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PREFACE 

 

This thesis is essentially a review work. As the title “GEOMETRICAL ANALYSIS IN 

RIEMANNIAN AND WEYL SPACE” is concerned, geometrical representations of 

Riemannian space and Weyl space are presented here in respect of general relativity. This 

paper is consisting of six chapters and an organizing out look is given below. 

 

In the first chapter we discussed some algebraic concept of vector spaces and their duals. 

From these spaces, a new space is constructed by the process of tensor product. The process is 

quite general though confined to real finite-dimensional vector spaces. We also discussed the 

effect of components of vectors due to the change of basis. In the last of this chapter, we 

discussed the tensor algebra in short and test the orthogonality & diagonalization of the 

matrix g. 

 

The second chapter is a review work mainly on the topic manifolds. In this chapter, the    

definition of manifold is constructed from the concept of topology in the following sequence:     

SET ⎯⎯⎯⎯⎯ →⎯ )(log setopenytopo TOPOLOGICAL SPACE ⎯⎯⎯⎯ →⎯
nRlikelocally MANIFOLD 

⎯⎯⎯ →⎯connection MANIFOLD WITH CONNECTION ⎯⎯ →⎯metric RIEMANNIAN MANIFOLD. We 

also discussed differentiable manifold, diffeomorphism, tangent spaces in manifold, 

orientation, sub-manifold and maps of manifolds. We also discussed linear connection, Spin 

connection.  At last we discussed the concept of covariant differentiation with some properties 

and parallelism with some consequences. 

 

   In the chapter three, after an establishment of geodesic equation and geodesic deviation 

equation, various properties for the congruence’s of time like geodesic are discussed. Here we 

presented the Raychowdhury equation, Focusing theorem, Forbenius theorem and physical 

interpretation of the expansion   scalar in respect of time like geodesics. 

 

  The chapter four is mainly expository and contains original calculations. In this chapter       

many latest concepts regarding hypersurface are presented.  Firstly, induced metric on hyper -

surface, differentiation of tangent tensor field, intrinsic covariant derivative and extrinsic 

curvature are discussed. Secondly Gauss-Codazzi equation (general form & contracted form), 

Einstein tensor on hypersurface and initial value problem are discussed. Finally we presented 

the possible discontinuities of metric and derivatives of metric on the hypersurface. 

II
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The chapter five is mainly conceptual and contains the original calculations. In this chapter    

we reviewed the Weyl geometry in the context of recent higher dimensional theorem of space   

time. We presented some results regarding the extensions of Riemannian theorems after   proper 

introduction of Weyl theory in respect of modern geometrical language. We also presented the 

mechanism how a Riemannian space time may be locally & isometrically embedded in Weyl 

bulk. The problem regarding classical confinement & the stability of motion of particle or 

photon in the neighborhood of brane when Weyl bulk possess the geometry of warped product 

space. We constructed a classical analog of quantum confinement inspired in theoretical field 

models by considering a Weyl field which depends only on the extra co ordinate. 

 

In the chapter six, we looked for exact solution of Einstein’s field equations in rotating frame 

for empty space. As is well known, Einstein’s field equations are highly non linear and it is 

extremely difficult to find any solution of these equations, let, alone physically meaningful 

solution .Beside the Schwarzschild solution (1916, after the advent of general relativity) which 

is spherically symmetric-the only physically reasonable rotating solution was found by Kerr 

(1963). Here we presented the original calculations of different sections of J.N. Islam’s book [7] 

(Rotating field in General Relativity) and combinations that lead to the required Kerr solution in 

Boyer-Lindquist form. 
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Chapter one 

 
VECTOR AND TENSOR 

 

 

 

1.INTRODUCTION: 

 

This chapter is mainly divided into two parts i.e. vector and tensor. In the first part we discuss 

vector space. A vector is perfectly well defined geometric objects as it in vector field , defined a 

set of vectors with exactly one at each point in space time. We define vector space as a 

collection  vectors(objects) which can be added together and multiplied by a real number-in a 

linear way. We also decompose vectors into components with respect to some set of basis 

vector while a basis is any set of vectors  that  both spans the  vector space and  linearly 

independent. 

 

After the settlement of vector space, we discuss the dual vector space as an associated vector 

space to the original vector space. We define the dual space as the space of all linear maps from 

the original vector space to the real number. 

 

In the second part we discuss the tensor as the generalization of the notion of vectors and dual 

vectors. We define the tensor as a multilinear map from a collection of dual vector and vector to 

real number. At last we also discuss some algebraic operations of tensors such as direct 

product,inner product, contraction etc. 

 

To discuss this chapter the following books are used as references: [1][3][8][15][16]. 
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VECTOR AND TENSOR 
 

 

1.1 VECTOR SPACE: 

To discuss vector space (i.e. a set of vectors) we are to need to involve ourselves with the field 

of scalars K  (real field R ) and with the given vector spaceV . 

Let K  be a given field and V  is the set of vectors { }nvvv ,,........., 21  on which two different 

operations namely addition of vectors and multiplication of vectors by scalars are defined i.e. 

for any Vvv ∈21 ,  and Kk ∈1  

∗    Vvv ∈+ 21  ; Addition of vectors 

∗    Vkv ∈11      ; Multiplication of vectors by scalars 

Then V  is called the vector space over the field K  if the following axioms are hold: 

      1A . For any vectors Vvvv ∈321 ,,  

     
 

     2A . There exists a vector, denoted by V∈0  and called zero vector for which 
Vvv ∈=+ 110     for any Vv ∈1  

     3A . For each Vv ∈1  there exist a vector Vv ∈− 1  such that 

( ) 011 =−+ vv  
     4A . For any vectors Vvv ∈21 ,  

1221 vvvv +=+  
     1B .  For any scalar Kk ∈1  and any vectors Vvv ∈21 ,  

( ) 1211211 kvkvvvk +=+  
     2B .  For any scalar Kkk ∈21,  and any vectors Vv ∈1  

( ) 2111121 vkvkvkk +=+  
     3B .  For any scalar Kkk ∈21 ,  and any vectors Vv ∈1  

( ) ( )121121 vkkvkk =  
     4B .  For unit scalar K∈1  

111 vv =    for any Vv ∈1  

 

( ) ( )321321 vvvvvv ++=++IJSER
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A few examples of vector spaces are given below. 

1. The set of all complex numbers C  is a vector space. 

2. The set of all square matrix i.e. nn×  matrix where the operation addition ‘+’ corresponds to 

sum of corresponding elements in both matrix and operation multiplication ‘*’ means 

multiplying each entry by real number. 

3. Set of all polynomials: 

 
sstatataa +−−−−+++ 2210
 

Kai ∈ ; is a vector space over K  with respect to usual operations of addition of polynomials 

and multiplication of a polynomials by a constant. 

To demonstrate the notion of linear dependence and independence of vectors and vector space 

we will proceed as follows: 

A set of vectors { }nvvv ,,, 21 −−−  of vector space  V  are said linearly independent if there exist 

a set of scalar { } Kaaa n ∈,.......,, 21  such that 

02
2

1
1 =+−−−−++ n

nvavava                                                                    1.1 

implies that all 021 ==−−−−== naaa  

Similarly a set of vectors which is not linearly independent is called linearly dependent i.e. a set 

of vectors { }nvvv ,,, 21 −−−  of vector space  V  are said to be linearly dependent if there exist a 

set of scalars { } Kaaa n ∈,.......,, 21  such that  

02
2

1
1 =+−−−−++ n

nvavava                                                                    1.2 

implies that not all of the a ’s are zero or one of the  a ’s is not zero. 

 

If the null vector is an element of a set of vectors of a vector space  V  the set of vectors is 

linearly dependent i.e. if 0  is one of the vectors of set { }nvvv ,,, 21 −−− , say 01 =v  then 

                                       0.0.0.1 21 =+−−−−++ nvvv  
and the coefficient of 1v  is not zero. 

Again a set of vectors are linearly dependent if one of the vectors can be expressed as a linear 

combination of the others. Suppose { }nm vvv −−−−1  is set of vectors of vector spaceV . Then 

vectors will be linearly dependent if 

∑= i
i

m vaV  

By using Einstein’s summation convention we can write the above vector as  
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   i
i

m vaV =  

i
ivaV =⇒  

i.e. V  is called the linear combination of vectors nvvv ,,, 21 −−− . The set of all such linear 

combinations of finite elements of the set belonging the vectors is called linear span of that set. 

A set of vectors of vector space V  which are both linearly independent and spans the vector 

space is called the basis of the vector spaceV . The number of vectors in any basis set of finite 

dimensional vector apace is called the dimension of the vector space. 

A vector space may have two or more basis sets. Let { }neee ,......,, 21  or { }ae  and 

{ }neee ′′′ ,......,, 21  or { }ae′  are two basis sets of a vector spaceV . Then for any Vv∈  it is 

possible to write 

a
a evV =   and  a

a evV ′′=   for some scalar. 

The expression for V  in terms of ae  i.e. a
a evV =   is unique. The scalars av  are called the 

components of V  relative to the basis{ }ae . Each basis vector of a basis set { }ae  can be written 

as a linear combination of the basis vectors of another different basis set{ }ae′ . Transformation 

law can for this be written as 

c
c
aa eXe ′
′=                                                                                                   1.3 

and conversely the primed basis can be written as 

b
b
cc eXe ′′ =                                                                                                    1.4 

where c
aX ′  and b

cX ′  are the matrices of nn×  order i.e. each contain 2n  elements but both 

matrices are different. Now putting the value of ce ′  in (1.3) we have 

b
b
c

c
aa eXXe ′
′=                                                                                              1.5 

By uniqueness of components we write 

                      
b
a

b
c

c
a XX δ=′
′

                                                                                                 1.6 

If the superscript and subscript in δ  appears both same then we obtain the dimension of vector 

space. 

                            nb
b =δ  

In similar fashion we can write 
a
c

b
c

a
b XX δ=′
′

                                                                                                1.7 

Now write the vectors a
a evV =  in terms of matrix b

aX ′  as 

IJSER
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 b
b
a

a eXvV ′
′=                                                                                               1.8 

and by uniqueness of components 
ab

a
b VXV ′

′
′ =  

 Then   cac
a

ab
a

c
b

bc
b VVVXXVX === ′

′
′

′ δ                                                                            1.9 

Thus we can summaries the relation between prime and unprimed basis as 

  b
b
aa eXe ′′ =      and    a

a
bb eXe ′
′=                                                              1.10 

and the components are related by 
ba

b
a VXV ′′ =     and    aa

a
b VXV ′

′=                                                      1.11 

and   a
c

b
c

a
b XX δ=′
′     and     a

c
a
b

b XX δ=′
′                                                      1.12 

 

1.2 DUAL SPACE: 

Let V be a vector space over a field K. then a real valued function is defined as a rule that 

assigns each vector of V to an unique element in K. mathematically, if f  is a real valued 

function on V then 

KVf →: , 

The set of all such function satisfy the axioms of vector space and hence form a vector space. 

Now we are interested to define linear functional to demonstrate our key point dual space. 

Linear functional is also real valued function on vector space such that 

( ) ( ) ( )υυ bfuafbuaf +=+                                                                            
for all Fba ∈,  and Tu ∈υ, . In short we can say that the linear functional on vector space V is 

a linear mapping from V into K. For linearity of f , we can define addition and multiplication of 

linear functional by the following statements: 

    ( )( ) ( ) ( )ugufugf +=+                                                              1.13 

   ( )( ) ( )[ ]ufauaf =                                                                          1.14 

Also the sum of linear functionals and multiplication of a linear functional by a scalar acts as a 

linear functional. 

The set of all linear functionals on a vector space V  also forms a vector space which is the dual 

of original vector space V and is generally denoted by *V .  

Now we will verify that linear functionals forms a vector space onV . 

     A1.  For each *,, Vhgf ∈  and Vu∈  

    ( )( )( ) ( )( ) ( )uhugfuhgf ++=++  

IJSER
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      ( ) ( )[ ] ( )uhuguf ++=  

      ( ) ( ) ( )[ ]uhuguf ++=      
 (due to associatively of the elements of K for addition) 

      ( ) ( )( )uhguf ++=  

      ( )( )( )uhgf ++=  
Thus ( ) ( )hgfhgf ++=++  as above equality holds for each Vu∈ . 

       A2.    For Vf ∈,0̂  and Vu∈  ( 0̂  means zero functional) 

    ( )( ) ( ) ( )ufuuf +=+ 0̂0̂  

        ( )uf+= 0  

        ( )uf=  

Thus ff =+0̂  because of equality holds for each  Vu∈ . 

Similarly  ( ) ff =+ 0̂  

     A3.  For each Vf ∈  there exists ( ) Vf ∈−  such that 

    ( )[ ]( ) ( ) ( )( )ufufuff −+=−+  

   ( ) ( )ufuf −=  

   0=  

   ( )u0̂=  

Thus ( ) 0̂=−+ ff   as above equality holds for each  Vu∈ . 

Similarly   0̂=+− ff  

     A4.          ( )( ) ( ) ( )ugufugf +=+  

         ( ) ( )ufug +=  

         ( )( )ufg +=  
Thus fggf +=+  as above equality holds for each Vu∈ . 

      B1.      ( )( )( ) ( )( )[ ]ugfaugfa +=+  

   ( ) ( )[ ]ugufa +=  

   ( )( ) ( )( )uaguaf +=  

   ( ) ( )[ ]( )uagaf +=  
Thus ( ) ( ) ( )agafgfa +=+  because of equality holds for each ∈u V. 

       B2.        ( )( )( ) ( ) ( )[ ]ufabufab =  

IJSER
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( )[ ]( )ufba=  

( )( )( )ubfa=  

( )( )( )ubfa=  

Thus ( ) ( )bfafab =  as above equality holds for each ∈u V. 

        B3.      ( )( ) ( )[ ]ufuf 11 =  

                ( )( ) ( )ufuf =⇒ 1  
 

Therefore the elements of V* satisfy all the axioms of vector space. To define the elements of 

V*
 i.e. dual space we use a sign )~(  called tilde over the elements i.e. λ~  while to define element 

of V we use a sign ( -) called bar over or below the element i.e. (u ) or ( u ). Also the vectors in 

dual space V* are called the covariant vector while the vectors in original vector space V are 

called the contravariant vector. Again basis vectors of V* carry superscripts components relative 

to basis vector carry subscripts. Thus if λ~  is a vector of dual space i.e. covariant vector then 

we can write it in terms of basis vector 
a

a eλλ =
~  

where { }ae  is the basis set of V*. 

Let ae~  be the real valued function that assigns any vector ∈λ V into a real number which is it’s 

a’th component. 

( ) aae λλ =~ . 

In particular the basis vector be  has only b’ th component and all other vanishes. So we have 

( ) a
bb

a ee δ=~                                                                                                  1.15 

The dimension of V* will be the same as V. and in order to define any ae~  all the vectors { }be  

must be known. A change in any ke  generally changes all the dual basis 
ae~ . 

Now consider the action of a co vector ∈u~ V* on a arbitrary contravariant vector ∈λ V 

   ( ) ( )a
a eλµλµ ~~ =  

( )a
a eµλ ~=  

( ) ( )a
a ee µλ ~~=  

( )λµ a
ae~=  

The quantity ( )aa eµµ ~=  are called the components of µ~  on the basis dual to{ }ae . 

IJSER
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VECTOR & TENSOR

Now we show that { }ae~  form a basis set in V*. Also we have the relation  

                0~~ =a
a ex                      where Kxa ∈  and 0~  is the zero functional. 

implies that 

( ) b
a
bab

a
a xxeex === δ~0  for all b . 

which shows that  { }ae~  is linearly independent. 

A change of basis {(1.3) and (1.4)} in vector space V induces a change of the dual basis. Let 

denote the dual of the prime basis { }ae ′  by { }ae ′~ . So by definition 

 ( ) a
bb

a ee δ=′
′~                                                                                              1.16 

But by using (1.3) we can write 

( ) ( ) ( ) a
b

a
c

c
bc

ac
bc

c
b

a
b

a XXeeXeXeee ′′
′

′′
′

′′′ ==== δ~~~
                                     1.17 

Now the matrix a
bX ′  has an inverse defined as b

aX ′  

Then 

 
a
c

b
c

a
b XX ′

′′
′ = δ  , 

d
b

a
d

a
b XX δ=′′

                                                                     1.18 

Multiplying (1.17) by c
aX ′  

 ( ) c
b

a
b

c
ab

ac
a XXeeX δ== ′

′
′

′
~

                                                                          1.19 

Now comparing with (1.15) we get ab
a

b eXe ~~
′=  

Thus we can easily obtain the transformation law for components 

( ) ( )( )λλλ ba
b

aa eXe ~~ ′′ ==′  

    ( ) ba
b

ba
b XeX λλ ′′ == ~

                                                                           1.20 

Similarly 

( ) ( )a
a
kkk eXe ′=′=′ µµµ ~~

 

    ( ) a
a
ka

a
k XeX µµ ′′ == ~

                                                                                    1.21 

Thus the dual basis of V* transform according to 

   
ba

b
a eXe ~~ ′′ =    and   

ba
b

a eXe ′
′= ~~

 

And component of ∈µ~ V* transform according to 

   a
a
kk X µµ ′′ =    and   b

b
kk X µµ =  

By the procedure mentioned above to compute the dual V** of V* with dual basis { }
a

f  of V** 

such that: 

IJSER
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( ) b

a
b

a
ef δ=~

 
Let express any vector ∈λ V** in terms of components as 

              a
a fλλ =

 

Under a change of basis of V, components of vectors in V transform according to ba
b

a X λλ ′′ = . 

This induces a change of dual basis of V*, under which components of vectors in V* transform 

according to b
b
aa X µµ ′′ = . In turn this induces a change of basis of V** under which the 

components of vector in V** transform according to ba
b

a X λλ ′′ =  (Because the inverse of the 

inverse of a matrix is the matrix itself). That is the components of vectors in V** transform in 

exactly the same way as the components of vectors in V. 

This means that if we set up a one to one correspondence between vectors in V and V** by 

making a
a eλ  in V correspond to 

a
a fλ  in V**, where { }

a
f  is the dual of the dual of { }ae , then 

this correspondence is basis independent. 

A basis independent one to one correspondence between vector spaces is called natural 

isomorphism and naturally isomorphic vector space identified by identifying corresponding 

vectors. Consequently we shall identify T** with T. 

 

1.3 TENSOR PRODUCT: 

 Let T  and U be two vector space over R  . Then *T  and *U  indicates the duals of T  and 

U respectively. From these two vector spaces we can construct a new vector space under an 

operation called “tensor product” i.e. the Cartesian product UT ×  is the set of all ordered pairs 

of the form UwTvwv ∈∈ ,;),( . Thus the space of all sets of ordered pairs forms a vector 

space. [5] 

A bilinear functional f  on UT ×  is a real valued function RUTf →×:  which is bilinear i.e. 

satisfy the following condition: 

),(),(),( 2121 vunfvumfvunumf +=+
 

),(),(),( 2121 vuflvufkvlvkuf +=+
 

Where Rlnm ∈,, and  UvvvandTuuu ∈∈ 2121 ,,,, . 

As we have seen that linear functional on a vector space forms a vector space under the 

operation addition and multiplication by scalar whose set is known as the dual of original vector 

space so it is easy to show that the set of all bilinear functional on vector space UT × forms 
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another vector space under the operation additions and multiplication by a scalar which is the 

dual ** UT × of the original vector space UT × . Hence we can conclude that the tensor product 

UT ×  of T and U  as the vector space of all bilinear functional on ** UT × . 

 Alternatively,  

A vector which is a member of the tensor product space is called a tensor. Since a tensor 

product means product spaces it is possible to define a tensor which 

is the tensor product µλ ⊗  of individual vectors T∈λ and U∈µ by setting  

                              ab
ba eµλµλ =⊗                1.22                  

where ba and µλ   are the components of λ  and µ respectively relative to the basis of T and 

U  which induces the basis of UT ⊗ . Though this definition is given via bases, it is in fact basis 

independent. 

In particular,     baba efe =⊗                                                                                                 1.23 

The tensors in UT ⊗  having no form like µλ ⊗  are called decomposable. [3] 

The dimension of UT ⊗  is the product of the dimensions of T and U also in a natural way 

bases of T and }{ be of U induces a basis }{ abe  of UT ⊗ . The components of any 

UTP ⊗∈ relative to the basis given in terms of the dual bases of *T and *U  by  

                      )~,~( baba eePP =  

Let find out the transformation rule for the component abP  and induced basis vector abe  when 

new bases are introduced into T  andU . Let the bases of T & U  are transformed according to 

d
d
bbc

c
aa eXeandeXe ′′′′ ==                                                                                       1.24 

This induces a new basis }{ bae ′′ in UT ⊗  and for any **)~,~( UT ⊗∈µλ  we get  

dc
d
b

c
ababa XXe µλµλµλ ′′′′′′ ==)~,~(                                                                                         1.25 

,or )~,~()~,~( µλµλ cd
d
b

c
aba eXXe ′′′′ =  

Thus we obtain  

cd
d
b

c
aba eXXe ′′′′ =                                                                                                                    1.26 
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Now for any basis vector bae ′′ of UT ⊗  and for any UTP ⊗∈ we get  

ba
ba ePP ′′
′′=                                                                                                                           1.27 

Substituting the value of (1.26) in (1.27) 

dc
d
b

c
a

ba eXXPP ′′′′
′′=  

By uniqueness of components  

bad
b

c
a

cd PXXP ′′
′′=  

In similar fashion we can show that  

cdb
d

a
c

ba PXXP ′′′′ =  

Also a tensor showing N contravariant vectors and M co variant vectors(dual) is said to have 

valence )( N
M .Again vectors are tensors of type )(1

0 and they are linear function of one-

form(dual).Similarly one-form(dual) are tensors of type )(0
1 . 

 

1.4 METRIC TENSOR: 

 The components  abg  of a symmetric covariant tensor having valence   )(0
2 is called metric 

tensor while it must keep the following properties. 

                      a) Symmetric i.e. baab gg =  

                      b) Non singular i.e. 0≠abg  

Equivalently has an inverse i.e. abg  has an inverse. 

 Let T is a vector space. Then by virtue of the theory of vector space, a metric tensor provides T 

with an inner product  〉〈 µλ, of vectors T∈µλ,  defined by  

ab
ba

ba
ba

b
b

a
a geegeeggg λµλµλµλµµλµλ ====≡〉〈 ),(),(),(),(,                           1.28 

In particular,                      abba geeg =),(   

Since the matrix ][ abg  is non singular, its inverse must exist. Let ][ abg  be the a’th row b’th 

column of this inverse. Then we obtain  

                                            a
cbc

ab gg δ=  
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Also due to the property baab gg = we have  baab gg =  

In tensor algebra metric tensor also serve as a mapping. It maps a vector into one form (linear 

real valued function of vectors) in a 1-1 correspondence  

Let T∈λ  then ),(λg  for some fixed λ  is a one forms. Thus  

                                              ),(~ λλ g=                                                                                1.29                  

Let us take the component version of the equation  

                                            
b

abba
b

ab
b

ab
b

aaa

ggeegeeg

ege

λλλλ

λλλ

====

==

),(),(

),()(~
 

In the above equation last equality follows from the symmetry in abg  .Similarly 

                                               
c

fc
f

f
df

cd
d

cd ggg

λ

λδ

λλ

=

=

=

 

Which shows that the map is invertible .The metric provides a unique pairing between one 

forms and vectors. 

Let us define the length of some vector in terms of metric tensor. Let T∈λ  be any contra 

variant vector. Then the length denoted by 2λ   is the inner product 〉〈 λλ,   defined as  

                                              ba
abgg λλλλλλλ =≡〉〈= ),(,2  

Thus we obtain,     
2/12/1 a

a
ba

abg λλλλλ ==  

The modulus signs are used due to g may be indefinite for any covariant vector µ~  its length is 

defined similarly  

ba
abgg µµµµµµµ =≡〉〈= )~,~(~,~~ 2  

Hence   
2/1~ ba

abg µµµ =  

By the definition of inner product we can also find the angle between two non null contra 

variant vectors µλ,  as  

IJSER



 
 

 12

VECTOR & TENSOR

µλ
µλ

θ
〉〈

=
,

cos  

nm
mn

dc
cd

ba
ab

gg
g

µµλλ
µλ

θ =cos  

In case of indefinite metric tensor we get 1cos 〉θ  giving as it were a complex angle 

between the vectors. 

Again we are always free to choose a new basis }{ je ′ in which the new metric components  

                    kl
l
j

k
ilk

l
j

k
il

l
jk

k
ijiji gXXeegXXeXeXgeegg ′′′′′′′′′′ ==== ),(),(),(  

                                                 l
jkl

k
iji XgXgor ′′′′ =,  

Consider the above equation as a matrix equation. Then it is convenient to rewrite this equation 

as  

                                                   l
jlk

k
iji XgXg ′′′′ =  

Again by imposing the matrix algebra, it is easy to see this matrix equation 

                                                  XgXg T=′  

where TX is the transpose of the matrix X , where entries are k
iX ′  we will now see that a claver 

choice of X will reduce the matrix g ′  to a very simple form. Since X is arbitrary, we ill take it 

to be the product of two matrices 

                                                    ODX =  

where O  is the orthogonal matrix )( 1 TOO =−  and D  is the diagonal matrix (in 

particular DDT = ).Then we get  

                                                 1)( −=== ODODODX TTTT   (by using matrix algebra)               

And   

                                                 ODgODg 1−=′  

It is well known that any symmetric matrix such as g  can be reduced to diagonal form, dg by a 

similarity transformation using an orthogonal matrix. So let us choose O  to do this: 

                                                  OgOgd
1−=  
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                                                 DgDg d=′  

If dg is the matrix diag )............,,( 321 ngggg and as yet our undermined matrix D  is              

diag )............,,( 321 ndddd  Then g ′  is  

                                              ).........,,( 22
33

2
22

2
11 nndgdgdgdgg =′  

We now choose 
2/1)( −= jj gd  so that   each element the diagonal of g ′  is either 1or -1. We 

cannot use jd to change the sign of jg , only its magnitude. Now the diagonal elements of dg  

are the eigen values of g , and are unique apart from the order in which they appear. Moreover, 

since g has an inverse, none of the eigen values is zero. If we choose O  to make all the 

negative ones appear first, then we have proved the theorem that any vector space with a metric 

tensor has a basis on which the metric tensor has the canonical form diag (-1……………-1, 

1……….1) Such a basis is said to be orthonormal. If s is the number of +1”s and t is the 

number of -1”s in the canonical form then s-t is the signature of the metric (the difference in the 

number of minus and plus signs) and s+ t is the rank of the metric (the number of non zero 

eigen values) .If the a metric is continuous, the rank and signature of the of the metric tensor 

field are same at every point [15]. 

The metric tensor may be differentiable as one requires but it must at least be continuous. This 

implies that its canonical form must be constant everywhere since it is composed of only 

integers and integers cannot change continuously. So we speak the signature of the field g .  As 

long as one can choose the basis transformation matrix  X  freely at each point, one can 

transform from any given basis field to a globally orthonormal basis in which the components 

of g  are its canonical one. But this transformation field X  is not usually coordinate 

transformation and in fact it is generally impossible to find a coordinate basis which is also 

orthonormal in any open region U of a manifold. 

    

1.5 TENSOR ALGEBRA:  In this context we shortly discuss the algebraic operations of 
tensors. 

(A) LINEAR COMBINATION: 

Two tensors of type ),( qp  can be added and the some produces another tensor of same type i.e.  

),( qp . Then we can write  

p

q

p

q

p

q
CBA µµµ

λλλ
µµµ
λλλ

µµµ
λλλ

..............

................
..............
................

..............

................
21

21

21

21

21

21
=+  
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i.e  p

q
C µµµ

λλλ
..............
................

21

21
 is the linear combination of p

q
A µµµ

λλλ
..............
................

21

21
 and p

q
B µµµ

λλλ
..............
................

21

21
 

(B) DIRECT PRODUCT: 

Given a tensor of type ),( qp  i.e. p

q
A µµµ

λλλ
..............
................

21

21
and a tensor of type ),( qp ′′ i.e. 

′
′

′′

p

q

aaaB ..............
................

21

21 ννν then their direct product is given by 

p

q
A µµµ

λλλ
..............
................

21

21

p

q

aaaB ′

′′

..............
................

21

21 ννν = pp

qq

aaA ′

′

........................
.............................

121

121

µµµ
ννλλλ  

is a tensor of type ),( qqpp ′+′+ .This process is also known as outer product . 

(C) CONTRACTION OF TENSOR: 

The algebraic operation by which the rank of a mixed tensor (covariant & contravariant) is 

lowered by 2 is known as contraction. In the contraction process  one contravariant index and 

one covariant index of a  mixed tensor are set equal and the repeated index summed over. The 

resulting tensor is of rank lowered by two than the original tensor i.e. 

121

121

121

121

21

21

...........
..........

...........
..........

...........
..........

−

−

−

−
→= p

q

p

q

p

q
BAA µµµ

λλλ
λµµµ
λλλλ

µµµ
λλλ  

(D) INNER PRODUCT: 

The direct product of two tensor followed by a contraction is known as inner product i.e.  

   1121

11211

121

21

21

211

............,
..................,

......,
........

......,
.........,

−′

′−

−′

′
= pp

qq

qp

q

p

q
CBA ννµµµ

σσλλλ
λννν

σσσ
µµµ
λλλ . 

But this operation also be performed by two arbitrary   tensor followed by same process. i.e.  
pp

qq

p

q

p

q
CBA ′

′

′

′
= ννµµ

σσλλ
ννλ
σσµ

µµµ
λλλ

..........
...........

......,
........

......,
.........,

22

22

21

21

21

211
 

F) LOWERING & RAISING OF INDICES: 

his process can be of course be combined in various ways. A particular important operation is 

given by a metric tensor, the raising and lowering of indices with the metric. Let us consider a 

tensor p

q
A µµµ

λλλ
..............
................

21

21
 and  the direct product plus contraction with the metric tensor  νµ 1

g  gives 

          νµ 1
g p

q
A µµµ

λλλ
..............
................

21

21
= p

q
A µµ

λλλν
..............

................
2

21
 

 which is a (p-1,q+1) tensor, 
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1.6 TENSOR DENSITIES: 

While tensors are the objects which in a sense transform in the nicest and the simplest possible 

way under coordinate transformations, they are not only the relevant objects. An important class 

of non- tensors is so called tensor densities. The prime example of tensor density is the 

determinant µνgg det−= of the metric tensor (-ve sign included only to make g  + ve in 

signature (- +++). [10][6][18] 

Tensor densities are needed in volume and surface integral as well as in formulating an action 

principle from which field equation can be derived in a convenient way.  

Consider a transformation from coordinates µx and µx′ . An element of four dimensional 

volume element transform as 

                32103210 dxdxdxdxJxdxdxdxd =′′′′                                                                      1.30 

where J is the Jacobean of transformation given by 

3

3

2

3

1

3

0

3

3

1

2

1

1

1

0

1

3

0

2

0

1

0

0

0

3210

3210

......................................)(
)(

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

xxxx
xxxxJ

∂
′∂

∂
′∂

∂
′∂

∂
′∂

∂
′∂

∂
′∂

∂
′∂

∂
′∂

∂
′∂

∂
′∂

∂
′∂

∂
′∂

=
∂

′′′′∂
=                                                             1.31 

In short we can write J as  

   
x
xJ

x
xJ

′∂
∂

=
∂
′∂

= −1;                                                                                                          1.32                  

where the 2nd equation follows by taking matrix of both sides of the identity  

λ
νµ

λ

ν

µ

δ=
′∂

∂
∂
′∂ )()(

x
x

x
x                                                (matrix equation)                                     1.33 

Now we can write the equation (1.30) as  

                                          xJdxd 44 =′                                                                                    1.34 

We get the transformation of covariant metric tensor as follows:  

                                           ν
µν

µ
baab XgXg ′′′=                                                                       1.35 

Let us consider (1.35) as a matrix equation and take determinant on both sides of (1.35)  
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gJgor

jgJg
′=

′=
2,

             where aa x
xX
∂
′∂

=′
µ

µ                                                  1.36                  

where )det( µνgg ′=′ .In general g is negative quantity, so take a square root of the negative of 

(1.36) 

                                                     
ζζ ′=

′−=−

Jor
gJg

,
                   1.37 

where gandg ′−=′−= ζζ and ζ  is called curly of g . 

Consider a scalar quantity s that remains invariant under co-ordinate transformation i.e. 

    == µ
µ BAs r

r
r

r

r

r

BAB
x
xA

x
x

xx
xBdx

x
xA

x
BdxA ′′′=′

∂
∂′

∂
∂

=
∂
∂

∂
∂

∂
∂

=
∂
∂ ′

′′′

′
′

′
ν

νµ
ν

ν

µ

µ
ν

ν

µ

µ
µ δ)()()()(  

                                          sBAsor ′=′′= ν
ν,  

Also consider the following volume integral over some four dimensional region Ω  

                       xdsxdJsxdsxdgs ′′′=′==− ∫∫∫∫
Ω′ΩΩΩ

4444 ζζζ                                       1.38 

Where Ω′ is the region in the co-ordinate µx′ that correspond to µx .Equation (1.37) implies 

that  

                                                           =∫
Ω

xds 4ζ Invariant                                                     1.39 

For this reason ζs is called scalar quantity that is its volume integral is an invariant. From 

(1.36) and (1.37) we see that ζ  is a scalar density of weight -1; so that wζ  is a scalar density of 

weight w .In general a tensor density of weight W  is an object that transform as 

                                     p

qq

q
p

q
T

x
x

x
x

x
x

x
xT W µµµ

νννµ

µ

µ

µ

µ

µ
µµµ

ννν
.....

.....
......

........
.21

212

2

1

1
..21

21
)(det

∂
∂

−−−−−
∂
∂

∂

∂
∂
′∂

=
′′′

′′′
′′′  

There is one more tensor density which like the kornecker tensor has the same component in all 

coordinate systems. This is the totally antisymmetric Levi-civita tensor µνρσ∈  defined by  

⎪
⎩

⎪
⎨

⎧
−
+

=∈
..;0

.;1
.;1

equalareindicesmoreortwoanyif
ordereferenceofnpermutatiooddtheisif
orderreferenceofnpermutatioeventheisif

µνρσ
µνρσ

µνρσ  
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Chapter two 
 

 
                 MANIFOLDS 

 
 

 
2.0 INTRODUCTION: 
 
 
In general relativity the mathematics of curved space where the curvature is created by energy 

and momentum is closely related to the concept of manifold. So a manifold (in which a curve is 

considered as a set of points) is an essential tool. After discussing some preliminary topics we 

will begin with the notion of manifold which generalizes the concept of a surface or a curve 

in 3R .However the definition will be given without reference to an embedding in nR  .Rather it 

will generalizes the idea of a parametric representation  of a  surface i.e. homeomorphic map 

from an open piece the surface in the plane 2R .Such a parametric representation is called a 

chart or a co-ordinate system. The surface is then covered by the domains of the charts .Charts 

are used to define on manifolds objects and attributes originally defined on nR . 

 

The concept of differentiable manifold generalizes the idea of differentiable surface in 

Euclidian space i.e. 3R  and has enough structure so that the basic concepts of calculus can be 

carried out.From the notion of directional derivative in Euclidian space we will obtain the 

notion of tangent vector to a differentiable manifold .We will study the the mapping between 

manifolds and the effect that mappings have on the tangent vector. Also we will discuss 

covariant differentiation of vectors and parallel displacement in manifold. 

 

 

To study this chapter I have to deal with the following books: [1], [2], [3], [8], [11], and [15]. 
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2.1 TOPOLOGY: 

To discuss manifolds, we need to have basic knowledge of topology. 

A Topological space is a set with structure allowing for the definition of neighboring points and 

continuous functions  

Definition:  A system U of subsets of a set X defines a topology on X if U contains  

(a)The null set and the set X itself. 

(b)The union of every one of its subsystems 

(c)The interaction of every one of its finite subsystems  

The sets in U are called the open sets of the topological space (X,U) often abbreviated to X. 

Example: The open sets of R, defined by unions of open intervals bxa 〈〈   and the null set is 

a topology on R. Let us test this: 

The properties (a) and (b) are obviously satisfied and straight forward.  To verify (c) let us 

consider  

                               
j

Jj
i

Ii

BBAA UU
∈∈

===
 

iA and jB  are open sets. Then  

                             

)( ji

Jj
Ii

BABA II U
∈
∈

=

 

is open since the intersection of two open intervals is either an empty set or an open interval. 

This topology is called usual topology on R. 

Let X be a non empty set and let the open set consist of ϕ  and X; This topology is called trivial. 

Let X is a non empty set and let the open set consist of all subsets of X, ϕ  and X included. This 

Topology is called the discrete topology. 

A topological space is a Hausdorff (separated) if any two distinct points possess disjoint 

neighborhoods. In a Hausdorff space the points are closed subsets. The usual topology on R  is 

Hausdorff. The discrete topology is Hausdorff. The trivial topology is not Hausdorff. 
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2.2 COVERING: 

A system }{ iU of (open) subsets of X is  a (open) covering if each element in X belongs to at 

least one  . )(..}{ XUUeiU ii =   If the system  }{ iU  has a finite number of elements the covering 

is said to be finite. Unless otherwise specified a covering will always be as open covering. 

A sub covering of the covering U is a subset of U which is itself a covering. A covering U is 

locally finite if for every point x, there exist a neighborhood N(x), which has a non empty 

intersection with only a finite number of members of U. 

A subset XA ⊂  is compact if it is Hausdorff and if every covering of A has a finite sub 

covering. 

 
2.3 MANIFOLDS: 
 
 A manifold is one of the most fundamental concepts in mathematics and physics which 

captures the idea of a space that may be curved or may have complicated topology. Then a 

manifold is defined as a Hausdorff topological space such that every point has a neighborhood 

homeomorphic to nR  i.e. a set of points M is defined to be a manifold if each point of M has an 

open neighborhood which has continuous 1-1 map onto an open set in nR .(By nR  we mean the 

set of all n’tuples of real numbers )...,,( 321 nxxxx ).But in local region ‘M is look like nR  (By 

local like we don’t mean that the metric is same but only basic notion of analysis like open sets, 

functions and coordinates). The entire manifold is constructed by smoothly sewing together 

those local regions. The dimension of the manifold is essentially n. the definition of manifold 

involves only open sets and not the whole of M and nR because we don’t want to restrict to 

global topology of M. 

Example of manifolds:  

  (1) En is an n-dimensional manifold with a single identity chart defined by 

( ) in
i yyyx =......1      

 (2) The set of all (pure boost) Lorenz transformations is like wise a three dimensional 

manifold; the parameters are the three components of the velocity of the boost. 

 (3) For R-particles, the numbers consisting of all their position (3R number) and 

velocities (3R numbers) define a point in 6R-dimensional manifold, called phase space. 
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 (4) For particularly common manifold is a vector space. To show such a space is a 

manifold we draw a map from it to some nR . Let the vector space be n-dimensional and choose 

any basis{ }nee ,......,1 . Any vector u  is then represent able as a linear combination 

nn eaeaeau +−−−−++= .2211  

But u  is a pointV , so this establish a map from V  to nR , ( )naau ......1a . In fact every point in 

nR  correspond to a unique vector in V  under this map. So not only is  V  covered entirely by 

the single coordinate system, we have just constructed, but  V  is identical as a manifold 

with nR . 

 

2.4 DIFFERENTIABLE MANIFOLD: 

 

A differentiable manifold is essentially a topological space with certain structure which is 

locally homeomorphic to nR .  

Let M  be a manifold and ψ  is a one to one map from a neighborhood U  of M  onto an open 

set in nR  i.e. ψ  assigns to every point Up∈  an n-tuple of real numbers ( )nxxx ..,,........., 21 . 

A chart ( )ψ,U  of a manifold M  is an open set U  of M , called the domain of the chart, 

together with a homeomorphism VU →:ψ  of U  onto an open set V  in nR . The coordinates 

( )nxxx ..,,........., 21  of the image ( ) nRx ∈ψ  of the point MUx ⊂∈  are called the coordinates 

of x  (local coordinate) in the chart ( )ψ,U . A chart ( )ψ,U  is also called a local coordinate 

system. 

 
FIG: 1 

Consider a number of open neighborhood which covers M  and define them by αU  and for 

each neighborhood there is a distinct coordinate function which may be denoted by αψ . The 
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open neighborhood must have overlaps if all points of M  are to be included in at least one and 

these overlaps enables us to give a more characterization of manifold. 

Suppose U ′  is an open neighborhood overlapping U  and U ′  has a map ψ ′  onto an open 

region of nR . The intersection of U  and U ′  is open and is given two different coordinate 

systems by the two maps. To relate this coordinate system, pick a point ( )nxxx ..,,........., 21  

from the image of overlap under the mapψ . As defined before, ψ  has an inverse 1−ψ , so there 

is a unique point p  in the overlap which has these coordinates underψ . Also let, ψ ′  assigns 

the point p  of overlaps into another point ( )nyyy ..,,........., 21  in nR . 

In this way we obtain function relationship (coordinate transformation) 

 

                    ……………………. 

             ……………………. 

 …………………….             

( )nnn xxxyy ..,,........., 21=  
 

If the partial derivatives of order k  or less of all these functions { }iy  with respect to all the{ }ix  

exist and continuous then the maps ψ  and ψ ′  strictly the charts ( )ψ,U , ( )ψ ′′,U  are said to be 
kC  related. 

Consider two charts ( )ψ,U  and ( )ψ ′′,U  which are said to be compatible if the combined map 
1−′ ψψ o  on the image ( )UU ′∩ψ  of the overlap of U  and U ′  is a homeomorphism 

(continuous one-one and having continuous inverse). 

An atlas of class kC  on a manifold M  is a collection of sets ( ){ }αα ψ,U  of charts of M  such 

that the domains { }αU  cover M  and homeomorphism satisfy the compatibility condition. 

A topological manifold M  together with an equivalence class or compatible class of kC  atlases 

is a kC  structure on M  and we say that M  is a kC  manifold. 

Strictly speaking a differentiable manifold is a manifold such that the maps 1−′ ψψ o  of open 

sets of nR  into nR  are differentiable but not necessarily continuously differentiable. Very often 

the expression, differentiable manifold, smooth manifold are used to mean a kC  manifold 

where k  is large enough for the given context, eventually ∞=k . A manifold of class 1C  

(which includes kC  for 1>k ) is called a differentiable manifold. In most cases it is impossible 

to cover the manifold with a single co-ordinate neighborhood such as the upper part of a sphere 

( )nxxxyy ..,,........., 2111 =
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in a stereographic projection. The differentiability of a manifold endows it with an enormous 

amount of structure: the possibility of defining tensors, differential forms and lie derivatives. 

 

Two co-ordinate system ix and jy  on an open set of nR are said to define same orientation if 

the Jacobean determinant )(/)( ji yDxDJ =  is positive at all points of the set. A chart 

),( ϕU on a manifold M defines a orientation of U  by means of  the orientation provided by the 

co-ordinates ))(( ii xx =ϕ on nRU ∈)(ϕ .A differentiable manifold is said to be orientable if 

there exists an atlas such that on the overlap VU ∩  of any two charts ),( ϕU and 

),( ψV ; 0)(/)( 〉ji DD ψϕ . A manifold defined in terms of such an atlas is said to be oriented. 

  An orientation on a manifold i.e. at a point Mp∈ can also defined in terms of the orientation 

of the tangent vector space )(MTp .If the manifold is orientable a frame transported along any 

path in the tangent bundle of the manifold comes back to its starting point with the same 

orientation.  

 

2.5 DIFFEOMORPHISM: 

 

Let M and N be two differentiable ( kC ) manifold of dimension m and n respectively. 

Let NMf →: . The function 1−ϕψ oo f  represents f  in the local charts ( )ϕ,U , ( )ψ,W  of M 

and N. the differentiability of RMf →:  is simply a particular case of the situation now 

considered. 

                      

                                       
                                                                         FIG:2 
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f  is rC ,differentiable at x  for kr ≤  if 1−ϕψ oo f  is rC  differentiable at ( )xϕ . In other 

words f  is differentiable }{ rC  at x  if the coordinates ( )( )ixfy αα =  of y  are differentiable 

}{ rC functions of the coordinates ( )ix  of x . f  is rC  mapping from M to N if f  is rC  at 

every point Mx∈ . 

In particular f  is a  }{ rC  diffeomorphism if f  is bisection and f  and 1−f  are continuously 

}{ rC differentiable. Diffeomorphism are to differentiable manifold what homeomorphism is to 

topological space and what isomorphism are to vector space. 

 

The composition of deffeomorphism is again a deffeomorphism. Thus the relation of being 

deffeomorphic is an equivalence relation of the collection of differentiable manifolds. It is quite 

possible for a locally Euclidian space to possess distinct differentiable structures which are 

deffeomorphic. In a remarkable paper Milner showed the existence of locally Euclidian space 

(S7 is an example)- which possess non diffeomorphic structure .There are also locally Euclidian 

space which possess no differentiable structure at all . 

Now let find a relation between the coordinate system ix  and ix′ . Take a point p in UU ′∩  

which gives the image ( )nxxx ..,,........., 21  under the map ψ  and ( )nxxx ′′′ ..,,........., 21  under the 

mapψ ′ . The primed coordinates can be written in terms of unprimed coordinates by the 

equations 

               ( )nii xxxfx ..,,........., 21=′  

  where  1321 )....,,( −== ψψ offfff n  

Similarly 

              ( )nii xxxgx ′′′= ..,,........., 21
 

 where ( ) ( ) 121 ,........,, −′== ψψ ogggg n . 

The function f  and its inverse g  are both one to one and differentiable and it follows that the 

Jacobean j

i

x
x
∂
′∂  and j

i

x
x
′∂

∂  are non-zero. 

 

2.6 SUBMANIFOLD: 

 

A subset S of a manifold M of dimension n is a sub manifold of M if every point Sx∈  is in the 

domain of a chart ( )ϕU,  of M such that 
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{ }aRSU ×→∩ 2:φ  by ( ) ( )qnq aaxxx −= ,.....,,....., 11φ . 

where a  is a fixed element of qnR − . It is easy to check that the charts ( )φ,u  where SUu ∩=  

and qRu →:φ  by ( ) ( )qxxx ,.....,1=φ , form an atlas on S of the same class as the atlas ( ){ }φ,u  

of M. 

If S already has a manifold structure, it is called a sub manifold of M if it can be given a sub 

manifold structure which is equivalent to the already existing structure. Sub-manifolds are 

defined by a system of equations. Thus we can say a sub manifold of a manifold M is a 

manifold which is a smooth subset of M. 

An m-dimensional sub-manifold S of an n-dimensional manifold M is a set of points of M 

which have the following property: in some open neighborhood in M of any point p of S there 

exists a coordinate system for M in which the points of S in that neighborhood are the points 

characterized by  0.....21 ==== −mnxxx  . 

If M is ordinary three dimensional Euclidian space, then ordinary smooth surfaces and curves 

are sub-manifolds. In four dimensional Minkowski space-time, the 3-dimensional space of 

events simultaneous to a given event in the view of a particular observer (same time coordinate) 

is a sub manifold. 

The solutions of differential equations are usually relations 

say ( ){ } pixxfy m
ii .......1,........1 == , can be thought of as sub-manifolds with coordinates 

{ }mxx ........1  of larger manifold whose coordinates are{ }m
p xxyy .................. 1

1 . 

Suppose p is a point of a sub manifold S (of dimension m) of M (of dimension n). a curve in S 

through p is also a curve in M through p, so naturally a tangent vector to each curve at p is a 

element of both Tp, the tangent space of M at p and Vp, the tangent space to S at p. in fact, Vp is 

a vector subspace of Tp not in Vp has no unique projection onto Vp. 

The solution of one-forms at p is just the reverse. Let *
pT  be the dual of Tp, the set of one forms 

at p which are functions defined on all Tp. similarly let at *
pV  be the dual of Vp, the one-forms S 

itself has at p. any one-form in *
pT  defines one in *

pV : this only involves restricting its domain 

from all of Tp down to its subspace Vp. but there is no unique element *
pT  corresponding to a 

given element of *
pV , since simply knowing the values of a one-form on Vp does not tell us 

what its value will be on a vector not in Vp, thus a vector defined on a sub manifold S is also a 

vector on M and a one-form on M is also a one-form on S. but neither statement is reversible. 
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2.7 A LITTLE MORE GEOMETRY ON MANIFOLD [15]: 
 

We have introduced maps between two different manifolds and how maps could be composed. 
We now turn to use of such maps in carrying along tensor fields from one manifold to another. 
Let us consider two manifolds M and N, possibly of different dimension, with the coordinate 
system µx  and αy  respectively. We imagine that we have a map NM →:φ  and a 
function RNf →: .[11] 

 
                                                 FIG: 3 

It is obvious that we can compose φ  with f  to construct a map ( ) RMf →:φo , which is 

simply a function on M. such a construction is sufficiently useful that it gets its own name; we 

define the pullback of f  by φ  denoted f∗φ , by: 

( )φφ off =∗                                                                                           
The name makes sense, since we think of ∗φ  as “pulling back” the function f from N to M. 

We can pull function back but we can’t push them forward. If we have a function RMg →: , 

there is no way we can compose g with φ  to create a function on N; the arrow sign don’t fit 

together correctly. But recall that a vector can be thought of as a derivative operator that maps 

smooth functions to real numbers. This allows us to define the push forward of a vector. If V(p) 

is a vector at the point p on M, we define the push forward vector V∗φ  at the point ( )pφ  on N 

by giving its action on functions on N: 

( )( ) ( )fVfV ∗
∗ = φφ                                                                               

So to push forward a vector field we say “the action of V∗φ  on any function is simply the 

action of V on the pullback of that function”. 

This is a little abstract and it would be nice to have a more concrete description. We know that a 

basis for vectors on M is given by the set of partial derivatives µµ x∂
∂

=∂  and a basis of N is 
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given by the set of partial derivatives αα y∂
∂

=∂ . Therefore we would like to relate the 

components of µ∂= µVV  to those of ( ) ( ) α
α

φφ ∂= ∗∗ VV . We can find the sought- after relation 

by applying the pushed- forward vector to a test function and using the chain rule 

( ) ( )fVfV ∗
∗ ∂=∂ φφ µ

µ
α

α

 

     ( )φµ
µ ofV ∂=  

     
f

x
yV αµ

α
µ ∂
∂
∂

=
 

 

The simple formulae makes it irresistible to think of the push forward operation ∗φ  as a matrix 

operator, ( ) ( ) µα
µ

α φφ VV ∗∗ = , with the matrix given by ( ) µ

α
α
µφ

x
y
∂
∂

=∗ . 

The behavior of a vector under a push forward thus bear an unmistakable resemblance to the 

vector transformation law under change of coordinate. In fact it is a generalization, since when 

M and N are the same manifold the construction are (as we shall discuss) identical, but don’t be 

fooled, since in general µ  and α  have different allowed values and there is no reason for the    

matrix µ

α

x
y
∂
∂  to be invertible 

 

2.8 TANGENT VECTOR AND TANGENT SPACE ON MANIFOLD: 

 

The tangent vector space ( )MTx  on a manifold M at a point Mx∈  is used to define 

differential properties of objects in a neighborhood of x independently of local coordinates. The 

tangent vector space ‘models’ the manifold at x, most approximation in physics and 

mathematics consist in replacing locally a given manifold by its tangent vector space at a point 

x, such an approximation can be called local linearization. ( )MTx  is a isomorphic to nR  if M is 

a manifold of dimension n. 

Let us imagine that we want to construct the tangent space at a point p in a manifold M, using 

only things that are intrinsic to M (no-embedding in a higher dimensional space etc). Consider 

the set of all parameterized curves through p-that is the space of all (non-degenerate) maps 

MR →:γ  such that P is in the image ofγ . Let ( )λγ  be a curve passing through the point p of 

M described by the equation ( )λaa xx = , na .......1= . Also consider a differentiable function 
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( )nxxf .......1  i.e. ( )axf  on M. At each point of the curve f  has a value. Therefore along the 

curve there is a differentiable function ( )λg  which gives the value of f  at the point whose 

parametric value isλ . Hence 

                   ( ) ( ) ( )( ) ( )an xfxxfg == λλλ .........1
 

This implies 

                    a

a

x
f

d
dx

d
dg

∂
∂

=
λλ  

which is true for any function g so we can write 

                       a

a

xd
dx

d
d

∂
∂

=
λλ                                                                          2.1                    

One would say that the set of numbers 
⎭
⎬
⎫

⎩
⎨
⎧

λd
dx a

 are components of a vector tangent to the curve 

)(λax  since curve has a unique parameter, so to every curve there is a unique set  
⎭
⎬
⎫

⎩
⎨
⎧

λd
dxa

 

which are then said to be components of the tangent vector to the curve. Thus every curve has a 

unique tangent vector. If p be the point whose parametric value is 0 then the tangent vector V  

at p can be written as 

                                  a
a

x
vV

∂
∂

=
. 

The real coefficients av  are the components of vectors V  at p with respect to the local 

coordinate system ( )nxx .......1  in the neighborhood of p. Now we will make the following 

claim: 

“The tangent space pT  can be identified with the space of directional derivative properties 

along the curves through the point p”.  

To establish this idea we must demonstrate two things: first that the space of directional 

derivatives is a vector space and the second that it is the vector space we want (It has the same 

dimensionality as M, yields a natural idea of a vector pointing along a certain direction and so 

on) [15]. 

The first claim, that directional derivative forms a vector space, seems straightforward enough. 

Imagine two operators 
λd
d  and 

ηd
d  representing derivatives along two curves through p. there 

is no problem adding these and scaling by real numbers, to obtain a new operator
ηλ d
db

d
da + . 
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It is not immediately, obvious, however, that the space is closed i.e. that the resulting operator is 

itself a derivative operator. A good derivative operator is one that acts linearly on functions and 

obeys the conventional Leibniz (product) rule on product of functions. One new operator is 

manifestly linear, so we need to verify that it obeys the Leibniz rule. We have 

( )
ηηλληλ d

dfbg
d
dgbf

d
dfag

d
dgaffg

d
db

d
da +++=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+  

      
f

d
dgb

d
dgag

d
dfb

d
dfa ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
++⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

ηληλ . 

Thus the product rule is satisfied and the set of directional derivatives is therefore a vector 

space. 

Is it the vector space that we would like to identify with the tangent space? The easiest way to 

become convinced is to find a basis for the space. Consider again a coordinate chart with the 

coordinate µx . Then there is a obvious set of n directional derivatives at p, namely the partial 

derivatives µ∂  at p. 

We are now going to claim that the partial derivative operators { }µ∂  at p form a basis for the  

tangent space pT .(it follows immediately that pT  is n-dimensional since  that is the number of                  

                             
                                       FIG: 4 

basis vectors). To see this we will show that any directional derivative can be decomposed into 

a sum of real number time’s partial derivatives. 

Consider an n-manifold M, a co ordinate chart nRM →:φ , a curve MR →:γ  and a          

function RMf →: . If λ  is the parameter alongγ , we want to expand the vector operator 
λd
d  

in terms of partial derivatives µ∂ [15]. 
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                                                                    FIG: 5 

Using the chain rule 

` 
( )γ

λλ
of

d
df

d
d

=
 

( ) ( )[ ]γφφ
λ

ooo 1−= f
d
d

 

( ) ( )
µ

µ φ
λ
γφ

x
f

d
d

∂
∂

=
−1oo

 

f
d
dx

µ

µ

λ
∂=

 
The first line simply takes the informal expression on the left hand side and rewrite it as an 

honest derivative of the function ( ) RRf →:γo . The second line just comes from the definition 

of the inverse map 1−φ . The third line is the formal chain rule and the last line is a return to the 

informal notation of the first. Since the function f  is arbitrary 

µ

µ

λλ
∂=

d
dx

d
d

                                                                                     2.2 

Thus the partials { }µ∂  do indeed represent a good basis for the vector space of directional 

derivatives which we can therefore safely identify with the tangent space. We already know that 

the vector represented by 
λd
d  is a tangent vector to the curve with parameterλ . 

 Thus equation (2.2) can be thought of as a restatement of (2.1) where we claimed that the 

components of tangent vectors were simply
λ

µ

d
dx . 

The only difference is that we are working on an arbitrary manifold and we have specified our 

basis vector to be ( ) µµ ∂=ê . 
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One of the advantages of the rather abstract point of view we have taken towards vectors is that 

the transformation law is immediate. Since the basis vectors are ( ) µµ ∂=ê , the basis vector in 

some new coordinate system µx′  are given by the chain rule 

                    
µµ

µ

µ ∂
∂
∂

=∂ ′′ x
x

 
We get the transformation law of the vector components by the same technique used in flat 

space, demanding the vector µ
µ ∂= vV  be unchanged by a change of basis. We have     

                
µµ

µ
µ

µ
µ

µ
µ ∂

∂
∂

=∂=∂ ′
′

′
′

x
xVVV

 

And hence (as the matrix µ

µ

x
x
∂
∂ ′

 is the inverse of µ

µ

x
x
′∂

∂ ) 

                
µ

µ

µ
µ V

x
xV
∂
∂

=
′

′

                                                                       2.3                 

 Since the basis vector is usually not written explicitly, the rule (2.3) for transforming 

components is what we call the “vector transformation law”. We notice that it is compatible 

with the transformation of vector components in special relativity under Lorentz 

transformations, µµ
µ

µ VV ′′ ∆=  since a Lorentz transformation is a special kind of coordinate 

transformation with µµ
µ

µ xx ′′ ∆= . But equation (2.3) is much more general, as it encompasses the 

behavior of vectors under arbitrary changes of coordinates (and therefore bases), not just linear 

transformation. As usual we are trying to emphasize a some what subtle on-tological direction-

“tensor component do not change when we change coordinate, they changes if we change the 

basis in the tangent space” but we have decided to use the coordinates to define our basis. 

Therefore a change of coordinates induces a change of basis. 

 

 
                                                                  FIG: 6 
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If the tangent vector V  has ambient coordinate (v1…..vs) and local coordinate (v1……vn), then 

they are related by  

          
∑
= ∂
∂

=
n

k

k
k
i

i v
x
y

v
1     

k

s

k k

i
i v

y
xvAnd ∑

= ∂
∂

=
1

 

Definition of ix∂
∂ [2]:  Take a point Mp∈ . Then ix∂

∂  is the vector at p  whose local 

coordinate under x  is given by 

j’th coordinate  
⎩
⎨
⎧

≠
=

==⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

=
ijif

ijif
x

j
i

j

i 0
1

δ  

   i

j

x
x
∂
∂

=
 

Its ambient coordinates are given by 

j th coordinates i
j

x
y
∂

∂
=  

 

2.9 RIEMANNIAN MANIFOLD: 

 

A smooth inner product on a manifold M is a function −−,  that associates to each pair of 

smooth contravariant vector fields X and Y a smooth scalar (field) YX ,  satisfying the 

following properties: 

Symmetry:     YXXYYX and,, ∀=  

Bilinearity:                     βααββα ,scalarsand,,, YXYXYX ∀=  

    ZXYXZYX ,,, +=+  

    ZYZXZYX ,,, +=+  

Non-degeneracy:         If 0, =YX  for everyY , then 0=X  

A Riemannian manifold is a manifold M together with a continuous 2-covariant tensor field g, 

called metric tensor, such that 

(i) g is symmetric 

(ii) for each Mx∈ , the bilinear form xg  is non degenerate; 

IJSER



 
 

 31

MANIFOLD

Since M is finite dimensional in this chapter this means ( ) 0wv,g x =  for all xTv∈  if and only 

if 0w = . Such a manifold is said to posses a Riemannian structure. 

Before we look at some examples, let us see how these things can be specified. First notice that, 

if x is any chart and p is any point in the domain of x then 

             ji
ji

yx
YXYX

∂
∂

∂
∂

= ,,    This gives us smooth function 

              jiij yx
g

∂
∂

∂
∂

= ,  such that ji
ij YXgYX =,  

Which constitutes the coefficients of type ( )2,0  symmetric tensor. This tensor is called the 

fundamental tensor or metric tensor of the Riemannian manifold. 

A Riemannian manifold is called proper if 

( ) 0, >wvg x  for all xTv∈  0≠v  Mx∈  

Otherwise the manifold is called pseudo-Riemannian or is said to be possess  an infinite metric. 

The index of a proper Riemannian manifold Mn is n. On such a manifold a basis (frame) (ei) is 

called orthonormal if 

ijji ee δ=,
 

Example: 

(i) nEM =  with the inner product ijijg δ=  

            (ii) sEM =  , with given by the matrix 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

− 2000
0100
0010
0001

c  

where c is the light velocity. We call this Riemannian manifold flat Minkowski space 4M . 

 

2.10 COVARIANT DIFFERENTIATION: 

 

By a parallel field we mean a vector field with the property that the vectors at different points are 

parallel. But on a manifold, what does the nation of parallel field mean? For instance, in nE  there 

is an obvious notion: Just take a fixed vector V  and translate it around. On the torus there are 

good candidates for parallel fields (as in fig 7) but not on the two sphere. [2] 
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FIG: 7 

Let us restrict attention to parallel fields of constant length; we can recognize such a field by 

taking the derivatives of its co-ordinate or by following a path and taking the derivative of the 

vector field with respect to t : we should come up with zero. But we wouldn’t always come up 

zero if the co-ordinates are no rectilinear since the vector field may change direction as we move 

along the curved co-ordinate axes. 

Let, jx is such field and check its parallelism by taking the derivatives 
dt

dx j

along some path 

)(txx ii = .However there are two catches to this approach: one is geometric and the other is 

algebraic. 

Geometric look, for example, at the field on either torus in the above figure. Since it is circulating 

and hence non- constant so 0≠
dt

dX
  which is not what we want. However the projection of 

dt
dX

 

parallel to the manifold does vanish, we will make this precise below: 

Algebraic since, h
h

j
j

X
x
xX
∂
∂

=  then by product rule 

                              dt
dX

x
x

dt
xX

xx
x

dt
Xd h

h

jk
h

hk

jj

∂
∂

+
∂

∂∂
∂

=
2

                                                            2.4 

Showing that unless the second derivatives vanish 
dt

dX
 does not transform as a vector field. 

What this means in practical terms is that we can check for parallelism at present – even in E3 if 

the co-ordinates are not linear. 

First let us restrict to M is embedded in Es with the metric inherited from the embedding. The 

projection of 
dt

dX
 along M will be called the co-variant derivative of X (with respect to t) and 

written 
dt

DX
or Xt∇ . 
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 Again we would like to define covariant derivative operator ∇ to reform the functions of partial 

derivatives but in way of independent of co-ordinates. We therefore require that∇  be a map from 

(k, l) tensor fields to (k, l+1) tensor fields which has the following two properties.[15] 

(1)   Linearity:                     STST ∇+∇=+∇ )(  

(2)  Leibniz (product) rule: )()()( STSTST ∇⊗+⊗∇=⊗∇  

 

If ∇  is going to obey the Leibniz rule, it can always be written as the partial derivative plus some 

linear transformation. Thus to make a covariant derivative we first take the partial derivative and 

then apply a correction to make the result covariant.   

Consider the co-variant derivative of a vector µV . It means that for each directionµ , the co-

variant derivative µ∇ will be given by the partial derivative µ∂ Plus a correction specified by a 

matrix ρ
σµ )(Γ   (an n x n matrix, where n is the dimension of manifold for each µ). In fact the 

parenthesis are dropped usually and write there matrices, known as the connection co-efficient 

as ρ
σµΓ . Which is the rule of parallel displacement of vector. We therefore have,  

                                             λν
λµ

ν
µ

ν
µ VVV Γ+∂=∇  

ν
µV∇ defined in this way is indeed a (1, 1) tensor and the usual transformation rule is  

                                             

ν
µν

ν

µ

µ
ν

µ V
x
y

y
xV ∇

∂
∂

∂
∂

=∇
′

′
′

′

 

Frequently, the covariant derivative ν
µV∇  is also denoted by a semicolon µ

νν
µ ;VV =∇ . Just as 

for functions, one can also define the covariant directional derivative of a vector field V along 

another vector field X  by 

                                                
µ

ν
νµ VXVX ∇=∇  

Similarly the co-variant derivative of a co-vector is given by 

                                                 λ
λ
νµνµνµ VVV Γ−∂=∇  

An important distinction between co-variant derivative and lie derivative is that: Dragging back a 

vector for the lie derivative required the entire congruence so that two vectors U and W had to be 

defined in a neighborhood of curve χ ;  parallel transport by contrast requires only the curve χ , 

the fieldsU   andW  on the curve and of curve the connection on the curve. Thus we can write 

now 

                                       fWWfWf
UUU

∇+∇=∇ )(  
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The notion of parallel transport along a curve requires that it must be independent of the 

parameter on the curve. Therefore we conclude that for any function g 

                                        
WgW

UUg
∇=∇

 
Again at a point the covariant derivatives in different directions should have the additive property 

                                         PVUPVPU
WWW )()()(

+
∇=∇+∇  

 The connection can’t be regarded as a tensor field. 

 

2.11 INVARIANT INTERPRETATION OF THE COVARIANT DERIVATIVES: [6] 

 

The appearance of the Christoffel symbol in the definition of covariant derivative may at first 

sight appear a bit unusual (even though it also appears when one just transforms Cartesians 

partial derivatives to polar co-ordinate etc). There is a more invariant way of explaining the 

appearance of this term, related to the more co-ordinate independent way of looking at tensors 

explained above. Namely since )(xV µ  are really just the co-efficient of the vector 

field µ
µ ∂= )()( xVxV  when expanded in the basis µ∂ , a meaningful definition of the derivative of 

a vector field must take into account not only the change in the co-efficient but also the fact that 

the basis changes from point to point and this is precisely what the Christoffel symbol do . 

Writing  

                                        )()()( νµ
ν

ν
ν

µν
ν

µµ ∂∇+∂∂=∂∇=∇ VVVV  
We see that we reproduce the definition of the covariant derivative if we set 

                                         λ
λ
νµµν ∂Γ=∂∇  

Then we have 

                                         λ
νλ

µν
λ

µµ ∂Γ+∂=∇ )( VVV  
which agree with the above definition . 

In some example the Christoffel symbol indeed describe the change of the tangent vectors µ∂  

For instance on the plane, in polar co-ordinates one has 

                                           0=∂Γ=∂∇ µ
µ
rrrr  

which is correct because r∂  indeed does not change when moves in the radial direction. r∂   

changes however, when one moves in the angular direction given by ϕ∂ . In fact it changes its 

direction proportional to ϕ∂  but this change as stronger for small values of r  than for larger one. 

This is precisely captured by non zero Christoffel Symbol. 
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φϕ

ϕ
ϕϕ ∂=∂Γ=∂∇

rrr
1

 
 

2.12 COVARIANT DERIVATIVE OF TENSOR AND SOME PROPERTIES: 

 

(A) COVARIANT DERIVATIVE OF TENSOR OF TYPE ( 2,2): 

 

If the (p, q) tensor is the direct product of p vectors and q co-vectors, then we already know is 

covariant derivative. We simply adopt the formulae for an arbitrary (p,q) tensor is the sum the 

partial derivative. A Christoffel symbol with positive sign for each upper indices p and a 

Christoffel symbol with a negative sign for each of the lower indices q. Then in equation 

),;~,~(),;~,~(),;~,~)(()},;~,~({
21

21

21

21

21

21

21

21
λλ

νν
λλ

νν
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νν
λλ

νν
µµµµ
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                                            ),;~,~(),;~,~(
21

21

21

21
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(B) COVARIANT DERIVATIVE FOR TENSOR DENSITY: 

 

 As we know that, if T is a );,( wqp  tensor density, then Tg w 2/  is a ),( qp tensor. Thus 

)( 2/ Tg w
µ∇  is a )1,( +qp tensor. To map this back to a tensor density of weight  w  we multiply 

this by 2/wg − , arriving at the definition [6] 

                                         )( 2/2/ TggT ww
µµ ∇=∇ −

 

                                                  
TTg

g
w tensor

µµ ∇+∂= )(
2  

where tensor
µ∇ just means the usual covariant derivative for ),( qp tensor defined above. 

For example. For a scalar density ϕ  one has  

                                          
ϕϕϕ µµµ )(

2
g

g
w

∂+∂=∇
 

In particular, since the determinant g is a scalar density of weight -2, it follows that  

                                                     0=∇ gµ  
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which obviously simplifies the integration by parts in integrals defined with the 

measure xdg 4 . 

 

 (c)  THE COVARIANT CURL OF A COVECTOR:  If νU is a covariant vector then its covariant curl   

is  

                           µννµ

λ
λ
νµµνλ

λ
µννµµννµ

UU
UUUUUU

∂−∂=

Γ+∂−Γ−∂=∇−∇

 
 (Symmetric Christoffel symbol drop out in ant- symmetric Linear Combination). Thus the 

Maxwell field strength  µννµµν AAF ∂−∂= is a tensor under general co-ordinate transformations; 

no metric of covariant derivative is needed to make it a tensor in general space time. 
 

(D) THE COVARIANT CURL OF AN ANTI SYMMETRIC TENSOR: 

 Let ...........λνA . be completely ant symmetric. Then as for the curl of covector the metric and 

Christoffel symbol drop out of the expression for the curl, we get 

                                            ......][........][ λνµλνµ AA ∂=∇  
The square bracket denotes the complete anti symmetrization. 

  

(e) THE COVARIANT DIVERGENCE OF A VECTOR: 

 

By covariant divergence of a vector field one means the scalar  

                                                             
λµ

λµ
µ

µ
µ

µ VVV Γ+∂=∇                                                 2.5                  

Again a useful identity for the contracted Christoffel symbol is 

                                                              

                                                                )( 2/12/1 +− ∂=Γ gg λ
µ
λµ                     2.6 

 
Here is an elementary proof for this identity. The standard expansion formula for the 
determinant 

                                                         µνµν
µν

ν

mgg ∑ −= )1(                                                        2.7 

  where  µνm is the determinant of the minor of µνg  i.e. of the matrix obtained by removing the 

µ the row and ν  the column from µνg . If follows that  

                                                  
µν

νµ

µν

m
g
g +−=

∂
∂ )1(

                                                                2.8                  
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Again another consequence of (2.7) is  

                                                 
µλµνλν

ν

νµ ≠=−∑ + ;0)1( gg
                                       2.9 

Since this is in particular, the determinant of a matrix with νµµν gg = i.e of matrix with two equal 

rows. 

Together these two results can be written as 

                            
ggg µνµνλν

ν

νµ δ=−∑ +)1(
                                         2.10               

Multiplying (2.8) by µνg and using (2.10)  

                                                   
g

g
gg λν
µν

λν δ=
∂
∂

                                                                    2.11  

or the simply identity 

                                                      
gg

g
g µν

µν

=
∂
∂

                                                                      2.12 

Thus,                             
µνλ

µν
µνλ

µν
λ gggg

g
gg ∂=∂

∂
∂

=∂
                                                        2.13 

                                        µνλ
µν

λ ggggor ∂=∂−1,  
On the other hand the contracted Christoffel symbol is 

                                                  
µνλ

µνµ
λµ gg ∂=Γ

2
1

 
which establishes the equation (2.6) 

Thus the covariant divergence can be written as  

                                                   )( 2/12/1 µ
µ

µ
µ VggV ∂=∇ −

                                                      2.14 

and one only needs to calculate g  and its derivative, not the Christoffel symbol themselves, to 

calculate the covariant divergence of a vector field  

 

(F) COVARIANT DERIVATIVE COMMUTES ON SCALAR: 

 

This is of course a familiar property of the ordinary partial derivative but it is also true for the 

second covariant derivatives of a scalar and is a consequences of  the symmetry of the Christoffel 

symbols in the second and third indices and is also known as the no torsion property of the 

covariant derivative. Namely, we have  
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                              0=

ΦΓ+Φ∂∂−ΦΓ−Φ∂∂=

Φ∂∇−Φ∂∇=Φ∇∇−Φ∇∇
λ
νµµν

λ
µννµ

µννµµννµ

 
But the second covariant derivatives as higher rank tensors don’t commute. 

 

 (g) µ∇ COMMUTES WITH CONTRACTION:  

 

This means that if A is a ),( qp tensor and B is the )1,1( −− qp  tensor obtained by contraction 

over two particular indices, then the covariant derivative of B is the same as the covariant 

derivative of A followed by contraction over these two indices. This comes about because of 

cancellation between the corresponding two Christoffel symbols with opposite sign. Consider a 

(1,1) tensor ν
ρA  and its contraction ν

νA  .The latter is just the partial derivative. This can also be 

obtained by taking first covariant derivative of A.  

                                                 ν
λ

λ
ρµ

λ
ρ

ν
λµ

ν
ρµ

ν
ρµ AAAA Γ−Γ+∂=∇  

and then contracting:  

                                            
ν
λ

λ
νµ

λ
ν

ν
λµ

ν
νµ

ν
νµ AAAA Γ−Γ+∂=∇  

The most transparent way of stating this property is that the kornecker delta is covariantly 

constant i.e. 

                                                     0=∇ ν
λµδ  

(G) THE METRIC IS CO-VARIANTLY CONSTANT:  

 

Since νλµ g∇  is tensor we can choose any co-ordinate system we like to establish if this tensor is 

zero or not at a given point x . Choose an inertial co-ordinate system at x  .Then the partial 

derivatives of the metric and the Christoffel symbol zero there. Therefore the covariant derivative 

of the metric is zero. Since νλµ g∇ is a tensor, this is then true is every co-ordinate system. 

 

   2.13 PARALLELISM:  

 

In a diffentiable manifold there is no intrinsic notion of parallelism between two vectors defined 

at two different points. However given a metric and a curve connecting these two points, one can 

compare the two by dragging one along the curve to the other using the covariant derivative. 
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                                                                          FIG: 8 

Thus the concept of moving a vector along a path, keeping constant all the while is known as 

parallel transport. As we shall see, parallel transport is defined whenever we have connection 

(rule of parallel transport); the intuitive manipulation of vectors in flat space makes implicit use 

of this Christoffel connection on this space. The crucial difference between flat and curved space 

is that, in a curved space, the result of parallel transporting a vector from one point to another 

will depend on the path taken between the points. Let us consider a two sphere to see the case of 

parallel transport. Start with a vector on the equator, pointing along a line of constant longitude. 

Parallel transport it up to the North Pole along a line of longitude in the devious way. Then take 

the original vector. Parallel transport it along the equator by an angle θ  and then move it up to 

the North Pole as before. It is clear that the vector, parallel transported along two paths, arrived at 

the same destination with two different values (rotated byθ ).[15] 

It therefore appears as if there is no natural way to uniquely move a vector from tangent space to 

another. We can always parallel transport it but the result depends on the path and there is no 

natural choice of which path to take.  

Parallel transport is supposed to be the curved space generalization of the concept of “Keeping 

the vector constant” as we move it along path; similarly for a tensor of arbitrary rank. Given a 

curve )(λµx , then the requirement of constancy of a tensor T along this curve, in flat space is 

simply 

                                       
0== µ

µ

λλ dx
dT

d
dx

d
dT

 
We therefore define the covariant derivative along the path to be given by the operator  

                                         
µ

µ

λλ
∇=

d
dx

d
D

 

We therefore define the parallel transport of the tensor T  along the path )(λµx  to be the 

requirement that, along the path  
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0.....
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21

21

21

21

=∇=⎟
⎠
⎞

⎜
⎝
⎛ k

m

k

m

T
d
dx

d
DT µµµ

νννσ

σµµµ

ννν λλ                                                    2.15 

This is well defined tensor equation. Since the both tangent vector
λ

µ

d
dx

 and the covariant 

derivative T∇ are tensors. This is known as the equation of parallel transport. For a vector it takes 

the form 

                                     
0=Γ+ ρ

σ
µ
σρ

µ

λλ
V

d
dxV

d
d

(Absolute derivative along a curve)             2.16                 

 We can consider the parallel transport equation as a first order differential equation defining an 

initial value problem; given a tensor at some point along the path, there will be a unique 

continuation of the tensor to other points along the path such that the continuation solves 

equation (2.16). We say that such a tensor is parallel transported. 

 

2.14 SOME CONSEQUENCES OF PARALLEL TRANSPORT: 

 

(a)   Taking T  to be the tangent Vector )(τµµ xX &=  to the curve itself. The condition               

for parallel transport becomes  

                                        
00 =Γ+⇔= λνµ

λν
µ

µ

τ
xxx

d
DX

&&&&
 

i.e. precisely the geodesic equation. Thus geodesics, as we have already seen these are curves 

with zero acceleration can equivalently be characterized by the property that their tangent vectors 

are parallel transported (do not Change) along the curve. For this reason geodesic are known as 

auto parallels.  

(b) The notion of parallel transport is obviously dependent on the connection and different 

connections lead to the different answers. If the connection is metric compatible (metric is co 

variantly constant) the metric is always parallel transported with respect to it. Thus   

                                                                  
0)( =∇= µνσ

σ

µν λλ
g

d
dxg

d
D

 

It follows that the inner product of two parallel-transported vectors is preserved i.e. if µV  and 
νW are parallel transported along a curve )(λαx we have  

           
0)()()()( =++= νµ

µν
νµ

µν
νµ

µν
νµ

µν λλλλ
W

d
DVgWV

d
DgWVg

d
DWVg

d
D

 
This means that parallel transport with respect to a metric compatible connection preserves the 

norms of vectors, the sense of orthogonanlity and so on. 
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(c) We can write down an explicit and general solution to the parallel transport      equation. 

First notice that for some path  )(: λλγ σx→  solving  the parallel transport equation for a vector 
µV  amounts to find a matrix  ),( 0λλµ

ρP which relates the vector at its initial value )( 0λ
µV to its 

value somewhere later down the path 

                                     )(),()( 00 λλλλ ρµ
ρ

µ VpV =                                                                 2.17 

The matrix ),( 0λλµ
ρP  is known as parallel propagator that depends on the pathγ . If we define  

                                   λ
λ

σ
µ
σρ

µ
ρ d

dxA Γ−=)(
                                            2.18 

 Where the quantities on the right hand side are evaluated at )(λνx , then the parallel transport 

equation become 

                                               
ρµ

ρ
µ

λ
VAV

d
d

=
                                                                             

Since the parallel propagator must works for any vector, substituting (2.17) in (2.18) shows that 

),( 0λλµ
ρP  also obeys the equation 

                                    
),()(),( 00 λλλλλ

λ
σ
ρ

µ
σ

µ
ρ PAP

d
d

=
                                                       2.19 

To solves this equation first integrate both sides 

ηληηδλλ σ
ρ

µ
σ

λ

λ

µ
ρ

µ
ρ dpAP ),()(),( 00

0

∫+=                                                                                  2.20          

 The kornecker delta, it is easy to see, provides the correct normalization for 0λλ =   [6]. 

We can solve (3.17) by iteration, taking the right hand side and plugging it into itself repeated by 

giving  

−−−−−−−−−−−+′′++= ∫ ∫∫ ηηηηηηδλλ σ
ρ

λ

λ

η

λ

µ
σ

µ
ρ

λ

λ

µ
ρ

µ
ρ ddAAdAP )()()(),(

0 00

0

                  2.21 

The n’th term in this series is an integral over n- dimensional right angle triangle or n-simplex. 

 

2.15 LINEAR CONNECTION ON MANIFOLD: 

 

A linear connection ∇  on a manifold M is a mapping that sends every pair of smooth vector 

fields ),( YX to a vector field YX∇ such that  

ZYaZaY XXX ∇+∇=+∇ )(  

For any constant scalar a .But  
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YXfYfYf XX )()( +∇=∇  

When f  is a function and it is linear on X . 

ZfzZ YxYfX ∇+∇=∇ +  

Action on a function f  , X∇  is defined by  

XffX =∇  

Let }{ ae  be the basis for the vector fields and denote 
ae∇ by a∇ . Because of bae∇  being a 

vector there exist scalars c
baΓ  such that  

c
c
baba ee Γ=∇  

To get component version, let a
aeXX = and then from definition of connection  

b
b
ac

cab
X

c
c
ba

ba
b

b
ba

ba
b

b
a

a
b

b
a

a

b
b

eXX

eYXYXYor

eYXeYX

eYXeYX

eYX

eYY
a

a

])([,

)(

)()(

)(

)(

Γ+=∇

Γ+=

∇+∇=

∇=

∇=∇

 

ab
ac

cb
a

b
X

b
ab

ac
cb

aX

XYYeYor

eXYYeYor

])([)(,

])([,

Γ+=∇

Γ+=∇
                                                 

ab
a

b
X

abb
X

XYYor

XYofderivativeariantYor

;)(,

)(cov)(,

=∇

=∇

  
In above b

acΓ  are called the components of the connection which are also called a rule for 
parallel displacement of a vector along a curve. Again YX∇  is completely specified by giving 
the components of the connection .In above equation b

aY; are components of the (1,1) tensor 

Y∇ .Neither of the two terms  in b
aY;  transform like the tensor components but the sum i.e               

cb
ac

b
a

b
a YY

x
Y Γ+

∂
∂

= )(;  

                                 or,  cb
ca

b
a

b
a YYY Γ+= ,;  

transform like the tensor components. 

 

THEOREM [14]:  If a manifold possess a metric g then there exist a unique symmetric 

connection, Levi-Civita connection or metric connection ∇  such that  

0=∇g  

Proof: Suppose g  is a metric .Let ZYX ,,  be the vector fields. Since ),( YXg  is a function then 

we get  
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22.2),(),()),((,
),(),(),)((

)),(()),((

ZYgZYgZYgXor
ZYgZYgZYg

ZYgZYgX

XX

XXX

X

∇+∇=
∇+∇+∇=

∇=
         

Similarly 

                 ),(),()),(( XZgXZgXZgY YY ∇+∇=                                                                  2.23               

          and  ),(),()),(( YXgYXgYXgZ ZZ ∇+∇=                                                                 2.24                

 

Adding the first two equations and then subtracting the third equation we get  

 

),(),(
),(),(),(),()),(()),(()),((

YXgYXg
XZgXZgZYgZYgYXgZXZgYZYgX

ZZ

YYXX

∇−∇−
∇+∇+∇+∇=−+

 

),(),(
),(),(),()),(()),(()),((),(,

YXgYXg
XZgZYgZYgYXgZXZgYZYgXXZgor

ZZ

YXXY

∇+∇+
∇−∇−∇−−+=∇

 

),(),(),(),(
),(),()),((),(()),((),(),(,

XZgYXgZYgYXg
ZYgXZgZYgXXZgYYXgZXZgXZgor

YZXZ

XYYY

∇−∇+∇−∇+
∇−∇+++−=∇+∇

),(),(
),()),((),(()),((),(2,

YZXgZXYg
XYZgZYgXXZgYYXgZXZgor

ZYXZ

YXY

∇−∇−∇−∇+
∇−∇+++−=∇

])},[,(]),[,(]),[,()),((),(()),(({
2
1),(, ZYXgXZYgYXZgZYgXXZgYYXgZXZgor Y −++++−=∇

Here the symmetry of the connection has been used to set  
],[ YXXY YX =∇−∇  

If )( ae  be the vector basis we may set bca eYandeXeZ ===  .Then we obtain 

}{
2
1,

})],[()],[()],[()()()({
2
1),(,

,,, dc
d
abbd

d
cada

d
bcabccabbca

d
bcda

abccabbcabcaabccabbca

gggggggor

eeegeeegeeeggegegeeegor

γγγ −++−+=Γ

−++−+=∇

 

Where a
a
cbcb eee γ=],[  and the quantity a

cbγ  are called commutator co-efficient or structure 

constant. 

If the basis is co-ordinate induced then the last three terms   will be vanishes .and hence we 

obtain the formulae defining the connection co-efficient or Christoffel symbol as  
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)(

2
1,

)(
2
1

,,,

,,,

abccabbca
add

bc

abccabbca
d
bcda

ggggor

gggg

−+=Γ

−+=Γ
 

Whenever a manifold M possess a metric we will usually use the metric connection without 

explicitly saying so. However in a metric manifold not all the connections are metric. 

 

2.16 SPIN CONNECTION: 

 

The co-variant derivative of a tensor is given by its partial derivative plus a correction term for 

each index involving the tensor i.e. Connection co-efficient. The same procedure will be true 

for non-co-ordinate basis but we replace the ordinary connection co-efficient λ
µνΓ  by the spin 

connection denoted by a
bwµ .Each Latin index gets a factor of the spin connection in the usual 

way: 

                                                     a
c

c
b

c
b

a
c

a
b

a
b XwXwXX µµµµ −+∂=∇  

The name spin connection comes from the fact this can be used to take co-variant derivatives of 

spinors which is actually impossible using conventional connection co-efficient. 

The usual demand that a tensor be independent of the way it is written allows us to derive a 

relationship between the spin connection (vielbeins) and the λ
µνΓ  ’s .Consider the co-variant 

derivative of a vector X , first in a purely co-ordinate basis: 

25.2)(

)(

ν
µλν

λµ
ν

µ

ν
µν

µ

∂⊗Γ+∂=

∂⊗∇=∇

dxXX

dxXX

Now find the same object in mixed basis and convert into the co-ordinate basis. 

),(

26.2)(,

)(

)(})({

ˆ)(

ˆ)(

)(

)(

λννσ
ν

µλ
µλ

νλ
λµ

νν
µ

σ
µλ

λµνµ
νν

µν
σ

σ
σµλ

λµ
ν

νµ

µ
µµ

µ
µ

→→

∂⊗+∂+∂=∇

∂⊗+∂+∂=

∂⊗+∂=

⊗+∂=

⊗∇=∇

as

dxXweeXeeXXor

dxXeweXXee

edxXewXe

edxXwX

edxXX

a
b

b
a

a
a

ba
b

aa
a

a
ba

b
a

a
ba

b
a

a
a

 Comparing with (2.25) we obtain  
a
b

b
a

a
a weeee µλ

ν
νµ

νν
λµ +∂=Γ

Or equivalently we can write 
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a
bb

aa
b eeeew νµ

λν
λµ

λ
νµ ∂−Γ=

A bit manipulation allows us to write this relation as the vanishing of the co-variant derivative 

of the vielbein (German word) 

                            0=∇ νµ e  

which is sometimes known as the ‘tetrad Postulate’ and always true. 
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Chapter three 
 
 

GEODESIC CONGRUENCE 

 

 

3.0 INTRODUCTION: 

 

In this chapter we have developed mathematical techniques required in the description of 

congruence’s- the term designating an entire system of non-intersecting geodesics while 

consider only the cases of time like geodesics as it is virtually identical to the space like 

geodesics. To discuss the behavior of congruence’s we introduce the expansion scalar as well as 

shear & rotation tensors. We have derived a useful evolution equation for the expansion which 

is well known Raychowdhury equation. On the basis of Raychowdhury equation we have 

shown that the gravity tends to forces geodesics, in the sense that an initially diverging 

congruence’s (geodesic flying a part) will be found to diverge less rapidly in the future and an 

initially converging congruence’s (geodesics coming together) will converge more rapidly in 

the future.  Also we have presented Forbenius theorem which states that a congruence is hyper 

surface orthogonal – the geodesics are everywhere orthogonal to a family of hyper- surface if 

only if its rotation tensor vanishes. 

 

The following books are used as references to study this chapter: [5], [6],[18], [19],[20]. 
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3.1 GEODESICS: 

  

In a flat space time a geodesic is the shortest distance between two points i.e. a straight line .It 

has the property that its tangent vector is parallely transported along itself. But in a manifold 

geodesic is a curve analogous to straight line in a flat space which extrimizes the distance 

between two fixed points. 

Consider a non-null curve γ  on M described by the relation )(λαx  where λ an arbitrary 

parameter is and let P and Q be two points on this curve. The distance between P and Q i.e. arc 

length along γ  is given by  

λ

λ
λλ

βα
αβ

βα

αβ

dxxglor

d
d
dx

d
dxgl

Q

P

Q

P

∫

∫

±=

±=

&&,
 

where 
λ

α
α

d
dxx =&  and in the square root the positive (negative) sign is chosen if the curve is space 

like (time like).It is clear that l  is invariant under a reparametarization of the curve )(λλ u→ , 

using the arc length  

                                                     du
du
dx

du
dxgts

Q

a
∫ ±=

βα

αβ)(  

(where s (t) =length of path from t= a  toQ , setting P= a ) 

The reason for choosing to do this is that the tangent vector 
ds

dxT
α

α =  is then a unit vector in the 

sense that 12 ±=T . 

If we consider a curve in 3E , then the derivative of the unit tangent vector (again with respect to  

s is normal to the curve) and its magnitude is a measure of how fast the curve is turning and so 

we call the derivative of αT , the curvature ofγ . 

If γ  happens to be on a manifold, then the unit tangent vector is still 

                        dt
dx

dt
dxg

dtdx
dt
ds

dt
dx

ds
dxT

qp

pq±

===
ααα

α
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Since the differential form of arc length is, βα
αβ dxdxgds ±=2 . 

But to get the curvature, it is needed to take the co-variant derivative of the tangent vector αT .So 

)(,

)(,

)()(,

)()(

2

2

2

2

ααα
α

α

α
α

α

α
α

α

α
α

TPwhere
ds

dx
ds

dx
ds

xdPor

ds
dx

ds
dx

ds
xdTor

ds
dx

ds
dx

ds
dx

ds
dTor

ds
dxT

nm

mn

nm

mn

nm

mn

∇=Γ+=

Γ+=∇

Γ+=∇

∇=∇

&&

 

But we get the first curvature vector P of the curve γ  is given by  

                                                ds
dx

ds
dx

ds

xd
P

nm

mn
α

α
α Γ+=

2

2
&

 
A curve on M whose first curvature is zero is called the geodesic .Thus a geodesic is a curve that 

satisfy the system of second order differential equation 

                                          
ds

dx
ds

dx
ds

xd nm

mn
α

α

Γ+2

2

=0                                                              3.1 

which is well known geodesic equation .Here we note that P is a tangent vector at right angles to 

the curve γ  which measures its change relative to M. If the distance between any two points on a 

geodesic is zero then the geodesic is called the null geodesic .It is characterized by  

0=
λλ

βα

αβ d
dx

d
dxg

  
and also by equation (3.1). 

 

3.2 GEODESIC DEVIATION EQUATON [5]:  

 

In a certain sense the main effect of the curvature (gravity) is that initially parallel trajectories of 

freely falling non-interacting particles (dust, pebbles) do not remain parallel i.e. the gravity has 

the tendency to focus (defocus) the matter. This statement finds its mathematically precise 

formulation in the geodesic deviation equation. 

The geometrical picture of the Riemannian tensor is best illustrated by examining the behavior of 

the neighboring geodesics. Let 0γ  and 1γ are two such geodesics described by the relation )(txα  

in which t  is an affine parameter .The geodesic may be time like or space like or null. We are to 

develop the notion of deviation vector between these two geodesics and derive an evolution 
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FIG: 1 
(Deviation vector between two neighboring geodesics) 

equation for this vector. Let us introduce an entire family of interpolating geodesics between  0γ  

and 1γ  in the space(as in figure1). To each geodesic we assign a level ]1,0[∈s  such that 0γ  

comes with the level s= 0 and 1γ  with s=1. Let us describe the whole geodesic system with 

relation ),( tsxα  , in which s serves to specify which geodesic and t  is an affine parameter along 

the specified geodesic. The vector field 
t

xU
∂
∂

=
α

α  is tangent to the geodesic and satisfy the 

equation    0; =βα
β UU . If we keep t  fixed in the relation ),( tsxα  and vary s instead, we obtain 

another family of  curves labeled by t   and parameterized by s .In general these curves  will not 

be geodesics .The family has
s

x
∂
∂

=
α

αξ as its tangent vector field and the restriction of this vector 

to 0γ , 0=s
αξ , gives a significant notion of deviation vector between 0γ and 1γ  which 

characterized by the condition 

 

2.3

0

0

0],[

;;

;;

βα
β

βα
β

βα
β

βα
β

α
ξ

α

α
β

βα
β

βα

ξξ

ξξ

ξ

ξξξ

UU

UU

ULL

UUU

U

=⇒

=−⇒

=−⇒

=∇−∇=

       

We wish to derive an expression for its acceleration. 

                   )()( ;;2

2
α

β
β

ν
νν

ν
βα

β

α

ξξξ
∇∇=≡ UUUU

dt
D

                  3.3 
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 In which it is understood that all the quantities are to be evaluated on 0γ  .In flat space time the 

geodesics 10 γγ and  are straight although their separation may change with t ; this change is 

necessarily linear i.e. 

02

2

=
dt

D αξ
   in flat space time.                                                            3.4 

 A non-zero result for 2

2

dt
D αξ

 will therefore reveal the presence of curvature and indeed this 

vector will be found to be proportional to the Riemannian tensor. 

Considering the condition  0; =βα
βUU  and βα

β
βα

β ξξ ;; UU = it is possible to show that α
αξ U  is 

constant along 0γ  i.e. 

0

)(
2
1

)(

;

;

;;

;

=

=

=

+=

=

β
βα

α

α
βα

β

β
βα

αβ
α

α
β

β
βα

α
α

α

ξ

ξ

ξξ

ξξ

UU

UU

UUUU

UUU
dt
d

 

Because =∈=α
αUU constant. The parameterization of the interpolating geodesics can therefore 

be turned so that on 0γ  , αξ  is everywhere orthogonal to αU i.e. 

                                                    0=α
αξ U   

This means that the curves =t constant cross 0γ  orthogonally. This adds weight to the 

interpretation of αξ  as a deviation vector. Now calculate the relative acceleration of 1γ  with 

respect to 0γ and let us start from the equation (3.3) 

( )

5.3,

)2.3()(

;;;2

2

;;

;;2

2

νβ
ν

α
β

νβα
βν

α

ν
ν

βα
β

ν
ν

βα
β

α

ξξξ

ξ

ξξ

UUUU
dt

Dor

ofhelptheByUU

UU
dt

D

+=

=

=

  

But the Riemannian tensor is given by  
µα

νβµ
α

βν
α

νβ URUU −=− ;;  
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Thus the equation (3.5) becomes  

ννβ
ν

α
β

νβµα
νβµ

βν
β

α
ν

β
β

να
ν

ννβ
ν

α
β

νβµα
νβµ

α
βν

α

ξξξξξ

ξξξξ

UUUURUUUU

UUUURU
dt

D

;;;;;;

;;;2

2

)(

)(

+−−=

+−=

 
The first term vanishes by virtue of geodesic equation and the second and fourth terms cancel 

each other. 

Thus we obtain 

6.3, 2

2

2

2

δγβα
δγβ

α

νβµα
νβµ

α

ξξ

ξξ

UUR
dt

Dor

UUR
dt

D

−=

−=

 

Equation (3.6) is the required geodesic deviation equation. It shows that curvature produce a 

relative acceleration between two neighboring geodesics even if they start parallel, curvature 

prevents the geodesics from remaining parallel. 

 

3.3 CONGRUENCE OF TIME LIKE GEODESIC:   

 

Consider an open region  ℜ  on space time. Then congruence is defined as a nonintersecting 

family of curves such that through each point inℜ  there passes one and only one curve from this 

family. We would like to determine the behavior of the deviation vector αξ  between two 

neighboring geodesics (as in figure 2) in the congruence as a function of proper time τ  along the 

reference geodesic.                  

                
Fig: 2 

 Here we would consider the geometric set-up as same as considered in the previous section and 

the relations given below: 
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0

01

;;

;

==

=−=

α
αβα

β
βα

β

βα
βα

α

ξξξ UUUAnd

UUUU

 

Where 
τ

α
α

d
dxU = tangent to the geodesic–will be assumed to hold. In particular αξ  is orthogonal 

to αU  i.e. the deviation vector points in the directions transverse to the flow of congruence. 

 

3.4 TRANSVERSE METRIC: 

 

  Let αU  be the associated time like vector field of a given congruence and the space time metric 

αβg  can be decomposed into a longitudinal part βαUU−  and a transverse part αβh  given by  

βααβαβ

αββααβ

UUghor
hUUg

+=

+−=

,  

The transverse metric is purely spatial in the sense that it is orthogonal to αU  i.e. 

 
β

αβαβ
α UhhU == 0  

It is effectively three dimensional: in a co-moving Lorentz frame at some point P within the 

congruence, 

)1,1,1,0()1,1,1,1(:)0,0,0,1( ** diaghanddiaggU =−=−= αβαβα  

where  *=  means equal in the specified co-ordinate system. 

 

3.5 KINEMATICS: 

 Let introduce a tensor field, βααβ ;UB = which is purely transverse like αβh  since   

0)(
2
1

;; === β
α

αβα
α

αβ
α UUUUBU  

and 

            0; == β
βα

β
αβ UUUB  

It determines the evaluation of the deviation vector. From βα
β

βα
β ξξ ;; UU =  we obtain 

              βα
β

βα
β ξξ BU =;                                                     3.7 

and we see that α
βB  measures the failure of the αξ  to be parallely transported along the 

congruence. We now decompose the tensor field αβB  into trace, symmetric trace free and anti- 

symmetric parts. [5] 
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This gives  

αβαβαβαβ σθ whB ++=
3
1

 

where    α
α

α
αθ ;UB ==    is the expansion scalar.  

αβαβαβ θσ hB
3
1

)( −=   is the shear tensor . 

               ][αβαβ Bw =  is the rotation tensor. 

In particular the congruence is diverging (geodesics flying a part) if the expansion scalar is 

greater than zero i.e. 0〉θ  and it will be converging (geodesics coming together) if 0〈θ . 

 

3.6 RAYCHOWDHURY EQUATION:  

 

 Let us derive an evolution equation for expansion scalar θ  and so begin by developing an 

equation for αβB  itself. We get  

8.3,

)(

)(

;

;;;;

;

;;

νµ
νβµα

µ
βµα

µ
µβα

µν
µβνα

µ
βµαβ

µ
µα

µ
µβναβµα

µ
βµα

µ
µβα

UURBBUBor

UURUUUU

URU

UUUB

−−=

−−=

−=

=

 

Again from the definition of curvature tensor we obtain  
νµ

βαν
µ

αββα URU =∇∇−∇∇ )(  
Contracting on the indices µα and  we get  

                                         
α

βα
α

αββα

ν
βν

α
αββα

URUor

URU

=∇∇−∇∇

=∇∇−∇∇

)(,

)(

 

Multiplying on both sides by βU  we obtain 

                                          
βα

βα
α

αβ
βα

βα
β UURUUUU =∇∇−∇∇  

The first term in the above equation can be written as  

                                           )()()( α
β

β
α

α
β

β
α

α
βα

β UUUUUU ∇∇−∇∇=∇∇  
Thus the above equation can be written as 

                                          +∇∇ )( α
αβ

β UU +∇∇−∇∇ )()()( α
β

β
α

α
β

β
α UUUU 0=βα

βα UUR  

But the third term vanishes due to 0=∇ α
β

β UU .So we obtain 

                                         )( α
αβ

β UU ∇∇ + )()( α
β

β
α UU ∇∇ + 0=βα

βα UUR  

IJSER



            

 53

GEODESIC CONGRUENCES

0)()()(, =+∇∇+∇∇ βα
βα

αβ
βα

α
αβ

β UURUUUUor  

Here the first term the rate of change of divergence   α
αθ U∇=  along   αU  i.e. 

τ
θα

αβ
β

d
dUU =∇∇ )(

 
Then the equation for θ is obtained by taking the trace [6] 

βα
βα

βα
αβ

βα
βα

αβ
βατ

θ

UURUU

UURUU
d
d

−−−=

−∇∇−=

;
;

)()(

 

βα
βα

βα
αβτ

θ UURBB
d
dor −−=,  

But we get , 

                 
βαβαβαβα σθ whB ++=

3
1

             (From the definition of shear tensor) 

Then     αβ
αβ

αβ
αβ

αβ
αβ σσθ wwBB −+= 2

3
1

 

Substituting these values we get  

βα
αβαβ

αβ
αβ

αβσσθ
τ
θ UURww

d
d

−+−−= 2

3
1

                                                          3.9 

which is well known Raychowdhury equation for congruence of time like geodesics. Since the 

shear and rotation tensor are purely spatial (transverse), 00 ≥≥ αβ
αβ

αβ
αβσσ wwand   with the 

equality sign holding if only if the tensor is zero. 

 

3.7 FOCUSING THEOREM:  

The importance of Raychowdhury equation for congruence of time like geodesic is revealed by 

the following theorem: 

Let a congruence of time like geodesic be hyper-surface orthogonal so that the rotation tensor   

0=βαw  and let the strong energy condition   0≥+ iPρ  hold for the statement  

0)
2
1( ≥− βα

αβαβ VVgTT
 

Then the Raychowdhury equation become  

                                                
βα

αβαβ
αβ

αβ
αβσσθ

τ
θ UURww

d
d

−+−−= 2

3
1

 
The first two terms in R.H.S are non- positive and one then assume the geometry such that  

0≥βα
αβ UUR  
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Then the above equation implies  

                                 
0

3
1 2 ≤−+−−= βα

αβαβ
αβ

αβ
αβσσθ

τ
θ UURww

d
d

                               3.10               

This means that the expansion must therefore decrease during the congruence evolution. Thus an 

initially diverging )0( 〉θ congruence will diverge less rapidly in the future while an initially 

converging  )0( 〈θ  congruence will converse more rapidly in the future. This statement is known 

as FOCUSING theorem. 

The interpretation of this result is that gravity is an attractive force whose effect is to focus 

geodesics. According to the equation (3.10) 
τ
θ

d
d

 is not only negative but actually bounded from 

above by: 

                                                   
2

3
1θ

τ
θ

−≤
d
d

 
Rewriting this equation as:  

3
11

3
1 2 ≥⇒≥

θτ
θθ

τ d
d

d
d

 
Now integrating the above equation we obtain                                                       

)0(
3

)0()(

3)0(
1

)(
1

0
11 θθτθτθ

τ
θτθ

≡+≥⇒

+≥

−− where
 

                                                         
                                                                       FIG: 3  

(Geodesic convergence into a caustic of the congruence) 

This shows that if the congruence is initially converging  )0( 0 〈θ  , then ∞−→)(τθ  within a 

proper time 
0

3
θ

τ ≤ .The interpretation of this result is that the congruence will develop a 

caustic, a point at which some of geodesics come together. Obviously a caustic is singularity of 

the congruence and Raychowdhury equation loses their   meaning at such point. 
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3.8 FORBENIUS THEOREM: 

Some congruence having a vanishing rotation tensor. i.e. 0=αβw  are said to be hypersurface 

orthogonal which means that the congruence is everywhere orthogonal to a family of space like 

hyper-surface ℜ  (as in figure 4)      

                                          
                                                                 FIG: 4 

(Family of hyper surfaces orthogonal to a congruence of time like geodesic) 

The congruence will be hyper-surface orthogonal if αU  is everywhere proportional to the normal 
αn  to the hyper-surface. Let these are described by the equation of form cx =Φ )( α , where c is 

constant specific to each hyper-surface. Then  

αααα µ ,, Φ−=Φ∝ Uandn  
for some proportionality constant µ .( suppose that Φ  is increases towards  the future and the 

positive quantity µ  can be determined from the normalization condition 1−=α
αUU ). 

Differentiating the above equation we obtain 

                                                                        βααββα µµ ,,;; Φ−Φ−=U  
Now consider the completely anti-symmetric tensor   

0

})()()(

)()()({
!3

1,

)(
!3

1

,,;,,;,,;

,,;,,;,,;];[

;;;;;;];[

=

Φ−Φ−−Φ−Φ−−Φ−Φ−−

Φ−Φ−+Φ−Φ−+Φ−Φ−=

−−−++=

βγααγαβγγβγαββα

βαγγααβββγγβααβγβα

βγααβγγαββαγαγβγβαγβα

µµµµµµ

µµµµµµ

UUU

UUUUUor

UUUUUUUUUUUUUU

Using the fact that )( ;; βααβ Φ=Φ .  

We therefore have hyper-surface orthogonal means 

                                         0];[ =γβα UU .                                                                                  3.11   
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The converse of this statement that  0];[ =γβα UU  implies the existence of a scalar field Φ   such 

that ∝Φ∝ ,αU  is also true. Equation (3.11) is very useful because whether or not αU hyper-

surface is orthogonal can be decided on the basis of the vector field alone without having to find 
Φ  explicitly .Again we have never used geodesic equation in derivation of the equation (3.11) 

and also we did not use the fact that αU  was normalized .So equation (3.11) is quite general i.e. 

“A congruence of curves is hyper-surface orthogonal if 0];[ =γβα UU  where αU  is tangent 

to the curves.”  

This statement is known as the FROBENIUS theorem. 

We see that µ  must be constant on each hypersurface because it varies only in the direction 

orthogonal to the hyper-surfaces. Thus  µ  can be expressed as a function of Φ  and defining a 

new function ΦΦ=Ψ ∫ d)(µ , we find that αU is not only proportional to a gradient, it is equal to 

one: αα ,Ψ−=U .It is remarkable that if αU  can be expressed in this form, then it automatically 

satisfy the geodesic equation: 

                    
0)(

2
1)(

2
1

;,
'

;,
'

;;; ==ΨΨ=ΨΨ=Ψ= αβ
β

αβ
ββ

βα
β

αβ
β

βα ψ UUUU
 

Thus we can summarize as, a vector field αU (time like, space like or null not necessarily 

geodesic)is hyper-surface orthogonal if there exist a scalar field Φ such that αα ,Φ∝U which 

implies that 0];[ =γβα UU .If a vector field is time like and geodesic , then it is hyper-surface 

orthogonal if there exist a scalar field Ψ such that αα ,Ψ−=U  which implies that 

0];[ == βααβ Uw . 

 

3.9 INTERPRETATION OF EXPANSION SCALAR )(θ : 

 

Here we will show that expansion scalar θ  is equal to the rate of change of congruence’s cross 

sectional volume Vδ  i.e.  

V
d
d

V
δ

τδ
θ 1
=                                                               3.12 

 Let us introduce the notion of cross sections and cross sectional volume. Select a particular 

geodesic γ  from the congruence and on this geodesic pick a point P at which Pττ = .Construct - 

in a small neighborhood around P , a small set )( Pτδ ∑   of points P′  such that : 

 (a)   Through each of these points there passes another geodesic of the congruence. 
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 (b)   At each point  P′  ,τ is also equal to Pτ .i.e. Pττ = .                              

                                                              
       Fig: 5 

(Congruence cross section about a reference geodesic ) 

This set forms a three dimensional region, a small segment of hyper-surface Pττ =  (as in figure 

5). We assume that the parameterization has been adjusted so thatγ  intersect )( Pτδ ∑  

orthogonally. We will call )( Pτδ ∑  the congruence’s cross section around the geodesic  γ  at 

proper time Pττ = .We want to calculate the volume of this hyper-surface segment and compare 

it with the volume of )( Qτδ ∑  where Q is the neighboring point onγ . 

Let us introduce co-ordinates on )( Pτδ ∑ by labeling )3,2,1( =ααy  to each point P′ in the set. 

We use αy to label the geodesic since through each point of these there passes a geodesic from 

the congruence. By demanding that each geodesic keep its label as its moves away from 

)( Pτδ ∑ ,we  simultaneously obtain a co-ordinate system αy in )( Qτδ ∑  or any other cross 

section .This construction therefore defines a co-ordinate system ),( ατ y  in a neighborhood  of 

the geodesic γ  and there exist a transformation between this system  such that  

                                                           ),( ατ yxx aa =  

Because αy is constant along the geodesic, we have  

α
τ y

a
a xU )(

∂
∂

=                                                                           3.13 

On the other hand we have the vectors  

                                                          ταα )(
y
xe

a
a

∂
∂

=                                                                    3.14 

are tangent to the cross section .These relation implies that the lie derivative of  aeα  along U 

vanishes i.e.  0=a
U eL α      

Also we have 0=a
a eU α  holding onγ . 
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Let introduce a three tensor abh defined by  

                                         
βα

αβ baab eegh =                                                                               3.15  

A three tensor is a tensor with respect to co-ordinate transformations  αα yy ′→  but a scalar with 

respect to transformations aa xx ′→ . This acts as a metric tensor on )(τδ ∑ .For displacements 

contained within the set (so that 0=τd );  )( ayxx αα =  and 

ba
ab

ba
ba

b
b

a
a

dydyh

dydyeeg

dy
y
xdy

y
xg

dxdxgds

=

=

∂
∂

∂
∂

=

=

βα
αβ

βα

αβ

βα
αβ

)()(

2

 

Thus abh  is the three dimensional metric on the congruence’s cross sections. Because  γ  is   

orthogonal to its cross section ( 0=α
α aeU ), we have that βα

αβ baab eehh =  on γ  where 

βααβαβ UUgh −=  is the transverse metric. If we define abh  to be the inverse of abh , then it is 

expressed  as     βααβ
ba

ab eehh =   on  γ .     

The three dimensional volume element on the cross section or cross sectional volume is given by 

ydhV 3=δ  where [ ]abhh det= .Because the co-ordinates αy  are co-moving (as each geodesic 

moves with a constant value of its co-ordinates), yd 3 does not change as the cross section )(τδ ∑  

evolves from QP to ττττ == . A change in Vδ  therefore comes entirely from a change on h : 

ab
ab h

d
dhh

d
d

h
V

d
d

V ττ
δ

τδ 2
111

==                                                                              3.16 

Let us calculate the rate of change of three metric: 

βα
βααβ

βα
βααβ

βα
βα

βα
αβ

µβ
µ

α
αβ

βµα
µαβ

µβ
µ

α
αβ

βµα
µαβ

µ
µ

βα
αβ

τ

τ

baab
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baba

baba

baab

eeBBh
d
dor

eeUU

eeUeeU

eUegeeUg

UeegeUeg

Ueegh
d
d

)(,
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)()(
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;;

;;
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;;
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+=

+=

+=

+=

+=

=

 

Multiplying the above equation by abh  and evaluating onγ  , we obtain 

                                          
abh )()( βα

βααβτ ba
ab

ab eehBBh
d
d

+=  
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θ

αβ
αβ

αβ
αβ

2
2

2

=

=

=

gB

hB

 

                                        i.e. ab
ab h

d
dh
τ

θ
2
1

=                                                                            3.17 

From (3.17) we get, ab
ab h

d
dh
τ

θ
2
1

= which is as same as equation (3.12) . 
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Chapter four 

 
 

HYPERSURFACE 

 

 

4.0 INTRODUCTION: 

 

Mainly three topics related to hypersurface are discussed in this chapter. With sufficient pre-

requisite ideas the first part is concerned the intrinsic geometry of a hypersurface in which we 

studied an induced three dimensional metric abh  on a particular hypersurface after the 

embedding of the space time with metric αβg . 

 

The second part is concerned with the extrinsic geometry of a hypersurface or how the is 

embedded in the enveloping space time manifold .We studied how the space time curvature 

tensor can be decomposed into a purely intrinsic part (the curvature tensor of the hypersurface) 

and an extrinsic part that measures the bending of the hyper surface in space time (this bending 

is described by a three dimensional tensor abK  known as extrinsic curvature). We also found 

the Einstein tensor in terms of induced metric and extrinsic curvature. 

 

The third part is concerned with possible discontinuities of the metric and its derivative on a 

hypersurface. In this topic we studied how the hypersurface partitions space time into two 

regions and distinct metric tensor in each region. 

 

This chapter is mainly quoted from the book [5].Also the following books are used as 

references [2],[19][18]. 

 

 

 

 

 

 

 

 

 

IJSER



 

60 
 

HYPERSURFACE 
 

To discuss the concept of hypersurface first we should define scalar field. 

 

SCALAR FIELD:  A smooth scalar field on a manifold M is just a smooth real valued map 

1: EM →Φ  .In other words it is a smooth function of the co ordinates of M as a subset of rE . 

Thus Φ  associates to each point m of M a unique scalar Φ (m). If U is a subset of M, then a 

smooth scalar field on U is a real valued map 1: EU →Φ . If U≠ M, then such a scalar field is 

called local .[2] 

If  Φ is a scalar field on M and X is a chart then we express Φ  as a smooth function ϕ  of the 

associated parameters .21 , nXXX −−−− . If the chart is X  we will write ϕ  for the function of 

the parameters nXXX −−−2.1v . But we must have ϕ =ϕ  at each point of the manifold.  

  

4.1 HYPERSURFACES: 

In a four-dimensional space-time manifold, a hyper surface is three-dimensional sub manifolds 

that can be either time like or space like or null like. A particular hypersurface ∑  is selected 

either by putting a restriction on the co ordinates 

                                         =Φ )( αx 0 

  or by giving a parametric equation of the form 

                                                      

                                           )( ayxx αα =      

 where )3,2,1( =ay a  are the intrinsic co ordinates to the hypersurface. 

 
                                                                  FIG: 1 

For example, a two sphere in a three dimensional flat space is described either by  

                                                 0),.( 2222 =−++=Φ Rzyxzyx  

 where R is a radius of sphere  or given by 
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  Φ= CosRSinx θ  ; Φ= SinRSiny θ  ; θRCosz =  

where θ  and Φ  are intrinsic co ordinates .In figure (1) the relation  )( ayxα   describes the 

curves contained in   ∑ .          

 

4.2 NORMAL VECTOR: 

 The vector α,Φ  is normal to the hypersurface because the value of Φ  changes only in the 

direction orthogonal to∑ . A unit normal αn  can be introduced if the hypersurface is not null. 

This is defined by 

                              1−=∈≡α
α nn  ; if  ∑  is space like. 

                              1=∈≡α
α nn   ; if the ∑  is time like. 

 and it is demanded that αn  points in the direction of increasing   

                                            0: , 〉ΦΦ α
αn  

 Also 
α

n  is given by, 
γµ

µγ

α
α

,,

,

ΦΦ

Φ∈
=

g
n  

if the hypersurface is either space like or time like. 

 If the hypersurface ∑  is null then µγg γµφφ ,,  is zero .So in that case the unit normal  

 is not defined and  so in that case we let  

                                                              αα φ,−=K  

 be the normal vector. The sign is so chosen that αk  is future directed whenΦ increases       

towards the future. Because  αk  is orthogonal to itself )0( =α
α kk this vector is also tangent  to 

the null  hypersurface∑  as in figure (2).By computing βα
β kk ;  and showing that it is 

proportional to αk ,we can prove that αk is tangent to null geodesics contained in ∑ . 

 
                                                                     FIG: 2   
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We have   

              β
βα φφ

αβ

,
;; =k β

βαφφ ,
;= = α

β
βφφ ;

,
,2

1 )(  

 because β
βφφ,  is zero everywhere on ∑ , its gradient must be directed along αk  and we 

have αα
β

βφφ lk2)( ;
,

, =   for some scalar l . We have found that the normal vector satisfies 

                                                 αβα
β lkkk =;  

the general form of geodesics equation. The hypersurface is therefore generated by null 

geodesics and 
λ

α
α

d
dxk = is tangent to the generators. In general the parameters λ  is not affine 

but in special situation in which the relation )( axφ =constant describe a whole family of null 

hypersurface (so that β
βφφ ,

,  is not zero not only on ∑ but also in neighborhood around∑ .)  

l =0 and λ  is an affine parameter. When the hypersurface is null it is advantageous to install on 

a coordinate system that is well adapted to the behaviors of the generators. We therefore let the 

parameterλ  be one of the coordinator and we introduce two additional coordinators. 

)3,2( =AAθ  to label the generators , these are constant on each generators , thus will shall 

adopt  

                                                   ),( Aay θλ=                                                                       4.1           

when  ∑  is null ;varying λ  while keeping Aθ  constant produces a displacement along a single 

generator and changing Aθ  produces a displacement across the generators. 

 

4.3 INDUCED METRIC ON HYPERSURFACE: 

 The metric intrinsic to hypersurface ∑  is obtained by restricting the line elements to 

displacement confined to the hypersurface. Recalling the parametric equations 

)( ayxx αα = .We have that the vectors  

                                                         aa y
xe
∂
∂

=
α

α                                                                     4.2 

 are tangent to curves contained in ∑ .Thus implies that  0=α
α nea  in the null case and 

0=α
α kea  in the null case. Now for displacement within∑ , we get 

                                             βα
αβ dxdxgds =∑

2  

                                                    ))(( b
y
xa

y
x dydyg ba ∂

∂
∂
∂= βα

αβ  

                                                   ba
ab dydyh=                                                                        4.3        
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where  βα
αβ baab eegh =                                                                                                           4.4 

is called the induced metric or first fundamental form of the hypersurface. It is scalar with 

respect to transformation αα xx ′→  of the space time co ordinates but it transforms as a tensor 

under transformation aa yy ′→  of the hypersurface co ordinates. Such objects are known as 

three tensors. These relation simplify when the hypersurface is null and we use the co 

ordinates of equation ),( Aay θλ= ; A=2,3. 

Then α
θ

α
α

λ
kxe A ≡

∂
∂

= )(1 and it follows that  

                                          011 == βα
αβ kkgh          

                               and      01 == βα
αβ AA ekgh  

Because by construction λ

α
α

θ
)( AA

xe
∂
∂

≡  is orthogonal to αk  .In the null case therefore  

                                         BA
AB ddds θθσ=2  

 where λ

α
αβα

αβ θ
σ )(; AABAAB

xeeeg
∂
∂

== .Here the induced metric is a two tensor .We conclude 

by writing down the completeness relation for the inverse metric. In the non null case  

                      βαβααβ
ba

ab eehnng +=∈                                                                                4.5 

where abh is the inverse of the induced metric .Equation (4.5) is verified by computing all inner 

products between αα
aeandn .In the non null case we must introduce everywhere on  ∑ , an 

auxiliary null vector field  αN   satisfying 1−=α
α kN  and  0=α

α aeN  

where αk  is the tangent vector field, defined as 
λ

α
α

d
dxk = . 

The inverse metric can be expressed as  

                             βαβαβααβ σ BA
AB eekNNkg +−−=                    4.6                   

where ABσ  is the inverse of  ABσ .Equation (4.6) is verified by computing all inner product 

between ααα
AeandNk , . 

 

4.4    LIGHT CONE IN FLAT SPACE TIME: 

An example of a null hypersurface in flat space time is the future light cone of an event P, 

which we place at the origin of a Cartesian co-ordinate systems αx . The defining relation for 

this hypersurface is  0=−≡Φ rt  where 2222 zyxr ++= .The normal vector is  

IJSER



 

 
 

64

HYPERSURFACE

                                             ),,,1()(
r
z

r
y

r
xrtk −=−−∂= αα . 

 A suitable set of parametric equations  θλϕθλϕθλλ CoszCosSinyCosSinxt ==== ,,,    

in which ),,( ϕθλ=ay are the intrinsic co-ordinates; λ  is an affine parameter on the light cones 

null generators which moves constant values  of  ),( ϕθθ =A .From the parametric equation we 

compute the hypersurfaces tangent vectors  [5][19]                       

                                           α
α

α
λ θϕθϕθ

λ
kCosSinSinCosSinxe ==

∂
∂

= ),,,1(  

                ),,,1( θλϕθϕθ
θ

α
α
θ SinSinCosCosCosxe −=

∂
∂

=  

                             )0,,,1( ϕθλϕθλ
ϕ

α
α
ϕ CosSinSinSinxe −=

∂
∂

=  

We may check that this vectors are orthogonal to αk . Inner product between α
ϕ

α
θ eande define 

the two metric ABσ  and we find  

                                         )( 2222 ϕθθλθθσ dSinddd BA
AB +=  

Not surprisingly, the hypersurface has a spherical geometry and λ is  a real radius of the two 

sphere. 

 

4.5 DIFFERENTIATION OF TANGENT VECTOR FIELDS: 

 

4.5(a) TANGENT TENSOR FIELD:         

    

In this section  we consider  that  the hypersurface ∑  is either space like or time like .With a 

hypersurface ∑  it is common situation to have tensor field .................αβA that are defined only on 

∑  and which are purely tangent to the hypersurface .Such tensor admits the following  

decomposition: 

 

                                        .................... βααβ
ba

ab eeAA =                                                                 4.7 

where aa y
xe
∂
∂

=
α

α   are basis vectors on ∑ .Equation (4.7) implies  that      

                                    0...........
== β

αβ
α

αβ nAnA  
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which confirms that .......αβA is tangent to the hypersurface .We note that an arbitrary  tensor 
.......αβA  can always  be projected down to the hyper surface ,so that only its tangential  

components survive .The quantity  that effects the projection is  

 

                                   
βααββααβ nngeehh ba

ab ∈−=≡  

  and ............ µγβ
γ

α
µ Thh is evidently tangent to the hypersurface. The projections 

 

                                
.......

........... ........... mn
bnamabba AhhAeeA ≡=βα

αβ                                              4.8 

give the three tensors ...........abA associated  with the tangent tensor field .......αβA ; Latin indices are 

lowered and raised with abh  and abh respectively. Equation (4.7) and (4.8) shows that one can 

easily go back and  forth between a tangent tensor field .......αβA  and its equivalent three tensor 
...........abA .It is emphasized that while ...........abA  transform as a tensor under transformation 

aa yy ′→  of the co-ordinates intrinsic to ∑ , it is scalar under transformation αα xx ′→  of the 

space time co-ordinates. 

 

4.5 (b) INTRINSIC COVARIANT DERIVATIVES:  

 

We will consider how tangent tensor field are differentiated .We want to relate the covariant 

derivatives of   
.......αβA (with respect to connection that is compatible with the space time 

metric αβg ) to the co variant derivative of ...........abA (defined in terms of connection that is 

compatible with the induced metric abh .   

For simplicity we shall restrict our case to the case of tangent vector field αA  such that 

 

                                
αα
a

aeAA = ;     0=α
α nA  ;    

α
α aa eAA =  

We define the intrinsic covariant derivative of a three vector aA  to be the projection of 

βα ;A  onto the hypersurface: 

                                         βα
βα baba eeAA ;≡                                                                            4.9  

We will show that, baA  as defined here is nothing but the covariant derivative of aA  
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defined in the usual way in terms of connection a
bcΓ  that compatible with abh . Let us express R 

.H.S of equation (4.9) as 

 

                                     
β

β
α

α
β

β
α

α
βα

βα bababa eeAeeAeeA ;;; )( −=
 

 

                                                       γβ
βγ

β
β c

c
baba eAeeeA ;, −=  

 

                                                        c
bacb

a Aeee
y
x

x
A β

βγ
γ

β

β ;−
∂
∂

∂
∂

=  

                                                       

                                                         c
cab AA

ba
Γ−=

,
                                                             4.10 

 

where we have defined   

                                                      
β

βγ
γ

baccab eee ;=Γ                                                                4.11 

Equation (4.10) becomes then  

                                                      c
c
abbaba AAA Γ−= ,                                                           4.12 

which is familiar expression for the covariant derivative. The connection used here is the one 

defined by (4.11) and it is compatible with induced metric. In other words cabΓ   as defined by 

(4.10) can also expressed as  

                                                        )( ,.,2
1

cababcbcacab hhh −+=Γ                                          4.13 

This could be easily done by directly working out the R .H.S. of (4.11).It is easier, however to 

show that the connection is such that:  

                                                      0; =≡ γβα
γαβ cbacab eeehh  

indeed                 

                                    
γφα

γβααβ
γβα

γαβ cbacba eeenngeeeh ;; )( ∈−=  

                                                        
γβα

γβαβγα cba eeennnn )( ;; +∈−=  
                                                        = 0                                                        

because 0=α
α aen . 
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4.5(c) EXTRINSIC CURVATURE: 

 

The quantities  βα
βα baba eeAA ;≡  are the tangential components of the vector βα

β beA ;  .We would 

like to investigate now whether this vector possess a normal component. 

Let us express  β
β

α
beA ;   and β

β
µα

µ beAg ;  and decompose the metric into its normal and tangential 

part as below: 

                                        
βαβααβ
ba

ab eehnng +=∈  
This gives  

                                      βµ
βµ

α
µ

αβα
β bma

am
b eAeehnneA ;; )( +∈=  

                                                αβµ
βµ

αβα
βµ abm

am
b eeeAhneAn )()( ;; +=∈  

where we see that the second term is tangent to the hypersurface .Using the fact that 
βα

βα baba eeAA ;=   and µA  is orthogonal  to µn , the above equation becomes  

                                      ααβµ
βµ

βα
β aba

am
bb eAhneAneA +∈−= )( ;;  

                                                 αβµ
βµ

α neenAeA ba
a

a
a

b )( ;∈−=  

At this point we introduce the three vector 

 

                                                    
βα

βα baab eenK ;≡                                                                   4.14 

called the extrinsic  curvature or second fundamental form of the  hypersurface ∑ . In terms of 

this we have  

                                       ααα
β nKAeAA ab

a
a

a
b ∈−=;                                                               4.15 

and we see that a
bA  gives the purely tangential part of the vector  field while  - ab

a KA∈  

represent the normal components. This answers our requirements: the normal components 

vanish if   only if the extrinsic curvature vanishes. 

We note that if α
ae is substituted in place of  αA  then c

a
cA δ= and  c

c
abbaba AAA Γ−= ,  

and equation (4.14) imply  

                                           
ααβ

β
α nKeee abc

c
abba ∈−Γ=;  

which is known as the Gauss –Weingarten equation.[5][19] 
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 The extrinsic curvature is very important quantity and it is a symmetric tensor i.e. 

baab KK = .The symmetry of the extrinsic curvature implies the relation  

                                          βα
αβ

βα
βα banbaab eegLeenK )(

2
1

);( ==  

and the extrinsic curvature is therefore intimately related to the normal derivative of the metric 

tensor. We also note the relation  

                                             α
α;nKhK ab

ab =≡  

which shows that  K is equal the expansion of a congruence of geodesic that intersect the hyper 

surface orthogonally. (So that their tangent vector is equal to αn  on the hypersurface). From this 

result we conclude that the hypersurface is convex if 0〉K (congruence is diverging) or concave 

if 0〈K (congruence is converging). 

Thus we see that while abh  is concerned with the purely intrinsic aspects of hypersurface 

geometry, abK  is concerned with the extrinsic aspects – the embedding of the hypersurface in 

the enveloping space-time manifold. Taking together these tensors provide a virtually complete 

characterization of the hypersurface. 

 

4.6 GAUSS CODAZZI EQUATION: 

  

4.6(a) GENERAL FORM: We have introduced the induced metric abh and its associated intrinsic 

covariant derivative. A purely intrinsic curvature tensor can be defined by the relation; 

                             c
bad

c
ba

c
ab RAA −=−                                                                                 4.16 

which of course implies  

                             m
da

c
mb

m
db

c
am

c
bda

c
adb

c
badR ΓΓ−ΓΓ+Γ−Γ= ,,                                                       4.17  

We show that, whether this three dimensional Riemannian tensor can be expressed in terms 

of γ
βαδR -the four dimensional version, evaluated on .∑  

We get  

                             .;
ααβα

β nKeee abd
d
abba ∈−Γ=  

Then we can write 

                      γ
γ

ααγ
γ

βα
β cabd

d
abcba enKeeee ;;; .)()( ∈−Γ=                                                          4.18 

 

Let us first develop the L.H.S of (4.17) 
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                                   L.H.S= γ
β

βα
β cba eee ;; )(  

βα
β

ααγβα
βγ

ββα
β

γβα
βγ

γβ
γ

α
β

γβα
βγ

neKnKeeee

nKeeeee

eeeeee

abcadp
p

ad
d
bccba

bcd
d
bcacba

cbacba

;;

;;

;;;

)(

)(

∈−∈−ΓΓ+=

∈−Γ+=

+=

  

Let us develop the R.H.S of (4.17) 

                         R.H.S= γ
γ

αα
cabd

d
ab enKe ;.)( ∈−Γ  

γα
γ

αααα

γα
γ

αγα
γ

α

cabcabdcp
p

dc
d
abd

d
cab

cabcabcd
d
abd

d
cab

enKnKnKee

enKnKeee

;,,

;,;,

)( ∈−∈−∈−ΓΓ+Γ=

∈−∈−Γ+Γ=

 

From equation (4.17) we get,  

     βα
β

ααγβα
βγ neKnKeeee abcadp

p
ad

d
bccba ;; )( ∈−∈−ΓΓ+ =                                              

γα
γ

αααα
cabcabdcp

p
dc

d
abd

d
cab enKnKnKee ;,, )( ∈−∈−∈−ΓΓ+Γ

 

19.4

,

,

;;,

,;

;

;,,;

βα
β

γα
γ

α

αααααγβα
βγ

βα
β

αα

γα
γ

ααααγβα
βγ

neKenKnK

nKnKeeeeeeor

neKnKe

enKnKnKeeeeeor

abccabcab

dc
d
abad

d
bcm

m
ad

d
bcm

m
dc

d
abd

d
cabcba

abcad
d

bcm
m
ad

d
bc

cabcabdc
d
abm

m
dc

d
abd

d
cabcba

∈+∈−∈−

Γ∈−Γ∈+ΓΓ−ΓΓ+Γ=

∈+Γ∈+ΓΓ−

∈−∈−Γ∈−ΓΓ+Γ=

                   

 

Similarly we get , ),,,(; bccbeee bca →→→→ γββγβγα
γβ  

 

20.4;;,

,;

γα
γ

βα
β

α

αααααβγα
γβ

neKenKnK

nKnKeeeeee

acbbacbac

db
d
acad

d
cbm

m
ad

d
cbm

m
db

d
acd

d
bacbca

∈+∈−∈

−Γ∈−Γ∈+ΓΓ−ΓΓ+Γ=

 

Now subtracting (4.19) from (4.18) we get 

 

      αααα

βα
β

γα
γ

αβγα
γβ

α
βγ

nKnKnKnK

enKenKeeeee

bacdb
d
accabdc

d
ab

baccabm
d
ac

m
db

m
bac

d
ab

m
dc

m
cabbcaa

,,

;;,,;; )()(

∈+Γ∈+∈−Γ∈−

∈+∈−ΓΓ−Γ−ΓΓ+Γ=−
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βµ
β

µµ
γ

µµγβαµ
γβα

γµ
γ

µµ
β

µµ

γµ
γ

βµ
β

µµµγβαµ
γβα

baccabbaccabm
m
bcacba

cabbaccabbacm
m

bca

cabbac

db
d
accabdc

d
abbacm

m
bcacba

enKenKnKKeReeeRor

enKenKnKKeR

enKenK

nKKnKKeReeeRor

;;

;;

;;

,,

)(,

)(

)()(,

∈−∈+−∈+=

∈−∈+−∈+=

∈−∈

Γ−∈−Γ−∈+=−

ΙΙ

ΙΙ  

 

Projecting along µde   we get, 

                         )( bdacbcaddcbadcba KKKKReeeeR −∈+=δγβα
δγβα                                    4.21 

 

and this the desired relation between dcbaR   and the full Riemannian tensor. Projecting 

instead along µn  gives 

                                    baccabcba KKeeenR ΙΙ −=γβαµ
γβαµ                                           4.22 

Equation (4.20) and (4.21) are known as Gauss –Codazzi equation. They reveal that space time 

curvature can be expressed in terms of the extrinsic and intrinsic curvature of a hypersurface. 

 

4.6(b) CONTRACTED FORM OF GAUSS CODAZZI EQUATION: 

 

 We obtain that the general form of Gauss –Codazzi equation can be expressed as: 

           

                   )( bdacbcaddcbadcba KKKKReeeeR −∈+=δγβα
δγβα                                            4.23 

 

                 and           baccabcba KKeeenR −=γβαµ
γβαµ                                                        4.24 

The Gauss-Codazzi equation can be expressed in contracted form, in terms of the Einstein 

tensor      

                                           RgRG αβαβαβ 2
1−=  . 

The space time Ricci tensor is given by  

                                            
γµ

γβαµ
γµ

γβαµ

γβαµ
γµγµ

βγαµ
µγ

αβ

nm
mn

nm
mn

eeRhnnR

Reehnn

RgR

+=∈

+∈=

=

)(  
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where mnh   is the inverse metric of  βα
αβ nmmn eegh =   i.e. called induced metric .Also the Ricci 

scalar is given by 

                                      
)()( γµ

βγαµ
γµ

βγαµ
βαβα

αβ
αβ

nm
mn

ba
ab eeRhnnReehnn

RgR

+∈+∈=

=
 

βαγµ
βγαµ

γµβα
βγαµ

βαγµ
βγαµ

γµβα
βγαµ

banm
mnab

ba
ab

nm
mn

eeeeRhhnneeRh

nneeRhnnnnR

+∈+

∈+=∈2

                        

               βγαµ
βγαµ

βγαµ
βγαµ bnam

mnab
ba

ab eeeeRhhenenRhRor +∈= 2,  

where we use the fact that , 

                                  0=βγαµ
βγαµ nnnnR  

 

and we obtain with the help of (4.22) 

{ })(2 banmnabmbnam
nmba KKKKRhhnnRR −∈++∈= βα

βα                   4.25  

 

To obtain the value of the first term in the above equation, let us consider the definition of 

Riemannian tensor α
δγβR given by : 

βα
δγβ

α
γδ

α
δγ nRnn −=− ;;  

                                                       α
δα

α
αδ

β
δβ ;;, nnnRor −=  

                                                       δα
δα

δα
αδ

δβ
δβ nnnnnnRor ;;, −=  

Thus we may write  

                            

β
α

α
βα

βα
ββ

βα
α

β
α

α
βα

βα
β

β
β

α
αβ

βα
α

βα
αβ

βα
βα

βα
βα

βα
αβ

βα
βα

;;;;
2

;;

;;;;;;;;

;;

;;

)()(

)()(

nnnnKnn

nnnnnnnn

nnnn

nnnnnnR

−++−=

−++−=

+−=

−=

 

                                  
β
α

α
βα

β
β

αβα
β

β
α

α
βα

βα
βα

β
β

αβα
βα

;;
2

;;;

;;
2

;;;;

)(

)()(,

nnKnnnn

nnKnnnnnnRor

−+−=

−++−=
 

where α
α;nK =  is the trace of the extrinsic curvature .Let us calculate the rd3  term of the  

above equation separately, 

                                           
γµβα

αγγαβµµβ

γµβα
αγβµβ

α
α
β

;;

;;;;

))(( nnhnnhnn

nnggnn

+∈+∈=

=
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ab
ab

ab
ab

mnab
anbm

nmba
anbm

KKnnor

KK

KKhh

eeneenhh

nnhh

nnhhnnnnor

=

=

=

=

=

+∈=

β
α

α
β

γµ
γµ

βα
βα

γµβα
αγβµ

γµβα
αγβµµββ

α
α
β

;;

;;

;;

;;;;

,

)(,

 

where we have used the fact that 0)( ;2
1

; == βα
α

βα
α nnnn . 

Thus we can write now  

                                ab
ab KKKnnnnnnR −+−= 2

;;; )( α
β
β

αβα
β

βα
βα  

Putting the values in equation (4.24) 

                                  { }ab
ab KKKnnnnR −+−∈= 2

;;; )(2 α
β
β

αβα
β  

{ })( banmnabmbnam
nmba KKKKRhh −∈++  

{ }
)(

)(2,
23

;;;
2

KKKR

nnnnKKKRor

ab
ab

ab
ab

−∈++

−+−∈= α
β
β

αβα
β

 

                      

                        β
β
β

αβα
β ;;;

23 )(2)(, nnnnKKKRRor ab
ab −∈+−∈+=                                 4.26          

where m
bma

ab RhR =3  is the three dimensional Ricci scalar. Equation (4.25) indicates the four 

dimensional Ricci scalar evaluated on the hypersurface. 

We can write now the Einstein tensor 

{ }α
β
β

αβα
ββααβ

γµ
βγαµ

γµ
βγαµ

αβαβαβ

;;;
23

2
1

)(2)()(
2
1 nnnnKKKReehh

eeRhnnR

RgRG

ab
abba

ab

nm
mn

−∈+−∈++∈−

+∈=

−=

 

 

{ }
βα

βααβ

α
β
β

αβα
β

βαγµ
βγαµ

βαγµ
βγαµ

βα
αβ

nneehh

nnnnKKKR

nneeRhnnnnRnnGor

ba
ab

ab
ab

nm
mn
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 where bma
ab RhR =3  is the three dimensional Ricci scalar.  

The importance of equation (4.26) and (4.27) lies with the fact that they form the part of the 

Einstein field equation on a hypersurface .∑ It is noted that βα
αβ neG a  the remaining part of this 

Einstein tensor, can not be expressed solely in terms of abab Kh ,  and related quantities. 

 

4.7 CONSTRAINED IN INITIAL VALUE PROBLEM: 

 

In Newtonian mechanics, a complete solution to the equation of motion requires the 

specification of initial values for the position and velocity of each moving body. But in field 

theories, a complete solution to the field equation requires the specification of field and its time 

derivatives at one instant of time. Since the Einstein field equation is nd2 order partial 

differential equations, we would expect that a complete solution should require the specification   
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of αβg  and tg ,αβ  at one instant of time. While this is correct, it is desirable to convert this 

decidedly non-covariant statement into something more geometrical. 

The initial value problem in general relativity starts with the selection of a space like hyper- 

surface ∑  which represent an instant of time. This hypersurface can be chosen freely. On this 

hypersurface we put some arbitrary co–ordinates ay . 

The space –time metric αβg , when evaluated on∑  , has components that characterizes the 

displacements away from the hypersurface. For example, ttg  is such a component if ∑  is a 

surface of constant t. These components cannot be given meaning in terms of geometric 

properties of ∑  alone. To provide meaningful initial values for the space-time metric, we must 

consider displacement within the hypersurface only. In other words the initial values for αβg  

can only be the six components of the induced metric βα
αβ baab eegh =  ; the remaining four 

components are arbitrary and this reflects the complete freedom in choosing the space time co–

ordinates αx . 

Similarly the initial value for the time derivative of the metric must be described by a three 

tensor that carries information about the derivative of the metric in the direction normal to the 

hypersurface. Because βα
αβ banab eegLK )(2

1= , the extrinsic curvature is clearly an appropriate 

choice. ( nL  stands for lie derivative) 

 The initial value problem of general relativity therefore consists in specifying two symmetric 

tensor fields abh  and abK  on a space like hypersurface∑ . In the complete space time, abh  is 

interpreted as the induced metric on the hypersurface while abK  is the extrinsic curvature. 

These tensors cannot be chosen freely; they satisfy the covariant equations of general relativity. 

They are given by 

       )(2 23 KKKRnnG ab
ab −∈+=∈− βα

αβ  

                                           and     a
b

baba KKeeG ,−=βα
αβ  

together with the Einstein field equation  

                                                                  αβαβ πTG 8=  

such that 

                                      πρπ βα
αβ 161623 ≡=−+ nnTKKKR ab

ab  

                                and  aaa
b

ba jneTKK ππ βα
αβ 88, ≡=−  
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The remaining components of the Einstein field equations provide evolution equation for abh  

and abK . 

 

4.8 JUNCTION CONDITION AND THIN SHELL: 

A hypersurface ∑  partitions space time into two regions +ν  and −ν as in figure (3). In +ν ,the 

metric is  +
αβg  and it is expressed as a  system of co- ordinate α

+x .Similarly in −ν the metric is 

−
αβg   and it is expressed  in co-ordinate α

−x . Now what condition should be put on the metrics to 

ensure that  +ν  and −ν  are joined smoothly at∑ -so that the union of  +
αβg  and −

αβg  forms a 

valid solution to the Einstein equation. 

 

. 

 

             

 

 

Fig: 3 

The answer of this question is not entirely straightforward because in practical situation, the co-

ordinate system α
±x will often be different and it may not be possible to compare the metrics 

directly. To circumvent this difficulty we will endeavor to formulate junction conditions that 

involve only three tensor on ∑ .In that case we will assume that ∑  is either time like or space 

like. 

 

4.9 NOTATION AND ASSUMPTION: 

 

We assume that the same co-ordinates αy  can be installed on both sides of the hypersurface 

and we choose αn , the unit normal to ∑  to  point from −ν  to +ν .We suppose that an 

overlapping  co-ordinate system αx distinct from  α
±x  can be introduced in the neighborhood  of 

the ∑ .(This is for our short term convenience ;the formulation of the junction condition will 

not involve  this co-ordinate system ).We imagine the hypersurface ∑   to be pierced by a 

congruence of geodesics that intersect it orthogonally. We take l  to denote proper distance (or 

proper time) along the geodesics and we will adjust the parameterization   so that l =0 when 
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geodesic cross the hypersurface. Our convention is that l  is -ve in −ν  and l  is +ve in +ν .We 

can think of l as a scalar field: The point P characterizes by the co-ordinates  αx  is linked to ∑   

by a member of congruence and   l ( ax ) is the proper distance from ∑  to P along the geodesic. 

Our construction is that  αn  is equal to 
dl

dxα

at the hypersurface and that  

                                                            ln αα ∂=∈  

We also have =∈α
α nn .We will also use language of distribution. We introduce the Heaviside 

distribution )(lΘ [5] and is  

                                                 equal to +1     if    0〉l  

                                                or equal to –1  if    0〈l  

                                            and intermediate if    l =0 

We note the following properties: 

)()(,0)()(,)()(2 llllll dt
d δ=Θ=−ΘΘΘ=Θ  

where )(lδ  is the Dirac distribution .We note that the product  )()( ll δΘ  is not defined as 

distribution. The following notation will be useful: 

[ ]
∑

−
∑

+ −≡ )()( νν AAA                                                                4.29 

where A is any tensorial quantity defined on both sides of the hypersurface; [ ]A   is therefore the 

jump of a across ∑ .We note the relation  

0][][ == αα
aen                                                            4.30 

where aa y
xe
∂
∂

=
α

α .The first follows from the relation 
dl

dxn
α

α =  and the continuity of both l  and 

αx  across∑ ,the second follows from the fact that the co-ordinates  ay  are the same on the both 

sides of the hypersurface. 

 

4.10 FIRST JUNCTION CONDITION:  

 Let us begin by expressing the metric αβg in the co-ordinate αx  as a distribution valued tensor: 

 

                                        −+ −Θ+Θ= αβαβαβ glglg )()(                                                   4.31 

where  ±
αβg  is the metric in +ν  expressed in the co-ordinates αx .We want  to know whether the 

metric (4.24) makes a valid distributional solution to the Einstein field equation. To deduce we 
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must verify that geometrical quantities constructed from αβg   such that Riemannian tensor are 

properly defined as distribution.  We must then try to eliminate or at least give an interpretation 

to, singular terms that might arise in these geometrical quantities. Differentiating (4.31) we 

obtain [5] 

                  γαβγαβγαβγαβ δ nglglglg ])[()()( ,,, ∈+Θ+Θ= −+                                                    4.32 

  

The last term is singular and it causes problem when we compute the Christoffel symbols, 

because it generates terms proportional to )()( ll δΘ .If the last term is allowed to survive, 

therefore the connection would not be defined as a distribution .To eliminate this term, we 

impose continuity of the metric across the hyper surface: [ ] 0=εβg .This statement holds in this 

co-ordinate system αx only.  However we can easily turn this into a co-ordinate invariant 

statement;  [ ] [ ]βα
αβ

βα
αβ baba eegeeg ==0 ; the last step is followed by (4.23).We have obtained 

then  

 

                                               [ ] [ ] 00 =⇒= abba heeg βα
αβ                                                      4.33 

The statement that the induced metric must be the same on the both sides of ∑ .This is clearly 

required if the hypersurface is to have a well defined geometry. Equation (4.33) will be our first 

junction condition and it is expressed independently of the co-ordinates αα
±xorx , . 

 

4.11 RIEMANNIAN TENSOR:  

To find the second junction condition, more works are required. We must calculate the 

distribution valued Riemannian tensor. Using the result of (4.26), we can write the Christoffel 

symbol as: 

                                      )( ,,2
1

δβγβδγγδβ
αδα

βγ gggg −+=Γ  

                                

]}])[()()({

}])[()()({

}])[()()({[,

,,

,,

,,2
1

δβγδβγδβγ

βδγβδγβδγ

γδβγδβγδβ
αδα

βγ

δ

δ

δ

nglglgl

nglglgl

nglglglgor

∈+−Θ+Θ−

∈+−Θ+Θ+

∈+−Θ+Θ=Γ

−+

−+

−+

 

              
)()(

)()(,

,,,2
1

,,,2
1

δβγγδββδγ
αδ

δβγβγδγδβ
αδα

βγ

ggggl

gggglor

−+−Θ+

−+Θ=Γ
−−

+++

 

                  α
βγ

α
βγ

α
βγ

−+ Γ−Θ+ΓΘ=Γ )()(, llor  
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where  α
βγ
±Γ  are the Christoffel  symbol constructed from  ±

αβg . A straightforward calculation 

then reveals  

                      δ
α
βγδβγδβγ

α
δβγ δ nlll ][)()()( ,,, Γ∈+Γ−Θ+ΓΘ=Γ −+  

and from this we get  the Riemannian tensor : 

                             µ
βγ

α
µδ

µ
βδ

α
γµ

α
δβγ

α
γβδ

α
βγδ ΓΓ−ΓΓ+Γ−Γ= ,,R  

 

}][][{)(

])[(

])[(

})()(}{)()({

})()(}{)()({])[(

)()(][)()()(,

,,

,,

,,,,

δ
α
βγγ

α
βδ

µ
βγ

α
µδ

µ
βδ

α
γµ

α
δβγ

α
γβδ

µ
βγ

α
µδ

µ
βδ

α
γµ

α
δβγ

α
γβδ

µ
βγ

µ
βγ

α
µδ

α
µδ

µ
βδ

µ
βδ

α
γµ

α
γµδ

α
βγ

α
δβγ

α
δβγγ

α
βδ

α
γβδ

α
γβδ

α
βγδ

δ

δ

δ

nnl

l

l

llll

llllnl

llnlllRor

Γ−Γ∈+

ΓΓ−ΓΓ+Γ−Γ−Θ+

ΓΓ−ΓΓ+Γ−ΓΘ=

Γ−Θ+ΓΘΓ−Θ+ΓΘ−

Γ−Θ+ΓΘΓ−Θ+ΓΘ−Γ∈−

Γ−Θ−ΓΘ−Γ∈+Γ−Θ+ΓΘ=

−−−−−−

++++++

−+−+

−+−+

−+−+

                         

α
βγδ

α
βγδ

α
βγδ

α
βγδ δ AlRlRlRor )()()(, +−Θ+Θ= −+                        4.34 

where }][][{ δ
α
βγγ

α
βδ

α
βγδ nnA Γ−Γ=∈                                                   

 We see that the Riemannian tensor is properly defined as a distribution but the δ    function 

term represent a curvature singularity at ∑ .The second junction condition will seek to eliminate 

this term. Failing this, we see that a physical interpretation can nevertheless be given to the 

singularity  which is our next topic. 

Although they are constructed from Christoffel symbol, the quantities α
βγδA  form a tensor 

because the difference between two sets of Christoffel symbol is a tensorial quantity. We must 

find now an explicit expression for this tensor.  

The fact that the metric is continuous across ∑  in the co-ordinates αx implies that its tangential 

derivative must also be continuous. This means that if γαβ ,g  is to be discontinuous, the 

discontinuity must be directed along the normal vector αn . Therefore there must exist a tensor 

field abk  such that  

 

                                                γαβγαβ nkg =][ ,                                                                    4.35 

  Also this tensor is given by  
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                                                γ
γαβαβ

ngk ][ ,=∈                                                                  4.36 

with the help of (4.30) we get  

 

                                ])([][ ,,,2
1

δβγβδγγδβ
αδα

βγ gggg −++=Γ  

                                                            

                                             )]([2
1

δβλβδγγδβ
αδ nknknkg −+=  

 

                                             )(2
1 α

βγβ
α
γγ

α
β nknknk −+=                                                   4.37 

Putting the value of (4.36) and (4.37) we obtain  

                                     )][][( δ
α
βγγ

α
βδ

α
βγδ nnA Γ−Γ=∈  

                                             )(
2 δ

α
βγγ

α
βδδβ

α
γγβ

α
δ nnknnknnknnk +−−

∈
=  

This is the δ  function part of the Riemannian tensor. Contracting over the first and third 

indices, we get the δ  function part of the Ricci tensor. 

                                    )(
2 αββαα

µ
µββ

µ
µα

µ
αµβαβ knnknnknnkAA ∈−−+

∈
==                4.38 

where α
αkk ≡ . After an additional contraction, we obtain the δ  function part of the Ricci 

scalar        

                 )( knnkAA ∈−=∈≡ γµ
µγ

α
α                                                                                 4.39 

 Using (4.33) and (4.34) we calculate the Einstein tensor  

                                       αβαβαβ gAAG
2
1

−=  

where αβA  and A are the Ricci tensor  and Ricci scalar for δ  function respectively. 

 

4.12 SECOND JUNCTION CONDITION:   

The surface stress energy tensor is given by [5]  

                                )
2
1(

8
1

αβαβαβ π
AgAS −=  

                           
)(

2
1

)(
2

8,

knnkg

knnknnknnkSor

∈−∈−

∈−−+
∈

=

γµ
µγαβ

αββαα
β

µββ
µ

µααβπ
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αβ

γµ
µγ

αββαα
β

µββ
µ

µααβπ

gknnk

knnknnknnkSor

)(

16,

∈−−

∈−−+=∈
 

From this we notice that αβS  is tangent to the hypersurface: 0=β
αβ nS .It  therefore admits the 

decomposition 

                                         βααβ
ba

ab eeSS =   

where βα
αβ baab eeSS =  is a symmetric three tensor. This is evaluated as follows: 

                                             babaab hknnkeekS )(16 ∈−∈−−= γµ
γµ

βα
αβπ   

                                                          babanm
mn

ba hkheehgkeek +−−−= )( γµµγ
γµ

βα
αβ  

                                                           banm
mn

ba heekheek γµ
γµ

βα
αβ +−=     

On the other hand we have, 

                                        γ
γ
αββα nn ][][ , Γ−=         

                                                   γ
γαβαγββγα nnknknk )(

2
1

−+−=    

                                                   γ
αγβ

γ
βγααβ nnknnkk −−∈= (

2
1   

 which allows us to write 

                                    βα
αβ

βα
βα babaab eekeenK

2
][][ ;

∈
==  

  Combining these we have, 

                                     )][][(
8 ababab hKKS −
∈

−=
π

 

which relates the surface stress energy tensor to the jump in extrinsic curvature from one side of 

∑  to the other. We conclude that a smooth transition across  ∑  requires ]0[ =abK ,the extrinsic 

curvature must be the same on the both sides of the hypersurface. This requirement does more 

than just remove the δ  function term from the Einstein tensor. 

Again ]0[ =abK implies 0=α
βγδA , which means that the full Riemannian tensor is then non-

singular at∑ . 

The condition ]0[ =abK  is our second junction condition and it is expressed independently of 

the co-ordinates αx  and α
±x .If this condition is violated, then the space time is singular at∑ . 
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Chapter five 

 
 

EMBEDDING OF SPACE TIME IN FIVE DIMENSIONAL WEYL SPACES 

 

 

5.0 INTRODUCTION: 

 

In this chapter we review the Weyl geometry in the context of higher dimensional space time. 

In recent year our ordinary space time may be viewed as a hyper surface embedded in a higher 

dimensional manifold often referred as the bulk. As far as the geometry of this hyper surface is 

concerned, it has been generally assumed that it has a Riemanian geometrical structure. After 

introducing the Weyl theory in a modern geometrical language we present some results that 

represent extensions of Riemannian theorems. We consider the theory of local embeddings and 

sub manifolds in the context of Weyl geometry and show how a Riemannian space time may be 

locally and isometric ally embedded in a Weyl bulk. 

 

An important class of higher dimensional models in the brane world scenario  share the 

following properties :  (a) Our space time is viewed as 4D Riemannian hyper surface (brane) 

embedded in a 5D Riemannian manifold (bulk) (b) The geometry of the bulk space is 

characterized by a warped product space. (c) Fermionic matter is confined to the brane by 

means of an interaction of the fermions with a scalar field which depends only on the extra 

dimension. 

 

In this chapter we discuss the problem of classical confinement and the stability of motion of 

particles and photons in the neighborhood of brane for the case when the bulk has the geometry 

of warped product space .We studied confinement and stabilities properties of geodesics near 

the brane   that may be affected by Weyl field. 

 

This chapter is mainly a review work of the article “On the embedding of space time in five 

dimensional Weyl spaces” of F.Dahia, G.A.T.Gomez and C.Romero, published in the journal of 

mathematical physics 49, 102501(2008) . 
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EMBEDDING OF SPACE TIME IN FIVE DIMENSIONAL 

WEYL SPACE. 
 

5.1  WEYL TENSOR: The Einstein equation given as  

                                                              αβαβ kTG =  

can be regarded as ten algebraic equations for certain traces of the Riemannian tensor σµγρR .But 

σµγρR  has twenty independent components .The reason is that we solve the Einstein equation 

for the metric µγg  and then calculate the Riemannian curvature tensor for that metric .However 

this reason does not really provide an explanation of how the information about the other 

components are encoded in the Einstein equation. It is interesting to understand this because it 

is precisely these components of the Riemannian tensor which represent the effects of gravity in 

vacuum i.e where 0=µγT ,like tidal forces and gravitational waves. 

 The more insightful answer is that the information is encoded in the Bianchi identity 

                                                         0][ =∇ ρσλ R   

which serves as propagation equation for the trace parts of the Riemannian tensor away from 

the region where  0≠µγT . 

To see this, first of all let decompose the Riemannian tensor into its trace part µγR (Ricci part) 

and R (Ricci scalar) and its traceless part  σµγρC -is called the Weyl tensor which is basically the 

Riemannian tensor with all of its contractions removed. 

In any 4≥n ,the Weyl tensor is defined [15] [21] by : 

)(
)2)(1(

1

)(
2

1

σµγρσγµρ

σµγρσµγρσγµρσγµρσµγρσµγρ

ggggR
nn

gRRggRRg
n

RC

−
−−

+

−−+
−

−=
 

This definition is such that  σµγρC  has all the symmetries of the Riemanian tensor i.e 

                                                ][][ σρµγσµγρ CCC =  

                                                µγσρσµγρ CC =  

                                                0][ =σγρµC  

and that of all of its traces are zero i.e 

                                                 0=µ
σµγC . 
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In the vacuum 0=µγR  and therefore  

                                                )(0)( xCRxT αµγρσµγρµγ =⇒=   

and as anticipated ,the Weyl tensor encodes the information about the gravitational field in 

vacuum. 

Again the Weyl tensor is also useful in other context as it is conformally   invariant i.e σµγρC  is 

invariant under conformal rescaling of the metric 

                                             )()( )( xgexg xf
µγµγ →  

 in particular the Weyl tensor is zero if the metric is conformally flat i.e. related  by a conformal 

transformation to the flat metric and conversely vanishing of the Weyl tensor is also a sufficient 

condition for a  metric to be  conformal  to the flat metric. 

 

5.2 WEYL GEOMETRY: 

 

Now we will review some basic definition and results, which are valid in Riemannian and Weyl 

geometries. Again Weyl geometry may be viewed as a kind of generalization of a Riemannian 

geometry and some theorems that will be presented here are straightforward extensions of 

corresponding theorems of the former. These extensions have a different and new flavor 

especially when they are applied to the study of geodesic motion. Let us start with the definition 

of affine connection. 

Let M be a differentiable manifold and T(M) , the set of  all differentiable vector fields on M. 

An affine connection is a mapping )()()(: MTMTMT →×∇ , which is denoted by  

VVU U∇→)( , satisfying the following condition or properties: 

                             WgWfWa UVgUfV ∇+∇=∇ +)(  

                 WUWUb VVV ∇+∇=+∇ )()(  

                 UfUfVfUc VV ∇+=∇ )()()(  

where U,V,W ∈T(M) and f, g are ∞C scalar function defined on M. From the above results an 

important result comes which help us to define a co-variant derivative along a differentiable 

curve. 

PROPOSITION: 

 Let M be a differentiable manifold endowed with an affine connection ∇  and V is a vector 

field defined along a differentiable curve MRba →⊂),(:α Then there exist unique rule which 

associates another vector field  
λd

DV  along the curve α with V such that [17]: 
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λλλ d

DU
d
DV

d
UVD

+=
+ )(  

                                        and  
λλλ d

DvfV
d
df

d
fVD

+=
)(  

where )(λαα = and ),( ba∈λ .If the vector field  )(λU  is induced by a  vector field 

)(ˆ MTU ∈ ,then U
d
DU

V∇=
λ

,where V is the tangent vector field to the curve α  i.e. 
λd
dV = . 

Now we define he concept of parallel transport along a curve. Let M be a differentiable 

manifold with an affine connection ∇  and  MRba →⊆),(α  be a differentiable curve on M 

and V is a vector field defined along )(λαα =  .The vector field V is said to be parallel if  

0=
λd

DV  i.e its co-variant derivative vanishes for any value of the parameter ),( ba∈λ . 

Among all admissible affine connection defined on a manifold, an important role in 

Riemannian and also in Weyl theory is played by a special class of connection –namely the 

torsion less connection defined as below: 

An affine connection ∇  defined on a manifold M is torsion less (symmetric) if for any U,      

V∈  T(M) the following condition is hold. 

                                                     

                                                  ],[ UVVU UV =∇−∇  

Now we introduce the concept of Weyl manifold throughout the following definition: 

Let M be a differentiable manifold endowed with an affine connection∇ , a metric tensor g and 

a one form field σ -called Weyl field, globally defined on M. We say that ∇ is Weyl 

compatible (W-compatible) with g if for any vector fields U,V,W∈  T(M) the following 

condition is satisfied:       

                         ),()(),(),()],([ WUgVWUgWUgWUgV VV σ+∇+∇=                              5.1 

This is of course a generalization of the idea of Riemannian compatibility between ∇  and g. If 

the one form σ  vanishes throughout M, we recover the Riemanian compatibility condition. It is 

natural to expect that a generalized version of the Levi-Civita theorem hold if we restrict 

ourselves to torsion less connections. Indeed we have the following result: 

 

THEOREM:  In a given differentiable manifold M endowed with a metric g and a 

differentiable one-form field σ  defined on M, there exist a only one affine connection ∇ such 

that                (a) ∇  is torsion less. 

                      (b) ∇  is W-compatible. 
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 Proof:  Let us first suppose that ∇  exist. Then from (1) we have the following three equations: 

 

          ),()(),(),()],([ WUgVWUgWUgWUgV VV σ+∇+∇=                                              5.2 

 

          ),()(),(),()],([ UVgWUVgUVgUVgW WW σ+∇+∇=                                               5.3 

 

          ),()(),(),()],([ VWgUVWgVWgVWgU UU σ+∇+∇=                                               5.4 

 

Adding (5.2) and (5.3) and then subtracting (5.4) we get  

)],([ WUgV + )],([ UVgW - )],([ VWgU = ),()(),(),( WUgVWUgWUg VV σ+∇+∇  

                                                                    + ),()(),(),( UVgWUVgUVg WW σ+∇+∇  

                                                                  ),()(),(),( VWgUVWgVWg UU σ−∇−∇−  

    

or,     ),( UVg W∇                         =    )],([ WUgV + )],([ UVgW )],([ VWgU−   

                                                          ),()(),(),( WUgVWUgWUg VV σ−∇−∇−  

                                                          ),()(),( UVgWUVg W σ−∇− ),( VWg U∇+  

                                   VWgUVWg U ,()(),( σ+∇+ ). 

  

or, ),( UVg W∇ + ),( UVg W∇         =      )],([ WUgV + )],([ UVgW - )],([ VWgU  

                                                           ),( WVUg UV ∇−∇− ),( VWUg UW ∇−∇−  

                                                            ),( UVWg WV ∇−∇− ),()( VWgUσ+ ),()( UVgWσ−  

                                                 ),()( WUgVσ− . 

 

    or,   2 ),( UVg W∇                    =     )],([ WUgV + )],([ UVgW - )],([ VWgU ),],[( WUVg−  

                                                     )],,[()],,[( UWVgVUWg −− ),()( VWgUσ+ ),()( UVgWσ−  

                                                     ),()( WUgVσ− .                                                                 5.5 

The above equation shows that the affine connection∇ ,if it exist –is uniquely determined from 

the metric g and the Weyl field of one form σ . Now to prove the existence of such connection 

we just define VU∇  by means of (4.5). Now choose that cba eWandeVeU === ,, and in a 

local co-ordinate system  }{ ax ;a=1,2,3----n. the terms in (5.5) having commutator vanishes. 
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 So we obtain then  

      ,or ),(2 abc eeg ∇  =  )],([)],([)],([ bcaabccab eegeeegeeege −+     

                                     ),()(),()(),()( cabaccbca eegeeegeeege σσσ −−+               

       or,  ),(2 ak
k
bc eeg Γ =  )()()( cbabacacb gegege −+ + acbbaccba ggg σσσ −−  

 

      or,   ak
k
bc gΓ2      =   )()()( cbabacacb gegege −+ + acbbaccba ggg σσσ −−  

 

      or,        k
bcΓ       =    )(

2
1

,,, acbcbabac
ak gggg −+ )(

2
1

abcbaccba
ak gggg σσσ −+−  

      or,      k
bcΓ       =       

⎭
⎬
⎫

⎩
⎨
⎧
bc
k

 )(
2
1

abcbaccba
ak gggg σσσ −+−  

Thus the components of connection is completely determined in terms of the components of g 

andσ . 

We say that the Weyl compatibility condition (5.1) may be interpreted as requiring that the co-

variant derivative of the metric tensor g in the direction of a vector field V∈T(M) does not 

vanish-as in Riemannian geometry but in stead that it  be regulated by the Weyl field σ  defined 

in the manifold M. Thus we have  

                                        gg ⊗=∇ σ   

 where gg ⊗=∇ σ  is the direct product of  g  and σ . 

Let us discuss a geometrical property of Weyl parallel transport, which is given by the 

following corollary. 

 

Corollary:   Let M be differential manifold with an affine connection∇ , a metric g and a field 

of one form σ .If  ∇  Weyl compatible, then for any smooth curve )(λαα = and any pair of two 

parallel vectors V and U along α ,we have  

                                               ),()(),( UVg
d
dUVg

d
d

λ
σ

λ
=                                               5.6         

where 
λd
d  denotes the vector tangent  to the curve α .Let us  integrate the above equation along 

α , starting from the point )( 00 λα=p  . 

                                              )(
),(

),(

λ
σλ

d
d

UVg

UVg
d
d

=  
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                                           Cd
d
dUVg log)(),(log +=⇒ ∫ λ
λ

σ  

                                           
∫

=⇒

λ

λ

λ
λ

σ

λλ 0

)(

0 })()({
d

d
d

eCUVg  

Applying initial condition we get 

                                           CVUg =)}()({ 00 λλ  

Thus we obtain  

                          })()({ 0λλ UVg = )}()({ 00 λλ VUg
∫
λ

λ

µ
µ

σ
0

)( d
d
d

e                                                5.7 

Putting V=U and denoting   L )(λ , the length of the vector )(λV  at an arbitrary point )(λα=p  

of the curve, 

                                                        ),( VVgV =  

                                                               
b

a
ab VVg=  

                                                               a
a VV=  

Now in local co-ordinates }{ ax . Equation (4.6) leads to  

                                                      22 )( L
d
ddxL

d
d

a λ
σ

λ
α=  

                                                 22 L
d
dx

d
dLL

a

a λ
σ

λ
=⇒  

                                                 L
d
dx

d
dL a

a

λ
σ

λ 2
=⇒  

Consider a set of all closed curves MRba →∈],[:α i.e. with )()( ba αα = . Then the equation  

                                          })()({ bUbVg = )}()({ aVaUg
∫
b

a

d
d
d

e
λ

λ
σ )(

    

defines a holonomy group  whose elements are in general ,a composition of homothetic 

transformation and an isometry. The elements of this group correspond to an isometry only 

when 

                                             0)( =∫ λ
λ

σ d
d
d     ;  for every loop . 

It follows from the Stokes theorem that σ  must be exact form i.e there exist a scalar function φ  

such that φσ d= .Thus in that case we have Weyl integrable manifold. 

Weyl manifold are completely characterized by the triple (M, g,σ ), which is known as Weyl 

frame. It is noted that the compatibility condition (5.6) remains unchanged when transformed 
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into another Weyl frame ),,( σgM  by performing the following simultaneous transformation  

on g and σ 

                                            geg φ−=                                                                                       5.8 

                    and φσσ d−=                                                                                              5.9 

where φ  is the scalar function defined on M. The conformal map (5.8) and the Gauge 

transformation (5.9) define classes of equivalence in the set of Weyl frames. The compatibility 

condition (5.6) led Weyl to his attempts at unifying gravity and electromagnetism –extending 

the concept of space time to that of collection of manifolds equipped with a conformal structure 

i.e the space time would be viewed as a class [g] of conformally equivalent Lorentzian metrices. 

 

5.3  ISOMETRIES IN RIEMANNIAN SPACE:   

 

Let nn NandM  be two smooth manifolds with Riemannian structure g and χ  respectively. 

The mapping nn NMf →:  is called isometry if f  is diffeomorphism and the reciprocal image 

χ*f  of χ  is equal to g [11] i.e. 

                                                            χ*f  = g. 

The induced metric χ*f  is sometimes called the first fundamental form of nM .Two 

manifolds are said to be isometric if there exist an isometry of one onto another. The mapping 
nn NMf →:  is called local isometry if for each nMx∈  there exists a neighborhood U of x   

and V of )(xf   such that f  is an isometry of U onto V. The isometry  of  nM onto itself form 

a group.  

 

5.4 SUBMANIFOLDS AND ISOMETRIC EMBEDDING IN WEYL GEOMETRY:  

 

Let (M, g,σ ) and ),,( σgM  be differentiable Weyl manifolds of dimensions m and n =m+k 

respectively. A differentiable map MMf →:  is called an immersion if the following 

conditions are hold: 

       (a) the differential MTMTf PfP )(* )(: →    is injective for any  P∈M. 

       (b) )()( *VfV σσ =  for any )(MTV P∈ . 

The number k is called the co-dimension of f . 
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The immersion MMf →:  is called isometric at a point P∈M if ),(),( ** VfUfgVUg = for 

every U, V in the tangent space )(MTP .If   in addition, f  is a homoeomorphism onto )(Mf  

then f  is an embedding. If  MM ⊂  and the inclusion MMMi →⊂:  is an embedding then 

M is called a sub manifold of M .It is important to note that locally any immersion is an 

embedding. Indeed MMf →: be an immersion,then around each P∈M, there  is a 

neighborhood U∈M such that the  restriction of f  to U is an embedding onto f (U).We may 

therefore  identify U with  its image under  f , so that locally we can regard M  as a sub-

manifold embedded in M with f actually being the inclusion map. Thus we shall identify each 

vector )(MTV P∈ with )()(* MTVf Pf∈  and consider )(MTP  as a sub-space of )()( MT Pf . 

 Now in the vector space )(MTP , the metric g allows to make a 

decomposition ⊥+= )()()( MTMTMT PPP ; where ⊥)(MTP  is the orthogonal complement of 

)()( MTMT PP ⊂ .That is for any vector )(MTV P∈ with P∈M, we can 

decomposeV into ⊥+= VVV , where )(MTV P∈  and )(MTV P∈⊥ .Let us denote Weyl 

connection on M by ∇ and prove the following theorem. 

 

Theorem:  If V and U are local vector fields on M and V and U  are local extensions of these 

fields to M , then the Weyl connection will be given by  

                                                T
VV UU )(∇=∇                                                                      5.10 

where T
V U )(∇ is the tangential component of )( UV∇ . 

 

Proof:  Let start with the Weyl compatibility condition 

                   

               ),()(),(),()],([ WUgVWUgWUgWUgV VV σ+∇+∇=                                  5.11 

where WUV ,, )(MT∈ .Now suppose that WUV ,,  are local  extension of the vector fields  

MtoWUV ,, . Clearly at a point P∈  M we have  

                          )],([)],([)],([ WUgVWUgVWUgV ==                                                   5.12 

where we have taken into account that the inclusion of M into M  is isometric. On the other 

hand evaluating separately each term of R.H.S of (5.12) at P yields 

 

                            },)()({),( WUUgWUg V
T

VV
⊥∇+∇=∇  
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                                                 WUgWUg T
V

T
V ,)({),)({

r
∇=∇=                                       5.13 

 with an analogous expression for ),( WUg V∇ . From the above equations and the fact that  

)()( VV σσ =  we finally obtain  

                ),()())(,{},)({)],([ WUgVWUgWUgWUgV T
V

T
V σ+∇+∇=  

From the Levi-Civita theorem extended to Weyl manifold which asserts the uniqueness of 

affine connection ∇  in a Weyl manifold we conclude that (5.10) holds in other words the 

tangential components of the co-variant derivative UV∇ evaluated  at points of M –is nothing 

more than the co-variant derivative of the induced Weyl connection from the metric g on M by  

                                   ),(),( ** UfVfgUVg =  

 

5.5 EMBEDDING THE SPACE TIME IN WEYL BULK [17]:  

 

 It is possible to have a Riemannian sub manifold embedded in a Weyl ambient space, since a 

Riemannian manifold is a particular type of Weyl manifold in which the Weyl field σ  

vanishes. Therefore a sub manifold M embedded in a Weyl space M will be Riemannian if only 

if  the field  of one forms  σ induced by pullback from σ  vanishes throughout  M. that is the 

necessary and sufficient condition for M to be an  embedded manifold is that 0)( =Vσ  for any 

V∈T(M). 

To illustrate the above, let us consider the case in which the manifold M is foliated by a family 

of sub manifolds defined by k equations AA yy 0= =constant, with the space time   M 

corresponding to one of these manifolds AA yy 0= =constant. In local co ordinates }{ ay of M  

adapted to the embedding the condition 0)( =Vσ  reads 0=α
ασ V where 

β
βσσ ∂== VVanddxa

a . In case of Weyl integrable manifold φσ d= . In this case 0)( =Vσ  

for any V∈T(M) if only if 0=
∂
∂

α

φ
x

. Therefore in a Weyl integrable manifold if the scalar field 

is a function of the extra co- ordinate only, then the space time Sub- manifold M embedded in 

the bulk M  is Riemannian. 

The fact that Riemannian space-time M embedded in a Weyl bulk M  does not mean that 

physical or geometrical effects coming from the extra co ordinate /dimensions should be absent. 

A nice interesting illustration of this point is given by the behavior of geodesic motion near the 

M. Thus a Weyl field may affect the geodesic motion in the case of bulk with warped product 

geometry. 
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 5.6 GEODESIC MOTION IN A RIEMANNIAN WARPED PRODUCT SPACE:   

 

Let us consider the case where the geometry of the bulk contains two special ingredients. 

           (a)  It is Riemannian manifold 

    (b)  Its metric has the structure of the warped product space. 

The importance of warped product geometry is closely related to the so-called brain-world 

scenario. Let us consider the matter of geodesics in warped product spaces, first considering the 

Riemannian case. A warped product space is defined in the following way: 

Let (M,g) and (N,h) be two Riemannian  manifolds of dimension m and  r  with matrices g and 

h  respectively. Consider a smooth function RNf →:  which will be called warping function. 

Then we can construct a Riemanian manifold by setting NMM ×=  and defining a metric 

Kgeg f ⊕= 2  where K is the tensor of type like as g. For simplicity let 4MM =  and N=R, 

where 4M  denotes four dimensional Lorentzian manifold with signature (+ - - - ) referred to as 

space time. 

In local co ordinates }),({ 4yxy a α=  the line element corresponding to this metric will be 

written as: 

                                                  ba
ab dydygds =2  

The equation of geodesic in five dimensional space time M  will be given by : 

                                        0)5(
2

2

=Γ+
λλλ d

dy
d
dy

d
yd cb

a
bc

a

                                                            5.14 

where λ  is an affine  parameter and  a
bcΓ)5(  denotes the five dimensional Christoffel  symbol of 

second kind  defined as : 

                                      )(
2
1

,,,
)5(

dbcbdccdb
ada

bc gggg −+=Γ  

Denoting the fifth coordinate 4y by y and the remaining coordinate µy (space time coordinate) 

by µx  i.e.  ),( yxy a µ= .We can separate the 4D – part of the geodesic equation (5.14)  is as 

follows: 

       0)(2 2
44

)5(
4

)5()4(
2

2

=Γ+Γ+Γ+
λλλλλλ

µ
α

µ
α

βα
µ
αβ

µ

d
dy

d
dy

d
dx

d
dx

d
dx

d
xd   

 

or,  
λλλ

βα

αβαββα
µ

µ

d
dx

d
dxgggg

d
xd

kkk
k )(

2
1

,,,2

2

−++ =
λλλ

α
µ
α

µ

d
dx

d
dy

d
dy

4
)5(2

44
)5( 2)( Γ−Γ−  
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  or,
λλλ

βα

ναβανββνα
νµ

µ

d
dx

d
dxgggg

d
xd )(

2
1

,,,2

2

−++ +
λλ

βα

αβαββα
µ

d
dx

d
dxgggg )(

2
1

4,,4,4
4 −+  

                                                                =  
λλλ

α
µ
α

µ

d
dx

d
dy

d
dy

4
)5(2

44
)5( 2)( Γ−Γ−  

 

or,  2

2

λ

µ

d
xd   +

λλ

βα
µ
αβ d

dx
d
dx

Γ)4(    =   
λλλ

α
µ
α

µ

d
dx

d
dy

d
dy

4
)5(2

44
)5( 2)( Γ−Γ−  

                                                          
λλ

βα

αβαββα
µ

d
dx

d
dxgggg )(

2
1

4,,4,4
4 −+− . 

 

or, 2

2

λ

µ

d
xd +

λλ

βα
µ
αβ d

dx
d
dx

Γ)4(    = µξ                                                                                      5.15 

 

where we define  µξ  as  

         µξ =
λλλ

α
µ
α

µ

d
dx

d
dy

d
dy

4
)5(2

44
)5( 2)( Γ−Γ−

λλ

βα

αβαββα
µ

d
dx

d
dxgggg )(

2
1

4,,4,4
4 −+−  

 

Let us turn our attention to the 5D brane world scenario where the bulk correspond to the  5D 

manifold M  which was supposed to be foliated by a family of sub manifolds  (in the case of 

hypersurface) defined by the equation  y=constant. 

It turns out that the geometry of a generic hypersurface, say  y= 0y , will be determined by the 

induced metric ),()( 0yxgxg αβαβ = . Thus on the hypersurface we have 

                                           βα
αβ dxdxyxgds ),( 0

2 =  

The quantities which appear on the L.H.S of (5.15) are to be identified with the Christoffel 

symbol associated with the metric in the leaves of the foliation above. 

 Let us consider the class of warped geometries given by the following line element: 

                                     222 dydxdxgeds f −= βα
αβ                                                               5.16 

where )(yff = and  )(xgg αβαβ = .  

For this metric we get  µ
44

)5( Γ =0  and  µ
νβν

µβµ
ν δfgg ′==Γ 4,4

)5(

2
1  where  the prime sign denotes 

the derivative with respect to y .Thus in case of warped product space the R.H.S  of  (5.15) 

reduces to  
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                                       )()(2
λλ

ξ
µ

µ

d
dy

d
dxf ′−=  

and hence the 4D –geodesic equation becomes  

                      2

2

λ

µ

d
xd  

λλ

βα
µ
αβ d

dx
d
dx

Γ+ )4(   =  )()(2
λλ

µ

d
dy

d
dxf ′−                                            5.17 

 

Again the geodesic equation for the fifth co-ordinate is given by  

                  0)(2 24
44

)5(4
4

)5(4)5(
2

2

=Γ+Γ+Γ+
λλλλλλ

α

α

βα

αβ d
dy

d
dx

d
dy

d
dx

d
dx

d
yd  

where, 

              0)(
2
1

4,44,44,4
44

44 =−+=Γ ννν
ν gggg  

              0)(
2
1

,4,44,
44

4 =−+=Γ βααββα
β

α gggg  

   And   )(
2
1

4,,4,4
444

αβαββααβ gggg −+=Γ  

               4,
44

2
1

αβgg−=  

               4,
2 )(.1.

2
1

αβge f=                                     as 144 −=g  

               αβgef f2′= . 

Hence the geodesic equation for the fifth co-ordinate become  

                2

2

λd
yd + αβgef f2′

λλ

βα

d
dx

d
dx =0 

   or,      2

2

λd
yd + 0])([ 2

44 =−′
λλλ d

dyg
d
dx

d
dxgf

ba

ab                                                                    5.18 

as RMM ×= 4 . But for time like and null like geodesic we get, 

                      
λλ d

dx
d
dxg

ba

ab     =   1 

  and         
λλ d

dx
d
dxg

ba

ab    =    0      respectively. 

 

Hence equation (5.17) becomes for time like geodesic  

                     2

2

λd
yd + 0])(1[ 2 =+′

λd
dyf                                                                                  5.19 

and for null like geodesic  , 

IJSER



   
 

 93

     EMBEDDING OF SPACE TIME IN FIVE DIMENSIONAL WEYL SPACES 

                             2

2

λd
yd + 0)( 2 =′

λd
dyf                                                                                   5.20 

equation  (5.18) and (5.19) are ordinary differential equation of second order in principle – 

can be solved if )(yff ′=′  is known. A qualitative picture of the motion in the fifth dimension 

may be obtained by defining the variable 
λd

dyq =  and then investigating the autonomous 

dynamical system: 

                                        
λd

dyq =       and      ),( yqP
d
dq

=
λ

                                               5.21 

with  P(q,y)  = )( 2qf +∈′−  where 1∈=  in case of  (5.19) and 0∈=  in case of  (5.20).In the 

investigation of dynamical system a crucial role is played  by their equilibrium points  

which in case of  (5.21) are given by  

                                                   0=
λd

dy   and   0=
λd

dq                                                         5.22  

the knowledge of these points together with their stability properties provides a huge 

information on the types of behavior allowed by the system. 

 

A. The case of massive particles:  In case of non zero rest mass particles the motion  in the 

fifth dimension is governed  by  the dynamical system 

 

                                     q
d
dy

=
λ

                                                                                              5.23 

                       and       0)1( 2 =+′+ qf
d
dq
λ

 

                                )1( 2qf
d
dq

+′−=⇒
λ

                                                                            5.24 

The critical points of (5.23) are given by 0=q  and the zeros of the function )(yf ′ (if they 

exist) which we generally denote by 0y .These solution pictured as isolated points in the phase 

plane, correspond to curves which lie entirely on a hypersurface M of our foliation (since for 

them y=constant).It turns out these curves are time like geodesics with respect to the hyper -

surface induced geometry.  

To obtain information about the possible modes of behavior of particles and light rays in such 

hypersurface, we test the nature and stability of the corresponding equilibrium points. This can 

be done by linearising equation (5.23) and studying the eigen values of the Jacobean matrix 

about the equilibrium points .Assuming that the function )(yf ′ vanishes at least at one 
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points 0y . it can readily be shown that  the corresponding eigen values are determined by the 

sign of second derivative )( 0yf ′′  at the equilibrium points and  some possibilities arise for the 

equilibrium points of the dynamical system  (5.23). 

We shall discuss only the following three cases: 

 

Case   1:  If 0)( 0 〉′′ yf , then the equilibrium point 0,0( yyq == ) is a center. Thus correspond to 

the case in which the massive particles oscillate about the hypersurface M )( 0yy = . Such cyclic 

motion is independent of the ordinary 4D-space time dimensions and except for the conditions 

0)( 0 =′ yf  and 0)( 0 〉′ yf , the warping function completely remains arbitrary. 

 

Case   2: If 0)( 0 〈′′ yf , then the point 0,0( yyq == ) is a saddle point.  In this case the solution 

corresponding to the equilibrium point is highly unstable and the smallest transversal 

perturbation in the motion of particles along the brain will cause them to be expelled into the 

extra dimension. An example of this unstable “confinement” at the hypersurface y=0 is 

provided by Gremms warping function 

                                             

                                     )(ln)( cyCoshbyf −=                                                                     5.25 

where b and c are positive constant. 

 

Case 3: There are no equilibrium points at all. The warping function )(yf  does not have any 

turning points for any value of y. This implies that in this we can’t have confinements of 

classical particles to hypersurfaces solely due to gravitational effects. 

An example of this situation is illustrated by warping function  

                                     )
3

ln(
2
1)(

2yyf Λ=                                                                           5.26 

Similarly for a large value of y the warping function (L) approaches that of the Randall- 

Sundrum metric 

                                      222 dydxdxeds yk −= − βα
αβη                                                       5.27 

where k is constant. In this case kyf m=′ )(  according to whether y is positive or negative. 

Again there exist no equilibrium points and therefore no confinement of particles is possible 

due only to gravity. 
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B .The case of Photon:  The motion of photon is governed by the dynamical system  

                                                 q
d
dy

=
λ

 

                                        and   2qf
d
dq ′−=
λ

                                                                           5.28 

The equilibrium points in this case are given by 0=q , so they consist of a line of equilibrium 

points along the Y-axis with eigen values both equal to zero. 

Any point along the Y axis is an equilibrium point and correspond to a 5D null geodesics in the 

hyper surface y= constant. The existence of photons confined to hyper surfaces does not depend 

on the warping factor. 

As well known, in the brain world scenario the stability of the confinement of matter fields at 

the quantum level is made possible by assuming an interaction of matter with a scalar field. An 

example of how this mechanism works is clearly illustrated by a field theoretical model devised 

by Rubakov in which fermions may be trapped to a brain by interacting with a scalar field that 

depend only on the extra dimension. On the other hand the kind of confinement we are 

concerned which is purely geometrical and that means the only force acting on the particle is 

the gravitational force. In a purely classical picture (non-quantum) one would like to have 

effective mechanisms other then a quantum scalar field in order to constrain massive particle to 

move on a hypersurface in a stable way. At this point two possibilities arises. One is to assume 

direct interaction between the particle and a physical scalar field. Following this approach it has 

been shown that stable confinement in a thick brane is possible by means of direct interaction of 

the particles with a scalar field through a modification of the Lagrangian of the particle. 

Another approach would appeal to pure geometry: for instance modeling the bulk with a Weyl 

geometrical structure. As we shall see in this case the Weyl field may provide the mechanism 

necessary for confinement and stabilization of the motion of particles in the brane. 

 

5.7 GEODESIC MOTION IN  PRESENCE OF WEYL FIELD:  

 

 We shall discuss the geodesic motion pictured in a Weyl field. Let us consider the case the 

warped product bulk is an integrable Weyl manifold ),,( φgM . If the Weyl scalar depends only 

on the extra co-ordinate, then Weyl field of one forms φσ d=  induced on the hyper surface of 

the foliation vanishes. Indeed any tangent vector V of a given leaf has the form  

                                                                         α
α ∂=VV  
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Thus we have 0)()( =
∂
∂

= α
α φσ

x
VV . Therefore if M represent our space time embedded in an 

integrable Weyl bulk M  with )(yφφ =  then we can sure that M has a Riemannian structure. In 

a Weyl manifold the co efficient of Weyl connection a
bcΓ  are related to the Christoffel symbol 

as: 

                                            )(
2
1}{ dbcbdccdb

ada
cb

a
cb gggg σσσ −+−=Γ  

Now the geodesic equation of the fifth co-ordinate y in the warped product space for a massive 

particle is obtained from the definition given above. The geodesic equation in the fifth co-

ordinate is given by  

                                           04)5(
2

2

=Γ+
λλλ d

dx
d
dx

d
yd cb

bc  

 

or,  2

2

λd
yd +

λλ
σσσ

d
dx

d
dxgggg

cb

dbcbdccdb
d

bc ⎥⎦
⎤

⎢⎣
⎡ −+− )(

2
1}{ 44    =  0 

 

or, 2

2

λd
yd + 

λλ
σσσ

d
dx

d
dxgggggggg

cb

dbcbdccdb
d

abcbaccab
a

⎥⎦
⎤

⎢⎣
⎡ −+−−+ )(

2
1)(

2
1 4

,,,
4  =0 

 

or, 2

2

λd
yd +

λλ
σσσ

d
dx

d
dxgggggggg

cb

bcbccbbcbccb ⎥⎦
⎤

⎢⎣
⎡ −+−−+ )(

2
1)(

2
1

444
44

4,,4,4
44    =0 

 

or, 2

2

λd
yd +

λλ
σ

d
dx

d
dxgggg

cb

bcbc ⎥⎦
⎤

⎢⎣
⎡ −−− )(

2
1)(

2
1

4
44

4,
44 =0 

 

as )3,2,1,0,(044 === cbgg cb  

 

or, 2

2

λd
yd  + [ ]

λλ
σ

d
dx

d
dxgg

cb

bcbc 44,2
1

− =0 

 

 

or, 2

2

λd
yd + 

λλ
σ

λλ d
dx

d
dxg

d
dx

d
dxg

cb

bc

cb

bc 44, 2
1

2
1

−    =  0 
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or,  2

2

λd
yd    + ⎥

⎦

⎤
⎢
⎣

⎡
− 2

4,444,
2 )()()(

2
1

λλλ

βα

αβ d
dyg

d
dx

d
dxge f  

                ⎥
⎦

⎤
⎢
⎣

⎡
−− 2

4444
2 )()(

2
1

λ
σ

λλ
σ

βα

αβ d
dyg

d
dx

d
dxge f        =       0 

 

or, 2

2

λd
yd +

λλ

βα

αβ d
dx

d
dxgef f2′ 0)(

2
1 22

4 =⎥
⎦

⎤
⎢
⎣

⎡
+−

λλλ
σ

βα

αβ d
dy

d
dx

d
dxge f  

 

or, 2

2

λd
yd + ⎥

⎦

⎤
⎢
⎣

⎡
−′ 2

44 )(
λλλ d

dyg
d
dx

d
dxgf

ba

ab ⎥
⎦

⎤
⎢
⎣

⎡
−− 2

444 )(
2
1

λλλ
σ

d
dyg

d
dx

d
dxg

ba

ab  

                                                          2
4 )(

2
1

λ
σ

d
dy

−     =  0.                                                       5.29 

 

or, 2

2

λd
yd + ⎥⎦

⎤
⎢⎣
⎡ +′ 2)(1

λd
dyf 2

4
2

4 )(
2
1)(1

2
1

λ
σ

λ
σ

d
dy

d
dy

−⎥⎦
⎤

⎢⎣
⎡ +−  =  0 

 

or, 2

2

λd
yd + ⎥⎦

⎤
⎢⎣
⎡ +′ 2)(1

λd
dyf ⎥⎦

⎤
⎢⎣
⎡ +− 2

4 )(
2
1

λ
σ

d
dy   = 0 

 

or, 2

2

λd
yd + ⎥⎦

⎤
⎢⎣
⎡ +′ 2)(1

λd
dyf ⎥⎦

⎤
⎢⎣
⎡ +− 2

4 )(
2
1)(

λ
σ

d
dye = 0 

 

or, 2

2

λd
yd  + ⎥⎦

⎤
⎢⎣
⎡ +′ 2)(1

λd
dyf ⎥⎦

⎤
⎢⎣
⎡ +

∂
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− 2
4 )(

2
1)(

λ
φ

d
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x
d  = 0 

 

or, 2

2

λd
yd + ⎥⎦

⎤
⎢⎣
⎡ +′ 2)(1

λd
dyf ⎥⎦

⎤
⎢⎣
⎡ +

∂
− 2

4 )(
2
1)(

λ
φ

d
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x
d   = 0 

 

or, 2

2

λd
yd + ⎥⎦

⎤
⎢⎣
⎡ +′ 2)(1

λd
dyf ⎥⎦

⎤
⎢⎣
⎡ +′− 2)(
2
1

λ
φ

d
dy    =  0                                                                5.30 

where .
dy
dφφ =′  On the other hand for photon ,putting 0=

λλ d
dx

d
dxg

ba

ab  in equation (5.29) we 

obtain 
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2

2

λd
yd + 0)()( 22 =′−′

λ
φ

λ d
dy

d
dyf  

or, ( ) 0)( 2
2

2

=′−′+
λ

φ
λ d

dyf
d

yd                                                                                                  5.31 

Equation (5.30) and (5.31) respectively define the following dynamical system. 

q
d
dy

=
λ

 

( ) fqf
d
dq ′−

′
+′−′=

2
2 φφ

λ
 

and 

q
d
dy

=
λ

 

( ) 2qf
d
dq ′−′= φ
λ

 

the presence of the derivative of the Weyl scalar in the above equation may completely change 

the picture of the solution of determined by the dynamical system considered before. This is 

due to the existence of equilibrium points. There topology and stability properties now depend 

not only on the values of the derivative of the warping function take at the brane but also on the 

derivative of the Weyl scalar field ( )yφ . 

 

Finally, in case of photon the Weyl scalar field φ  has no influence on the confinement. The 

presence of scalar Weyl is equivalent to perform a conformal transformation in the Riemannian 

metric kgeg f ⊕= 2 . This essentially result in change the warping function from f  to 2φ−f . 

Because the existance of confined photon in the hypersurface is independent of the warping 

function, the Weyl scalar has no effect in the confinement. 
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Chapter six 

 

SOLUTION OF EINSTEIN FIELD EQUATION IN ROTATING FRAME 

 

 

6.0 INTRODUCTION: 

 

The discovery of a class of stationary solution of Einstein vacuum field equation i.e. the Kerr 

metric (1963) and the proof of its unique role in the physics of black hole have made an 

immense impact on the development of general relativity and astrophysics. This can hardly be 

be more eloquently demonstrated than by an emotional text from Chandrasekhar: 

 

“ In my entire scientific life –extending to forty five years ,the  most shattering expression has 

been the realization that an exact solution of Einstein field equation of general relativity 

discovered by the New zeland  mathematician Roy Kerr , provides the absolutely exact 

representation of untold number of massive black hole that populate the universe……..” 

 

In this chapter we derive an axially symmetric metric based on two physical assumptions i.e. 

steady rotation of star and the field around it is axially symmetric. Then we found the Einstein 

vacuum field equation for that metric .From these equations we derive the Ernst form of 

Einstein equation and also express it in terms of spheroid al co-ordinates. A systematic 

mathematical formulation of this Ernst form of Einstein equation led to the required Kerr 

solution in Boyer-Lindquist form. 

This chapter is mainly quoted from the book [7].Beside this, the following books are used as 

references : [9] ,[21]. 
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SOLUTION OF EINSTEIN FIELD EQUATION IN ROTATING FRAME 
 

6.1 AXIALLY SYMMETRIC STATIONARY METRIC:   

 

To derive an axially symmetric stationary metric consider a suitable co-ordinate system and 

some physical assumptions. The first assumption is that, the field is generated by time 

independent (steady) rotation of a star made of perfect fluid and its energy momentum tensor is 

given by  

                                 µννµµν ρ PgUUPT −+= )(                                                                   6.1 

Again the second is that, the star and the field around it posses axial symmetry about the axis of 

rotation which passes through the center of star. This center of star will be treated here as an 

origin of co-ordinate system and the axis of rotation is the Z-axis. Due to time independence 

and axial symmetry it is reasonable to assume the existence of time like co-ordinate tx =0 and 

an angular co-ordinate ϕ=3x  respectively of which the metric co-efficient and all the matter 

variables are independent. Hence consider a co-ordinate system  ),,,( 210 ϕxxx  such that  

                                                00 =
∂
∂

=
∂
∂

ϕ
bcbc g

x
g

                   6.2 

as ϕ  is the angular co-ordinate about the axis of rotation, the  co-ordinate values ),,.( 21 ϕxxt  

and )2,,.( 21 πϕ +xxt  correspond to the same point in the space time : 

                          ),,,( 21 ϕxxt = )2,,,( 21 πϕ +xxt  

The metric as well as the field generated by the rotation of star is not invariant under the 

transformation tt −→   ,since such a transformation would reverse the sense of rotation 

resulting in a different space time  or invariant under  the transformation ϕϕ −→  since such  

transformation would also reverse the sense of  rotation. But invariant under a simultaneous 

reversal of  t  and ϕ .i.e. ),(),( ϕϕ −−→ tt .Thus we get  

                                      023130201 ==== gggg  

The most general such metric can be written as: 

                       BA
AB dxdxgdgddtgdtgds +++= 2

3303
2

00
2 2 ϕϕ                      6.3 

Let us write the metric (3) in the following way,  

                      22222 22 CdzdzBdAdldkdtdfdtds −−−−−= ρρϕϕ                           6.4 
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where CBAlkf ,,,,, are function of ρ and z .Let us consider an arbitrary co-ordinate 

transformation ),( zρ  to ),( z′′ρ as follows : 

                 ),( zF ρρ =′   and   ),( zGz ρ=′                      6.5 

Now taking differential we can write  

 

                              
)(1

2
1

21

dzFd
F

d

dzFdFd

−′=⇒

+=′

ρρ

ρρ
                    6.6 

  And,   dzGdGzd 21 +=′ ρ  

          )(1
1

2

ρdGzd
G

dz −′=⇒                      6.7 

 where   21, F
z
FFF
≡

∂
∂

≡
∂
∂
ρ

  and  21 , G
z
GGG

≡
∂
∂

≡
∂
∂
ρ

.       6.8 

From equation (6.6) we get, 

                             ⎥
⎦

⎤
⎢
⎣

⎡
+′−′= ρρρ dG

G
Fzd

G
Fd

F
d 1

2

2

2

2

1

1  

                          [ ]ρρρ dGFzdGdG
GF

d 1222
21

1
+′−′=⇒  

                          )(1
22

1221

zdFdG
GFGF

d ′−′
−

=⇒ ρρ     

We get the Jacobean of transformation as  

                                        1221),(
),( GFGF

z
GFJ −=

∂
∂

=
ρ

  

Hence we obtain  

                             )( 22
1 zdFdGJd ′−′= − ρρ                                6.9 

And similarly, 

                             )( 11
1 zdFdGJdz ′+′−= − ρ                     6.10 

Now substituting the value of  ρd   and dz  in the equation (6.4) 

                2222 2 ρϕϕ Adldkdtdfdtds −−−= 22
121

2
2

2 )2([ ρdCGGBGAGJ +−− −  

                    zddFCGFGFGBFAG ′′−++−+ ρ})({2 11211222  

                    22
121

2
2 )2( zdCFFBFAF ′+−+ ]                  6.11 
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The functions F and G are so far arbitrary and are required to satisfy the following two coupled 

non linear partial differential equations as a function of ρ and z . 

                   2
121

2
2

2
221

2
2 22 CFFBFAFCGGBGAG +−=+−                 6.12 

     and      0)( 11211222 =−++− FCGFGFGBFAG                             6.13  

where we assume that for given A, B, C the system of equation  (6.12) and (6.13) has a non 

trival  solution with 0≠J  .Then in the co-ordinate system ),( z′′ρ  the metric (6.11) has its co-

efficient of 2ρ′d  equal to its co-efficient of 2zd ′ and the co-efficient of zdd ′′ρ  vanishes. Now 

write the metric (6.11) by dropping out prime sign as follows [7]: 

      )(2 22222 dzdeldkdtdfdtds +−−−= ρϕϕ µ                             6.14 

where lkf ,,  are not same as in (5.11), but µ,,, lkf  in (6.14) are function of ρ and z . 

Equation (6.14) is known as the Weyl Papapetrou form where ),( 21 zxx == ρ and let     
µea = . 

From the metric (6.14) we get the following metric components: 

       lgaggkggfg −=−==−=== 332211300300 ,,,  

and 
)(

,
)(

,1,
)( 2

33
2

30032211
2

00

klf
lg

klf
kgg

a
gg

klf
lg

+
−

=
+
−

==
−

==
+

=  

Also det )()( 22 klfaggbc +−== . 

From definition we get )(
2
1

,,, pbcbpccpb
apa

bc gggg −+=Γ  

Then we can calculate the non-zero 'Γ s for the metric (6.14)   
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)(2
)(

2 2
3
20

1
03 klf

kffk
a
k zz

+
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=Γ
−

=Γ ρ  

               

)(2
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2 2
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13
1
22 klf

flkk
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1
33 klf
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l zz
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6.2 EINSTEIN EQUATION FOR ROTATING METRIC:  

Now we are interested to find out the Einstein vacuum equation for the metric (6.14) i.e. for the 

rotating metric. 

The vacuum Einstein equations are given by  

                              0=µνR                                6.15 

Let us level the co-ordinates as ),,,(),,,( 3210 ϕρ ztxxxx = . The Riemannian Christoffel 

curvature tensor is given by: 

                         p
hd

h
bc

p
hc

h
bd

p
dbc

p
cbd

p
bcdR ΓΓ−ΓΓ+Γ−Γ= ,,  

Then contracting on p and d  we obtain the Ricci tensor. 

             p
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cbpbcR ΓΓ−ΓΓ+Γ−Γ≡ ,,                                      6.16 
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with the help of (6.15) 
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Similarly, 
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µ                               6.19             

We have 22 klfD += ; where D can be considered as the real part of an analytic function 

analytic )( iz+ρ  of )( iz+ρ .Let E be the imaginary  part of  analytic )( iz+ρ . i.e. 

analytic )( iz+ρ = ),(),( ziEzD ρρ +  
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Now, 
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Using (6.17) (6.18) and (6.19) We can write  

                           zzDD +ρρ = 0}2{ 330300
1 =++−− fRkRlRaD  

                0)()2(, 330300
1 =+−=−−−

zzDDfRkRlRDeor ρρ
µ                6.20 

Thus the function D satisfy the two dimensional Laplace equation in the variables ρ and 

z . Let us consider the transformation ),(),( zz ′′→ ρρ  given by : 

                                         ),(:),( zEzzD ρρρ ==                                                       6.21              

where E is the conjugate function of D. Since D is the real part and E is the corresponding 

imaginary part of analytic function of iz+ρ , then by Caucy-Riemann equation  

 ρρ EDandED zz −==                                                                   6.22 

Because of (6.22) ,we  can write from (6.21)  
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))(()()( 222222 dzdEDzdd ++=+ ρρ ρρ                                                6.23 

From the equation (6.23) we see that the form of metric (6.14) is unaltered by the 

transformation (6.21) since we can define a new function µ  given by  
122 )( −+= ρρ

µµ EDee                                                                       6.24 

Now expressing all functions µ,,, klf  in terms of ),( zρ  and after transformation omitting the 

prime sign we obtain the algebraic relation in lkf ,,  [7] such as 
222 ρ=+= kflD                                                                   6.25 

ρ=+=∴ 2kflD  

Now to get the non-trival Einstein field equation for the metric (6.14) we proceed as follows 
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Putting  µea =  and after simplification we obtain  
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Hence 

 )(2 221
11 ρρρρρρ ρρµµµ klfR zz +++−−= −−                                                       6.26 
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By using 22 kfl +=ρ and µea =  and after simplification  
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212 zzz
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Hence  

              0)2(
2
12 21

12 =+++≡ −−
zzzz kkflflR ρρρρρµ                 6.27 

Similarly, 

             0)(2 221
22 =++−−−≡ −−

zzzzz klfR ρµρµµ ρρρ                 6.28 

For simplicity let us write the non- trival Einstein equations for rotating metric at a time 

≡112R )( 221
ρρρρρρ ρρµµµ klfzz +++−− −− = 0 

0)2(
2
12 21

12 =+++≡ −−
zzzz kkflflR ρρρρρµ  

0)(2 221
22 =++−−−≡ −−

zzzzz klfR ρµρµµ ρρρ  

Because 222 ρ=+= kflD only two of the above three equations are independent Let use a 

function w  in lieu of k defined by  

                                                         kfw 1−=  

Let us eliminate k and l from the equations (6.17) and (6.18) and so compute the following 

quantities: 

We get, 
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 and        zzz fwwfk +=  

 Also, 
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From equation (6.17) we get  
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Putting the values of derivatives of k and l   in the above equation  
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Again from (6.18) we get  

0)()()( 22311 =+++++ −−−
zzzzz kklfflkDkDkD ρρρρρ  

0])()()2(

)22([)()(,

222
2

2

2
2

2
31111

=++++−−−+

−−−++++ −−−−−

zzzzzz

zzz

fwwffwwffwwwff
f

f

fwwwf
f

f
f

ffwfwwffwwfor

ρρ

ρρ
ρ

ρρρρ

ρ

ρρρρρρρ
 

022

2,

2332322323233

223
2

1
2

12112

=++−−+

+−−+++−

−−−−−

−−−−−−−

z

z
zz

wfffwwwffffwwwf

wff
f

f
f

f
ffffor

ρρρρρ

ρρρρρρρ

ρρρρρρ

ρ
ρ

ρρρρ

022

2,

2332322323233

223
2

1
2

12112

=++−−+

+−−+++−

−−−−−

−−−−−−−

z

z
zz

wfffwwwffffwwwf

wff
f

f
f

f
ffffor

ρρρρρ

ρρρρρρρ

ρρρρρρ

ρ
ρ

ρρρρIJSER



 

 
 

108

SOLUTION OF EINSTEIN FIELD EUATION IN ROTATING FRAME

02

22

22

22,

223233323

223233323223323

2
1

2233232
1

21

1112112

=+++

+++−−

−−−−++

+++−++−

−−−

−−−−−

−
−−

−
−−

−−−−−−−

zzzz

zzz

zzz

zzzz

wfwfwwfwff

wfwfwwfwffwfwfwff

wf
f

wfwfwffwf
f

fwwf

wffwfwfwwffwwfor

ρρρ

ρρρρρ

ρρρρρρ

ρρρρρρρ

ρρρρ

ρρρρρ

ρρρρρρρρ

 

 

0

22,

2332332
1

2
1

21

111112

=++−−++

+++++−

−−
−−

−−

−−−−−−

zzzz

zzzz

wwfwwfwf
f

wf
f

fwwf

wffwfwwffwwfor

ρρρρρρ

ρρρρρρ

ρρρ

ρρρρρρρ

 

0)]()({

}22)({[,

2242221

11

=++−−+++

++−+

−−

−−

zzzz

zzzz

wwfffffff
f
w

fwfwwwwfor

ρρρρρ

ρρρρρ

ρρ

ρρ
 

022)(, 1 =++−+ −
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By the help of equation (6.29). 

Now subtracting (6.28) from (6.26) we get  
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Again from (6.27) we get  
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                                                                                                                                               6.32 

The gravitational field of a uniformly rotating bounded source must depend on at least two 

variables. Finding any solution of Einstein equation depending on two or more variables is quite 

difficult and physically interesting. The first exact solution of Einstein equations to be found 
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which could represent the exterior field of a bounded rotating source was that of Kerr (1963). 

An essential property of such solution is that it should be asymptotically flat, since the 

gravitational field tends to zero as one move further and further away from the source. The Kerr 

solution was the first known rotating solution, which was asymptotically flat with source having 

non-zero mass. No interior solution has yet been found which matches smoothly onto the Kerr 

solution. It is believed that Kerr solution represents the exterior gravitational field of a highly 

collapsed rotating star –a rotating black hole.  

Although many stationary axially symmetric exact solutions of Einstein equations (6.29) and 

(6.30) are known, very few of these are asymptotically flat and so their physical interpretation is 

uncertain. The first rotating asymptotically flat solutions to be found after the Kerr solution 

were the Tomimatsu-Sato solution (1972.73). These solutions differ from the Kerr solution in 

one important respect. The Kerr solution has the property that when the angular momentum of 

the source producing the field tends to zero, the solution tends to the Schwarzschild   solution –

representing the exterior field of a spherically symmetric source. This behavior is what one 

would expect for realistic star, because for the latter departure from spherical symmetry is 

usually caused by rotation and if the rotation vanishes one would get a spherically symmetric 

star –whose exterior field is the Schwarzschild solution. However the Tomimatsu-Sato 

solutions do not tends to the Schwarzschild solution when the angular momentum parameter of 

the source tends to zero. Though there is no easy way to derive Kerr solution, we will proceed 

to find the solution through the Ernst’s form of Einstein equations for the axially stationary 

symmetric metric derived before. 

6.3 ERNST FORM OF EINSTEIN EQUATION:   

From equation (6.30) we have  
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Thus equation (6.30) can be written as; 

               0)()( 2121 =+ −−
zzwfwf ρρ ρρ                              6.33 

which implies the existence of a function U  such that  
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let us express the equation (6.29) in terms of f and U  
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By eliminating w  from the equation (6.34) we get the following equation; 
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Putting the value of ρw  and zw  from (6.34), equation (6.31) and (6.32) can be written as 

follows:
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and  zzz UUffff ρρ ρρµ 22 −− +=′                                   6.38 

where flog+=′ µµ . Now define a complex function E  as follows: 

                                            UifE +=                 6.39 

Let us consider a single complex equation 

                     222)(Re zEEEE +=∇ ρ               6.40 

 

 

 

                                                 

  

 

From the above equation it is seen that (6.35) and (6.36) are the real and imaginary part of 

equation (6.40).Let us consider a new unknown function ξ  in stead of E defined by 
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Let *ξ be the complex conjugate ofξ . 
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Then we get  
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Putting the value of zEandEE ρ,2∇  in equation (6.40) 
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which is known as the Ernst form of Einstein equation. 

Let us introduce prolate spheroidal co- ordinate ),( yx instead of variables ).( zρ  as follows: 
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which can be solved for x  and y as follows: 
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To calculate the co-efficient of yxxyyyxx and ξξξξξ ,,,  compute the followings: 
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Putting the value of )( 222
zand ξξξ ρ +∇  in equation (6.42) 
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Equation (6.44) is also an Ernst form of Einstein equation. Let us write the equation (6.34) in 

terms of yandx .We get  
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Comparing the co-efficient of x2  and y2  from both sides of the above equation, we obtain 
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Let us express (6.37) and (6.38) in terms of  yandx  and so compute the followings 
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From equation (6.37) we get 

})()({
2
1])()([

2
,

})()({
2
1

22222

22222

zzyx

zzyx

UUfffDEDE
DE

or

UUfffyx

−+−=−′++′

−+−=
∂
∂′+

∂
∂′

−

−

ρρ

ρρ

ρµµρ

ρ
ρ

µ
ρ

µ
 

IJSER



 

 
 

120

SOLUTION OF EINSTEIN FIELD EUATION IN ROTATING FRAME

}])(2)2(

)2({})(2

)2()2({[]22[1,

3333222422222

2222422233332

2242222222224222
22

2

xyxyyxyxxyUUyxyxxyU

yxyyxxUxyxyyxyxxyff

yxyxxyfyxyyxxf
ED

fyx
DE

or

yxy

xyx

yxyx

+−−+−+−−+

+−−++−−+−

+−−++−−=′−′
−

ρρ

ρρ

ρρµµ

 

])}()1()1(2{2

)(})21()1({

)(})12()1({[22,

22

2224222222

2224222222
2

yxyx

yy

xxyx

UUffyxxy

Ufyyxyyxxy

Ufxxyyyxxx
ED
fyxor

+−−−

+−+−+−−+

++−−+−−=′−′
−

µµ

])}1)(1({2})1)(1({
})1({})1()1({2

)}1()1({)}1()1({[22,

2222

2222

2222
2

OyxxyNyxyy
MxyyOyxyx

NyyxxMyxxx
ED
fyxor yx

−−−−−+

−−−−−

−−+−−=′−′
−

µµ

 

 

where )()(,)( 2222
yxyxyyxx UUffOandUfNUfM +=+=+=  

}])1)(1(2)1)(1(
)1({})1()1(2

)1()1()1()1({[22,

2222

2222

2222
2

OyxxNyxy
MxyyOyxy

NyyxMyxxx
ED
fyxor yx

−−−−−+

−−+−−−

−−+−−=′−′
−

µµ

                  

Equating the co-efficient of  yandx  from both sides of the above equation 
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Effective feature of Ernst equation (5.44) is that the Kerr solution is given by the following 

simple solution of it, 

48.6qyipx−=ξ
where qandp  are constant with 122 =+ qp .Now putting the value of (6.48) in (6.41) we 

get  
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Comparing the real and imaginary part of (6.39) and (6.49) 
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Integrating on both sides with respect to x  we get  
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where 0w  is an integrating constant. Again to obtain the value of µ  compute the followings: 
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Putting the value of (6.52), (6.53) and (6.54) in equation (6.46) 
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Integrating on both sides with respect to x  
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where A is an arbitrary constant. 

But from definition of )( µµµ fee =′ ′  we get  
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Let us introduce co-ordinate  θandr  related to yandx  by the relation given below  

                                                                         6.57 

That implies )1(
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rx −= .And also introduce constants m and a related to qandp as follows: 
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The mass and angular momentum of the Kerr solution will turn out be m  and ma  respectively 

while these constant being evaluated here in units such that  m  and a are related as in  (6.58). 

To transform the Kerr solution to its standard form i.e. Boyer - Lindquist (1967) form let us start 

with the form given by (6.14).   

                              dzdeldkdtdfdtds +−−−= 2222 (2 ρϕϕ µ )  
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With the use of (6.43), (6.57) and (6.58) let express ),( zρ  in terms of ),( θr as follows: 

59.6)(
)2(

)12(,

)112(

)(,)12(

)()1(}1)({
)1()1(

2/122

2/122

2/1
2

2

2/1
2

222

12/122/121

2/122/12

θ
θρ

θρ

θ

θθ

θθ

ρ

Cosmrz
Sinamrr

Sinmmrror

Sin
pp

rr

CosmrzorSin
p

pprpr

CosrCosr
xyzAndyx

pp

−=∴
+−=∴

−+−=

−+−=

−=
−+−

=

−=−−−=

=−−=

 

θCoszandprpx ==+1

IJSER



 

 
 

125

SOLUTION OF EINSTEIN FIELD EUATION IN ROTATING FRAME

Let us evaluate µe  in terms of ),( θr  by the help of equation (6.57) and (6.59) 

)12(

)(

)(
}1)({

)(
])1[(

2

2

432

2

2
2

2
2

221

2221

22

222

p
Cos

pp
r

p
r

Cos
p
qr

A

Cosr
Cosqrp

A

yx
yqpxAe

p

p

θ

θ

θ
θ

µ

−+−

+
=

−−
++−

=

−
++

=

 

60.6
)()(
)(

)2(
)(,

2222

222

2

224322

222

θ
θ

θ
θ

µ

µ

Cosmamr
Cosar

m
Ae

Cosmmrmmr
CosarAeor

−+−
+

=∴

−+−
+

=  

From (6.59) we get  

θθθθθθρ

θθθρ

ddrCosSinmrdCosamrrSindrmramrrd

dCosamrrSindrmramrrd

)(2)2()()2(

)2()(2)2(
2
1

22222221222

2/1222/122

−++−+−+−=∴

+−+−+−=

−

−

 

And 

drdCosSinmrdrCosdSinmrdz
drCosdSinmrdz

θθθθθθ

θθθ

)(2)(
)(

222222 −−+−=∴

+−−=
 

Hence 

61.6])2[(])()([
)()12(

)()()()2(,

1
12

)()22(

)()()2(,
)2()(

)()()2()()2(,
)(

)2()()2(,
)(2)()(2

)2()()2(

22122222222

222212

2222222212222

2

2
22222222

222212222

222222222

222221222212222

22222

222222212222

22222

222222212222

θθρ

θ

θθθρ

θθθ

θρ

θθθθθ

θθρ

θθθ

θθθρ

θθθθθθθθθ

θθθρ

ddramrrCosmamrdzd
drCosmamrr

dmrdCosmadrmramrrdzdor

mrr
mrdrCosmmrramrrdCos

dmrdrmramrrdzdor
drCosdCosamrrdCosmr

dmrdrCosmramrrdrmramrrdzdor
drCosdSinmr

dCosamrrSindrmramrrdzdor
drdCosSinmrdrCosdSinmrddrCosSinmr

dCosamrrSindrmramrrdzd

++−−+−=+∴

−+−+

−+−+−+−=+

⎥
⎦

⎤
⎢
⎣

⎡
+

+−
−−

+++−+−+

−+−+−=+

++−+−−

−+−+−−−+−=+

+−+

+−+−+−=+

−−+−+−+

+−+−+−=+

−

−

−

−

−−

−

−

 

 

Again,  

IJSER



 

 
 

126

SOLUTION OF EINSTEIN FIELD EUATION IN ROTATING FRAME

)(

2

2

}1)1({

}1)1({)1(2

)1(
)1)(1(2

)1(
)1)(1(2

)1(
)1(

2
2

2
2

22

2222

2

222

21

22222

21

2222

21

222

2222

θ

θ
θ

θ

θ

θ

Cos
p
qr

qrSinp
Cosqpr

qrSin

Cosq
p

rp

p
rpCosqp

yqxp
pxyqp

yqxp
pxyqp

yqpx
yqxp

fwk

+
=

+
=

++−

+−−
=

−+
+−

=

−+
+−

++
−+

=

=

−

−

−

−

 

62.6)(2
)(

2,

12222

222

2

−+=

+
=

θθ
θ
θ

CosarmarSin
Cosar

marSinkor  

And                

=f 222

2222

)1(
)1(

yqpx
yqxp
++

−+

θ

θ
θ

222
1

1
1

222

222

63.6)21(

2,

Cosarwhere

rm
Cosar

Cosamrrfor

+=∑

∑−=
+

+−
=

−

64.6)(2,
)()(2,

)]22(

)2([
))(2(

,

]
)(

4))(2([
)2(

)(,

]
)(

4)2([
)2(

)(,

)(

2221
1

42

222122242

24222222224

222
222222

2

2222

4222222222

222

2222

2222

4222
222

222

222

221

θθ

θθθ

θθθ

θ
θθ

θ
θ

θθ
θ
θθ

θ
θθ

θ
θ

ρ

SinarSinmralor
SinarCosarSinmralor

CosarmaCosmraCosararr

Cosamrr
CosarCosamrr

Sinlor

Cosar
SinrmaCosaramrr

Cosamrr
SinCosarlor

Cosar
SinrmaSinamrr

Cosamrr
Cosarlor

kfl
Again

++∑=

+++=

++−++

+−
++−

=

+
−++−

+−
+

=

+
−+−

+−
+

=

−=

−

−

−

 

 

IJSER



 

 
 

127

SOLUTION OF EINSTEIN FIELD EUATION IN ROTATING FRAME

Putting the value of µeflk ,,,  in equation (6.14) we get the required Kerr solution i.e. the 

Kerr metric (setting 00
2 == wandmA )  
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By examining the Kerr metric in the asymptotic region ∞→r  we get  
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Writing ),,,(),,,( 2210 ϕθrtxxxx = , let us write the inverse metric components of (6.65) 
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For the following discussion let us assume 22 am 〉 .In the Schwarzschild metric the horizon  

is determined by the equation 000 =g  and it is null surface but in the Kerr solution the  

equation correspond to the surface is  

                                        02222 =−+ mrCosar ϑ             6.66 

   2/1222 )(, θCosammmror −±=  

which is not null surface. So these can not be the horizons of the Kerr metric. Now consider  

instead (6.66) the surface 02 =∑ i.e. 

                                              02 22 =+− amrr  

          2/122 )(, ammror −±=          6.67 

Let us these surfaces by −+ ∑∑ and .These surfaces are null surfaces since they satisfy the form  

F=0 with 0,, =νµ
µν FFg .No outgoing null or time like geodesics cross surface +∑ , so  +∑   

is the horizon for the Kerr metric. Let us denote the surfaces of 6.66) −+ SandS .The  

meaning of these is as follows: The killing vector corresponding to the time independence of 

 (6.65) is 
t∂
∂  i.e. the vector )0,0,0,1(−µξ . This vector is time like only outside of +S and inside  

of −S  , it is null on +S  and space like in between −+ SandS . The surface +S is called  

stationary limit surface since it is only outside this surface that a material particle can remain  

at rest with respect to infinity. 
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 The surface +S is time like except at two points on the axis where it coincides with  +∑  and  

where it is null. The region between +S and +∑  is called ergosphere .Particles can escape to  

infinity from this region but not from inside +∑ . Also in the ergosphere it is possible for a  

material particle or light wave to remain at rest with respect observer at infinity. 

         

 
                                                                      FIG: 01 

 

The metric (6.65) has a ring singularity within the surface −S .The surfaces ±± ∑andS  are 

non singular. Inside the surface −∑  one gets the closed time like curves, so one gets violation 

of causality and thus unphysical behavior. Such a violation of causality does not occur outside 

−∑ . Thus the unphysical region is covered by the region between −∑  and +∑ , from which 

material particles and signals can not emerge to the region outside +∑ , to communicate with a 

distant observer. For this reason the unphysical nature of the geometry within −∑  is thought 

to be acceptable and the Kerr solution for 22 am 〉 is believed to represent the field of 

highly collapsed rotating star- a rotating black hole. For 22 ma 〉  violations of causality occur 

in the regions accessible to distant observers and hence in this case the metric is unphysical. 
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