic frame, and that these should reduce to the classical 
equations of continuity and the Navier-stokes equations in the appropriate 
limits. Then this energy-momentum tensor is written in a general frame as 

 

which could be taken as the definition of a perfect fluid in the general theory 
of relativity. In general, one could construct the energy-momentum tensors of 
various fields by using a variational principle where one has a proposed 
Lagrangian and the change in action is considered due to the change in the 
metric. 
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For an arbitrary frame and for other matter fields such as the electromagnetic 
field, or a charged scalar field, the principle of local conservation of energy 
and momentum states that 

                                            ; 0                                                                                  3.9.1  

The equation above for the stress-energy tensor contains considerable 
information on the matter fields in a space-time. For example, if the space-
time contains a Killing vector  then the above could be integrated to give a 
conservation law. The conserved vector in such a case is defined as  
and we get ; 0 as a consequence of equation (3.9.2) and the killing 
equation ; ; 0. Then the integration of ;  over a compact region 
implies that the total flux over a closed surface of the energy-momentum is 
zero in the direction of the killing vector (see for example, Hawking and Ellis, 
1973). Even when the space-time does not admit a killing vector, given any 
point p one could set up a Riemannian normal coordinate system at p so that 
the metric components have the Minkowskian values and the connection 
coefficients Γ  vanish at p. One could then choose a small enough 
neighbourhood of p so that the values of  and Γ differ by an arbitrarily 
small amount from values at p. Using this fact it could be shown that isolated 
test particles should move along time like geodesics. 

Further, all matter fields are supposed to obey the postulate of local causality, 
which is given by the statement that the equations governing the matter fields 
are such that given any , there is an open neighbourhood U of p in 
which a signal can be sent between any two points of U if and only if there 
exists a non-spacelike curve between these points. This principle is valid in the 
special theory of relativity and is also accepted in general relativity. The 
general theory of relativity is a theory of gravitation defined on a space-time 
manifold where the force of gravity is described in terms of the space-time 
curvature. These curvatures are in turn generated by the matter fields, as 
governed by the Einstein equations which we discuss in this section. 

The above principles effectively imply that it is the space-time metric, and the 
quantities derived from it, that must appear in the equations for physical 
quantities and that these equations must reduce to the flat space-time case 
when the metric is Minkowskian. This is the basic content of the general 
theory of relativity where the space-time manifold is now allowed to have 
topologies other than  and the metric  could be non-flat. In general 
relativity, the matter fields expressed by the stress-energy tensor are related to 
the non-flat nature of space –time by means of the Einstein equations, which 
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are the basic equations satisfied by the space-time metric. In Einstein’s theory, 
one does not discuss the physical interaction of matter fields on a fixed 
background metric prescribed in advance. Actually, s is treated as 
dynamical variables which depend on the matter content of the space-time 
and are to be solved from the Einstein equations. 

An important indicator towards obtaining this relationship between the 
matter content and space-time geometry is provided by the Newtonian theory 
where the gravitational field is described by a potential . The tidal 
acceleration between nearby particles is given in terms of the separation 
between them and second derivatives of . In a curved space-time manifold, 
such tidal accelerations are described by the Jacobi equation (3.8.32) in terms 
of the Riemannian curvature tensor.  

Further, we must recover the Poisson equation 

                                                     4                                                                  3.9.2  

in the Newtonian limit. Now, both in the special and general theory of 
relativity the matter content is described by the stress-energy tensor  and 
the mass-energy density ρ corresponds to the quantity  . Thus, each side 
of the Poisson’s equation corresponds to the Riemann tensor as expressed in 
the Jacobi equation and    respectively. Another important indicator for 
this comparison is provided by the Bianchi identities (3.8.19).  

Einstein proposed the field equations 

                                    
1
2

8                                                     3.9.4  

In this case, in fact the contracted Bianchi identities imply the local 
conservation of energy and momentum through the Einstein equations. 
Taking the trace of the equation (3.9.4) we get  

8 .                                                            

Substituting this back in equation (3.9.4) gives the alternative from of the 
Einstein equations 

                                      8
1
2

                                                         3.9.5  

It is clear by considering the definition of the Ricci tensor that the Einstein 
equations depend on the derivatives of  up to the second order and that 
they are highly non-linear in . It may be noted, however, that the Einstein 
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equations are linear in the second derivatives of   .in fact, the quantities   
and    are the only second-rank symmetric tensors which are linear in the 
second derivatives of the metric and involve only up to second derivatives of 
  . Actually, the Einstein equations are a coupled system of non-linear 
second order partial differential equations for .  This makes the task of 
solving them extremely difficult. One generally needs to impose several 
symmetry assumptions on the space-time in order to work out the metric 
components as a solution to the Einstein equations.  

Given the energy momentum tensor   , the field equations may be viewed as 
the set of differential equations to determine the gravitational potentials   to 
determine the resulting geometry. A particularly important case here is that of 
vacuum solutions when      0.  

On the other hand, one could arbitrarily specify the ten metric potentials, then 
the one could compute the Einstein tensor  and then the field equations 
determine the energy-momentum tensor . however, in this case, the 
resulting     turns out to be unphysical most of the time in that it may violate 
the energy conditions ensuring the positively of mass-energy density. Such a 
violation of the energy conditions is rejected on physical grounds in that all 
observed classical fields obey such a positivity of energy density, which is 
closely connected with the physical features of gravitation theory.  

In general, the field equations are ten equations connecting the total of twenty 
quantities which are ten components    and the other ten components of 

.Thus, the field equations are the condition placing constraints on the 
simultaneous choice of these twenty quantities. If part of the gravitational 
potentials and the matter contents are determined from physical conditions, 
then such conditions are used to determine the matter and geometry fully. In 
particular, if one considers the vacuum equations  

1
2

0                         

then there are ten equations to determine the ten quantities .  

However, the Bianchi identities  

0                                            

place four differential constraints on these equations which are not all 
independent. Thus, there is indeterminacy in that there are fewer equations as 
compared to the unknowns to be determined.  
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Further, there is an intrinsic gauge freedom available in the general theory of 
relativity which does not allow a complete determination of the metric 
potentials. This is given by the coordinate freedom which allows a 
transformation from one set of coordinates  to any other set of 
coordinates 

′
. One could, however, use this coordinate freedom to impose 

conditions on the metric components. For example, choosing the normal 
coordinates gives 1 and 0,   1,2,3  in this co-ordinate system. 
This leaves six other components to be determined from the field equations. 
This issue is closely connected with the Cauchy problem in general relativity 
where the basic problem is, given an initial data on a regular space like hyper 
surface one would like to determine its unique evolution in the feature or 
past. 

Finally, we discuss here the Einstein equations with a cosmological term. It 
may be noted that the most general second rank tensor which can be 
constructed out of  and  so that it is divergence free and involves the 
derivatives of the metric tensor up to second order only is the linear 
combination Λ (Lovelock, 1972), where Λ is a constant.  

Thus, addition of such a constant multiple of  to the Einstein tensor 
preserves all the required properties of equations (3.9.4) discussed above. 
Einstein historically introduced the cosmological term Λ in his equations in 
order to generate static cosmological solutions, and wrote the equations as  

                              
1
2

Λ 8                                                       3.9.6  

If Λ  0 then one does not obtain the Newtonian theory in the limit of slow 
motions and weak fields; however, if the magnitude of Λ is very small then 
such departures will be quite negligible and approximate agreement with the 
Newtonian theory is obtained. It is seen that for an empty space-time with 

0, the Einstein equations simplify to 

Λ  
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3.10 MINKOWSKI SPACETIME 

The Minkowski space time is mathematically the manifold  with the 
Lorentzian metric 

                                                                             3.10.1  

with ∞ , , , ∞ giving the range of the co-ordinates. This is a flat 
space-time with all the components of the Riemann tensor 0, and hence 
the simplest empty spacetime solution to Einstein equations 

8 0                                                            

which underlies the physics of special theory of relativity. The vector ⁄  
provides a time orientation for this model. If we use the spherical polar co-
ordinates , , ,  given by , ,    
then equation (1) becomes 

                                                          3.10.2  

The range of the coordinates , ,  is 0 ∞, 0    0 2 . 
Two such coordinate neighbourhoods are needed to cover all of the 
Minkowski space-time. 

As discussed all the components of the Riemannian curvature tensor vanish 
for the Minkowski space-time which is a flat space-time. In other coordinate 
system , , , , the connection coefficients Γ will not all vanish (for 
example, Γ ); however, all the Riemann curvature components will still 
be vanishing. 

The Lorentz transformations on the Minkowski space-time are defined as the 
set of those metric preserving isometries which are linear and homogeneous 
transformations. Physically, these represent the change of reference frame 
from one inertial observer to another inertial observer. Thus, the Lorentz 
transformations are defined by the coordinate change 

′
.                             

From the above and the fact that these are metric preserving isometries, it 
follows that det  1 and hence the matrix is non-singular. If det  1 
and further 1, then the Lorentz transformation preserves both the 
orientations in space as well as time. The set of all the Lorentz transformations 
form a group where the identity map is given by  and the inverse is defined 
by the inverse matrix. The Lorentz group is a subgroup of the Poincare group 
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of transformations which are general inhomogeneous mappings that leave the 
Minkowskian metric invariant. Such a general mapping consists of a Lorentz 
transformation together with an arbitrary translation in space and time. 

              

                                                     t  

                                                                               

 

                                                                                                     x  

                                                                        γ          

 

 

 

      

             Fig 3.5: The pasts of the time-like curve γ and the null hypersurface  

 

The geodesics of Minkowski space-time are the straight lines of the 
underlying Euclidian geometry. Given an event in M, the lines at 45  to the 
time axis through that event give null geodesics in M. Such null geodesics 
from the boundary of the chronological future or past  of an event p, 
which, contains all possible timelike material particle trajectories through p 
including time-like geodesics. The causal future  is the closure of  in 
Minkowski space, which includes all the events in M which are either timelike 
or null related to p by means of future directed non-space like curves from p. 
The family of space like hyper surface . in the Minkowski space-time 
gives a family of Cauchy surfaces which covers all of M. (A Cauchy surface is 
a space-like hyper surface in the space-time such that all in extendible non-
space-like curves in M meet this surface once and only once. However, all 
space like hyper surfaces in M not be Cauchy surfaces. For example, the 
family given by 

  . 

with 0 are inextendible spacelike surfaces which are not Cauchy surfaces. 
All these surfaces are fully contained inside the chronological past or the 
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future of the origin and there are time-like geodesics outside this past or 
future cone which do not meet any of these surfaces. 

To understand the global properties and structure of infinity of the 
Minkowski space-time, we can use the procedure given by Penrose(1968) and 
Geroch, Kronheimer and Penrose (1972). An arbitrary event p in the 
Minkowski space-time is uniquely determined either by its chronological 
future  or past . If a future directed non-spacelike curve γ has a 
future end point at p, we have      . (By definition  is the 
union of all  with  being a point on the curve .  On the other hand, if   
is future inextendible without any future end point, the set    determines 
a ‘point at infinity’ of . (A future or past inextendible curve, in the context 
of Minkowski space-time, is a trajectory which goes off to the infinity in future 
or past without stopping anywhere.)Two such curves , and determine the 
same ideal point or a point at infinity if  . Such a procedure 
defines future ideal points. Past ideal points are defined dually using past 
inextendible non-space like curves.  

In the Minkowski space-time, there are future directed inextendible time-like 
curves  which have the same past, which is the entire space-time , that is 

.  Hence, all such time-like curves determine a single future ideal 
point , called the future time-like infinity. The past time-like infinity  is 
similarly defined. If we choose  to be a future endless null curve, it is 
possible to have a situation where  is not the entire Minkowski space-
time. Certain timelike curves also have this property. For example, consoder 
the past of the time-like hyperbola  

                      ,      ,      , 0,    ∞ ∞                3.10.3   

Then,  lies completely to the past of the null hypersurface . It can be 
shown in general (see Geroch, Kronheimer and Penrose, 1972) that if for a 
non-spacelike curve , if   and if  is future endless, then there exists 
a null hypersurface , the half-space below which coincides with  (Fig. 
3.5).  

If we denote the collection of ideal points so defined by , then there is a 
one-one and onto correspondence between the points of  and such null 
hypersurfaces. Any such null hypersurface is determined by the value of the 
time   at which it intersects the time axis and by the direction of null vector at 
the point of intersection. Since the set of all possible light rays directions at 
any point is equivalent to the two-sphere , it follows that is a three-
dimensional manifold with topology . 
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That three-dimensional null hypersurface  and are called the future and 
past null infinities respectively for the Minkowski space-time. As we shall 
discuss a general space-time also would admit such a boundary construction 
under certain conditions such as being asymptotically flat and empty. One can 
show for the Minkowski space-time that all complete null hypersurfaces are 
flat and so are like the surfaces , in which case the topological structure 
of the null infinity is clearly .  It is not clear, however, that the null 
infinities will necessarily have the same topological structure even in the case 
of a general space-time. 

It is possible to introduce a differential structure as well as a metric on . To 
see this, we first note that a convenient way to attach the ideal point boundary 

to  is to use a suitable conformal factor Ω to obtain a transform of the 
original space-time metric , 

                                                     Ω ,    Ω 0,                                           3.10.4  

which leaves the causal structure of  invariant because the null geodesics of 
 and the unphysical metric  are the same up to a reparametrization as 

discussed earlier. Thus, the past of any non-space like curve  is unchanged 
and there is a natural correspondence between ideal points in two space-
times. Since light cones are unaltered by a conformal transformation, the 
boundary attachment in this manner is coordinate independent. 

In the metric (3.10.2), one could introduce the advanced and retarded null 
coordinates given by 

                                           ,        ,                                                 3.10.5  

which gives a reference frame based on null cones, which is most suitable to 
analyse the radiation fields (Fig. 3.6) 

                                     
1
4

            3.10.6  

with ∞ ∞ and ∞ ∞. Now, the information at future null 
infinity corresponds to taking limit as ∞, which amounts to moving in 
future along    const. light cones. Similarly, past null infinity corresponds to 

∞.This procedure could be made precise in a coordinate independent 
way.We can compactify the Minkowski space-time  by means of a 
conformal transformation of equation (3.10.6) given by 

                                                 Ω 1 1                                    3.10.7
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Fig 3.6: In the Minkowski space-time, the future light cone are given as the null surfaces   
.Similarly, the past light cones are given as . 

 

and then by adding closure to add the null infinities. We also introduce new 
coordinates ,  by 

                                                ,           .                                          3.10.8  

 

Then, the corresponding ranges for p and q are 

2 2
,            

2 2
 

And the metric  on the unphysical space-time , after the conformal 
transformation, is given by 

                                               3.10.9  
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It is possible to see now that the metric (3.10.9), with the coordinate ranges 
given above, is a manifold embedded as a part of the Einstein static universe 
to see this, write 

                                                ,        ,                                       3.10.10  

then equation (3.10.9) becomes in , , ,  coordinates 

                                ,             3.10.11  

With the coordinate ranges  

                               ,                                      3.10.12  

This is precisely the natural Lorentz metric on , which is the Einstein 
static universe, except that the coordinate ranges are now restricted by 
equation (12). In this picture, the future null infinity  is given by  
for 0   and the past null infinity is given by  for  0 

. 

This conformal structure of infinity for the Minkowski space-time is 
symmetric space-time can be depicted by a similar diagram which is called a 
Penrose Diagram. As mentioned above,  is topologically  and this 
discussion on Minkowski space-time will be useful when we define general 
asymptotically flat space-times. 

Finally, in order to have a better insight into the asymptotic structure of the 
Minkowski space-time, we work out below the light cone cuts of future null 
infinity for the Minkowski space-time. The light cone evolves from an 
arbitrary apex in the space-time to future null infinity and its intersection with 

 is obtained. Both the light cone and  are three-dimensional null 
hypersurfaces in M and hence their intersection is a two-surface at . It will 
be shown that the knowledge of such cuts yields considerable information 
about the interior space-time and the metric in the neighbourhood of the apex 
point. 

First we introduce a coordinate system on M which is more suitable for this 
purpose. Using the retarded time u, and a complex stereographic coordinate ζ 
and its complex conjugate ζ  on the sphere defined by 

                                              ζ e cot θ 2⁄ ,                                                        3.10.13  
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Fig 3.7: Conformal infinity in the Minkowski space-time. The future and past null 
infinities  are both topologically   . Every null geodesic in the space time meets 

in future and  in the past. Here the point  denotes the future timelike infinity, 
and past timelike infinity is similarly defined where every timelike geodesic terminates 
in future and past respectively. The spacelike infinity is denoted by   . The light cone 
cuts of null infinity for an event p are shown. 

 

the Minkowski metric (3.10.2), when written in the , , ζ , ζ   system is given 
by  

                                           2
ζ dζ 

                            3.10.14  

where 1 ζ ζ  2⁄ . Following Exton, Newman and Penrose (1969) we 
define ′ 1 √2⁄  and ′ √2 , which are more convenient variables for 
the study of asymptotic structure.  

Since null cones and null geodesics are conformally invariant freedom 
available. Suppressing the primes, we conformally transform equation 
(3.10.14) to  
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                        Ω 4ℓ 4 ℓ
ζ dζ 

                           3.10.15  

Where we have introduced a new variable ℓ 1 √2⁄  and the conformal 
factor is chosen to be Ω √2ℓ. In the limit as ∞, we have ℓ 0 and the 
null infinity  is defined by the condition ℓ 0. Future directed null cones 
are characterized by the values of , ζ and  ζ  and so the coordinates , ζ, ζ   
can be used as coordinates on , which are called the Bondi coordinates on 

.  

In these coordinates, a hypersurface of  has the metric 

                                                     
1

ζ dζ .                                                 3.10.16  

Thus,  is a null hypersurface which is generated by the null curves ζ, ζ 
const. For the manifold ,  given by the conformal compactification as 
above, it is easy to see that 

                                                         
Ω

0,1,0,0                                                 3.10.17  

And 

                                                   
Ω Ω

0                                                3.10.18  

Thus, Ω is differentiable on , the new unphysical manifold with boundary, 
and Ω⁄  is a null vector. The factor Ω is smooth everywhere and Ω 0 on 

 which is a null hypersurface. Similarly we could discuss the past null 
infinity , which has a similar structure. Next, we work out the complete 
light cone at any given apex point in the space time. The null geodesic 
equations of the space-time are given by with the dot denoting derivative with 
respect to s, the affine parameter) 

                 2ℓ ℓ 1, 

                     ℓ 0, 

                                                      1 2 0,                                   3.10.19  

1 2 0, 
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4ℓ 4 ℓ 0, 

Where the last equation corresponds to 0. 

Restricting ourselves presently to the equatorial plane  for the sake of 
simplicity, equation (3.10.19) can be written as 

2ℓ 1, 

ℓ 0, 

                                                            0,     ,                                              3.10.20  

ℓ ℓ 4⁄  . 

We shall now eliminate the parameter s from the above equations. For that, 

one could use the first and last equations in the above to obtain ℓ 1 ℓ . 
Thus we have 

ℓ 1 ℓ , 

                                                 
ℓ

1 ℓ
                                                 3.10.21  

We note that ℓ 0 corresponds to a null ray moving away from the origin. 

  

Next, if ℓ 0 initially, then the ray moves initially towards the origin of the 
coordinate system 0, ℓ ∞ and after reaching a minimum value , 

where  ℓ 1 ℓ 0, it begins to move outwards and again ℓ 0. For 

the sake of definiteness we shall choose here rays such that initially ℓ 0; 
however by considering the other sheet ℓ 0 as well, we can span the full 
light cone of null rays from our starting point. 

The above equations can be written as 

          
ℓ

2ℓ 1 ℓ

ℓ

2ℓ
 , 
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ℓ

1 ℓ
.                                              3.10.22  

Suppose now the apex of the cone has the values ℓ ℓ , , . Then 
integrating the above equations from ℓ  to an arbitrary ℓ gives the equations 
for one sheet of the light cone.  

For the sake of simplicity we choose the apex   on the 0 axis, that is, ℓ
ℓ , the above integration provides us with a portion of the cut at infinity of the 
rays in the equatorial plane, integration of equation (3.10.22) from ℓ  to 0 
yields 

                                                     
1 1 ℓ

2ℓ
,                              3.10.23  

                                                         ℓ                                                 3.10.24  

The initial direction b ranges from 0 to ℓ . Note that for a fixed apex one has a 
one-to-one relation between the initial direction b and the final angular 
position  on the future null infinity. By eliminating b from equations 
(3.10.23) and (3.10.24), we obtain the equatorial plane portion of the light cone 
cut which is given by  

                                            1
2ℓ 1 .                                3.10.25  

For the sheet ℓ 0 which we have been considering,  will be positive 
because  will always be in the first or fourth quadrant in this situation. For 
the other sheet corresponding to  ℓ 0, initially  will be negative. 

The portion of the light cone cut given by equation (3.10.25) describes, as we 
have mentioned. Only an  worth of null rays intersecting  since we have 
restricted ourselves to the equatorial plane. However, because of spherical 
symmetry the fyll cut, which is topologically  , can be generated by rotating 
this plane. 

 

 

IJSER



 
 
 
 
 
 
 
 
 
 

                                                 

                                                     

 

 

 

 

 

SYMMETRIC SPACES 

 
 

 
 

CHAPTER  

“God not only plays dice, He also 
sometimes throws the dice where they 
cannot be seen.” 
                               STEPHEN HAWKING  
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4.1 INTRODUCTION 

Euclid implicitly assumed that metric relations are unaffected by translations 
or rotations. Real gravitational fields do not usually have such a high degree 
of symmetry, but they often admit some group of approximate symmetry 
transformations, and when they do, we can use this information to help solve 
the Einstein equations, or even to do without a solution. I shall give only a 
very brief introduction to do elaborate mathematical theory of symmetric 
spaces, with special attention to the maximally symmetric spaces that are of 
special interest of cosmology.  

The initial difficultly here is: How can we use some supposed symmetry of a 
metric space to gain information about the metric, when we need to know the 
metric before we can establish a coordinate system in which to define the 
symmetry? In order to avoid this impasse, we shall have to learn ways to 
describing symmetries in a covariant language, which does not depend on 
any particular choice of coordinate system. Once this language is established, 
it becomes a matter of mathematical manipulation to determine those 
properties of a metric that follow from its symmetries.  

 

4.2 KILLING VECTORS  

A metric  is said to be form-invariant  under a given coordinate 
transformation ′, when the transformed metric ′  is the same 
function of its argument ′  as the original metric  was of its argument 
, that is 

                                                ′    for all                                             4.2.1          

[This is different from the condition for a scalar, which is that ′ ′ .] 
At any given point the transformed metric is given by the relation  

′ ′
′ ′    

or equivalently  

′ ′
′ ′  
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When (4.2.1) is valid, we can replace ′ ′  with ′  and so obtain the 
fundamental requirement for a form invariance of the metric : 

                                                 
′ ′

′                                       4.2.2  

Any transformation ′ that satisfies (4.2.2) is called an isometry.   

In general, Eq. (4.2.2) is a very complicated restriction on the function ′ . It 
can be greatly simplified by descending to the special case of an infinitesimal 
coordinate transformation : 

                                ′                        | | 1                              4.2.3  

To first order in , Eq. (4.2.2) now reads  

                 0                        4.2.4  

This can be rewritten in terms of derivatives of the covariant components 
: 

0      

2 Γ                                   

or, more compactly, 

                                  0 ; ;                                                                          4.2.5  

Any four-vector field  that satisfies Eq. (4.2.5) will be said to form a 
killing vector of the metric . 

The problem of determining all infinitesimal isometries of a given metric is 
now reduced to the problem of determining all Killing vectors of the metric. 
Any linear combination of Killing vectors (with constant coefficient) is a 
Killing vector, so it is the space of vector fields spanned by the Killing vectors 
that really determines the infinitesimal isometrics of a metric. 

The Killing condition (4.2.5) is much more restrictive then it looks, for it 
allows us to determine the whole function  from given values of  and 

;  at some point  .  For the commutator of two covariant derivatives,  

                              ; ; ; ;                                                                4.2.6  
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and the cyclic sum rule for the curvature tensor, 

                                   0                                                             4.2.7    

By adding (4.2.6) and its two cyclic permutations, we find that any vector  
must satisfy the relation  

            0 ; ; ; ; ; ; ; ; ; ; ; ;                            4.2.8  

For a Killing vector, (4.2.5) and (4.2.8) give  

0 ; ; ; ; ; ;  

and thus (4.2.6) becomes  

                                              ; ;                                                        4.2.9  

Hence, given  and ;  at some point , we can determine the second 
derivatives of  at  from Eq. (4.2.9), and we can find successively higher 
derivatives of  at  by taking derivatives of Eq. (4.2.9). All the derivatives of  

 at  will thus be determined as linear combinations of  and  ; . 
The function  can then (when it exists) be constructed as a Taylor series 
in  within some finite neighborhood of , and will again be linear in 
the initial values ,  ; . Thus any particular Killing vector of the 
metric  can be expressed as  

            ; ; ;                                    4.2.10  

where  and  are functions that of course depend on the metric and on , 
but do not depend on the initial values  and ; , and hence are the 
same for all Killing vectors. Each Killing vector  of a given metric in 
uniquely specified by the values of  and ;  at any particular point . 
A set of Killing vectors  is said to be  if they do not satisfy 
any linear relations of the form  

                              0                                                                4.2.11  

with  coefficient . Equation (4.2.10) tells us that there can be at most 
1 2⁄  independent Killing vectors in -dimensions. For consider any  

Killing vectors . For each , there are  quantities  and 1 /2 
independent quantities ;  [recall Eq. (4.2.5)], so we can think of the 
quantities and ;   as the components of  vectors in an  1 /2 
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dimensional space. if  1 /2, then these  vectors cannot be linearly 
independent, so they must satisfy relations of the form 

; 0  

Equation (4.2.10) then tells us that the Killing vectors  satisfy the 
relations (4.2.11) everywhere, and are therefore not independent Killing 
vectors. 

This result is significant only because we defined independent Killing vectors 
as vectors that are not subject to any linear relations with  
coefficients. At some given point  in an -dimensional space, any set of more 
than  Killing vectors will of course be subject to one or more linear relations 
such as (4.2.11). However, the coefficients  in these linear relations need not 
be constant in . The above theorem says that any set of more than 
1 /2 Killing vectors will be subject to linear relations with constant 
coefficients.  

A metric space is said to be homogeneous if there exist infinitesimal 
isometries (4.2.3) that carry any given point  into any other point in its 
immediate neighborhood. That is, the metric must admit Killing vectors that 
at any given point take all possible values. In particular, in an -dimensional 
space we can choose a set of  Killing vectors ; with 

;  

There are evidently independent, because any relation of the form 
; 0 would at  imply that all  vanish. 

A metric space is said to be isotropic about a given point  if there exist  
infinitesimal  isometries (4.2.3) that leave the point  fixed, so that 0, 
and for which the first derivatives ;  take all possible values, subject only 
to the anti-symmetry condition (4.2.5). In particular, in  dimensions we can 
choose a set of 1 /2 Killing vectors ;  with  

                                  ; ;  

                                   ; 0 

                              ; ; ;  
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These are independent, because any relation of the form ; 0 with 
 would at  imply that 2 0. 

We shall also have to deal with spaces that are isotropic about every point. in 
this case there are Killing vectors ;  and  ;  that satisfy 
the above initial conditions at  and at , respectively. Any linear 
combination of these will be a Killing vector, and so ; /  will also 
be a Killing vector of the metric. In order to evaluate this Killing vector at 

 we need only recall that ;  vanishes, and therefore  

0 ; ; ;  

This gives 

;  

It is now obvious that we can construct a Killing vector  that takes any 
arbitrary value  at ; we need only take 

1
;  

Hence                     . 

A metric that admits the maximum number 1 /2 of Killing vectors is 
said to be   .  

In particular, a space that is both homogeneous and isotropic about some 
given point  will admit the  1 /2 Killing vectors  ;  and 

; . These Killing vectors are obviously independent, for if they satisfy 
a linear relation  

0 ; ;  

                                                

then differentiating with respect to  and setting   gives 0, and 
setting  then gives 0. Thus a homogeneous space that is isotropic 
about some point is maximally symmetric. It then also follows that space that 
is isotropic about every point is maximally symmetric.  
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We can also prove the converse, that an        
            . 

If there are 1 /2 independent Killing vectors , then we can think 
of the quantities , ;    as forming a square matrix, with 1 /2 
rows labeled by , and 1 /2 columns labeled by the  values of  and 
the 1 /2 values of  and  with . 

Furthermore, this matrix must have a nonvanishing determinate, because any 
relation of the form 

; 0  

would with (4.2.10) imply that ∑  vanishes, contrary to our 
assumption that these Killing vectors are independent. It must therefore be 
possible, for any “row vector” with “components”  and , to find a 
solution of the equations  

  

;   

Hence we can find a Killing vector  for which  takes the value  and 
;  takes the value , by choosing  

  

But  is arbitrary, so the space is homogeneous, and  is arbitrary (except 
that  ), so the space is isotropic about  . 

As an example of a maximally symmetric space, consider an -dimentional 
flat space, with vanishing curvature tensor. We can then choose Cartesian 
coordinates with a constant metric and vanishing affine connection. In this 
coordinate system, equation (4.2.9) reads 

0 
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The solution is  

                              

with   and  constant. This satisfies the Killing vector condition (4.2.5) if 
and only if  

                                   

We can thus choose a set of 1 /2 Killing vectors as follows: 

                  

 

and the general Killing vector is  

                                            

The   vectors  represent translations, whereas the 1 /2 vectors 
 represent infinitesimal rotations (or, for a Minkowski space, Lorentz 

transformations). Thus any flat metric admits 1 /2 independent Killing 
vectors, and is therefore maximally symmetric. 

Of course, not all metrics admit the maximum number of Killing vectors. 
Whether (4.2.9) is soluble for a given set of initial data , ;  depends 
of the integrability of this equation, which in turn depends on the metric. One 
integrability condition we shall use below follows from the general formula 
for commutators of covariant derivatives of tensors : 

                         ; ; ; ; ; ; ; ;  

Equation (4.2.9) will satisfy this condition if and only if  

                    ; ; ; ; ; ;  

or, using (4.2.5), 

; ; ;          4.2.12  

These conditions are of course empty for a flat space, but in general they will 
impose linear relations among the  and ;  at any given point.  
Alternatively, if we know something about the killing vectors admitted by an 
unknown metric, then we can use (4.2.12) to learn something about its 
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curvature tensor. In this way, we shall able in the following sections to deduce 
the form of a maximally symmetric metric from its isometries. 

It should be emphasized that the existence of a definite number of 
independent Killing vectors does not depend on a particular choice of 
coordinate system. If  is a Killing vector of a metric , then by 
performing a coordinate transformation ′  we obtain a metric 

′ ′ ′ ′  

 

and, since (4.2.5) is generally covariant, this obviously has a Killing vector  

′ ′
′

            

If  Killing vectors  are independent, then so are the  Killing vectors 
′ ′  for any linear relation among the ′would imply a linear relation 

among the  . Thus the maximal symmetry of a given space is an inner 
property, not depending on how we choose the coordinate system. In 
particular, it follows that any space with vanishing curvature tensor is 
maximally symmetric; the converse, however, is not true. It is also easy to see 
that the homogeneity or isotropy of a given space is independent of the choice 
of coordinates. As far as these simple symmetries are concerned, we have 
accomplished the task laid out in the introduction to this chapter, that of 
describing symmetries of the metric in a generally covariant language. 

 

4.3 MAXIMALLY SYMMETRIC SPACES: UNIQUENESS  

We know show that the maximally symmetric spaces are uniquely specified 
by a “curvature constant” , and by the numbers of eigenvalues of the metric 
that are positive or negative. That is, given two maximally symmetric metrics 
with the same k and the same numbers of eigen values of each sign, it will 
always be possible to find a coordinate transformation that carries one metric 
into the other.  Armed with this theorem, we shall be able in the next section 
to carry out an exhaustive study of maximally symmetric spaces by simply 
constructing such metrics in one convenient coordinate system. 

We showed in the last section that at any given point  in a maximally 
symmetric space, we can find Killing vectors for which  vanishes and for 

IJSER



CHAPTER 4 

SYMMETRIC SPACES 
 

  
87 

 
   

which ;  is an arbitrary matrix. It follows then that the coefficient of 
;  in Eq.(4.2.12) must have a vanishing anti-symmetric part, that is, 

 
                                  4.3.1  

We also showed that at any given point  in a maximally symmetric space, 
there exist Killing vectors for which  takes any values we like, so (4.2.12) 
and (4.3.1) require that  

                                                                    ; ;                                           4.3.2  

We actually only need to use (4.3.1), because we have shown in the last section 
that a space  is isotropic about every point and hence satisfies (4.3.1) must also 
be homogeneous, and hence must also satisfy (4.3.2). 

Our first step in the proof is to use Eq. (4.3.1) to drive a formula for the 
curvature tensor. Contracting  with  yeilds 

        

(Recall that  vanishes,  is the Ricci tensor , and in  dimensions, 
.) Using the cyclic sum rule 0 and the 

antisymmetry of , we find  

                                       1                                      4.3.3  

But this must be antisymmetric in  and , so 

 

Contracting  with , we find 

 

The Ricci tensor thus takes the form  

                                                       
1

                                                      4.3.4  

Inserting this in (4.3.3) gives our formula for the curvature tensor  

                                     
1

                               4.3.5  
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This formula satisfies (4.3.1), so there is nothing further to be learned from 
that condition. 

In a space that is isotropic about every point, equations (4.3.4) and (4.3.5) will 
hold everywhere, and we can use the Bianchi identities to say something 
about the dependence of the curvature scalar      on position. Using (4.3.4) in 

;
0, we have 

0
1
2 ;

1 1
2 ;

 

                                  ,          0
1 1

2
                                                    4.3.6  

Hence any space of three or more dimensions, in which (4.3.4) holds 
everywhere, will have       . It is convenient to introduce a curvature 
constant  in place of     , with  

                                         1                                                                4.3.7  

Using this in (4.3.4) gives the Ricci tensors and the Riemann-Christoffel tensor 
here as  

                                         1                                                          4.3.8  

                                         Κ                                             4.3.9  

In differential geometry a space with these properties is called a space of 
constant curvature. 

Incidentally, the curvature tensor in two dimensions is always of the form 
(4.3.5), so it is not surprising that in this case (4.3.6) does not allow us to draw 
any conclusions about the constancy of     . However, by using (4.3.2) one can 
show that the quantity  in (4.3.9) is also constant for maximally symmetric 
spaces of dimensionality 2. 

Now suppose that we are given two metrics  and ′ ′ , both having 
the same numbers of positive and negative eigenvalues, and both satisfying 
the condition (4.3.9) for a maximally symmetric space, that is, 

                                            Κ                                      4.3.10  
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with the same curvature constant . We shall show that  and ′ ′  
must be equivalent, in the sense that there is a transformation ′ that 
converts  and ′ ′ , that is, for which 

′ ′
′ ′

 

We shall prove this by actually constructing ′  as a power series in  . 
First, note that the equality in the numbers of positive and negative 
eigenvalues of  and ′  means that we can find a nonsingular matrix      
for which  

                                             ′ 0         0                                               4.3.13  

Thus we can satisfy (4.3.12) to zero order in  with 

                                                  ′
     

Now we proceed by mathematical induction. Suppose that we succeed in 
satisfying (4.3.12) to order 1 in  with a polynomial 

                                  ′
   

1
!    … …                      4.3.14  

We want to add a term of order 1 in  so that (4.3.14) holds to order . 
This condition will be satisfied if the derivatives of (4.3.12) holds in order 

1, that is, if  

′ ′
′ ′

′ ′
′ ′

′ ′ ′ ′ ′
′

                                          

This will be satisfied if (and, in fact, only if) 

′ ′
′ ′

Γ
′ ′ ′

′ ′ Γ′ ′            

This only needs to hold in order 1 in , so we can use (4.3.12), which was 
assumed to hold to this order, to convert it into an equivalent requirement 
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′ ′

Γ
′ ′

Γ′ ′                               4.3.15  

We can use (4.3.14), which is correct to order , to calculate the term on the 
right-hand side of order . Let us write the result as  

′

Γ
′ ′

Γ′ ′
 

1
1 ! … …                                               4.3.16  

the coefficients … depending in a complicated way on the functions  
and ′ ′  and on the previously determined coefficients … .Then 
(4.3.15) will be satisfied in order 1 if we add to (4.3.14) a term 

                             ′
  ! … …            4.3.17    

 that the coefficient … is totally symmetric in all its lower 
indices. These coefficients are obviously symmetric under interchange of  
and  or among the  indices, so the only condition that needs to be satisfied 
is that they are symmetric between  and any , or equivalently, that the 
derivative of (4.3.16) with respect to  should be symmetric between  and : 

′

Γ
′ ′

Γ′ ′

′

Γ
′ ′

Γ′ ′               4.3.18  

Since (4.3.12) is assumed to hold to order , its derivative, Eq. (4.3.15), will 
hold to order , so we can use (4.3.12) and (4.3.15) to rewrite (4.3.18) as the 
equivalent requirement 

                 
′

    

′ ′ ′

    
′                      4.3.19  

Now for the first time we use equations (4.3.10) and (4.3.11), which allow 
(4.3.19) to be replaced with the equivalent requirement 

′ ′ ′ ′ ′
′ ′

′ ′
′ ′  

                                                                                                       4.3.20  
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This condition is satisfied, because (4.3.12) was assumed to hold to order 

. To recapitulate, this implies that (4.3.19) holds in order , which 
implies that (4.3.18)holds in order , which implies that the coefficients 

… are totally symmetric in their lower indices, which implies that 
(4.3.17) satisfies (4.3.15), which implies that by adding (4.3.17) to (4.3.14) we 
can satisfy (4.3.12) to order . Thus, if (4.3.12) can be satisfied to order   
by a polynomial ′  of order , it can be satisfied to order   by a 
polynomial  ′  of order 1, and therefore a function ′  satisfying 
(4.3.12) exactly can be built up as a power series, as was to be proven.             

 

4.4 MAXIMALLY SYMMETRIC SPACES: CONSTRUCTION  

Maximally symmetric spaces are essentially unique, so we can learn all about 
them by constructing examples with arbitrary curvature  in any way we like. 

This is one rather obvious way to carry out this construction. (See Figure 4.1) 
Consider a flat 1 -dimensional space, with metric given by 

                                                    4.4.1  

where  is a constant  matrix and  is some constant. We can embed a 
non-Euclidean -dimensional space in this larger space by restricting the 
variables  and  to the surface of a sphere (or pseudosphere) : 

                                         1                                                            4.4.2   

On this surface,  is given by 

 

1
 

and therefore (4.4.1) gives 

                                      
1

                       4.4.3  
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                                                                                               zz        

                                                                                                                                        

 

 

 

       

 

Fig: 4.1 Representation of points on a sphere by projection onto the equatorial plane. 
Note that two points on a sphere correspond to each projected point with given 
coordinates .                                                                        

 

The metric is then 

                             
1

                          4.4.4  

A flat space appears here as the special case 0. 

This construction makes it obvious that (4.4.4) admits an 1 2⁄  
parameter group of isometries, for both the 1 -dimensional line element 
(4.4.1) and the “embedding” condition (4.4.2) are manifestly invariant under 
rigid “rotations” of the 1 -dimensional space, that is, under the 
transformations 

                                           ′                                                       4.4.5  

                                          ′                                                           4.4.6  

where the      are constant, with  

| | 1 

0 

| | 1 

0 

z 

Boston

San Carlos  

de Bariloche 

x
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                                                                                        4.4.7  

                                                  0                                           4.4.8  

                                                                                       4.4.9  

It is convenient to distinguish two classes of simple transformations satisfying 
4.4.7 4.4.9  

(A)              0          1                                                4.4.10  

where   is any  matrix with 

                                                                                                            4.4.11  

These are just rigid “rotations” about the origin: 

                                               ′                                                                      4.4.12  

(B)                1 –                          4.4.13  

                                                                                           4.4.14  

where  is arbitrary except that      must be real, that is, 

                                             1                                                                4.4.15  

and  

                                    
1 1 –

⁄

                                               4.4.16  

These are “quasitranslations” with 

                           ′ 1 –
⁄

                4.4.17  

In particular, these transformations take the origin 0 into  . 

This existence of isometries (4.4.7) that take the origin into any point (at least 
within a finite region) means that this space is homogeneous; any point is 
geometrically like any other point. (Our coordinate system hides this 
property, just as a polar projection map of the earth hides the fact that the 
curvature of the earth is about the same in Massachusetts as at the North 
Pole.) also, the existence of isometries (4.4.10) that include all rigid “rotations” 
about the origin means that this space is  about the origin. Since the 
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metric is homogeneous, and isotropic about the origin, it is isotropic about 
every point, and maximally symmetric. 

 We can construct the Killing vectors for this metric by letting the finite 
transformations (4.3.5), (4.3.6) approach the unit transformation. First, 
consider the transformations (A), and let 

Ω , | | 1 

                                                  Ω Ω 0                                                   4.4.18  

Comparing with (4.2.3), the corresponding Killing vectors are  

                                                       Ω Ω                                                          4.4.19  

Next, consider the transformations (B), and let 

,   | | 1 

Comparing with (4.2.3), the corresponding Killing vectors are  

                                         1 –
⁄
                                         4.4.20  

There are 1 /2 independent parameters Ω     [that is,  elements Ω    , 
subject to the 1 /2 conditions (4.4.18) and   parameters , so this 
metric admits 1 /2 independent Killing vectors, verifying maximal 
symmetry. 

The geodesics of this metrics take a remarkably simple form. From (4.4.4) we 
can readily calculate that the affine connection is  

                                                                 Γ                                                 4.4.21  

so the differential equation for a geodesic is  

                                                0                                                          4.4.22  

The solutions are thus linear combinations of √  and √  for , or 
of √   and √   for  . 

We can uncover the inner properties of this space by calculating the curvature 
tensor; a straightforward computation gives the Riemann-Christoffel tensor 
for the metric (4.4.4) as  
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1  

(where ), or 

 

in agreement with Eq. (4.3.9). 

 Hence the constant  introduced in Eqs (4.4.1) and (4.4.2) is the same as the 
curvature constant introduced in the last section. 

Since  is an invariant parameter, we cannot by a coordinate transformation 
convert the metric (4.4.4) into a similar metric with a different   . 

 In contrast, Eq. (4.4.3) makes it obvious that by a linear transformation 

′  

we can convert the metric (4.4.4) into a similar metric with the same  and 
with  changed into 

′  

In this way  can be changed into any real symmetric matrix we like, as long 
as we do not change the numbers of its positive and negative eigenvalues. 
Also, the numbers of eigenvalues of each sign of the matrix  are the same as 
for the matrix  at the point 0, and hence the same everywhere, since all 
points are equivalent. 

An -dimensional metric that allows the introduction of locally Euclidean (as 
opposed, say, to Minkowskian) coordinate systems will have all its 
eigenvalues positive, so for 0 we can take  as | |  times the unit 
matrix, in which case (4.4.3) becomes 

                                   
.

1
          0                     4.4.23  

or,  

                        | |
.

1
          0                              4.4.24  
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For 0, we take  as just the unit matrix, and (4.4.3) gives  

                                                for  0                                                     4.4.25       

(We are using an obvious -dimensional vector notation. Also, we have 
replaced  with a proper length , because for the moment we are doing 
geometry rather than physics.) Let us explore the global properties of these 
space. 

For 0, our most convenient approach is to go back to the interpretation of 
(4.4.23) as the metric of the curved space embedded by Eq.(4.4.2) in the flat 
space (4.4.1); that is, (4.4.23) describes the surface 

                                   
                                                         1                                                             4.4.26  

in the flat space with 

                                                                                              4.4.27  

Obviously this metric simply describes the surface of a sphere of radius /  
in an 1 -dimensional Euclidean space. (To make the coordinates  and  
truly Euclidean, we should define ′ /  and ′ / , in which case 
(4.4.26) reads ′ ′ .) Indeed, in two dimensions we can introduce 
angular coordinates ,  by: 

       

and (4.4.27) then becomes the familiar line element on a sphere of radius /  
: 

                   
                                                                                    4.4.28  

 

In general, the range of the variables  is  

                                                                               1 

However, each  actually corresponds to  point, corresponding to the two 
roots of Eq. (4.4.26) for . (For instance, in two dimensions the components of 

 are the coordinates of points on a sphere projected on a tangent plane; in a 
polar projection map of the earth, Boston will appear at the same point as San 
Carlos de Bariloche, Argentina.) The volume of the -dimensional space 
described by (4.4.23) is therefore 
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2 … 2 ⁄ …
1 ⁄  

A straightforward calculation gives  

2 ⁄

Γ 1 2⁄
⁄  

For instance, 2 , which is just the perimeter of a circle of radius /  
and 4 , which is just the area of a sphere with radius / . A three-
dimensional space of constant positive curvature has the volume  

                                                         2 /  

We can also calculate the circumference of such spaces, using for the geodesics 
the solutions of Eq. (4.4.22), which now reads 

                                                 0                                                              4.4.30  

The solutions that pass through the point 0 are 

                                                /                                                           4.4.31  

where, in order to satisfy (4.4.23), 

                                                         
                                                           1                                                                     4.4.32  

As we go out along a geodesic from the “North pole” 0, we reach the 
“Equator”  at / /2, we reach the “South pole” 0 at 

/ , we reach the opposite point  of the “equator” at 3 / /2, 
and we return to our starting point at 2 / .  

Thus the distance from any point around the whole space and back to itself 
along a geodesic is  

                                                
                                                    2 /                                                                 4.4.33   

for spaces of constant positive curvature and arbitrary dimensionally. This 
calculation shows very clearly that the space described by (4.4.23) is finite, but 
it is not bounded; when we come to the apparent singularity at 1, we 
continue right through, but with  given by the root of Eq. (4.4.26) of opposite 
sign. 
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For 0 the metric (4.4.24) does not even have an apparent singularity, and 
there is nothing to restrict the coordinates x to any finite range. This can be 
seen even more definitely by calculating the geodesics, which are now given 
by Eqs. (4.4.30) and (4.4.24) as  

                                        ⁄                                                   4.4.34  

                                     1                                                                                  4.4.35  

We can obviously go out along this geodesic an unlimited distance from the 
origin. For 2, this space is just that discovered by Gauss, Bolyai, and 
Lobachevski. In order to put the metric in the form of Klein’s model, it is 
necessary to introduce a new set of coordinates ′ , defined by ′

1 / .] We see from (4.4.1) and (4.4.2) that this geometry describes the 
surface  

                                              1                                                            4.4.36      

in a flat space, with  

                                                                                     4.4.37   

The minus sign in (4.4.7) means that this flat space is not Euclidean. It is 
therefore understandable that the Gauss-Bolyai-Lobachevski geometry could 
not be discovered until geometers had learned to think of curved surfaces, not 
as sub-spaces of an ordinary Euclidean space, but as space characterized by 
their own inner metric relations. 

Finally, let us return to space-time, and consider the structure of a four-
dimensional maximally symmetric metric with three positive and one 
negative eigenvalue. In this case, we can set 

                                                               
                                                                                                                      4.4.38  

and the metric is  

                
.

1
                                   4.4.39  

For 0, we can introduce coordinates in which the metric appears  
flat, by setting 

1

√

′

2
⁄ ′ 1

′

2
⁄ ′  
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                                         ′ ⁄ ′                                                                 4.4.40  

Then (4.4.39) becomes 

                                      ′ 2 ⁄ ′   ′                                         4.4.41  

We can also introduce coordinates in which the metric appears time-
independent, by setting 

′′ ′ 1
2 ⁄ 1 ′ 2 ⁄ ′  

                                   ′′ ′ 2 ⁄ ′                                                               4.4.42  

  Then (4.4.41) becomes  

                                 1 ′′ ′
′ ′′

′′. ′′
1 ′′                 4.4.43  

This metric was first discussed in this form by de-Sitter. 

Once again, it should be stressed that the maximally symmetric metric (4.4.4), 
although derived by an apparently arbitrary procedure, actually represents 
the most general possible maximally symmetric metric, because the 
uniqueness theorem of the last section tells us that any other maximally 
symmetric metric can be converted into the form (4.4.4) by a suitable 
coordinate transformation. 

 

4.5 TENSOR IN A MAXIMALLY SYMMETRIC SPACE  

The assumption of maximal symmetry can be applied, not only to the metric 
of a space, but to any tensor fields that inhabit the space. a tensor field .  .  . is 
said to be form invariant under a transformation ′if ′

.  .  .
′  is the 

same function of its argument ′  as .  .  .  was of its argument , that is, 

                   ′
.  .  . .  .  .                                                                     4.5.1  

At any given point, the transformed tensor is given by the usual formula 

.  .  .

′ ′

… ′
.  .  .

′                                           
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so the form-invariance condition (4.5.1) reads 

                              .  .  .

′ ′

… .  .  .
′                                                 4.5.2  

For an infinitesimal transformation 

′    | | 1  

the condition (4.5.2) becomes, to first order in  

  0 … …                     4.5.3  

(That is, the    of .  .  . with respect to  vanishes)   

A tensor in a maximally symmetric space, which satisfies (4.5.3) for all 
1 /2 independent Killing vectors , will be called maximally form-

invariant. 

For a scalar , Eq. (4.5.3) reads simply  

                                                        0                                               4.5.4  

If the scalar is maximally form-invariant, then , can at any given point be 
choose to have any value we like, and (4.5.4) therefore requires that  be 
constant: 

                                                            0                                                                4.5.5  

For any other maximally form-invariant tensor, it is convenient first to chosen 
a Killing vector  that at a given point  satisfies 

0 

and for which the quantities 

;  

from an arbitrary anti-symmetric matrix. Equation (4.5.3) then reads, at :   

0 ; … …  
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Since ;  is an arbitrary antisymmetric matrix, its coefficient must be 
symmetric in  and : 

                       … … … …                           4.5.6  

Since  was arbitrary, this must hold everywhere. 

 For a maximally form-invariant vector , Eq. (4.5.6) reads 

 

Contracting  with , we find that in  dimensions 

                                   

so, except for the trivial case 1,we must have 

                                                                        0                                                      4.5.7  

For a maximally form-invariant tensor  of second rank, Eq. (4.5.6) reads  

 

Contracting  with  gives  

 

or, lowering the  index, 

                                          1                                                 4.5.8  

Subtracting the same equation with  and  interchanged yields  

2 0 

so as long as 2, the tensor  must be symmetric: 

                                                                                                                     4.5.9  

(In two dimensions,  can have an antisymmetric part proportional to 
/ ). Using (4.5.9) in (4.5.8) gives now for 3 (and for the symmetric 

part of   for 2) 

                                                                                                                4.5.10  

where 
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To determine the dependence of  on the coordinates, we can use (4.5.10) back 
in the form-invariance condition (4.5.3): 

0  

 

But  satisfies the Killing condition (4.2.4), so this becomes  

0  

In a maximally symmetric space we can at any given point  to have any 
value we like, and therefore 

                                                             0                                                             4.5.11  

Thus the only maximally form-invariant tensor of second rank is the metric 
tensor, times a possible constant. 
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SOLUTION AND ITS 
PROPERTIES 

 
 

CHAPTER  

 

“Although we have omitted the singular 
points from the definition of space time, 
we can still recognize the ‘holes’ left 
where they have been cut by the existence 
of incomplete geodesics.” 
 
                                    STEPHEN HAWKING 
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5.1 INTRODUCTION 

The purpose of this chapter is to discuss several useful space-times are exact 
solution of Einstein equations and to review some of other properties. In this 
connection we have accommodated here the symmetry, invariance property 
and conservation laws which Euclid implicitly assumed that metric relations 
are unaffected by transformations or rotations. The gravitational fields do not 
usually have such a high degree of symmetry, but they often admit some 
group of approximate symmetry transformation and when they do, we can 
use this information to help solve the Einstein’s equations or even to do 
without a solution. 

The Einstein’s equations form a highly non-linear system of differential 
equations and due to their complexity, a completely general solution is not 
known. Thus, the known exact solutions usually assume a rather high degree 
of symmetry such as the spherical or axial symmetry, and the existence of 
necessary killing vector fields on the space-time, and to that external represent 
an idealized situation. However, such space-time examples provide a good 
idea of what is possible within the frame work of the general theory of 
relativity. The spherically symmetric and asymptotically flat space-times 
outside the sun and stars and could be used to obtain conclusions relevant for 
the experimental verification of the general theory of relativity. Such solutions 
could also possibly represent the outcome of a complete gravitational collapse 
of a massive star. The other models discussed here also have interesting 
implications, particularly on the issue of the fate of gravitational collapse and 
cosmology. A large number of exact solutions to the Einstein equations are 
known which are obtained under various symmetry conditions and studied 
mostly locally. The examples discussed here aim at either studying certain 
global properties of interest or reviewing results. 

 

5.2 SYMMETRY AND CONSERVATION LAWS 

Spherical symmetry has played an important role in the development of 
general relativity. The exact solution of Einstein field equation which 
provided the decisive experimental verification of the theory, namely the 
Schwarzschild external solution and the Robertson-Walker- Friedman 
cosmological solution, were found under the assumption that space time was 
spherically symmetric if colloquially expressed, it is possible to rotate it 
leaving its metric unchanged. In more precise terms for every rotation R (a 
3 3 rotation matrix) in the rotation group SO, there is an isometry of the 
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space time φ(R) and the isometrics, constitute what is called an action of the 
isometrics corresponds of the composition of the corresponding rotations. 

                                                                                                      5.2.1  

In analytic mechanics, one knows the symmetries of a Lagrangian or 
Hamiltonian result in conservation laws. That is, there is a conserved 
quantity, wherever symmetry exists. These general principles also exists in the 
general theory of relativity and are used to deduce, from the symmetries of 
Schwarzschild space-time, constants of motion for the trajectories of freely 
falling particles in the gravitational field outside a star. The same constants of 
motion are obtained in a differential geometry, where a killing vector is the 
standard tool for the description of symmetry. 

In general the spherical symmetry of a space-time can be defined vigorously 
in terms of the killing vectors; there must be three linearly independent space 
like killing vector fields ,  and  in the space time which satisfy the 
commutator relations, 

, , , , ,     

And their orbits must be closed. Using the properties, one could then again 
derive line element for a spherically symmetric space-time. 
 

 

5.3 THE CENTRALLY SYMMETRIC GRAVITATIONAL FIELD 

Let us consider a gravitational field possessing central symmetry. The central 
symmetry of the field means that the space-time metric, that is, the expression 
for the interval , must be the same for all points located at the same distance 
from the centre. In Euclidean space this distance is equal to the radius vector, 
in a non Euclidean space, such as we have in the presence of a gravitational 
field, there is no quantity which has all the properties of the Euclidean radius 
vector (for example to be equal both to the distance from the centre and to the 
length of the circumference divided by 2 ). Therefore, the choice of a “radius 
vector” is now arbitrary. 
 
Spherical symmetric means that there exists a privileged point called the 
origin, such that the system is invariant under spatial rotations about O. If 
time is fixed and consider a point p at a distance a from O travels a 2-sphere 
centered on O and in produce an axial coordinate  and azimuthally 
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coordinate θ on the sphere. Then the coordinate ranges will cover all points on 
the 2-sphere 0  and . 
 
Then the line element of the 2-sphere is  
 
                                                                                       5.3.1  

 
The line reduces to the form (5.3.1) on a 2-sphere , . 
Spherical symmetry requires that, the line element does not vary when θ and 

 are varied, so that θ and  only occur in the line element in the form 
. 

 
 
 z 
 
 
 P 
 
 a 
 θ 
 
 O 
                                                                                                                     y 
  
 
 
              x 
 
               
                     Fig: 5.1 The standard spherical co-ordinate  and   
 
Now there exists a spatial coordinate system 
 

, , , , , ,  
  
In which the line element has the form of the most general centrally 
symmetric expression for  as 
 
               , , ,

,                                                                                       5.3.2  
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Where , , ,  are certain functions of the radius vector r and the time t, but 
because of the arbitrariness in the choice of a reference system in the general 
theory of relativity. We can still subject the coordinates to any transformation 
which does not destroy the central symmetry of ; this means that we can 
transformation the coordinate to the formulas   ′, ′ , ′, ′  
where ,  are any function of the new coordinate r’, t’. Making use of these 
possibilities, we choose the coordinate r and the time t in such a way that first 
of all the coefficient ,  of ,  in the expression of  vanishes and 
secondly the coefficient ,  becomes equal simply to   . The latter 
condition implies that the radius vector r is defined in such a way that the 
circumference of a circle with centre of the origin of coordinate is equal to 
2 (the element of arc of a circle in the plane  is equal to . It will 
be convenient to write the quantities h and l is exponential form as 

  respectively, where λ and ν are some functions of r and t. Thus we 
obtain the following expression for 
 
                                                     5.3.3  

                                           Where,     , ,    , . 
 
 
 
5.4 SCHWARZSCHILD GEOMETRY 
 
The Schwarzschild solution represents the geometry exterior to a spherically 
symmetric massive body such as a star and has been used extensively to 
verify the predictions of the general theory of relativity experimentally. This is 
the empty exterior solution where the Ricci tensor vanishes and which is 
matched at the boundary to the interior solution inside the body. In 
, , , coordinates, the metric can be given in the form 

                    1
2

1
2

Ω ,                     5.4.1  

Where, Ω . Here the coordinate t is time-like and the other 
three coordinates , ,  are space-like. The radial coordinate r has the 
property that the two-sphere given by . , . has the two-
metric given by 

. 

It follows that the area of any such two-sphere would be 4 .  
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The coordinate r is restricted by the condition 2  because the above 
metric has an apparent singularity at 2 . The coordinate  has the range 
∞ ∞. The solution above is generated by solving the vacuum Einstein 

field equations for a spherically symmetric space-time and the quantity   
appears as the constant of integration. The value of this constant can be 
determined by considering the weak field Newtonian limit of general 
relativity. If  is the Newtonian gravitational potential, then in non-relativistic 
units, 

1
2

1
2

, 

Where,  is the Newtonian constant of gravity, c is the velocity of light, and   
is the point mass at the origin which gives rise to the Newtonian potential . 
This determines the constant of integration  in the Schwarzschild solution as 

. 

Thus, the Schwarzschild solution is interpreted as describing the gravitational 
field of a point particle with mass m (in relativistic units, 1) situated 
at the center. 

Apart from predicting small observable departures from the Newtonian 
gravity, the Schwarzschild solution of Einstein equations is important for the 
theory of black holes as well. Sufficiently massive stars unable to support 
themselves against the pull of self gravity must undergo a complete 
gravitational collapse when they have exhausted their internal nuclear fuel. 
The final fate of a spherically symmetric homogeneous dust collapse must be 
a Schwarzschild configuration which contains a space-time singularity hidden 
within the event horizon. This gives rise to a black hole in the space-time, 
which is a region from which no causal signals can reach a far-away observer. 
This scenario forms the basis of much of the theory and applications of the 
modern black hole physics. 

The Schwarzschild metric is static in the sense that ⁄  is a timelike Killing 
vector which is a gradient. The metric components  here are independent of 
time. Also, there are no mixed terms in equation (5.4.1) involving both space 
and time; hence there is no rotation inherent in the space-time. To make this 
more precise, we discuss here briefly the stationary and static solutions of the 
field equations briefly. A solution will be called stationary if the time does not 
enter explicitly in the metric potentials. In such a case, a coordinate system 
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will exist in which the metric components will be time-independent; that is, if 
 is the timelike coordinate, 

 
0 

Defining a vector , it is seen that the Lie derivative 0 in this 
coordinate system. Since this is a tensor, it follows that this Lie derivative will 
vanish in all coordinate systems and hence  is a killing vector. On the other 
hand, if the space time admits a time-like killing vector field, then it is possible 
to choose a coordinate systems admits a time-like Killing vector field, then it is 
possible to choose a coordinate system adapted to it such that the Lie 
derivative 0 in this frame. Then, the metric is again stationary. Thus, a 
space-time is called stationary if and only if it admits the existence of a time-
like Killing vector field.  

We note that if a space time is stationary, that does not mean that the metric 
components cannot evolve in time. It is just the time does not enter explicitly 
in the solution. However, the stronger requirement of staticity means that 
there is no time evolution of the system, which is time-symmetric about any 
origin of time. In such a case, one would expect that in the coordinate system 
adapted to the time-like Killing vector field, the metric would admit no cross 
terms as well such as  with . The reason is, in such a case under a time 
reversal , the sign of those pieces of  containing the cross terms in 

  will be reversed. However, the staticity assumption means that    must 
remain invariant under time reversal about any origin of time. This implies 
that the cross terms must vanish in the expression for . Thus, a static 
space-time is characterized by the existence of a time-like Killing vector field 
for the space-time, and the additional requirement that in the coordinate 
system adapted to this vector field the metric components are time 
independent and no cross terms appear in the line element  . Such a 
property of the Killing vector field is characterized by its being hypersurface 
orthogonal. (A vector field  is called hypersurface orthogonal if and only if 

0.)Thus, a space time is static if and only if it admits a timelike 
Killing vector field which is hypersurface orthogonal. It is also possible to 
check directly from the form of the metric (5.4.1) that the metric is time 
symmetric under a change  and is also invariant under time 
translations. 

As pointed out above, the Schwarzschild metric (5.4.1) above is the solution of 
the vacuum Einstein equations with the assumption of spherical symmetry on 
the space time. It is clear that the coordinate system , , , provides a frame 
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in which the metric components are time independent. Thus the solution is 
stationary. Further, defining the vector field with the components   

                                             1 2 , 0,0,0 ,⁄  

which can be seen to be hypersurface orthogonal to the family of space-like 
hypersurface  const. thus the solution is seen to be static. We thus have the  
Birkhoff theorem (1923), namely that a spherically symmetric vacuum 
solution of the Einstein equations must be necessarily static. An important 
implication of this theorem is that even when a spherically symmetric star 
undergoes pulsations or changes in shape, while maintaining the spherical 
symmetry, it cannot radiate any disturbances in the exterior such as 
gravitational waves. It is thus shown by the Birkhoff theorem that any 
spherically symmetric solution of Einstein equations with 0  is 
necessarily the Schwarzschild solution. Hence, the Schwarzschild exterior 
solution can be used to describe the outside metric for several situations such 
as a spherically symmetric star which is either static or which undergoes 
radial pulsations , or  a radial spherically symmetric gravitational collapse. 

The spherical symmetry of the Schwarzschild space time  is exhibited by the 
fact that the metric components  and  are functions of  alone and not of 

 and , and as implied by the angular part of the metric. Specifically, the 
isometry group of  contains a subgroup which is isomorphic to the group 

3  and the orbits of this subgroup are two-dimensional spheres (see for 
example, Hawking and Ellis, 1973). These isometries are interpreted as 
rotations and thus the metric remains invariant under rotations in general for 
any spherically symmetric space-time. The parameter  here serves as the 
source of the gravitational field and setting 0 gives the flat Minkowski 
space time. As pointed out above, the comparison with Newtonian theory 
shows that  is to be treated as the gravitational mass of the body producing 
the field as measured from infinity. The space time here is asymptotically flat 
because as  tends to infinity we recover a flat space time metric and the 
gravitational field diminishes to zero. 

Generally, equation (5.4.1) is taken to represent the outside metric for a star 
with  where  gives the boundary of the star. The metric inside  is 
a different interior metric determined by the matter distribution  inside the 
star and is matched at the boundary  with equation (5.4.1).  

However, in the case of a complete gravitational collapse, when all the mass 
collapse at   0, it is necessary to consider the metric (5.4.1) as an empty 
space-time solution for all the values of   . Clearly this metric has singularities 
at 0 and 2  and hence it represents only one of the patches 0
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2  or 2 ∞. If we confine to the manifold  given by the later range of 
values of , it is necessary to determine if  is extendible; that is, if there exists 
a bigger space-time ′, ′  with  embedded in ′and ′ on . That this 
should be possible is indicated by the fact that even through the form of the 
above metric is singular at 2 , the curvature scalars are all well-behaved 
at this point and so this could be merely a singularity due to an inappropriate 
choice of coordinates. A decision on whether a given space-time manifold is 
maximal or not can be made by looking at the geodesics of the space-time. In a 
maximal manifold, one would require all the geodesics to be extended in both 
the directions to an infinite value of their affine parameter, or they must 
terminate at an intrinsic singularity of the space time which is not removable. 

On the other hand, if we take equation (5.4.1) to be describing the patch 
0 2 , then it is seen that as  tends to zero, the curvature scalar  

48
, 

diverges and it follows that the point 0 is a real space time singularity. It 
is not possible to extend the space time across this singularity in a continuous 
manner. Such a maximal extension of the manifold (5.4.1) with 2 ∞ 
was obtained by Kruskal (1960) and Szekeres (1960). We describe this 
procedure below, which uses suitably defined advanced and retarded null 
coordinates. Using the condition for null geodesics, that is,    

0, 

 the radial null geodesics in the Schwarzschild space time (5.4.1) are given by 

                                                 
2

                                                   5.4.2  

Define  as 

                 
1 2 ⁄

2 2⁄ 1                                        5.4.3  

The radial null geodesics above satisfy  

                  .                                                                                         5.4.4  

The null coordinates  and  are now defined by 

                          ,      .                                                                   5.4.5  
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Thus, 2⁄ , which is given in terms of r by equation (6.3.3). Now r 
can be viewed as defined implicitly in terms of  and . Then, using above 
equations, the metric (6.3.1) can be written as 

                           
2 ⁄

⁄ Ω .                           5.4.6  

Now 2  corresponds to ∞ or   ∞. Define new coordinates  and 

 now by 

                                           ⁄ , ⁄ ,                                       5.4.7  

which gives the non-singular part of the metric as 

                                       
32 ⁄

.                                             5.4.8  

There is no singularity now at 0 and 0, which corresponds to the 
value 2 . Now a final transformation of the form 2⁄  and 

2⁄  gives the Schwarzschild metric in the Kruzkal-Szekeres form 

                        
32 ⁄

Ω .                        5.4.9  

The coordinate transformation between the original coordinates , and new 
coordinates ,  is given by 

                                          
2

1 ⁄ ,                                         5.4.10  

                                          4 tanh ⁄ .                                                      5.4.11  

The quantity  in equation (5.4.9) is determined implicity by equation (5.4.10). 
The condition 0 specifies the allowed range of coordinates, which 
is   1. 

The structure of this maximal Schwarzschild manifold is shown in Fig: 5.2, 
which is also called the kruskal extension of the Schwarzschild space time. 
The radial null geodesics are 45  lines in the ,  coordinates 
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Fig 5.2: The Kruskal extension of the Schwarzschild geometry 

 

. 

The physical singularity at 0 corresponds to the values  1 ⁄ , 
and we note that there is no singularity in the metric now at 2 . The 
original Schwarzschild solution for 2  corresponds to the region  here 
which is interpreted as the exterior gravitational field of a collapsing body. 
Region  is asymptotically flat and so is region  ′, which has identical 
properties as region . (Note however, that the Kruskal representation is not 
best suited to study asymptotic properties and it is best to use a conformal 
compactification of the metric (5.4.1) for that purpose.) There is no causal 
communication between regions   and ′; any observer or photon from region 
 either goes away to infinity or crosses the null line  and enters region 
. Once a radially in falling observer is inside region , there is no escape 

from  it and within a finite proper time the observer must fall into the 
singularity and it can never cross into region  .  
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                   Fig 5.3: A conformal picture of the Kruskal geometry 

 

Hence, region  is termed a black hole. A particle emitted by the singularity 
at   1 ⁄  must leave this region within a finite proper time. Each 
point of Fig.5.2 represents a two-sphere in the space time. If a source at a point 
p in the region 2  emits a flash of light, there will be two two-spheres 
formed, one by the outgoing wave front and the other by ingoing wave front. 
The outgoing sphere will have a greater area as compared to the ingoing one. 
However, if the source p lies in the limit 2 , both the outgoing and 
ingoing spheres will have areas less than that of p. Then we say that p is a 
closed trapped surface. Such surfaces play an important role towards 
showing the existence of space-time singularities. Just as in the Minkowski 
case, one could construct a conformal compactification of the above Kruskal 
extension of the Schwarzschild geometry, which is more convenient as far as 
the investigation of asymptotic structure is concerned. Such a conformal 
diagram of Kruskal geometry is given in Fig: 5.3. 
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Whereas the regions  and  of the extended Schwarzschild manifold have a 
clear physical interpretation as discussed above, the physical relevance of 
regions ′ and ′ is not very obvious. Neither is it possible to rule them out 
easily. While points in region ′ are time-reversed closed trapped surfaces, 
region ′ is another asymptotically flat universe on the other side of the 
Schwarzschild ‘throat’. This is clear from considering the spatial geometry of 
the hypersurface 0. The two-spheres . are almost flat Euclidian 
for large values of , but for small , their area decreases to minimum 
corresponding to that of the value 2 , and then it increases again as the 
two spheres expand in the other region of asymptotically flat three-space. 
However, if we consider a complete gravitational collapse of a spherically 
symmetric homogeneous dust cloud, the regions ′ and ′ are no longer 
relevant as they are replaced by the interior metric which is not vacuum 
Schwarzschild,  being non-zero there. The situation is shown in Fig: 5.4(a) 
and a conformal diagram of such a collapse is given in Fig: 5.4(b). 

The uncovered portions of regions  and  represents the vacuum 
Schwarzschild geometry exterior to the collapsing matter. The portion of 
region  indicates that a Schwarzschild black hole is always produced in the 
complete gravitational collapse which fully covers the resulting space time 
singularity of infinite curvature and density. This situation has a great 
significance for the cosmic censorship hypothesis and the black hole 
formation. The interior metric in this case is exactly that of a closed Friedman 
model. 

In the extended Schwarzschild manifold, the surface 2  is a null 
hypersurface and each point there is a two-sphere of area 16 . Note that in 
equation(5.4.1), the component 1 2 ⁄ 0 for 2 , 
however,  0 for 2 . Thus, it is no longer possible to use  as a time 
coordinate as the coordinates  and  reverse their roles and space time is no 
longer static. Thus, 2  surface is called a ‘static limit’ as well. The vector 
⁄  with components 1,0,0,0  gives 

the time translation, leaving the , unchanged as it does not involve the time 
coordinate. Thus, ξ is a Killing vector which leaves the space time geometry 
unchanged. We have  and for the Schwarzschild metric,  
vanishes on 2 . Hence, at the static limit the timelike Killing vector 
becomes null. In the Kruskal diagram also it is seen that  vanishes at 

0 and this leads to the odd labeling of lines  as ‘t ∞’.  

The Schwarzschild geometry provides an illustration of the basic principle 
which Einstein used to formulae his gravitation theory, namely that matter 
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tells the space time in its vicinity how to curve. To see this, consider the 
Schwarzschild solution in a space-like surface  and in the 
equatorial plane 2⁄ . The metric of this two-dimensional curved surface 
is described by the metric 

1 2 ⁄
 

 

                        

                                                                                                                                                                 
Fig 5.4(a) Complete gravitational collapse of a homogenous dust cloud represented in 
the Kruskal picture. The regions ′ and ′ of fig: 5.2 are completely covered by the 
matter now and so is a part of the region   represents the formation of a black hole. The 
points in region   and   of the figure represent two-spheres in the space-time and any 
point, such as p in Fig 5.4(b) within the horizon is a closed trapped surface. (b) A 
Penrose diagram for this collapse scenario. 

 

The geometry of such a curved surface can be visualized as embedded in the 
ordinary Euclidean space. Here, the region 0 is to be considered as 
filled by the matter which represents the spherical star with a boundary at 

, and the curved surface would then represent the geometry outside 
such a star. 
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Consider now a static observer along a Killing direction, for whom the four-
velocities are | |⁄ . Suppose now a static source with four-velocity   
emits a photon with four-momentum (so ; 0 with a suitable 
parametrization) and is observed by a static observer with four-velocity   
(fig:16). Now, take the directional derivative of   along the geodesic 
tangent , 

                                       ; ; ; 0                                5.4.11  

 

The first term vanishes because  is a killing vector and the second term 
vanishes because of the geodesic equation. The ratio of energies measured at 
these two points by static observers is given by 

                                                
⁄

⁄                                                         5.4.12  

 

                                           

Fig 5.5: The static source emits light rays which are received by the static observer  

 

 Using  | |⁄   and  the  implication  of  equation  of  equation  5.4.11   that  
 along the geodesic, we get 
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⁄

⁄                                                     5.4.13  

Since  ,  this  is  the gravitational red‐shift  formula  for a static source and 
observer  in terms of the metric components.  It  is now seen that  if  the observer 
remains at a finite radius but the source approaches  2 , the red‐shift tends 
to  infinity. Thus,  as a particle  falls  into  the black hole approaching  2 ,  the 
light rays emitted by  it are  infinitely red‐shifted as observed by a distant static 
observer in the outside space time. 

As  pointed  above,  the  Schwarzschild  space  time  is  asymptotically  flat.  For  a 
source  situated  outside  2 ,  part  of  the  photon  trajectories  emitted  with 
decreasing r values will enter the black hole and fall into the singularity. All other 
null geodesics will escape to infinity to intersect  . If a source is located below 

2 ,  no  null  geodesic  can  come  out  of  the  black  hole  and  all  end  up  in  the 
singularity  in  future. As  in the case of Minkowski space time, we now work out 
the  light  cone  cuts  of  future  null  infinity  from  an  arbitrary  apex  in  the 
Schwarzschild  region  2   Joshi,  Kozameh  and  Newmann,  1983 .  This 
process  leads  to  obtaining  all  the  null  geodesic  and  the  full  light  cone  from  a 
given point  in  the space  time. Such null  trajectories  in Schwarzschild geometry 
are of  considerable  importance as  they are used  to verify  the general  relativity 
theory  experimentally  by means of  effects  such  as bending of  light  rays near  a 
star, the time delay of light and other such effects. 

The  Schwarzschild  metric  in  , , ,   coordinates,  where 
2 2  is the retarded time, is given as 

             1
2

2                  5.4.14  

As  in  the  case  of  the  Minkowski  space  time,  we  make  necessary  coordinate 
transformations, using stereographic coordinates  ,  and conformally transform 
the metric by Ω √ℓ which gives 

       Ω 4 ℓ 2√2 ℓ 4 ℓ                       5.4.15  

The  new  coordinate  ℓ  is  now  finite  at  infinity  and    is  described  by  the 
hypersurface  ℓ 0,  which  corresponds  to  ∞.  The  Lagrangian  for  the 
geodesic is written as  

                          2 ℓ 2√2 ℓ 2 ℓ
2

,                                      5.4.16  
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where the dot denotes differentiation with respect to an affine parameter s along 
null geodesics. The equations for null geodesics are then given as: 

2 ℓ 2√2 ℓ ℓ 1, 

2 ℓ 3√2 ℓ 0, 

                                                  1 2 0,                                             5.4.17  

1 2 0, 

4 ℓ 2√2 ℓ 4 ℓ 0, 

where the last equation corresponds to  0. Through, in principle, all the null 
geodesics  of  the  space  time  are  obtained  from  equations  5.4.17 ,  we  first 
consider only those in the equatorial plane  2⁄ . From a fixed apex this yields 
an    worth  of  null  geodesics.  Using  these  and  the  spherical  symmetry  of  the 
space  time we  can  generate  all  the  null  geodesics  from  an  arbitrary  apex  by  a 
rigid  rotation.  For  2⁄  we  have  ,  which  gives  0,  that  is  . 
Further  the  equation  for  ,  follows  as  an  identity  from  other  equations. 
Combining the first and the last of the above equations we can then write 

1 ℓ

2 ℓ 2√2 ℓ
 , 

                                                         
ℓ

√
 ,                                                        5.4.18  

ℓ

√
 ,                  

where the cubic A is given by 

2√2 ℓ ℓ 1. 

Before integrating the above, we note that the null rays coming from an arbitrary 
apex are divided into two sets  the two sheets of A , that is, those given initially 
by ℓ 0 and ℓ 0. For the first set, the geodesics continue with a decreasing ℓ 
increasing  r   until  intersection with  .  For  the  rays which  begin with  ℓ 0 
that  is,  those  rays  with  initially  increasing  ℓ  decreasing  r ,  some  reach  a 
maximum ℓ  when  0  and then begin to move outwards, and eventually also 
intersect  . We shall not be concerned with the later rays. 
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For  a  fixed  apex  say  at  ℓ ℓ 1 3√2⁄ ,  the  null  rays,  on  each  sheet,  are 
characterized  by  the  value  of  the  impact  parameter  b.  For  the  first  sheet,  the 
range  of  b  is  from  0  to  a  maximum  ,  where  the    is  determined  by 

2√2 ℓ ℓ 1 0,  which  yields  the  value  for  .  For  the  second 
sheet  ℓ 0 ,  the  range  is  again  from  some    to  0,  but  now  there  is  a 
critical  value    such  that  for  all    the  rays  continue past  the  horizon.  To 
determine  , we want  the  smallest  b  so  that  A  has  a  real  positive  root  ℓ .  By 
plotting  A  against  ℓ  it  is  easily  calculated  that  ℓ   is  a  double  root  and  ℓ
1 3√2⁄   with  3√6 .  Thus,  on  the  second  sheet,  the  range  for  b  is 

.  Note  that  a  ray  beginning  at  ℓ ℓ   with    approaches 
asymptotically the well‐known  unstable  orbit ℓ ℓ . 

We  can now  integrate  equations  5.4.18   from a  fixed  apex  to  the  value  ℓ 0, 
which represents the future null infinity, and this gives part of the light cone cut 
at the infinity. Using that and the spherical symmetry of the space time gives the 
full light cone of the future null infinity. 

 
 
5.5 SPHERICALLY SYMMETRIC COLLAPSE 
 
In  order  to  understand  the  possible  final  fate  of  a  massive  gravitationally 
collapsing  star,  we  consider  here  the  spherically  symmetric  collapse  situation. 
Such symmetry represents a high degree of idealization of the physical situation 
but  the  advantage  is  that  one  can  solve  it  analytically  to  get  exact  result when 
matter is taken in the form of a homogeneous dust cloud. It is also possible that 
many salient features of the situation, including notion of a black hole. In fact, the 
basic motivation  for  the  idea and  theory of black holes  comes  from  the  case of 
homogeneous  dust  cloud  collapse.  Independently  of  the  interior  solution,  the 
metric exterior  to  such a  spherical body must be  the Schwarzschild  space  time 
and  no  gravitational  radiation  will  be  present,  which  follows  form Birkhoff’s 
theorem  is  that  the  only  vacuum,  spherically  symmetric  gravity  field  must  be 
static.  That  the  Schwarzschild  geometry  is  relevant  to  gravitational  collapse 
follows from Birkhoff’s 1923 10  theorem: Let the geometry of a given region of 
space time  1  be spherically symmetric and  2  be a solution to the Einstein field 
equation  in  vacuum,  then  that  geometry  is  necessarily  a  piece  of  the 
Schwarzschild geometry. The external  field of any electrically neutral,  spherical 
star  satisfies  the  conditions  of  Birkhoff’s  theorem,  whether  the  star  is  static, 
vibrating  or  collapsing.  Therefore  the  external  field  must  be  a  piece  of  the 
Schwarzschild geometry. 

In order to consider spherically symmetric space time, if any point at a distance a 
from the origin O. The system must be  invariant under rotation around O. Such 
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rotation  will  generates  a  two  sphere  Fig:  5.1   around  O,  the  line  element  on 
which must be given by 

                                                                                       5.5.1  

This is the line element for a two sphere given by  ,  in 
a  general  spherically  symmetric  space  time.  Further  as  the  metric  must  be 
invariant  under  the  reflection    and    ,  there  must  not  be  any 
cross terms in the metric   and  . As the  line element must not change with 
any change  in θ and  ,  the must occur  in  the metric only  in  the  form of metric 
given above. Then in the  , , , coordinate system, the metric has the form 

            2                           5.5.2  

Here  the quantities A, B,  C  and D are  the  function of  r  and  t  to be determined. 
Introducing now a new radial coordinate by the transformation,  ⁄  

Then  5.5.2  becomes,              

, 2 , ,  

                                                                                                                                           5.5.3  

Consider the differential,          

, ,  

Now, we define a new time coordinates   by requiring that, 

, , ,  

Where  , is a suitable integrating factor. 

Squaring, we get, 

           , , 2 , , ,  

     , 2 , , ,                      

  , 2 , ,                        

The line element  5.5.3  reduces to, 

, , ,  

Hence, 

                                                    5.5.4  
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Where,  we  have  dropped  the  primes.  Here  , and  , and  the 

quantities    and    appearing  in  the  metric  are  always 
positive. 

However,  equation  5.5.4   is  the  spherically  symmetric  gravitational  field  of  a 
space time which can also be derived in terms of the killing vectors. 

Consider  now  a  spherically  symmetric  massive  star,  collapsing  gravitationally 
when it was exhausted its internal nuclear fuel. We need to consider the interior 
solution for such a star. 

 Of course there is no unique interior solution available which basically depends 
on the properties of matter, the equation of state obeyed by the matter, and the 
physical  processes  taking  place  within  the  stellar  interior.  However,  assuming 
the matter to be pressure less dust  . . 0  allows one to solve the problem 
analytically, which provides many important insights. 

In this case, the energy momentum tensor is given by   and one needs 
to solve the Einstein equations for the spherically symmetric form of the metric 
given  above.  Solving  the  Einstein  equation  determines  the  metric  potentials 
completely and the interior geometry of the star which is collapsing dust ball, is 
described  by  the  same  line  element  as  that  of  the  closed  homogeneous  and 
isotropic. Friedman models given by 

1
Ω , , 1  

Where  Ω  represent the metric on a two sphere. The geometry outside the star 
is  vacuum  and  is  of  necessity  the  Schwarzschild  space  time  as  implied  by  the 
Birkhoff’s theorem. It  is possible to show that the interior geometry of the dust 
cloud  matches  correctly  at  the  boundary  of  the  star    with  exterior 
Schwarzschild space time. 

When the collapse is complete, the space time settles to a vacuum Schwarzschild 
geometry  for the range of coordinate 0 ∞  with coordinate singularity at 

2 , when can be removed by going to the Kruskal expansion . Here M can be 
identified with the total mass of the star. 
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5.6 SPHERICALLY SYMMETRIC SCHWARZSCHILD SOLUTION 

Now we would like to solve Einstein’s vacuum field equation under the spherical 
symmetry  assumption.  According  to  Birkhoff’s  theorem,  this  solution  is  the 
famous Schwarzschild solution which was  found  in 1916. The  line element will 
be the form,  

                                                                                                         5.6.1  

Here the coordinates are, 

1,0,0,0 , , ,  

Comparing  5.6.1  with  5.5.4  we get the covariant metric as, 

                                              , , ,                          5.6.2  

Also, the contravariant form of  5.6.1  is, 

                                   , , ,                        5.6.3  

Now the christoffel symbols of second kind can be calculated from the equation 

                                           Γ
1
2 , , ,                               5.6.4  

The above equation can be reduced only for the diagonal components of   as 
follows 

                                         Γ
1
2 , , ,                                   5.6.5  

Thus the non vanishing components of Christoffel symbols of second kind can be 
calculated from the equation  5.6.5  as follows: 

Γ
1
2 , , ,  

1
2

        

1
2

          

                                         Γ
1
2

                                                            5.6.5  

         Γ
1
2 , , ,            
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1
2

           

                                            Γ
1
2

                                                                        5.6.5  

Γ
1
2 , , ,  

1
2

       

                                           Γ                                                                      5.6.5  

Γ
1
2 , , ,    

   
1
2

 

                                           Γ                                                            5.6.5  

Γ
1
2 , , ,    

  
1
2

                       

                                         Γ
1
2

                                                                          5.6.5  

Γ
1
2 , , ,       

1
2

1
             

                                          Γ
1
                                                                              5.6.5  

Γ
1
2 , , ,    

           
1
2

1
   

                                           Γ
1
                                                                              5.6.5  
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Γ
1
2 , , ,    

   
1
2

1
 

                                          Γ                                                             5.6.5  

Γ
1
2 , , ,    

          
1
2

1
 

                                           Γ                                                                         5.6.5   

Now, from Ricci tensor, we have, 

          Γ Γ Γ Γ Γ Γ                       5.6.7  

Substituting  0,1,2,3 in equation  5.6.7  respectively we obtain, 

Γ Γ Γ Γ Γ Γ                                                           

        Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ  

2Γ Γ Γ Γ Γ Γ Γ                                           

1
2

1
2

1
2

1 1 1
2

                               

           
1
2

1
2

1
2

2 1
2

1
2

 

1
2

1
2

1
2

2
            

1
2

1
2

1
2

2
                                  5.6.8   

  Γ Γ Γ Γ Γ Γ                                                       
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  Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ

Γ Γ Γ Γ Γ                      

Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ

Γ Γ Γ                              

1
2

1
2

1 1 1
2

1
2

1
2

1 1

1
2

1 1
 

   
1
2

1
4

1
4

1
                                                         5.6.9  

Applying the same process we will get, 

  1
1
2

1
2

1                                                                5.6.10  

  1
1
2

1
2

1                          5.6.11  

Further, for the above line element all the off diagonal of  are identically zero. 
Now  we  will  consider  the  Einstein  vacuum  field  equation  for  empty  space, 

0 and to determine the unknown function ν and λ of the equation  5.5.4 , 
we can write 

     
1
2

1
2

1
2

2
0                         5.6.12  

     
1
2

1
4

1
4

1
0                                             5.6.12  

   1
1
2

1
2

1 0                                                       5.6.12  

  1
1
2

1
2

1 0                 5.6.12  

Thus , there are only there independent equation to solve, namely, 

          
1
2

1
2

1
2

2
0                               5.6.13  
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1
2

1
4

1
4

1
0                                                   5.6.14  

               1
1
2

1
2

1 0                                                          5.6.15  

Dividing  equation  5.6.13   by    and  then  substituting  5.6.14   from  the 
resulting equation, we get, 

1
2

1
2

0       

      0                    

Thus, integrating we get, 

                  

Where, A is a constant of integration which may be set equal to zero without any 
loss of generality, since at  ∞,  0and ν 0 hence, 

                                                                                                                         5.6.16  

Substituting this in equation  5.6.15  we get, 

1
1
2

1
2

1 

1 1                               

1                                         

Therefore, integrating we get, 

                                      

Where,  b  is  another  constant  of  integration, which has been  chosen  as  2 
Min  order  to  facilitate  the  physical  interpretation  of  M  as  the  mass  of  the 
gravitating particle. That is  

                                             1
2

                                                  5.6.17  

Hence  the  most  general  static,  spherically  symmetric  and  asymptotically  flat 
solution of  the vacuum field equation, which  is  the most  famous Schwarzschild 
solution, is given by 
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                    1
2

1
2

Ω                         5.6.18  

Where,             Ω                

Thus, we can arrive at the conclusion that when the space time surrounding any 
object has spherical symmetry and is free of charge, mass and all field other than 
gravity,  then  one  can  introduce  coordinates  in  which  the  metric  is  that  of 
Schwarzschild. Conclusion restated in coordinate free language: the geometry of 
any spherical symmetric vacuum region of space time is a piece of the 
Schwarzschild geometry Birkhoff’s theorem . 

 

5.7 PROPERTIES OF SCHWARZSCHILD METRIC 

Consider a test particle moving in the Schwarzschild geometry, described by the 
line  element  5.6.18 .  This  expression  for  the  geometry  applies  outside  any 
spherically  symmetric  center  of  attraction  of  total mass  energy M.  It makes no 
difference,  for  the motion  of  the  particle  outside, what  the  geometry  is  inside, 
because  the particle never gets  there, before  it  can collides,  it  collides with  the 
surface of the star if the center of attraction is a star that is to say, a fluid mass in 
hydrostatic  equilibrium.  At  each  point  throughout  such  an  equilibrium 
configuration,  the  Schwarzschild  equilibrium  exceeds  the  local  value  of  the 
quantity 2m r . 

Therefore  the  Schwarzschild  coordinate  R  of  the  surface  exceeds  2M. 
Consequently,  the  above metric  applies  that  one need not  face  the  issue of  the 
singularity  2 . The ideal limit is not a star in hydrostatic equilibrium. It is a 
star that has undergone complete gravitational collapse to a black hole.  

1   In  equation  5.6.18   the  coordinate  t  is  time  like  and  the  other  three 
coordinates  , ,   are  space  like. The  radial  coordinate  r has  the property  that 
the two spheres given by  ,  has the metric given by  

 
      It follows that the area of any such two spheres would be 4 . 

2   The  coordinate  r  is  restricted  by  the  condition  2   because  the  above 
metric  has  an  apparent  singularity  at  2 .  The  coordinate  t  has  the  range 
∞ ∞. The solution above  is generated by solving the vacuum Einstein 

field equation for a spherically symmetric space time and the quantity M appears 
as  the  constant  of  integration. The  value of  the  constant  can be determined by 
considering the weak field Newtonian limit of general relativity. If a point mass M 
situation at the origin O in Newtonian theory gives rises to a potential 

 
, 

where G is the Newtonian constant gravity, then in non relativistic units 
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                                         1
2

1
2

                                     5.7.1  

Where, c  is velocity of  light. This determines the constant of          integration m is 
the  Schwarzschild  solution  as  ⁄ .Thus  the  solution  is  interpreted  as 
describing  the gravitational  field of a point particle with mass m.  In  relativistic 
units,  1 in which case m is measured in centimeters. So it is sometimes 
known as the geometric mass.     

 

  z 

 

 

 

  y 

 

 

  x 

 

              Fig: 5.6 A pulsating spherical star cannot emit gravitational waves 

 

The Schwarzschild metric is static in the sense that the metric components  are 
independent of  the  time. That  is  , 0. Further,  there are no mixed  terms  in 
equation  5.6.18   between  time  and  space.  That  is,  0  1,2,3 .  This 
absence  of  terms  like  0   indicates  the  source  is  not  rotating 
and therefore there is no rotation inherent to the space time either. Space time’s 
which  exhibit  these  two  properties  are  called  ‘static’.  Again  the  solution  is 
stationary, since  ⁄ 0. If a space time is stationary that does not involve in 
time. It is just that the time does not enter explicitly in the solution and there is 
no  time  evolution  of  the  system,  which  is  time  symmetric  about  any  origin  of 
time.  Time  symmetric  means  that  it  is  invariant  under  the  time  reflection 

. 

Now we thus have proved some unexpected result by using a rigorous theorem 
known  as  the  Birkhoff’s  theorem  1923 ,  which  states  that  any  spherically 
symmetric vacuum solution of Einstein equation is necessarily the Schwarzschild 
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solution  that  is  static. This  implies  that  if a  spherically  symmetric  source  like a 
star  undergoes pulsation  or  changes  its  shape, while maintaining  the  spherical 
symmetry,  it  cannot  radiate  any  disturbances  in  the  exterior  such  as 
Schwarzschild  exterior  solution  can  be  used  to  describe  the  outside metric  for 
several  situation  such  as  spherically  symmetric  star  which  is  either  static  or 
which undergoes radial spherically symmetric gravitational collapse 

a  The parameter m serves as  the source of  the gravitational  field and    0 
gives the flat Minkowskian space time. As pointed out above the comparison with 
Newtonian theory shows that m is to be treated as the gravitational mass of the 
body producing the field as measured from infinity. 

b  Again as  ∞, the metric becomes that of flat space time. That is 

 
 

This is asymptotic flatness. As we go further from the isolated source mass M, the 
gravitational field progressively diminishes to zero. 

The  equation  5.5.18   is  taken  to  represent  the  outside metric  for  a  star  with 
,  for  some  2 ,  where  a  gives  the  boundary  of  the  star.  The  metric 

inside   is a different interior metric determined by the matter distribution 
 inside the star and is matches at the boundary   with equation  6.6.18 . 

However in the case of a complete collapse, when all the mass collapses at  0, 
it necessary to consider the metric  5.5.18  as an empty space time solution for 
all the value of r. This has been found to be a true singularity. On the other hand, 
at  2 ,   becomes  zero  and    becomes  infinity.  Once  upon  a  time  this 
surface  had  been  dubbed  the  Schwarzschild  singularity.  It  was  not  taken 
seriously  because  the  numerical  value  of  2M  is  quite  small  for  any  ordinary 
matter distribution and the surface lies within the matter, for instant, 2M is about 
a mere 3 km in the case of the sun. Within the matter distribution the matter is 
not the one given by equation  5.5.18  and  2  has no special significance. As 
the  star  collapse  unchecked,  2   surface  is  exposed  and  the  mass  finally 
reaches the singularity  0 being progressively complicated in the process. No 
one can know the ultimate fate of the collapse matter, although quantum effects 
are  expected  to  prevent  the  formation  of  the  singularity.  For  our  purpose 
however  the  important event  is  the collapse  through  the surface  2  which 
can no longer be ignored as was done previously. The pathology exhibited by the 
metric  components  on  this  surface  is  only  a  coordinate  effect  similar  to  what 
happens in the case of polar coordinate poles coordinates can be found in terms 
of which no undesirable features are displayed at this surface. Such coordinates 
were discovered by Kruskal and Szekers . 
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On the other hand, strikingly interesting properties are exhibited by this surface 
and  it  is  identified with  the  static or  the non‐rotating black hole. We shall now 
consider  three  basic  properties  of  the  Schwarzschild  or  the  static  or  the  no 
rotating  black hole. 

Consider  the  metric  component  1 2 ⁄ .  For  2 , 0  and 
correspondingly  t  is  a  legitimate  time  coordinate. But  for  2 , 0  and 
therefore  t can no  longer measure  time.  In  this region a new time coordinate a 
mixture of t and r will have to be defined. Because of this the surface  2  is 
called the static limit. A related consequences is as follows, outside the static limit 
we  can  defined  static  particles  with  , ,   with  only  time  t 
changing.  This  is  possible  only  up  to  the  static  limit  within  which  t  loses  its 
character  of  being  time.  Objects  will  have  both  t  and  r  coordinates  changing 
within the static limit that is they have necessary to be in a static of full. We shall 
make  these  statements  a  little more  precise  and  coordinate  in  independent  as 
follows: 

Consider the vector field  1,0,0,0   defined at every point. This defines 
translation  along  time  t  which  leaves  the  metric  unchanged,  since  it  is 
independent of  t. Therefore,    is a vector defined a direction of symmetry,  the 
motion along which  leaves  the space  time geometry unaltered. Such a vector  is 
called a killing vector. Consider then the four dimensional square   of  , which 
is  a  scalar  and  therefore  coordinate  independent  but  coincides with    in  the 
Schwarzschild coordinates, that is 

                                                                                         5.7.2  

We can speak of   without reference to any coordinate system, it is convenient 
to refer to the Schwarzschild coordinates, to exact species information. We note 

 
0;     , 2 ; 0
0;     , 2 ; 0
0;     , 2 ; 0

  

 

Thus the static limit is the surface on which the time like killing vector becomes 
null. For  2 , we can define static particles  source, observer and so on  with 
four velocities following the killing direction 

 

           ⁄

1
2
1,0,0,0 ;   1            5.7.3  

 

This is not possible on or within the static limit  0 . 
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The  above  discussion  shows  that  the  Schwarzschild  black  hole  2   is  the 
static limit on which the killing vector, which is asymptotically  ∞  time like, 
becomes null. 

1  Infinite red shift surface 

Suppose we consider in any space time an observer with a four velocity  . Let 
him encounter a particle moving with four momentum  . The the energy of the 
particle as measured by the observer is given by 

                                                                                                        5.7.4  

For  instance,  in  flat  space  time  a  static  observer  has  1,0,0,0   and 
,   the  above  statement  is  true,  the  energy measured  depends  on  the 

state of motion of the observer as given by   and change according to equation 
5.7.4 . This  formula  is  true  in  the  local elemental  flat  space  time and hence  in 
any coordinate system of an arbitrary space time since it is a scalar equation. 

Now  let  us  specialize  to  the  static  observers  and  sources  following  the  killing 
vector direction for whom 

 

As we have seen. Let us assume that is the four momentum of a geodesic so that 
with proper parameterization 

                                                        0                                                                5.7.5  

We  have  seen  that  defines  the  symmetry  of  space  time. Whenever  we  have  a 
symmetry there is a conserved quantity. 

In  mechanics  corresponding  to  an  ignorable  coordinates  ,  the  conjugate 
momentum is a constant. A similar situation exists here. Along the geodesic, the 
scalar  . Now we will consider the killing equations satisfied by 
. These equations are  

                                                                  ; ; 0                                              5.7.6  

Taking the directional derivatives of   along the geodesic tangent 
  is  emitted at a point 1 by a  four velocity    and  is observer at point 2 by a 

static observer with four velocity  . Then the ratio of the energies measured at 
these two points  by static observer  is 
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                                                           5.7.8  

Since  , identifying  , we get, 

                                                             
1 2

1 2
                                              5.7.9  

Where  o  and  s  stand  for  observers  and  source  respectively.  This  is  the 
gravitational  red  shift  formula  for  static  sources  and  observers  in  the 
Schwarzschild  space  time.  If    is  kept  finite  and  larger  then  2M,  as  smaller 
approaches 2M, we see that   goes to zero. In other words as the static sources 
approaches the black hole, the red shift tends to become infinite in the limit. The 
black hole is there an infinite red shift surface for static sources and observers. 

 

2 One way membrane 

The  proper  of  static  limit  showed  the  impossibility  of  defining  static  particles 
within the black hole. This as we found, is directly related to the idea of infinite 
red shift. We shall now discuss this defining property of the black hole. 

 

Consider a surface given by the equation 

                                                                                                     5.7.10  

Here  f  is  any  function  of  the  space  time  coordinates  represented  by  .  The 
normal to the surface na is given by the gradient of the function evaluated on the 
surface. So, 

                                                                                                                         5.7.11  

Then the square of the normal is given by 

                                                                               5.7.12  
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The normal is time like, space like or null according as  is greater than, less than 
or  equal  to  zero.  Let  us  concentrate  on  the  case  when  0.  The  surface 

 is then said to be null surface. Let us now see the significance 
of such a null surface. 

Consider  flat  space  with  Cartesian  coordinate , , , .  A  wave  front  moving 
along x direction has the equation 

                                                                     5.7.13  

A normal to the wave front is given by, 

                                 1, 1,0,0                                               5.7.14  

That with the diagonal metric  1,‐1,‐1,‐1 , we find 

                                    1 1 0                                        5.7.15  

 

 

  Light cone 

  Wave front 

  t 

 

  x 

                                            y   

 

  world line of a material particle 

                                                  Fig: 5.7 Wave properties of particle  

 

Therefore, the wave front is a null surface. It can be shown, that at every point on 
the wave front, the light cone is tangential to the surface. Any time like trajectory 
of a material particle confine to within the light cone can cross the wave front in 
only one direction. It cannot recross the wave front in the opposite direction. To 
do  this  the  trajectory  will  have  to  turn  around  and  go  out  the  light  cone. 
Physically, what  this means  is  that  once  the wave  front  has  crossed  a material 
particle, the particle will have to travel faster than light in order to catch up with 
the  wave  front  recross  it  in  the  other  direction.  Equivalently  the  particle;  can 
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cross a wave  front  in only one direction. Therefore the wave front  is  “one way 
membrane”. 

The above property is true for any null surface. The light cone is tangential to it 
and  it  behaves  as  a  one way membrane. Material  particles  can  cross  it  in  one 
direction and cannot come out. In flat space time, only travelling wave front are 
example of null surfaces. When there is a gravitational field, the situation can be 
different, as in the case of the Schwarzschild space time. 

Consider the family of surfaces given by 

                                  1
2

                            5.7.16  

These  are  two  dimensional  sphere  .  provided  we  also  take  the 
section  Each of these surfaces has the normal 

                                          0,
2

, 0,0                                             5.7.17  

Then 

                               1
2 2

                                    5.7.18  

When we set  2 . We see that the surface becomes null. It is like a spherical 
wave  front  frozen  in space held  in place by gravitation. Therefore a black hole, 
being a null surface is a one way membrane. Particles can go in but cannot come 
out  fig: 5.7 . This is why; it is called a black hole. 
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CHAPTER  

“A luminous star of the same density as the 
Earth, and whose diameter should be two 
hundred and fifty times larger than that of the 
sun, would not, in consequence of its 
attraction, allow any of its rays to arrive at us: 
it is therefore possible that the largest 
luminous bodies in the Universe may, through 
the case, be invisible.” 
                                                                   
                                                           P.S.LAPLACE 
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6.1 INTRODUCTION                                

Gravitational fields are so weak that the practicing astrophysicist can usually 
ignore general relativity. This chapter deals with various sorts of object in 
which relativistic effects play an important, or in some cases a dominant, role. 
One of these is the neutron star, a “cold” star composed primarily of neutrons 
and supported against collapse by neutron degeneracy pressure. Another is 
the super-massive star, a giant object supported by radiation pressure, in 
which general relativistic effects can tip the balance between stability and 
instability. Most impressive of all is the black hole, a body caught in an 
inexorable gravitational collapse.      

The existence of neutron stars and black holes was suggested in the 1930’s on 
purely theoretical grounds, chiefly through the work of J. Robert 
Oppenheimer and his collaborators. However, these exotic objects remained a 
textbook curiosity until the 1960’s, when the cooperative efforts of radio and 
optical astronomers began to reveal a great many strange new things in the 
sky. 

A realistic discussion of quasi-stellar objects, galactic nuclei, pulsars, and so 
on, would require that we consider the effects of radiative energy transport, 
neutrino energy transport, turbulence, nuclear forces, magnetic fields and, 
above all, rotation. It would also require the discussion of massive calculations 
using automatic computers. In preparing this chapter, I have tried to restrict 
myself to the simplest calculations, which can be carried out analytically 
without too much trouble. These simple calculations are not very useful for a 
detailed understanding of astronomical observations, but they provide a 
valuable insight into the possible roles that general relativity can play in 
astrophysical phenomena.                    

 

6.2 STARS OF UNIFORM DENSITY  

General relativity finds an interesting application to one other class of stable 
stars, those consisting of incompressible fluids, with equation of state  

                                                                                                                  6.2.1  

These stars are of interest, not because they actually exist (they don’t), but 
because they are simple enough to allow an exact solution of Einstein’s 
equations, and because they set an upper limit to the gravitational red shift of 
spectral lines form the surface of any star. 
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With  constant, the fundamental equation 1 may be written  

           
′
3⁄

4 1
8

3
                               6.2.2  

The pressure must now be determined by integrating inward form the surface 
where 0, rather than outward, as for more realistic models. This gives  

3
1 8 3⁄

1 8 3⁄

⁄

 

Solving for  , and expressing  in terms of the stellar mass,  

                                 
3
4

                                                                      6.2.3  

we find,  

        
3
4

1 2 ⁄ ⁄ 1 2 ⁄ ⁄

1 2 ⁄ ⁄ 3 1 2 ⁄ ⁄                6.2.4  

The metric component  is immediately given by 1 : 

 

                                   1
2

                                                           6.2.5   

Whereas  can be calculated by using (6.2.4) in the integral  

2
′ 4 ′ ′

∞

1
2 ′

′ ′       6.2.5 : 

                        
1
4
3 1

2 ⁄

1
2

⁄

                     6.2.6  

The most interesting feature of this solution is that it does not make sense for 
all values of  and . The pressure given by equation (6.2.4) will become 
infinite at a point ∞ where  

                                      ∞ 9
4

                                                                      6.2.7  
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(Also, the metric becomes singular at ∞ because ∞  vanishes.)but the 
pressure is a scalar, and so an infinity in  cannot be blamed on an 
injudicious choice of coordinate system. We must see to it that   is not 
singular for any real , and the only way to accomplish this is to have ∞  
negative, or  

                                             
4
9
                                                                              6.2.8  

Note that the Schwarzschild radius 2  is then less than 8/9 the actual radius 
, so there is no singularity in either the exterior solution  

                                    1                              6.2.5    

or the interior solution (6.2.5), (6.2.6). 

This is not the first time that we have discovered an upper bound on the 
absolute value /  of the gravitational potential of a star. We learned that 
for a stable ideal-gas neutron star, /  is never greater than 0.36/3.2, or 
0.11. Is there than an absolute upper limit to  /  imposed by the structure 
of the Einstein equations, irrespective of the equation of state? 

To frame this question as a mathematical problem, we consider  as an 
arbitrary finite positive function, subject only to these general requirements: 

(A) The radius  is fixed, with  
                                    0                                                     6.2.9  

(B)   The mass  is fixed, with 

                             4                                                      6.2.10  

(C) The metric coefficient  given by  

                                  1
2

                                      6.2.10  

 must not be singular, so 

                                            
2

                                                   6.2.11  

where 

4 ′ ′ ′ 

(D) The density  must not increase outward :  
′ 0 

(It is difficult to imagine that a fluid sphere with a larger density near the 
surface than near the center could be stable.) Given any function , 
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satisfying these conditions, we can calculate  from Eq. (6.2.10a ); we can 
determine  by integrating equation  

′ 1 1
4

1
2

    

inward from the surface ( with the boundary condition that 0; and we 
can then calculate  from equation(6.2.5a) 

2
′ 4 ′ ′

∞

1
2 ′

′ ′   6.2.5  

Equation (6.1.11) guarantees that  is well behaved, and as long as  is 
finite, Eq. (*) will give 0, and Eq. (6.2.5a) will give a finite positive-
definite . Thus any absolute limitations on the input function (such as 
an upper bound on /  ) can only come from the condition that Eq. (*) must 
yield a finite solution for the pressure .  

We shall exploit this condition rather indirectly, by concentrating on the 
metric coefficient  rather than on  itself. We first derive an equation 
that allows  to be calculated for a given density function , without 
having to solve for ; from  

"
2

′
4

′ ′ ′
4  

and  

"
2

′
4

′ ′ ′
4 3  

we have  

3 "
2

′ ′ 3 ′ ′
16  

, "  
′
2

′ ′ 2
3 ′ 16                                    

 

This equation can be linearized by defining  

                                                                                                                      6.2.12  

Introducing Eq. (6.2.10a) for , and rearranging a bit, we find 
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1
1

2
⁄

1
2

⁄

 
′

 

                                                                                                                     (6.2.13) 

The initial conditions at  can be determined directly from equation 
(6.2.5a), or from the condition that  fit smoothly to the exterior solution 
(6.2.5b); either way, we find that  

                                 1
2 ⁄

                                                        6.2.14  

                                 ′ 1
2 ⁄

                                             6.2.15  

The solution for  must be positive, because   can become negative only 
if it passes through the value zero, at which point  would vanish, and, 
according to Eq. (6.2.5a),  can vanish only if the pressure  has a 
singularity.  

We next proceed to derive an upper bound for 0 . If   is positive, then the 
right-hand side of (6.2.13) is negative, because 3 /4  is the mean 
density within the radius , and the mean density cannot increase with   if 
the density does not. Thus (6.2.13) gives  

1
1

2
⁄

0 

the equality being attained only for uniform density. Integrating this 
inequality from  to  and using (6.2.15), we have  

′ 1
2

⁄

 

Integrating again from 0 to  and using (5.2.14), gives  

0 1
2 ⁄

1 2 ⁄ ⁄  

The right-hand side is largest when   is as small as possible. For a given 
mass  and radius , the density distribution with ′ 0 that gives an 

 that is everywhere as small as possible has  constant, in which case  
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Using this in the integral, our inequality is  

                          0
3
2
1

2 ⁄ 1
2
                                                     6.2.16  

We have already noted that  must be positive-definite; hence (6.2.16) 
implies that  

                                                         
4
9
                                                          6.2.17  

This is just the upper limit found earlier for stars of uniform density, but now 
we know that (6.2.17) holds for all stars, uniform or not.  

It can also be proved that for a given mass and radius; the stable stars with 
smallest central pressure are those with uniform density. Hence the central 
pressure of any star is not less than the value obtained by setting 0 in Eq. 
(6.2.4), that is 

                                0
3
4

1 2 ⁄ ⁄ 1
1 3 1 2 ⁄ ⁄                           6.2.18  

This again shows that /  can never equal the forbidden value 4/9. 

Our result can be immediately translated into a statement about the red shift 
of spectral lines from the surface of any star. According to Equations 

⁄

, 

 , , ,  and (6.2.5b), this is  

∆ ⁄ 1 1
2 ⁄

1 

Equations (6.2.17) imposes on  the upper bound  

                                          2                                                                       6.2.19  

In fact, there seems to be a large concentration of quasi-stellar radio sources 
whose spectral lines show red shifts close to 1.95! However, we should not 
jump to the conclusion that these red shifts are necessarily due to strong 
gravitational fields, for red shifts near 2 require the star to be composed of 
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a nearly incompressible fluid, with /  very small. This would seem 
unphysical, since we do not want the speed of sound /   /  to become 
larger than the speed of light! Bondi has shown that for a stable star with 
/ 1 and with / 1/3 (as is the case for particles that interact only 

electromagnetically and/or in localized collisions) the red shift of spectral 
lines emitted from the surface is bounded by 0.615. In any case, there are 
quasi-stellar objects with red shifts 2, such as 4C25.5, with 2.358.   

However, there is no theorem that limits the red shifts of light signals from the 
of static spherically symmetric bodies. For instance, a light signal from 

the center of a transparent uniform star would have a red shift given by 
equations 

  
⁄
,      ,      ,       ,      

−     and       6.2.6  

1 ⁄ 0
2

3 1 2 ⁄ ⁄ 1
 

As /  approaches the maximum value 4/9, this red shift becomes infinite. 
Hoyle and  have suggested that a quasi-stellar object can consist of a 
cluster of small dense stars, with the red shifts arising from emission and 
absorption in a hot cloud of gas trapped near the cluster center. It is not yet 
clear whether the red shifts of the QSO’s arise internally, or from some other 
cause, such as the general cosmological recession of distant objects discussed. 

 

6.3 TIME-DEPENDENT SPHERICALLY SYMMETRIC FIELDS  

We now turn to the problems of stellar dynamics, and begin by writing down 
the metric and Ricci tensor for a spherically symmetric but time-dependent 
system. Spherical symmetry requires the proper time interval  to depend 
only on the rotational invariants  

, , , . ,  

so it can be written 

, , 2 , ,  

The function  can be removed by defining a new redial variable  

′ ⁄ ,  
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The metric will then be of the same form, but with new functions ′, ′, ′ in 
place of , , , and of course with ′ in place of  and no factor . Dropping 
primes, we have then  

, , 2 , ,  

We next remove  by defining a new time  

′ , , ,  

where η is an integrating factor defined to make the right-hand side a perfect 
differential, that is, so that  

, , , ,  

(This equation can be solved by treating it as an initial value problem; given 
,  for all , we can solve for , /  at  and determine ,
 for all .) The proper time is then 

′  

or, introducing new functions  and  in place  and  and 
dropping the prime on ,   

                 , ,                  6.3.1  

Thus we can use the metric in its familiar “standard” form, the only new 
feature being that  and  now depend on  as well as . 

The non-vanishing elements of the metric tensor and its inverse are  

                        

                                       6.3.2  

It follows that the non-vanishing elements of the affine connection are  

Γ
′

2
                  Γ                  Γ  

Γ
′

2
              Γ Γ

2
                    Γ Γ

1
 

Γ         Γ Γ
1
        Γ Γ  
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Γ
2

                    Γ
2

                     Γ Γ
′

2
 

(A prime or a dot now denotes /  or / , respectively.) From 

Γ Γ
Γ Γ Γ Γ  

 we obtain the independent nonzero components of the Ricci tensor : 

                       
′′
2

′

4
′ ′
4

′
2 4 4

                   6.3.3  

                         1
1 ′

2
′

2
                                                           6.3.4   

                       
′′
2

′ ′
4

′ ′

4 2 4 4
                6.3.5  

                                                                                                                    6.3.6  

Also it follows from the spherical symmetry of the metric that  

                                                                                                       6.3.7  

As a simple but important application of these result, let us consider a 
spherically symmetric but not necessarily static field in empty space, where 
the field equations read 0. According to (6.3.6) the field equation 0 
just tells us that  is time independent: 

                                                                0 

Inspection of 6.3.3 6.3.4  then shows that all time derivatives drop out of 
the field equations, and they become identical with the equations for a static 
isotropic gravitational field in empty space. The vanishing of  and  gives  

                                                           ′ 0 

and the vanishing of  gives 

′
1             

Since  is time-independent, the general solution is  
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1
2

         1
2

 

with  a time-independent integration constant , and  an unknown 
function of . The function  can be made to equal unity by defining a new 
time coordinate : 

′ ⁄  

The metric is now entirely time-independent, and agrees with the 
Schwarzschild solution 

1 1       6.3.8   

We have thus proved the   , that a spherically symmetric 
gravitational field in empty space must be static, with a metric given by the 
Schwarzschild solution.  

The Birkhoff theorem is analogous to the result proved by Newton in his 
theory of the lunar motion that the gravitational field outside a spherically 
symmetric body behaves as if the whole mass of the body were concentrated 
at the center. It is a little surprising that this result should apply in general 
relativity as well as in Newton’s theory, for in general relativity a non-static 
body will usually radiate gravitational waves. The Birkhoff theorem tells us 
that, although a pulsating spherically symmetric body can of course produce 
non-static gravitational fields its mass, no gravitational radiation can escape 
into empty space. In this sense, the Birkhoff theorem is analogous to the well-
known result of atomic theory, that a photon cannot be emitted in a quantum 
transition between two states of zero spin. 

The Birkhoff theorem may be applied, not only to the gravitational field 
outside a body, but also to the field inside an empty spherical cavity at the 
center of a spherically symmetric (but not necessarily static) body. In this case 
the metric is again given by the Schwarzschild solution, but since the point  

0 is here in empty space, there can be no singularity, so the integration 
constant   must vanish. The Birkhoff theorem thus has the corollary that the 
metric inside an empty spherical cavity at the center of a spherically 
symmetric system must be equivalent to the flat-space Minkowski metric . 
This corollary is analogous to another famous result of Newtonian theory that 
the gravitational field of a spherical shell vanishes inside the shell. Stars do 
not usually have holes at their centers, so this corollary will not be of much 
use to as in this chapter. Its importance arises from the fact that the Birkhoff 
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theorem is a local theorem, not depending on any conditions on the metric for 
∞ (aside from spherical symmetry), so that space must be flat in a 

spherical cavity at the center of a spherical symmetric system, even if the 
system is infinite even, in fact, if the system is the whole universe.  

 

6.4 CO-MOVING COORDINATES  

As a further preparation for our treatment of gravitational collapse, and also 
to lay a ground work for our discussion of cosmology, we know construct a 
very useful set of coordinates, the co-moving co-ordinate system which 
incorporates a more natural separation between space and time than that 
provided by the standard coordinates.  

Imagine a finite region of space field with a dense cloud of freely falling 
particles. Each particle is assumed to carry along a little clock, and is given a 
fixed set of spatial coordinates, which can be defined as the coordinates  of 
the particle, in some arbitrary system, when its own clock reads 0. 

(The rules for setting these different clocks are discussed below.) The space-
time coordinates ,  of any event are defined by taking  as the spatial 
coordinate level of the particle that is just going by when and where the 
events and occurs, and by taking  as the time then shown on that particle’s 
clock. We may think of the coordinates mesh as being dragged along by the 
cloud of particles, with time defined by clocks stuck on the mesh. This 
coordinate system will be useful throughout the region occupied by the 
particle cloud, for whatever interval of time in which particle trajectories do 
not cross.  

The metric  in comoving coordinates is characterized by certain specially 
simple features. First, we note that the clocks are in free fall and therefore tell 
proper time, so the proper time interval between two points ,  and ,  
on a given particle’s trajectory is just  , that is,  

 

and therefore   

                                              
                                              1                                                                            6.4.1  

Also we note that the particle trajectory ,  satisfies the    
equation of free fall, so  
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0 Γ Γ  

Using (6.4.1), this gives  

0                           

or, since  is generally a nonsingular matrix,  

                                           0                                                                               6.4.2  

We have kept open the option of setting the clocks attached to the different 
particles in an arbitrary fashion. Suppose that we rest these clocks by a 
transformation  

                               ′              ′                                                            6.4.3  

The new metric will have the elements 

                                                          ′ 1                                                                 6.4.4  

                                                       ′                                                         6.4.5  

                                             ′                     6.4.6   

It would be great simplification if the function  could be chosen so that the 
two terms in Eq. (6.4.5) cancel, giving ′ 0. There are two important cases 
where this is possible :  

(A) Suppose that we can reset all clocks so that all particles are at rest at a time 
0. This assumption can be given an absolute physical significance by 

interpreting it to mean that for each particle  at 0, it is possible to find a 
locally inertial coordinate system  in which the separation between  and 
neighboring particles is purely spatial,  

,

0 

and in which the movement of  in a time interval  is purely temporal,  
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,

0 

The metric in this locally inertial system is the Minkowski metric , so the 
space-time components of the metric in the comoving system at 0 are  

, 0
,

0 

With (5.4.2), it follows that  vanishes everywhere, so the metric is given by  

                                        ,                                               6.4.7  

 

(B) If the metric is manifestly spherically symmetric, then the line element 
must have the general form with which we started in the last section, that is,  

, , 2 , ,  

The only non-vanishing time-space component  is  2 , and (6.4.2) then   
tells us that  is time independent, so 

2  

0 

We can therefore eliminate the components  by resetting the clocks as in 
(6.4.3), with  

2  

Using (6.4.4) and dropping primes, the metric is now of the form  

                  , ,                         6.4.8  

with  and  new unknown functions that replace  and   . 

it is of course possible to construct coordinate systems of this sort even if the 
cloud of freely falling particles is purely imaginary. In differential geometry, 
coordinate systems satisfying (6.4.1) and (6.4.2) are called Gaussian, and if   
vanishes, so that the line element takes the form (6.4.7), then we call the 
coordinates Gaussian normal. However, these coordinate systems find their 
most important applications to system that actually do consist of a freely 
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falling fluid. In this case the fluid velocity four-vector by definition has zero 
space component,  

                                                                      0                                                   6.4.9  

and since   is normalized so that  

                                                              1                                                   6.4.10  

[see Eq.(5.2.5a)]the time component of  must be  

                                                        ⁄ 1                                          6.4.11  

We shall be working only with spherically symmetric comoving coordinate 
systems, with line element (6.4.8). The non-vanishing elements of the metric 
tensor are  

                                    1 

                     1 

                                                                                                                                  6.4.12  

The non-vanishing elements of the affine connection are readily calculated as  

Γ
′

2
       Γ

′

2
        Γ

′

2
         Γ Γ

2

Γ Γ
′

2
                  Γ Γ

2
              Γ

Γ Γ
′

2
                        Γ Γ

2
                    Γ

Γ
2
                                       Γ

2
                              Γ

2

6.4.13  

(A prime or dot denotes /  or / , respectively. ) From 

Γ Γ
Γ Γ Γ Γ  we obtain the independent nonzero 

components of the Ricci tensor : 

                              
′′ ′

2
′ ′

2 2 4 2
                             6.4.14  

                                1
′′
2

′ ′
4 2 4

                                         6.4.15  
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2 4 2

                                                   6.4.16  

                               
′ ′

2

′

2
                                                            6.4.17  

Also, it again follows from the spherical symmetry of the metric that  

                                                                                                    6.4.18  

                                     0                           6.4.19  

 

6.5 GRAVITATIONAL COLLAPSE  

We saw that a cooling star of mass greater than a few solar masses cannot 
reach equilibrium as either a white dwarf or a neutron star. It may be that a 
massive star will always eject enough matter by the time it reaches the end of 
its thermonuclear evolution so that its mass drops below the Chandrasekhar 
or the Oppenheimer-Volkoff limits. If not, then it will collapse. 

A proper treatment of gravitational collapse would be prohibitively 
complicated. In order to get some feeling for what can happen during 
collapse, we consider only the simplest ,  the spherically symmetric 
collapse of “dust” with negligible pressure. Since the dust particles are acted 
on by purely gravitational forces, they fall freely, and we can use them as the 
physical basis of a co-moving coordinate system of the sort discussed in the 
last section. The metric is then given by equation (5.4.8): 

                           , ,          6.5.1  

The energy-momentum tensor for a fluid of negligible pressure is given by  

                                                                                                             6.5.2  

where ,  is the proper energy density and  is the velocity four-vector, 
given for a comoving coordinate system by Eqs. (6.4.9) and (6.4.11): 

                                       0,        1                                     6.5.3  

The equations of momentum conservation 
;

0 are automatically 

satisfied, and the equation for energy conservation reads  
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0
;

Γ
2

 

or in other words  

                                             √ 0                                                            6.5.4  

The Einstein field equations can be written  

                                             8                                                              6.5.5  

where  

                           
1
2

1
2

                                  6.5.6  

This may be evaluated with the aid of Eqs. (6.5.1) and (6.5.3); we find that the 
only non-vanishing components of are 

              
2
   

2
        

2
                         6.5.7  

In particular,  

                           0                                                                                            6.5 .8  

Using 6.5.7 6.5.8  and 6.4.14 6.4.17  in (6.5.5) yields four field 
equations : 

                      
1 ′′ ′

2
′ ′

2 2 4 2
4              6.5.9  

                         
1 1 ′′

2
′ ′

4 2 4
4                      6.5.10  

                       
2 4 2

4                                                6.5.11  

                              
′ ′

2
′

2
0                                                             6.5.12  

Let us simplify our model even further, and assume that  is independent of 
position. We can now seek a separable solution, with 

               

Then (6.5.12) requires that /  equal / , so we can normalize  and  so that  
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Also, we are still free to redefine the redial coordinate as an arbitrary function 
̃  of , and in particular we can choose ̃ , so  and  are replaced 

with ′ 4⁄  and ̃ . Dropping the tildes, we have then  

                                                                                6.5.13  

Equations (5.5.9) and (5.5.10) then read  

                  
′

2 4                  6.5.14  

1 1 ′

2
2 4  

                                                                                                                                     6.5.15) 

The first terms in (6.5.14) and (6.5.15) must evidently be equal constants, 
which we shall call, 2  : 

′ 1 1 ′
2

2  

The unique solution is  

1  

so the metric takes the form  

    
1

                  6.5.16  

(Incidentally, the metric is spatially homogeneous as well as isotropic, and for 
this reason it will provide the kinematic framework for our treatment of 
relativistic cosmology) 

Our remaining problem is to calculate the functions  and . Using 
(6.5.13) and (6.5.14) in the energy-conservation equation (6.5.4), we find that 

 is constant. We normalize the redial coordinate  so that  

                                                      0 1                                                      6.5.17  

and therefore 

                                       0                                                    6.5.18  
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The field equations (6.5.14) or (6.5.15) and (6.5.11) are now ordinary 
differential equations: 

                       2 2 4 0                    6.5.19  

                                        
4
3

0                                 6.5.20  

We can eliminate   by adding these two equations, and find 

                               
8
3

  0                                         6.5.21  

Equations (6.5.19) and (6.5.20) can be recovered from (6.5.21) and its time 
derivative, so we can forget about them and simply use (6.5.21) to calculate 

.    

We shall now assume that the fluid is at rest (in standard coordinates) at 0 
, so  

                                                        0 0                                                          6.5.22  

and therefore (6.5.21) and (6.5.17) give  

                                                    
8
3

0                                                     6.5.23  

Thus equation (6.5.21) can be written  

                                                    1                                     6.5.24  

The solution is given by the parametric equations of a cloid:  

2√
                                          

                                     
1
2
1                                                             6.5.25  

Note that  vanishes when , and hence when , where  

                                             
2√ 2

3
8 0

⁄

                                6.5.26  

Thus a fluid sphere of initial density  and zero pressure will collapse 
from rest to a state of infinite proper energy density in the finite time .  
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Although the collapse is complete at a finite coordinate time , any light 
signal coming to us from the sphere’s surface will be delayed by its 
gravitational field, so we on earth will not see the star suddenly vanish. To 
make this more specific, we have to complete our calculation by finding the 
metric outside the star.  

The Birkhoff theorem shows that it is always possible to find a “standard” 
coordinate system , , ,  in which the metric outside the sphere takes the 
form  

1
2

1
2

 

But this metric is not in the Gaussian normal form ( 6.5.1), so in order to match 
solutions at the surface we either have to convert the interior solution ( 6.5.16) 
into standard coordinates, or the exterior solution (6.5.27) into Gaussian 
normal coordinates.  

Inspection of Eq. (6.5.16) shows immediately that the standard spatial 
coordinate , ,  must be chosen as  

                                  , ,                                             6.5.28  

In order to define a standard time coordinate such that    does not contain a 
cross-term   , we employ the “integrating factor” technique which gives  

             
1

⁄

1 ⁄ 1

⁄

                        6.5.29
,

 

where  

                     , 1
1
1

⁄

1                                      6.5.30  

The constant  arbitrary, but may conveniently be chosen as the radius of the 
sphere in comoving coordinates. It is straightforward to check that the metric 
in the coordinate system , , ,  takes the standard form  

, ,  

with 

                                        
1
1

⁄
1 ⁄

1 ⁄
                        6.5.31  

IJSER



CHAPTER 6 
STELLAR EQUIBRILLIAM AND COLLAPSE 

 

  
154 

 
   

                                         1                                                          6.5.32  

it now being understood that  is a function of  defined by Eq. (6.5.29) and 
that  and  are function of   and ,  and , defined by solving Eqs. 
(6.5.28) and (6.5.30). This is a mess, but at the radius  of the star (a 
constant, since   is a commoving coordinate) we have  

                                                                                                  6.5.33  

                            
1

⁄

1 ⁄ 1

⁄

            6.5.34  

                               , 1                                                            6.5.35  

                             , 1                                                          6.5.36  

(Equation (6.5.34) could have been obtained by integrating the equations for 
free fall)Comparing with (6.5.27), we see that the interior and exterior solution 
fit continuously at  if  

                                          
2

                                                                      6.5.37  

With (6.5.23), this just says that  

                                      
4
3

0                                                                6.5.38  

not a surprising result! 

Now we return to the problem of calculating the behavior of light signals 
emitted from the surface of the collapsing sphere. A light signal emitted in a 
redial direction at a standard time  will have /  given by Eq. (6.5.27) and 
the condition 0, so it will arrive at a distant point  at a time  

′ 1
2

′

 

The most striking consequence of Eq. (6.5.39) and (6.5.34) is that both  and ′  
approach infinity when the radius (6.5.33) of the sphere approaches the 
Schwarzschild radius  2 , that is, when  
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2

                                          6.5.40  

The collapse to the Schwarzschild radius therefore appears to an outside 
observer to take an infinite time, and the collapse to  is utterly 
unobservable from outside. 

Although the collapsing sphere does not suddenly disappear, it does fade out 
of sight, because light from its surface is subject to an increasing red shift. The 
proper time for a light source on the sphere’s surface is just the comoving time 
, so the comoving time interval between emission of wave crests at the 

surface equals the natural wavelength  that would be emitted by the source 
in the absence of gravitation. The standard time interval ′ between arrivals 
of wave crests at ′ is the observed wave length ′; thus the functional change 
of wavelength is   

′ ′

1 1
2

1              

1
1

⁄

1

⁄

1 

Using (6.5.24) to determine , this is  

       1 1 ⁄ √
1 ⁄

  1            6.5.41  

In order to see how the red shift  varies with ′, let us assume that the sphere 
is initially very much larger than its Schwarzschild radius 

                                        
2

1                                                           6.5.42  

and distinguish two periods in the history of the collapse : 

(A) Until  gets close to , we have 

                                                   1                                             6.5.43  

 Using (6.5.42) and (6.5.43) in (6.5.34), (6.5.39) and (6.5.41) gives  (with  ′ ) 

 

′ ′ ′ 
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                          √
1 ⁄

√
1 ′ ′

′ ′

⁄

              6.5.44  

 

(B) Eventually we have  

1                        

at a time  given by (6.5.25) as  

                                            
1

2√

4
3

⁄                                          6.5.45  

Now (6.5.34), (6.5.39), and (6.5.41) give 

1  

′ 1  

2 1  

                                           2 1
′

2
                           6.5.46  

Putting (A) and (B) together, we conclude that the red shift  seen by an 
observer at   ′ is zero when the collapse is observed to begin, increases 
gradually but remains of order √ 1 until a time very close to 2√  

has passed, and then grows exponentially with a rate 1 2  . For example, a 

collapsing sphere with a mass 10 and radius 100 light years will 
have a red shift  of order 10  for a period of order 10  years, after which the 
red shift suddenly begins growing exponentially with an -folding time of 
order 1 min. for practical purposes, the collapsing sphere is suddenly and 
completely cut off from communication with the rest of the universe.  

Completely cut off ? Even if a collapsing body does fade out of side, it still has 
a gravitational field, and the measurement of this field at great distances can 
be used to determine the energy, momentum, and angular momentum of the 
body. If the body has a net electric charge, then measurement of the electric 
field at great distances will, via Gauss’s theorem, also tell as the charge. It is 
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interesting to ask whether measurements of the gravitational and/or 
electromagnetic fields outside a collapsing body can yield any information 
about the body beyond the energy, momentum, angular momentum, and 
charge. In the case of a spherically symmetric electrically neutral body, which 
we have been considering in this chapter, the answer is provided by 
Birkhoff’s theorem: The gravitational field outside a spherically symmetric 
body must be of the Schwarzschild form, so all we can ever learn about the 
body is its mass. (Spherical symmetry, of course, implies zero momentum and 
zero angular momentum.) 

Carter has shown that when the gravitational field of an axially symmetric 
collapsing body settles down to a stationary state, its exterior metric belongs 
to a two-parameter family of solutions, such as the Kerr metrics that are 
completely specified by the total mass and angular momentum. It is widely 
believed that the gravitational field of any electrically neutral collapsing body 
will eventually approach the Kerr form. 

As mentioned in the introduction to this chapter, interest in the phenomenon 
of gravitational collapse was rekindled in the last decade by the discovery of 
quasi-stellar sources, which appears to require some powerful new source of 
energy. The maximum energy available from fusion of hydrogen into the 
most stable nuclei, say iron, is only 8 Mev per nucleon, or less than 1% of the 
rest-mass. Matter-antimatter annihilation could have 100% efficiency (apart 
from neutrino energy losses), but this process can be important only if there is 
some abundant natural source of anti-nucleons. Otherwise the only likely 
mechanism for conversion of mass into energy with high efficiency is 
gravitational collapse. 

A cloud of dust that is collapsing as in the Oppenheimer-Snyder model will 
obviously release no energy to the outside world. To extract the growing 
kinetic energy of the falling particles, something must slow them on the way 
down−either a macroscopic “bounce” of the whole system, or particle-particle 
collisions that heat the collapsing gas. Detailed calculations reveal a 
discouragingly low efficiency for conversion of mass into available energy in 
the gravitational collapse of an isolated body. However, particles falling into a 
Kerr metric can reemerge with a higher energy, acquired at the expense of the 
rotational energy of the collapsing body. Whether or not gravitational collapse 
has anything to do with quasi-stellar sources, the question remains: What 
happens to a real cooling star whose mass is above the Chandrasekhar and 
Oppenheimer-Volkoff limits? In recent years topological methods have been 
used by Penrose and Hawking to prove a number of powerful theorems, to 
the effect that under reasonable conditions (validity of general relativity, 
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positivity of energy, ubiquity of matter, causality) collapse becomes inevitable 
once a trapped surface forms. A trapped surface is a closed space-like two-
dimensional surface for which both the outgoing and the ingoing families of 
future-directed null geodesics orthogonal to the surface are converging. (For 
the Schwarzschild metric, the spheres with are  and  constant are trapped 
surfaces for  within the Schwarzschild radius 2 .) However, it is not 
known whether a real massive star will actually develop a trapped surface, or 
merely explode into fragments with small enough mass to form stable neutron 
stars or white dwarfs. If gravitational collapse is indeed the inevitable fate of 
massive bodies, then we must expect that the universe is full of black holes, 
collapsing bodies whose presence is betrayed only through their gravitational 
fields or through the energy released when matter is drawn in. Our best hope 
of observing gravitational collapse would be to find a binary star, one member 
an ordinary visible star, and the other member a black hole.                    
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7.1 INTRODUCTION 
We saw that all the Friedmann models have singularities in the finite past, 
that is, at a finite time in the past, which we have called  ; the scale factor 
R(t) goes to zero and correspondingly some physical variables, such as the 
energy density, go to infinity. Only exceptionally, such as in the de Sitter or 
the steady state models, is there no singularity in the finite past. But these 
latter models have some unphysical or unorthodox feature, such as the 
continuous creation of matter, which is not generally acceptable. The presence 
of singularities in the universe, where physical variables such as the mass-
energy density or the pressure or the strength of the gravitational field go to 
infinity seems doubtful to many people, who therefore feel   uneasy about this 
kind of prediction of the equations of general relativity. This was partly the 
motivation with which Einstein searched for a ‘unified field theory’. In this 
connection He says (1950): 

The theory is based on a separation of the concepts of the gravitational field and 
matter. While this may be a valid approximation for weak fields, it may presumably 
be quite inadequate for very high densities of matter. One may not therefore assume 
the validity of the equations for very high densities and it is just possible that in a 
unified theory there would be no such singularity. 
 
There was at one time the feeling that the singularities in the Friedmann 
models arise because of the highly symmetric and idealized form of the 
metric, and that, for example, if the metric were not spherically symmetric, the 
matter coming from different directions might ‘miss’ each other and not 
gather at the centre of symmetry, as it does in the (spherically symmetric) 
Friedmann models. However, it was shown by Hawking and Penrose (1970) 
that spherical symmetry is not essential for the existence of a singularity. We 
shall consider this work later. There are in the main two possible approaches 
for dealing with the problem of singularities. Firstly, one can try to relax the 
symmetry conditions inherent in Robertson–Walker metrics and try to 
determine what the field equations predict in these more general cases. 
Secondly, one can try to derive some general results about singularities by 
using reasonable assumptions, say about the energy–momentum tensor, 
without considering the field equations in detail. The Penrose–Hawking 
results fall in the latter category. As regards the former approach, the simplest 
relaxation of the symmetries of the Robertson–Walker metrics (which are 
homogeneous and isotropic) is to drop the requirement of isotropy and 
consider metrics which are only homogeneous. We shall consider such metrics 
in some detail in the next section, partly with a view to explaining another 
approach to the question of singularities, pioneered by Lifshitz and 
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Khalatnikov (1963). There is an extensive literature on singularities and 
cosmological solutions, incorporating both the approaches mentioned above. 
This chapter is meant to be only a brief introduction to this work.  
 
 
7.2 HOMOGENEOUS COSMOLOGIES 
 
In this section we shall derive the metric and field equations for homogeneous 
(but not isotropic) cosmologies.  
 
Consider the spatial part of the metric 
 

                    , 1,2,3                                       
as follows: 
 
            , , , ,                , 1,2,3                                 7.2.1  

 
 A metric is homogeneous if after a transformation of the spatial coordinates 

, ,  to new coordinates ′ , ′ , ′  the metric (7.2.1) transforms to the 
following one: 
 

, ′ , ′ , ′ ′ ′ ,                      , 1,2,3                           7.2.2  
 
with the same functional dependence as before of the on the new spatial 
coordinates. Further, this set of transformations must be able to carry any 
point to any other point. One way to characterize the invariance of the metric 
under spatial transformations is to consider a set of three differential forms 

 (with  1,2,3) which are invariant under these transformations, as 
follows: 
        ′ ′ ,                                                                             7.2.3  

       
where we have written  for , , , etc. in the arguments. With the use of 
these forms a metric invariant under spatial transformations can be 
constructed as follows (the  are six functions of t): 
 
        ,                                                                    7.2.4  

 
that is, the three-dimensional metric tensor  of (7.2.2) is given as follows: 

                                                                                                     7.2.5  
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Note that in (7.2.3) the  on the two sides of the equation are respectively 
the same functions of the old and new coordinates. We introduce the 
reciprocal triplet of vectors  by the following relations: 
 

           . .                                                        7.2.6  
 
It can be shown after some manipulations [23], that (7.2.3) leads to the 
following equation for the reciprocal triplet  : 

        ,                                                    7.2.7  

 
where the  are constants satisyfing . These are the so called 
structure constants of the groups of transformations. If we denote by  the 
following linear differential operator: 

       ,                                                                                     7.2.8  

then (7.2.7) can be written as follows: 
 

    ,                                                     7.2.9  
 
One can now use the Jacobi identity given by 
 

, , , , , , 0                          7.2.10  
 
to derive the following relation for the structure constants: 
 

0                                                            7.2.11  
 
The different types of homogeneous spaces correspond to the different 
inequivalent solutions of (7.2.11) satisfying the anti-symmetry condition 

. Some solutions are equivalent to each other, reflecting the fact 
that the  can still be subjected to a linear transformation with constant 
coefficients so that the operators are not unique. 
 
There are nine different types of homogeneous spaces that arise from the 
different inequivalent solutions of (7.2.11) with the required anti-symmetry 
condition. These are known as the Bianchi types, types I–IX. The Einstein 
equations for these spaces can be reduced to a system of ordinary differential 
equations for the , without the necessity of working out the frame vectors 

, etc. 
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7.3 SOME RESULTS OF GENERAL RELATIVISTIC 
HYDRODYNAMICS 

 
Before considering the results of Penrose and Hawking it is useful to have 
some idea of relativistic hydrodynamics. The fundamental quantity here is the 
four-velocity vector  of a continuous distribution of matter in 
hydrodynamic motion. Thus is a unit time-like vector. Some of the 
following formulae are valid for any arbitrary four-vector . With the use of 
the covariant derivative ;  one can define the following quantities which are 
of physical significance: 
 
(a) The scalar expansion ;  , which gives the rate at which a volume 
element orthogonal to the vector  expands or contracts. 
 
(b) A measure of the departure of the velocity field from geodesic motion is 
given by the acceleration ; . In the absence of non-gravitational 
forces, such as in the case of dust (pressure-less matter), the particles follow 
geodesics and the acceleration vanishes. 
 
(c) The shear tensor is symmetric, trace-free and is orthogonal to the vector . 
It describes the manner in which a volume element orthogonal to u changes 
its shape, and is given as follows: 
 

1
2 ; ;

1
3 ;

1
2

    7.3.1  

 
(d) A measure of the amount of rotational motion present in the matter is 
given by the vorticity tensor defined as follows: 
 

1
2 ; ;

1
2

                                          7.3.2  

 
One can also define a vorticity vector  as follows: 
 

1
2 ;  ,                                                                                7.3.3  

 
where is the Levi–Civita alternating tensor which is antisymmetric in 
any pair of indices with ⁄ ,  being the determinant of the 
metric. If the vorticity vector or tensor vanishes, the vector  is said to be 
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hypersurface orthogonal and this implies the absence of rotation in some 
invariant sense (rotation of the local rest frame relative to the compass of 
inertia; see, for example, Synge, 1937; Gödel, 1949).  
Next we use ; ; ; ;  with  instead of  and make slight 
changes in the indices to get the following equation: 
 

; ; ; ;                                                                                                 7.3.4  
 
In this equation we set  equal to  and multiply the resulting equation with 

 as follows: 
 

; ; ; ;                                                                                   7.3.5  

where we have used .  
 
From the Einstein equation  
 

1
2

8 ⁄                                                                                    7.3.6  

 
with  
                                                                                          7.3.6  
 
we readily get 
   

8 1
2

                                                           7.3.6  

 
whence it follows: 
 

4
3                                                                                            7.3.7  

 
One can use the definitions of expansion, shear, vorticity and acceleration 
given above to write (7.3.5) as follows: 
 

,
1
3 ; 2                                                   7.3.8  

 
In deriving this relation the following equations have been used (the first one 
follows by taking the dot-derivative of 1); 

IJSER



CHAPTER 7 

SINGULARITIES IN COSMOLOGY 
 

  
164 

 
   

 
                             0,                                                                                         7.3.9  
                             0,                                                                      7.3.9  

                          
1
2

,                                                                                  7.3.9  

                          
1
2

.                                                                                7.3.9  

 
Equation (7.3.8) holds for an arbitrary four-vector . We now let  be the 
four-velocity of matter, so that (7.3.7) can be used in (7.3.8). We then get the 
following important equation, known as the Raychaudhuri equation 
(Raychaudhuri, 1955, 1979): 
 

,
1
3 ; 2 4 3 0                            7.3.10  

 
The importance of this equation derives from the fact that in one form or 
another it is used in most if not all singularity theorems of general relativity. 
To see the relevance of this equation to the question of singularities we 
consider a simple and somewhat crude analysis. Consider a set of time-like 
geodesics described by the four-vector  . Let these geodesics be irrotational. 
Thus we have 0. Let  be a parameter along a typical geodesic so 
that ⁄ . Then 
 

,
1
3

2 4 3                         7.3.11  

 
Now make the assumption that 2 4 3  is greater than a 
positive constant  . Then the behavior of θ is governed by the following 
differential equation: 
 

⁄
1
3

,                                                                                           7.3.12  

 
which has the solution 
 

tan 3⁄                                                                               7.3.13  
 
 being the value of  at . From this equation it is clear that  becomes 

infinite as  is decreased from the value  to 3 2⁄ . If, for example, 
  denotes the proper time along the geodesic, then this shows that at a finite 
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time in the past the expansion  becomes infinite. An infinite value of  
indicates that at that point geodesics cross each other and there is a sort of 
‘explosion’ like the big bang. In the Friedmann models  is given by the 
vector 1, 0, 0, 0  and it is readily verified that , which is the covariant 
divergence of this vector, is given by 3 ⁄ . In the case  0, for example, 
from  
 

8 3⁄ ⁄                                  
 
we see that this is proportional to ⁄ . We know that this tends to infinity as 
the big bang 0 is approached. Thus the expansion θ tends to infinity at a 
finite time in the past. The assumption 2 4 3 is a 

limiting case. If 2 4 3  the infinity in θ occurs at a 
shorter distance away from . 
                                                            
The above somewhat crude analysis can be made more precise, and this is 
essentially what is done in the singularity theorems. These theorems are very 
technical and need a great deal of preliminary apparatus. We shall here give 
only the statement of one of these theorems, but we need some familiarity 
with singularities. 
 
 
7.4 DEFINITION OF SINGULARITIES  
 
The question of a definition of singularities in general relativity is a highly 
complex one and we can only consider a bare outline of the extensive 
literature on the subject. An excellent account of this topic is given in 
Hawking and Ellis (1973). 
 
We have encountered a simple case of a singularity in the Friedmann models, 
where at 0 the mass-energy density goes to infinity. The mass energy 
density is a simple example of the so-called ‘curvature scalars’ or ‘curvature 
invariants’ whose values do not change under a coordinate transformation, so 
that if they are infinite at a certain point in one coordinate system, they will be 
infinite at that point in every coordinate system. Another example of a 
curvature scalar is the Ricci scalar defined by . It is well known 
that in empty space (where the Ricci tensor vanishes), there are four curvature 
invariants, one of these being  (see for example, Weinberg (1972). If 
one of the curvature scalars goes to infinity at a point, that point is a space-
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time singularity, and cannot be considered as a part of the space-time 
manifold, whose points are defined to be such that one can introduce a 
coordinate system so that the metric and its derivatives to second order are 
well behaved. Such points may be called ‘regular’ points.  
 
However, all the curvature scalars remaining finite at a point does not 
necessarily imply the point is regular. The usual example of this that is cited is 
that of the two-dimensional surface of an ordinary cone in three dimensions. 
The curvature scalars of this surface remain finite as one approaches the apex 
of the cone, but the latter is not a regular point as it is not possible to introduce 
any coordinate system that is well behaved at that point. On the other hand, 
the metric behaving badly at a point does not necessarily mean that the point 
is singular, because the bad behaviour may be simply due to the unsuitable 
nature of the coordinate system. These matters are illustrated well by the 
Schwarzschild metric. 
The Schwarzschild solution is given as follows: 
 

1
2

1
2

.           7.4.1  

 
Here the coefficient of  goes to infinity at  0 and that of  goes to 
infinity at 2 . The curvature invariants are well behaved at   2 , but 
some of them go to infinity at  0. Thus the bad behaviour of the metric 
cannot be removed at  0, so the latter is a singularity. However, as 
mentioned earlier, the fact that the curvature invariants are regular at   2  
does not necessarily mean that the latter is not a singularity. To prove this one 
would have to find a coordinate system which is well behaved at the point. 
For a long time after the Schwarzschild solution was discovered, in 1916, such 
a coordinate system could not be found. It was observed that the radial time-
like and null geodesics displayed no unusual behaviour at 2 . Finally, in 
1960 Kruskal found the following transformation from ,  to new 
coordinates ,  which shows that, the point 2  is regular: 
 

2 2 2⁄ ,   4⁄                       7.4.2  
 
with the metric (7.4.1) given as follows: 
 

32 2⁄ ,       7.4.3   
 
where   is to be interpreted as a function of u and given implicitly by the first 
equation in (7.4.2). 
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Another aspect of the question of singularities can be illustrated with the 
Schwarzschild metric, as follows (Raychaudhuri, 1979, p. 146). Transform the 
coordinate   in (7.4.1) to a new coordinate  ′given by 
 

2 ′ ,                                                                                                                 7.4.4  
 
this changes (7.4.1) to the following form: 

′ ′ 2 ′ 2

4 ′ 2 ′                                                                             7.4.5  
 
Clearly this metric is regular for all values of ′in0   ∞. But this is only a 
part of the space represented by (7.4.1) with 0   ∞. In (7.4.5) there would 
be no singularities of the curvature scalars such as    for any values 
of ′. It is thus not always satisfactory simply to see if the metric components 
are regular. One way to demand regularity which is physically meaningful is 
to require that all time-like and null geodesics should be complete in the sense 
that they can be extended to arbitrary values of their affine parameters. Since 
time-like and null geodesics give respectively the paths of freely falling (that 
is, in motion under purely gravitational forces) massive and massless 
particles, this requirement means that the space-time must contain complete 
histories of such freely falling particles, and that these geodesics should not 
suddenly come to an end at any point. In fact even this may not be satisfactory 
as the definition of a regular space-time, as Geroch (1967) has provided an 
example of a space time that is geodesically complete (that is, the geodesics 
can be extended arbitrarily) but one that has a non-geodetic time-like curve 
(for example an observer propelled by a space-ship, that is, non-gravitational 
forces) with bounded acceleration which has a finite length. To get over these 
kinds of difficulties a modified definition of completeness, called b-
completeness, has been given by Schmidt (1973). 
 
 
7.5 AN EXAMPLE OF A SINGULARITY THEOREM  
 
As indicated earlier, there are various forms of singularity theorems, mostly 
due to Penrose, Hawking and Geroch (see Hawking and Ellis, 1973), which 
involve elaborate conditions, some of which are quite technical.  
Roughly speaking, these theorems show that quite reasonable assumptions 
lead to at least one consequence which is physically unacceptable. We will 
give here the statement of one of these theorems, due to Hawking and 
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Penrose (1970), which is as follows: 
Space-time is not time-like and null geodesically complete if: 
 
(a)  0for every non-space-like vector . If the Einstein equations 
(7.3.6a) are valid, and if  is taken to be a unit timelike vector, this condition 
is readily seen to imply . If, in addition,  is that for a perfect 
fluid given by (7.3.6b) and  is taken to be the four-velocity , then this 
condition implies 3   0. For this reason this is sometimes referred to as 
the energy condition. Physically it is very reasonable. 
 
(b) Every non-space-like geodesic contains a point at which 
             0                      [ ] implies anti symmetrization, 
  
where is the tangent vector to the geodesics. This is one of the rather 
technical conditions and it appears that this is true for any general solution of 
Einstein’s equations. 
 
(c) There are no closed time-like curves. Physically this means that no 
observer can go to his past. 
 
(d) There exists a point  such that the future or past null geodesics from  are 
focussed by the matter or curvature and start to reconverge. Penrose and 
Hawking show that observations on the microwave background radiation 
indicate that this condition is satisfied. 
 
There are actually two alternatives to the condition  which are more 
technical. We thus see that assumptions which are quite reasonable lead to 
consequences which are physically very strange, such as a particle’s world 
line suddenly coming to an end, or an observer meeting his past. 
 
 
7.6 AN ANISOTROPIC MODEL  

 
To see an example of singularities which is different from the simple 
Friedmann cases and yet not too complicated, we will consider in this section 
a model that is homogeneous but anisotropic. It is, in fact, the metric  
 

 
 
with 1, and we use , , instead of B, C, D in that equation, so that 
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our metric is as follows: 
 

                                             7.6.1  
 
Such models have been studied by Raychaudhuri (1958), Schücking and 
Heckmann (1958) and others. The case  with dust was considered by 
Thorne (1967). An account of this model is given in Hawking and Ellis (1973, 
p. 142).The fact that the metric (7.6.1) is homogeneous. It is anisotropic 
because not all directions from a point are equivalent. There are several 
reasons for studying anisotropic universes. We have mentioned earlier that 
the universe displays a high degree of isotropy in the present epoch. 
However, in earlier epochs, perhaps very early ones, there may have been a 
significant amount of anisotropy. Also, in a realistic situation the singularity 
in the universe is unlikely to possess the high degree of symmetry that the 
Friedmann models have. The observed isotropy of the universe needs to be 
explained and, in the process of seeking this explanation, one must consider 
more general models of the universe than the Friedmann ones. We will 
consider solutions of Einstein’s equations for the metric (7.6.1) for a perfect 
fluid with zero pressure, that is, dust. We set   1 and   1 for this section 
and the next, and define a function  by . A solution of Einstein’s 
equation is given as follows (M, a, b are constants): 
 

 
3 4⁄ , ⁄ ⁄ ,        ⁄ ⁄

⁄
,

⁄ ⁄
⁄
,

9
2

.
7.6.2  

 
The constant  determines the amount of anisotropy, the value 0 giving 
the isotropic Einstein–de Sitter universe. The constant ‘a’ determines the 
direction of most rapid expansion, the domain of ‘a’ being 6⁄ 2⁄ . 
We have 
 

⁄ 2 3⁄
1
2

, ⁄ 2 3⁄
1
2

1 2  

                                                                                                                                      7.6.2  
the expressions for /  and  /  being obtained by replacing  in /  by 

 2  /3 and  4  /3 respectively. This universe has a highly anisotropic 
singular state at  0. For large  it tends to isotropy, in fact to the Einstein–
de Sitter universe. 
 
Suppose we follow the time  backwards to the initial singularity. At first 
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there is isotropic contraction. Let   . Then 1  2 4 3⁄    is negative. 
Thus the collapse in the -direction halts and is replaced by expansion, the 
rate of which becomes infinite as  tends to zero. The collapse is monotonic in 
the  - and -directions. Consider now the situation forwards from    0. The 
matter collapses from infinity in the z-direction, then halts and expands. In the 

- and -directions it expands monotonically. Thus we have here a cigar-
shaped singularity. If one could observe the matter far back in time, one 
would see a maximum red-shift in the -direction, then the red-shift would 
decrease to zero (corresponding to the halt), then one would get indefinitely 
large blue-shifts, the latter occurring in light given off by the matter near 
0. 
 
The case  is somewhat different. Here we have 
 

⁄ 2 3⁄
3
2

, ⁄ ⁄ 2 3⁄                  7.6.4  

 
Following time backwards again, the initially isotropic contraction slows 
down to zero in the - and -directions but the collapse is monotonic in the -
direction. Going forwards in time, the rate of expansion of the universe in the 

- and  -directions starts from a finite value but the expansion rate in the -
direction is infinite. This is thus a ‘pancake’ singularity. There are limiting 
red-shifts in the - and -directions, but no limit to the red-shifts in the -
direction. 
 
 
7.7 THE OSCILLATORY APPROACH TO SINGULARITIES  
 
In this section we consider an interesting approach to singularities developed 
by Lifshitz and Khalatnikov (1963) and by Belinskii, Khalatnikov and Lifshitz 
(1970). We study one of the homogeneous spaces that were introduced in 
Section 7.2, namely, Bianchi type IX, whose structure constants are as follows 
(see (7.2.11)): 
 

1                                                                                                    7.7.1  
 
Denoting , , ,  by   , , , the three vectors  (see (7.2.3) and (7.2.4)) 
can be taken as follows: 
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, , 0 , , , 0 , 0, , 1   
                                                                                                                                           7.7.2  

 
The metric (7.2.4) is given as follows, where we have taken  to be 
diagonal and set   , , and . 

                                                                           7.7.3  
 
In the isotropic models, near the singularity the spatial curvature term 
behaves as   whereas the mass-energy density behaves as (for zero 
pressure) and as  (for radiation). Thus in the Friedmann models the 
curvature terms go to infinity slower than the terms arising from T and the 
derivatives with respect to time of the metric (that is, R terms). This kind of 
singularity is referred to as a velocity-dominated singularity (Eardley, Liang 
and Sachs, 1972). In the anisotropic models which are our concern in this 
section the behaviour near the singularity is dominated by curvature terms as 
observed by Belinskii and his coworkers and by Misner (1969) and is called 
the mixmaster singularity. 
 
Thus if we are interested in the behaviour near the initial singularity for the 
anisotropic metric (7.7.3), it is sufficient to consider the empty space or 
vacuum Einstein equations where 0, for the terms arising from  are 
negligible in comparison to the other terms. The empty space Einstein 
equations can be written as follows: 
 

·⁄ 2 ,                                              7.7.4  
·⁄ 2 ,                                                7.7.4  
·
⁄ 2 ,                                              7.7.4  

⁄ ⁄ ⁄ 0                                                                                               7.7.4  
 
Here a dot represents differentiation with respect to t. If the right hand sides 
in (7.7.4a)–(7.7.4c) were absent, we would get the following well-known 
Kasner solution (1921) (of Bianchi type I): 
 

, , ,                                                                                                 7.7.5  
 
where p, q, r are constants satisfying 
 

1                                                                                  7.7.6  
 
Suppose now that even when the terms on the right hand sides of 7.7.4
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7.7.4  are present, there exist certain ranges of values of  for which the 
metric is given approximately by (7.7.5): 

 
~ , ~ , ~ ,                                                                                                         7.7.7  

 
Then from (7.7.4d) we get 
 

                                                                                           7.7.8  
 
It is readily verified that not all the three expressions on the right hand sides 
of 7.7.4 – 7.7.4  can be positive, that is, one of these at least must be 
negative. From this it follows, substituting 7.7.7  into the left hand sides of 
7.7.4 – 7.7.4 , that at least one of the expressions      1 , 

      1 ,       1  must be negative. The possibility that, 
, ,  are all positive with      1  negative is inadmissible because it 

contradicts 7.41  (for in this case we must have 0   1, 0    1, 0
   1, so that ,   ,   , and (7.7.8) becomes impossible). Thus 
at least one of the indices , ,  is negative. This implies that the length along 
at least one direction shrinks while (since    0 from 7.7.8 ) the 
spatial volume, which is determined by the product  expands. In fact 
7.7.4 – 7.7.4  do not allow two of the exponents , ,  to be negative at the 

same time. 
 
We suppose that  is negative and   . Then 7.7.7  implies that for small t, 
 and  can be neglected in comparison with c. We now define new 

dependent variables , ,  and a new independent variable  by the following 
relations: 
 

, , ; ⁄                                           7.7.9  
 
These transformations, together with the approximations introduced above, 
enable us to write 7.7.4 – 7.7.4  as follows: 

′′ 1
2

4 ,                                                                                                   7.7.10  

′′ ′′ 1
2

4                                                                                             7.7.10  

 
where a prime denotes differentiation with respect to . Equation 7.7.10  is 
in the form of the equation of motion of a particle which is moving in a 
potential well which is exponential. The ‘velocity’ thus changes sign 
corresponding to a change from a region where  is decreasing to one where 
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 is increasing. Belinskii et al. assume that the right hand sides of 
7.7.4 – 7.7.4  are small enough at a certain epoch such that      is 

nearly unity and one has the Kasner solution with 
 

, ,                                                                   7.7.11  
where w is a constant. Equations (6.43a) and (6.43b) can then be integrated as 
follows: 
 

1 4 2 ,                                                               7.7.12  
1 4 2 ,                                                                7.7.12  

2| | 2 ,                                                                                    7.7.12  
 
where we have chosen the integration constants so that as tends to infinity, 
, ,  go to the assumed Kasner solution with a negative . We get the 

following asymptotic values of , ,  as tends to infinity and minus infinity 
respectively: 
 
As ∞, ~ , ~ , ~ ,                                    7.7.13  

As ∞, ~ 2 , ~ 2 , ~ ,       7.7.13  

In 7.7.13  we have ~    while in 7.7.13 , 1 2 ~ . In the second 
of these limits, that is in  7.7.13 , transforming back to  from τ (with 
1 2   ), we get 

 
~ ′, ~ ′, ~ ′,                                                                                          7.7.14  

 

Where 

′ 1 2 0,⁄                                                                                   7.7.15  

′ 2 1 2 0⁄                                                                         7.7.15  

′ 2 1 2⁄ 0                                                                         7.7.15  

This behaviour is different from that existing in the limit ∞ which is given 
by (7.7.7), in the sense that the exponent in c has changed from negative to 
positive, while that of  has become negative (that is,  is positive but 
′negative). Thus the - and -axes have interchanged their expanding and 

contracting behaviours. This indicates that, as we move towards the 
singularity, distances along two of the axes oscillate while that along the third 
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axis decreases monotonically. This happens in successive periods which are 
called ‘eras’. On going from one era to the next, the axis along which distances 
decrease monotonically changes to another one. Asymptotically the order in 
which this change occurs becomes a random process [23]. One has a 
particularly long era if , ,  corresponds to the triplet 1, 0, 0 . In this case 
there are no particle horizons in the direction for which the index is unity, 

since  diverges. In the course of evolution this particular direction 
also changes and this phenomenon may lead to effective abolition of all 
particle horizons. This was one of the motivations of the mixmaster model of 
Misner which was thought to provide the solution to the ‘horizon’ problem, 
that is, to explain why the universe is so isotropic and homogeneous. But this 
model did not provide a solution to the problem, although some interesting 
insights were gained. This completes our brief exposition of singularities in 
cosmology.  
 
 
7.8 A SINGULARITY-FREE UNIVERSE ? 

 
A new class of inhomogeneous cosmological solutions has been found by 
Senovilla (1990) which does not seem to possess any singularities in the past, 
with the curvature and matter invariants regular and smooth everywhere. The 
source is a perfect fluid with equation of state  3 . The metric is as follows 
(with signature +2): 
 

                                                    7.8.1  
 
where the functions ,  and  depend on  and  only and are given 
explicitly as follows: 
 

3                                                  
           3 3 ⁄                  7.8.2  

3                                                      
 
where a, A, B are arbitrary constants. The pressure and energy density are 
given as follows: 

1
3

5 3                   7.8.3  

where   is the gravitational constant in suitable units. 
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In two important papers, Raychaudhuri (1998, 1999) evaluates the new 
Senovilla solution and re-examines the singularlity theorems, and offers an 
additional theorem. To recapitulate, there are essentially four conditions:  

(1) the causality condition forbidding closed time-like lines,  

(2) the strong energy condition 0,  

(3) a condition on the Riemann-Christoffel tensor, and  

(4) existence of a trapped surface.  

Raychaudhuri quotes from Misner, Thorne and Wheeler (1973): ‘All the 
conditions except the trapped surface seem eminently reasonable for any 
physically realistic space time’ (p. 935). Raychaudhuri also discusses the 
further solutions found by Ruiz and Senovilla (1992). One of the important 
points to notice is that it is the last condition that is violated by the new 
singularity-free solution. 

However, as Raychaudhuri shows, the average of the physical and kinematic 
scalars taken over the entire space-time vanishes. In the new solution the 
space-time is open in all directions, which means, according to Raychaudhuri, 
that the space-time has topology . Raychaudhuri goes on to enunciate 
and prove an interesting new theorem: ‘In any singularity free non-rotating 
universe, open in all directions, the space-time average of all stress energy 
invariants including the energy density vanishes.’ Here ‘non-rotating’ 
means all matter has world lines forming a normal congruence, that is, one 
that is hyper surface orthogonal. This means essentially that the tangent four-
vectors to the world lines are orthogonal to the space-like three-surface on 
which the matter lies at any instant. The proof is based on Raychaudhuri’s 
earlier equation (7.3.10).  
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“Evolutionary cosmology formulates 
theories in which a universe is capable of 
giving rise to and generating future 
universes out of itself within black holes or 
whatever.” 
                                               ROBERT NOZICK
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8.1 INTRODUCTION  

The nature of singularities in general solution of the Einstein equations is a 
subject about which mach remains to be learned. Various classes of 
singularities have been defined which represent possible models for general 
behavior. Examples are curvature singularities, crushing singularities 1 , 
velocity dominated singularities 2  and isotropic singularities 3 . In this paper 
spacetimes belonging to one of the simplest classes of inhohomogeneous 
cosmologies will be examined in order to get as much information as possible 
about their singularities and to test the applicability of the models just 
mentioned. 

The space-times considered in the following are solutions of the Einstein 
equations coupled to a massless scalar field in the standard way. 

Thus, if  denotes the scalar field they are solutions of  

                       8
1
2

                                         8.1.1  

The Bianchi identities imply that  satisfies the wave equation. These space-
times are further assumed to be plane symmetric. Plane symmetric solutions 
of the Einstein equations with a scalar field as matter source have been 
discussed by Tabensky and Taub [4]. In fact their paper is on stiff fluids but, 
as they show, it is possible to transform between these two matter models 
under rather general circumstances. They write the field equations in a 
particularly simple form. If the gradient of the area of the orbits is everywhere 
time-like then these equations can be simplified further. This condition will be 
assumed in the following. It has been shown elsewhere that for appropriate 
boundary conditions it is automatically fulfilled unless the space-time is flat 
5 . Tabensky and Taub show that the only non-trivial equation to be solved is 

the linear hyperbolic equation 

                                    t                                                                       8.1.2  

When this has been done a quality Ω is obtained by integrating the ordinary 
differential equation 

                                     Ω                                                                       8.1.3  

This can be done starting on an initial hypersurface of constant . In order that 
all Einstein equations should be satisfied the constraint equation 

                                             Ω 2                                                                     8.1.4  
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should hold on the initial hypersurface. The space-time metric is 

                             / Ω                           8.1.5  

Here  belongs to the interval 0,∞ . To avoid spurious singularities it is 
assumed that the space-time is spatially compact. This can be arranged by 
demanding that the coordinates ,  and  be periodic. The periodicity of  
and  plays no significant role in the following but the periodicity of  means 
that  and Ω (which only depend on  and ) are required to be periodic in . 
In order to say anything about the nature of singularities in some general class 
of space-times it seems unavoidable to demand some kind of spatial boundary 
conditions since otherwise anything could happen. Spatial compactness is the 
simplest possibility of specifying boundary conditions for cosmological space-
times. 

The initial value problem for data given on the hypersurface 0 can be 
solved as follows. An initial data set consists of periodic functions ,  and 
Ω  which satisfy the equation  

                                               Ω 2                                                       8.1.6  

For simplicity they will be assumed to be ∞ although the arguments which 
follow can also be carried through when these functions have an appropriate 
finite degree of differentiability. A solution is sought with ,     ,   

,      and Ω , Ω . Under these conditions 8.6  is just 
the constraint equation 8.1.4  on the hypersurface . To construct the 
solution first solve the linear hyperbolic equation 8.1.2  on the time interval 
0,∞  with initial data  and . Standard theory ensures the existence of a 

unique  ∞ solution . Then Ω may be determined by integrating (8.1.3) with 
initial value Ω  for each fixed value of . 

The solutions of the initial value problem have an apparent singularity at 
0. The aim of the following is to show that this is a true singularity (i.e. 

that space-time cannot be extended through it) and to obtain more detailed 
information about its nature. In Section 2 it is shown that 0 is always a 
curvature singularity and that the Kretschmann scalar  blows up 
uniformly as 0. The consequences for strong cosmic censorship are 
discussed. In Section 3 the singularity is shown to be crushing and it is 
concluded that a neighbourhood of the singularity can be foliated by constant 
mean curvature hypersurfaces. An asymptotic expansion for the solution in a 
neighbourhood of 0 is obtained in Section 4 which shows in particular that 
the singularity is velocity dominated. In the final section a sufficient condition 
is given for the singularity to be isotropic. 
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Note that the simplification of the field equations which allows the analysis 
which follows to be carried out depends very much on the symmetry and the 
fact that the matter content of space-time is described by a massless scalar 
field. If plane symmetry is replaced by spherical symmetry or if the massless 
scalar field is replaced by almost any other kind of matter, then the equations 
for the matter fields, the equation for Ω and the equation for the area of the 
orbits are all coupled. The property of the matter which is needed for 
decoupling is that the trace of the projection of the energy-momentum tensor 
to the orthogonal complement of the orbits should vanish. 

 

8.2 CURVATURE SINGULARITIES 

The curvature of a general plane-symmetric space-time will now be 
computed. It is always possible to introduce local coordinates so that the 
metric takes the form 

                        .                                                8.2.1  

Here lower and upper case indices take the values 0,1 and 2,3 respectively. 
Let  denote the Gaussian curvature of the two-dimensional metric   and 
let  denote the covariant derivative associated to that metric. Then the 
curvature components are 

                                                                                            8.2.2    

                                                                       8.2.3  

                                            .                                                     8.2.4  

Hence  

     4 4 8                        8.2.5  

When the curvature components have been computed the Einstein equations 
can easily be obtained. One combination of the field equations gives  

                    
1
2

4                              8.2.6  

where   . Combining (8.2.5) and (8.2.6), 
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4 4
1
2

2

16
1
2

1
2

                         8.2.7  

The first three terms on the light hand side of (8.2.7) are obviously non-
negative and when the matter content of space-time is described by a massless 
scalar field the fourth term is non-negative. (This condition also holds for 
many other physically reasonable matter fields but that fact is not relevant for 
this paper.) It follows that if /2 then  

                                                                                                    8.2.8                           

Returning from these general considerations to the particular class of space-
time considered here, it turns out that in that case Ω and  is a 

constant times / .  It follows from (8.1.3) that Ω is non-decreasing. Hence the 
curvature invariant  blows up at least as fast as as 0 is 
approached. 

It has now been shown that 0 is a curvature singularity and thus the 
spacetime cannot be extended further. This gives a statement which might be 
called ‘strong cosmic censorship in the past’ for the class of space times 
considered here. (This terminology assumed that a time orientation of space-
time has been chosen so that  increases towards the future.) It says that if a 
spacetime of this type is the maximal globally hyperbolic development of 
initial data on some hypersurface then no extension of that space-time 
contains a point to the past of the initial hypersurface which does not belong 
to the original space-time. 

 

8.3 CRUSHING SINGULARITIES    

 The mean curvature of the hypersurface of constant  is given by  

                                     
1
2

/ Ω/ Ω
3
2

                                                 8.3.1  

Equation (8.1.3) shows that Ω 0 and so (8.3.1) implies that | |
/ Ω/ / .  

Thus it can be seen that  tends uniformly to ∞ as the singularity is 
approached. This means that this singularity is a crushing singularity 1 . A 
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crushing singularity in a spatially compact space-time always has a 
neighbourhood which can be foliated by hypersurface of constant mean 
curvature. The proof of this will now be recalled. Note first that a space-time 
which has a compact Cauchy hypersurface can contain at most one compact 
space-like hypersurface with a given non-zero constant mean curvature. The 
fact that | | tends uniformly to infinity shows that given any real number  
which is sufficiently large and negative there exist , 0 such that the 
hypersurface  has mean curvature less than  and the hypersurface 

 has mean curvature greater than . These hypersurfaces provide 
barriers which ensure that there exist a hypersurface of constant mean 
curvature  between the hypersurfaces, of   and . Thus there is an 
interval ∞,  such that the spacetime contains exactly one compact 
hypersurface of constant mean curvature   for each   in this interval. It 
remains to show that these hypersurfaces cover a neighbourhood of the 
singularity. A standard result implies that if  the hypersurface of mean 
curvature  lies strictly to the past of that with mean curvature . By 
construction the hypersurfaces tend to the singularity as ∞. In other 
words there is no point which lies to the past of all these hypersurfaces. It 
remains to show that there are no gaps, i.e. that there is no point which lies to 
the past of the hypersurface with mean curvature  but to the future of the 
hypersurfaces with mean curvature   for all .  

Suppose that a point  with this property existed. Then there would be an 
open neighbourhood  of the hypersurface with mean curvature  disjoint 
from the future of . In  there exist hypersurfaces of constant mean 
curvature  for all  in some interval ,  with 0. Hence 
there is a point of the hypersurface with mean curvature  which lies to 
the past to the hypersurface with 2⁄ , contradicting a statement made 
earlier. It follows that no point  with the above property can exist. 

 

8.4 VELOCITY DOMINATED SINGULARITIES 

The central problem in analyzing the singularities in the class of space-times 
considered here is to determine the behavior of a general spatially periodic 
solution of eq. (8.1.2) as 0. Letelier and Tabensky have written down an 
integral formula for solutions of this equation but they give an explicit 
example of a solution which is not of that form. They conjecture that all 
solutions can be obtained as limits of solutions given by the integral formula. 
Without a proof of this conjecture their analysis is incomplete. This problem 
can be circumvented by the direct use of energy estimates, as has been shown 
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by Isenberg and Moncrief in the course of a study of polarised Gowdy 
spacetimes. A sketch of the argument will now be. It will be supposed for 
simplicity that the solution  being considered is ∞. A computation gives the 
inequality  

                                 0                                                                 8.4.1  

for 0 when  is a solution of (8.1.2). Since the coefficients in the equation 
do not depend explicitly on the spatial coordinate the derivatives of  of any 
order with respect to  satisfies the same equation as   itself. Hence all spatial 
derivatives of  satisfy inequalities analogous to (8.4.1). The Sobolev 
embedding theorem then implies that ,  and the derivatives of these 
quantities with respect to  of any order are bounded in a neghibourhood of 

0. Equation (8.1.2) can be rewritten as 

                                             .                                                                   8.4.2  

Knowing that  is bounded allows us to conclude that  has a continues 
extension to 0. Integrating twice in time gives the asymptotic expansion 

                            , log                                              8.4.3  

for some smooth functions   and  as 0. The expression obtained by 
formally differentiating (8.4.3) once with respect to  and as many times as 
desired with respect to  is also a valid asymptotic expansion. Substituting 
these asymptotic expansions into the evolution equation for Ω gives 

                              Ω 1                                                                   8.4.4  

Integrating this with respect to  gives  

                           Ω , log                                             8.4.5  

for some . Let the parts of the right hand sides of (8.4.4) and (8.4.5) explicitly 
written out be denoted by  and Ω respectively so that  and 
Ω Ω . The quantities  and Ω are solutions of the equations obtained 
from the Einstein evolution equations by dropping all spatial derivatives. This 
is what Isenberg and Moncrief [13] call the velocity dominated system. Thus 
the solution of the full Einstein equations are approximated asymptotically 
near the singularity by solutions of the velocity dominated system and these 
space-times have what Isenberg and Mincrief call the AVTDS property 
(asymptotically velocity-term dominated near the singularity). This is not 
literally the same as the original definition of velocity dominated singularities 
which were given by Eardley, Liang and Sachs [2] but the spirit is the same 
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and so for brevity this property is described here as the property that the 
singularity is velocity dominated. 

The definition of a velocity dominated singularity makes use of a preferred 
foliation by space-like hypersurfaces. A singularity which has the velocity 
dominated property with respect to one foliation will in general not have it 
with respect to a different foliation. In the present case it has been shown that 
the property holds with respect to the foliation defined by the time coordinate 
 and this could be interpreted as saying that this foliation is in same sense 

well-behaved near the singularity. Taking this view it is natural to ask 
whether the foliation by hypersurfaces of constant mean curvature, whose 
existence was shown in Section 3, is also well-behaved in this sense. 

Despite the excellent control over the space-time which is available, this 
question appears difficult to decide. It would be interesting to know the 
answer for the following reason. The time coordinate  is defined in terms of 
the symmetry of the solution and so has no obvious analogue in general 
space-times with less symmetry. On the other hand the constant mean 
curvature condition makes sense in any space-time and it seems reasonable to 
hope that foliation of constant mean curvature exist in a wide class of space-
times. 

 

8.5 ISOTROPIC SINGULARITIES 

In the literature there has been some discussion of isotropic singularities, a 
class of singularities which is of relevance to Penrose’s Weyl curvature 
hypothesis. A singularity of this kind can be defined [3,14] by the condition 
that it should be possible to conformally rescale the given metric so that the 
rescaled metric extends regularly through the singularity. In general the 
asymptotic form of the space-time metric near the singularity in the class of 
space-times considered here is      

                     /                                         8.5.1  

This shows that if 3 2⁄  everywhere the conformal class of the metric 
extends continuously to 0. Thus the singularity is isotropic in this case. 

In fact it is desirable to require a little more of an isotropic singularity than 
what has just been demonstrated. The conformally rescaled metric should 
extend not just in a continuous non-degenerate manner to the singularity. It 
should also have some degree of differentiability there. This question of the 
differentiability of the rescaled metric (or more precisely one question of the 
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simultaneous differentiability of the rescaled metric and the conformal factor) 
is in general somewhat subtle [14]. However it turns out that in present case 
everything can be made ∞. To show this it is necessary to extend asymptotic 
expansions (8.4.2) and (8.4.4) to all powers of . An asymptotic expansion of 
this type for the solution of (8.4.2) has been given in [15]. This in an expansion 
in integral powers of  and log . However, if  is constant, the only term 
containing a logarithm is that written out explicitly in equation (8.4.2). It 
follows immediately that in the case  const. (8.4.4) can be extended to an 
asymptotic expansion to all orders which except for the first term is an 
expansion in integral powers of  this shows that the rescaled metric is ∞ in 
the case identified as being isotropic above.  
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“Go, wond’rous creature, mount where, 
Science guides, Go, measure earth, weigh 
air, and state the tides; Correct old time, 
and regulate the Sun.”     
 
                                       ALEXANDER POPE  
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9.1 INTRODUCTION 

In this chapter we have tried to modify the Schwarzschild metric as follows by 
the Λ-term (here r has definition of length): 

1
2 1

3
Λ 1

2 1
3
Λ

 

Like the equation (12), where M is the mass of the sun, multiplied by  . It is 

well-known that the usual Schwarzschild solution implies a perihelion shift of 
Mercury of about 43’’ per century. This shift is known with an accuracy of 
about half a percent. Again vanishing the Λ-term, we get a final solution of 

  or . 

 

9.2 SCHWARZSCHILD-LIKE SOLUTION OF NON-CONSERVATIVE 
GRAVITATIONAL EQUATIONS 

In this section, we shall discuss the Schwarzschild-like solution of the non-
conservative gravitational equations 

                                                                                                                           1  

Since, it is very well-known, at the very basis of the main experimental tests of 
general relativity. 

In the absence of matter (empty space), i.e. for  0, equation(1) become 

                                                                                                                    2  

Equations (2) represent, in the new theory of gravitation based on equations 
(1), the generalization of the case leading, for a central, symmetric 
gravitational field, to the well-known Schwarzschild metric in general 
relativity. Therefore, in order to study, the possible new implifications of 
equations 

                                                                                                                         3  

Let us solve equation (2) by assuming a spherical symmetric field. 

As is well-known, the general static isotropic metric in this case can be written 
in the form 
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                                               4  

Therefore by assuming that , , ,  represent the co-ordinates , , ,  
respectively the only non-vanishing contravariant components of the metric 
tensor are given by 

, , ,  

, ,
1
,

1
 

The christoffel symbols can be calculated from the equation, 

                                              Γ
1
2

                                 5  

Then we have calculated the non-zero affine connections are, 

Γ Γ
1
2

         

1
2

                   

1
2

         

1
2

′                                    

   Γ
1
2

 

1
2

                

     
1
2

 

1
2

′                              

  Γ
1
2

  

1
2
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1
2

 

1
2
  ′                                      

Γ
1
2

 

1
2

                  

 
1
2

 

                                  

Γ
1
2

 

1
2

                  

           
1
2

 

                        

Γ
1
2

   

1
2

                    

     
1
2

1
 

                          

Γ Γ
1
2

              

1
2

                       

    
1
2

1
 

1
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Γ Γ
1
2

           

1
2

                      

             
1
2

1
 

1
                                            

Γ Γ
1
2

             

1
2

                       

            
1
2

1
 

                                       

This calculation leads the following expressions: 

Γ Γ
1
2

′, Γ
1
2
  ′ , Γ

1
2

′, Γ , Γ  

Γ , Γ Γ
1
 ,     Γ Γ

1
,     Γ Γ   

 The Ricci tensors can be calculated from the equation 

                                         Γ Γ
Γ

Γ Γ
Γ

                                     5  

Γ Γ
Γ

Γ Γ
Γ

         

Now, 

Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ    

Γ Γ Γ Γ 0 0          

                           
1
2

′.
1
2
  ′ 1

2
  ′ .

1
2

′   
1
2

′   
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Γ
Γ 0                                                                         

 

Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ                                       

Γ Γ Γ Γ Γ Γ Γ Γ                           

                   
1
2

′.
1
2
  ′ 1

2
′.
1
2
  ′ 1

.
1
2
  ′ 1

.
1
2
  ′  

1
4

′ 1
4

′ ′ 1 ′                              

  
Γ Γ 1

2
  ′ 1

2
  ′′ 1

2
  ′ ′ ′   

 

, Γ Γ
Γ

Γ Γ
Γ

                                                             

                         
1
2

′ 0   
1
4

′ 1
4

′ ′ 1 ′  
1
2
  ′′

1
2
  ′ ′ ′  

1
2
  ′′   

1
4

′ 1
4

′ ′ 1 ′                           

Γ Γ
Γ

Γ Γ
Γ

                                                      

Now  

Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ                                     

Γ Γ Γ Γ Γ Γ Γ Γ                         

1
2

′.
1
2

′ 1
2

′.
1
2

′ 1
.
1 1

.
1
                           

1
4

′ 1
4

′ 2
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Γ
Γ Γ Γ Γ                         

1
2

′ 1
2

′ 1 1
                   

1
2

′′ 1
2

′′ 2
                                 

Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ               

Γ Γ Γ Γ Γ Γ Γ Γ   

    
1
2

′.
1
2

′ 1
2

′.
1
2

′ 1
.
1
2

′ 1
.
1
2

′ 

1
4

′ ′ 1
4

′ 1 ′                               

Γ
Γ

1
2

′ 1
2

′′                                                                      

, Γ Γ
Γ

Γ Γ
Γ

                                                                         

                  
1
4

′ 1
4

′ 2 1
2

′′ 1
2

′′ 2 1
4

′ ′ 1
4

′ 1 ′ 1
2

′′ 

1
4

′ 1
2

′′ 1
4

′ ′ 1 ′                                                         

     Γ Γ
Γ

Γ Γ
Γ

                                                                    

Hence,  

Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ                                                            

0 Γ Γ Γ Γ Γ Γ                                                        

.
1 1

. .    2      

Γ
Γ                                                         
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  Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ                                                        

Γ Γ Γ Γ Γ Γ Γ Γ                                          

    
1
2

′.
1
2

′.
1
.

1
.  

2
′ ′ 2                                                              

Γ Γ
Γ ′                         

So, 

Γ Γ
Γ

Γ Γ
Γ

                                                            

                     2  
2

′ ′ 2   ′  

1  
2

′ ′                                                              

Γ Γ
Γ

Γ Γ
Γ

                                                                   

Now, 

Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ                                                

0 Γ Γ 0 Γ Γ Γ Γ Γ Γ                    

.
1

.
1
.

.                 

2 2                                                          

Γ Γ
0                                                                                             

Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ                                            

Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ              
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1
2

′.
1
2

′.
1
.

1
. .  

                      
1
2

′ 1
2

′ 2  

Γ Γ ′        

So,              

Γ Γ
Γ

Γ Γ
Γ

                                                     

                          2 2   0
1
2

′ 1
2

′

2      ′  

1  
2

′ ′                                    

                                                                                   

 

The components of the Ricci tensor read 

1
2
  ′′   

1
4

′ 1
4

′ ′ 1 ′      

1
4

′ 1
2

′′ 1
4

′ ′ 1 ′                           

1  
2

′ ′                              

                                                              

                   6  

 (where the prime denotes derivative with respect to r) 

 

The curvature scalar is given by 

                                 7  
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    .
1
2
  ′′   

1
4

′ 1
4

′ ′ 1 ′ .
1
4

′ 1
2

′′ 1
4

′ ′ 1 ′

1
1  

2
′ ′  

1
. 1  

2
′ ′    

           

1
2
  ′′   

1
4

′ 1
4

′ ′ 1 ′ 1
4

′ 1
2

′′ 1
4

′ ′ 1 ′ 1
2

′ ′

1 1
2

′ ′ 1 1 1
  

′′   
1
2

′ 1
2

′ ′ 2 ′ ′ 2 2
                                                        

′′   
1
2

′ 1
2

′ ′ 2 ′ ′ 2 2
                                       7  

In order to obtain a solution of equations (2) with non-zero curvature (unlike 
the standard Schwarzschild case, where 0), we have to impose, as is easily 
seen, 

                                                     0                                                             8  

Condition (8) amounts to assuming the staticity and the isotropy of the 
substratum. The only non-trivial equation (2) can be written as, 

2 Γ Γ Γ Γ Γ Γ
 

Where use has been made of the formula 

Γ Γ                                                                                   9  

Using the value of equation (6) and (7a) we get finally, after simple but 
lengthy calculations, 

4 14 ′ 2 ′ 8 8 4 ′ ′ 8 ′ 8 ′ 4 ′′

4 ′′ 4 ′ 4 ′ 2 ′ ′ 3 ′ ′′ ′ ′′

2 ′′′ ′ ′ 2 ′ ′ 4
0                                                                                                              10  

As it stands, equation (10) (a non-linear equation in the two unknown 
functions   ) is quite impossible to handle.  
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However, in order to simplify our task, we can seek solutions of (2) which 
describe small deviations from the Schwarzschild metric. To this end, let us 
assume the ansatz 

                                       
1

2 1
3
Λ          

1
2 1

3
Λ

                                             11  

Now using equation (11) in equation (4) we get, 

1
2 1

3
Λ 1

2 1
3
Λ

                                                                      12  

So that  

1
2 1

3
Λ ,      1

2 1
3
Λ ,  

,                                                                  

And  

1
2 1

3
Λ ,     1

2 1
3
Λ ,   

1
,                                      

1
                           

Using (5a), we have calculated the non-zero affine connections are 

Γ Γ
1
2

                                

1
2

                                                                  

1
2
1

2 1
3
Λ . 1

2 1
3
Λ  

1
2
1

2 1
3
Λ

2 2Λ
3

                   

1
2 1

3
Λ

Λ
3
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 Γ
1
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1
2

                                                                

          
1
2

1
2 1

3
Λ . 1

2 1
3
Λ  

1
2
1

2 1
3
Λ

2 2Λ
3

                        

1
2 1

3
Λ

Λ
3

                              

 

Γ
1
2

                                                       

1
2

                                                                             

             
1
2

1
2 1

3
Λ . 1

2 1
3
Λ      

             
1
2
1

2 1
3
Λ 1

2 1
3
Λ

2 2Λ
3

 

1
2 1

3
Λ

Λ
3

                                

 

Γ
1
2

                                                        

1
2

                                                                          

1
2

1
2 1

3
Λ .                           

1
2
1

2 1
3
Λ . 2                                                  

1
2 1

3
Λ                                                           
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Γ
1
2

                                                       

1
2

                                                                        

1
2

1
2 1

3
Λ                

1
2
1

2 1
3
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1
2 1

3
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Γ
1
2

                                       

1
2

                                                         

1
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1
                                

1
2
.
1
. 2                                         

                                                               

 

Γ Γ
1
2

                          

1
2

                                   

1
2

1
                     

1
                                                        

Γ Γ
1
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1
2

                                  

  
1
2

1
 

1
                                                       

Γ Γ
1
2

                        

1
2

                                  

  
1
2

1
 

                                                

This calculation leads the following expressions: 

Γ Γ 1
2 1

3
Λ                        

 Γ 1
2 1

3
Λ

Λ
3

,               

 Γ 1
2 1

3
Λ

Λ
3

,        

 Γ 1
2 1

3
Λ ,                                  

Γ 1
2 1

3
Λ                        

Γ , Γ Γ
1
 ,                  

 Γ Γ
1
,               Γ Γ               

The Ricci tensors can be calculated from the equation (5b) 

Γ Γ
Γ

Γ Γ
Γ
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Now, 

Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ                                                                      

Γ Γ Γ Γ 0 0                                                                            

                  2 1
2 1

3
Λ

Λ
3

. 1
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3
Λ

Λ
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Γ
Γ 0                                                                                                      

 

Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ                                                                   
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Λ
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3
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Λ
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1
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3
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Λ
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Λ
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1 Λ                                                                          

Λ                                                                                                          

                                                                                                                      

 

The components of the Ricci tensor read 

 

Λ 1
2 1

3
Λ                           

 Λ 1
2 1

3
Λ                              

 Λ                                                                   
                                                         

            13  

 

The curvature scalar is given by 

                                

                          1
2 1

3
Λ . Λ 1

2 1
3
Λ

1
2 1

3
Λ .Λ 1

2 1
3
Λ

1
.Λ

1
.Λ  

Λ Λ Λ Λ                                                                   

0                                                                                                  

               0                                                                                                                14  

Now the Einstein’s field equation becomes for empty-space (i.e, 0)   

                                   
1
2

0                                                                            15  

Using (14) in equation (15) we get, 

                                  0                                                                                               16  
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Thus, for empty-space, 

0 

, Λ 1
2 1

3
Λ 0 

              Λ 0,            or, 1
2 1

3
Λ 0                                          17  

 

Then the equation takes the value 

2
 

,
2

                    

Where  is the Schwarzschild radius. 

 

9.3 CONCLUSION: 

In the metric component, 1 Λ   for Λ 0 then the metric 

1 . For   ,  0 and correspondingly, t is a legitimate 

time coordinate. But for ,  0 and therefore, t can no longer 

measure time. In this region a new time coordinate a mixture of t and r will 
have to be defined. The metric will then no longer be independent of this new 
time and hence the space will case to be static. Because of this, the surface 

2 is called the static limit. 
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