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PREFACE

This thesis is essentially a review work. As the title “GEOMETRICAL ANALYSIS IN
RIEMANNIAN AND WEYL SPACE” is concerned, geometrical representations of
Riemannian space and Weyl space are presented here in respect of general relativity. This

paper is consisting of six chapters and an organizing out look is given below.

In the first chapter we discussed some algebraic concept of vector spaces and their duals.
From these spaces, a new space is constructed by the process of tensor product. The process is
quite general though confined to real finite-dimensional vector spaces. We also discussed the
effect of components of vectors due to the change of basis. In the last of this chapter, we
discussed the tensor algebra in short and test the orthogonality & diagonalization of the

matrix g.

The second chapter is a review work mainly on the topic manifolds. In this chapter, the

definition of manifold is constructed from the concept of topology in the following sequence:

SET —topoloey (openset) o 73 POL OGICAL SPACE — 0@ lkeR™ N j ANTFOLD

—connection_y M ANIFOLD WITH CONNECTION —™™_ RIEMANNIAN MANIFOLD. We
also discussed differentiable manifold, diffeomorphism, tangent spaces in manifold,
orientation, sub-manifold and maps of manifolds. We also discussed linear connection, Spin
connection. At last we discussed the concept of covariant differentiation with some properties

and parallelism with some consequences.

In the chapter three, after an establishment of geodesic equation and geodesic deviation
equation, various properties for the congruence’s of time like geodesic are discussed. Here we
presented the Raychowdhury equation, Focusing theorem, Forbenius theorem and physical

interpretation of the expansion scalar in respect of time like geodesics.

The chapter four is mainly expository and contains original calculations. In this chapter
many latest concepts regarding hypersurface are presented. Firstly, induced metric on hyper -
surface, differentiation of tangent tensor field, intrinsic covariant derivative and extrinsic
curvature are discussed. Secondly Gauss-Codazzi equation (general form & contracted form),
Einstein tensor on hypersurface and initial value problem are discussed. Finally we presented
the possible discontinuities of metric and derivatives of metric on the hypersurface.
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The chapter five is mainly conceptual and contains the original calculations. In this chapter
we reviewed the Weyl geometry in the context of recent higher dimensional theorem of space
time. We presented some results regarding the extensions of Riemannian theorems after proper
introduction of Weyl theory in respect of modern geometrical language. We also presented the
mechanism how a Riemannian space time may be locally & isometrically embedded in Weyl
bulk. The problem regarding classical confinement & the stability of motion of particle or
photon in the neighborhood of brane when Weyl bulk possess the geometry of warped product
space. We constructed a classical analog of quantum confinement inspired in theoretical field

models by considering a Weyl field which depends only on the extra co ordinate.

In the chapter six, we looked for exact solution of Einstein’s field equations in rotating frame

for empty space. As is well known, Einstein’s field equations are highly non linear and it is
extremely difficult to find any solution of these equations, let, alone physically meaningful
solution .Beside the Schwarzschild solution (1916, after the advent of general relativity) which
is spherically symmetric-the only physically reasonable rotating solution was found by Kerr
(1963). Here we presented the original calculations of different sections of J.N. Islam’s book [7]
(Rotating field in General Relativity) and combinations that lead to the required Kerr solution in

Boyer-Lindquist form.

III



CONTENTS

Acknowledgement

Preface
Chapter One: Vector & Tensor

1.0 Introduction

1.1 Vector space

1.2 Dual space

1.3 Tensor product

1.4 Metric tensor

1.5 Tensor algebra

1.6 Tensor densities
Chapter two: Manifolds

2.0 Introduction

2.1 Topology

2.2 Covering

2.3 Manifolds

2.4 Differentiable manifold

2.5 Diffeomorphism

2.6 Sub manifold

2.7 A little more geometry on manifold

2.8 Tangent vector & tangent space on manifold
2.9 Riemannian manifold

2.10 Covariant differentiation

2.11 Invariant interpretation of covariant differentiation
2.12 Covariant differentiation & some properties
2.13 Parallelism

2.14 Some consequences of parallelism

2.15 Linear connection on manifold

2.16 Spin connection

-1
01-16

01
04
08
10
13
15
17-45

17
18
18
19
21
22
24
25
30
31
34
35
38
40
41
44



Chapter three: Geodesic congruence 46-59

3.0 Introduction

3.1 Geodesic 46

3.2 Geodesic deviation equation 47

3.3 Congruence’s of time like geodesic 50

3.4 Transverse metric 51

3.5 Kinematics 51

3.6 Raychowdhury equation 52

3.7 Focusing theorem 53

3.8 Forbenius theorem 55

3.9 Interpretation of expansion scalar (o) 56

Chapter four: Hypersurface 60-80
4.0 Introduction

4.1 Hypersurface 60
4.2 Normal vector 60
4.3 Induced metric on hyper surface 62
4.4 Light cone in flat space time 63

4.5 Differentiation of tangent vector fields

(a) Tangent tensor field 64
(b) Intrinsic covariant derivative 65
(c) Extrinsic curvature 67

4.6 Gauss-Codazzi equation

(a) General form 68

(b) Contracted form 70

4.7 Constrained in initial value problem 73
4.8 Junction condition and thin shell 75
4.9 Notation & assumption 75
4.10 First junction condition 76
4.12 Riemannian tensor 77
4.13 Second junction condition 79
Chapter five: Embedding of space time in five dimensional Weyl spaces 81-98

5.0 Introduction
5.1 Weyl tensor 81
5.2 Weyl geometry 82

5.3 Isometries in Riemannian space 87



5.4 Submanifold & isometric embedding in Weyl geometry

5.5 Embedding the space time in Weyl bulk

5.6 Geodesic motion in a Riemannian warped product space

5.7 Geodesic motion in presence of Weyl field

Chapter six: Solution of Einstein field equation in rotating frame
6.0 Introduction

6.1 Axially symmetric stationary metric

6.2 Einstein equation for rotating metric

6.3 Ernst form of Einstein equation

Bibliography

87
89
90
95
99-128

99
102
109
129-130



IJSER



Chapter one

VECTOR AND TENSOR

1.INTRODUCTION:

This chapter is mainly divided into two parts i.e. vector and tensor. In the first part we discuss
vector space. A vector is perfectly well defined geometric objects as it in vector field , defined a
set of vectors with exactly one at each point in space time. We define vector space as a
collection vectors(objects) which can be added together and multiplied by a real number-in a
linear way. We also decompose vectors into components with respect to some set of basis
vector while a basis is any set of vectors that both spans the vector space and linearly

independent.

After the settlement of vector space, we discuss the dual vector space as an associated vector
space to the original vector space. We define the dual space as the space of all linear maps from

the original vector space to the real number.

In the second part we discuss the tensor as the generalization of the notion of vectors and dual
vectors. We define the tensor as a multilinear map from a collection of dual vector and vector to
real number. At last we also discuss some algebraic operations of tensors such as direct

product,inner product, contraction etc.

To discuss this chapter the following books are used as references: [1][3][8][15][16].



VECTOR AND TENSOR

1.1 VECTOR SPACE:
To discuss vector space (i.e. a set of vectors) we are to need to involve ourselves with the field

of scalars K (real field R) and with the given vector spaceV .
Let K be a given field and V is the set of vectors {v,,V,......... ,v, } on which two different
operations namely addition of vectors and multiplication of vectors by scalars are defined i.e.
forany v;,v, eV and k, e K

* v, +Vv, €V ; Addition of vectors

* vk, eV ; Multiplication of vectors by scalars
Then V is called the vector space over the field K if the following axioms are hold:

A, . For any vectors v,,v,,v, eV
(V1+V2)+V3 =V1+(V2+V3)

A, . There exists a vector, denoted by 0 €V and called zero vector for which
0+v,=v, eV forany v, eV

A, . For each v, eV there exist a vector —v, eV such that
v, +(-v,)=0

A, . For any vectors v,,v, eV
V,+V, =V, +V,

B,. For any scalar k, e K and any vectors v,,v, € V
k, (v, +V,)=V,k, +V,k,

B,. Forany scalar k;,k, € K and any vectors v, eV
(k, +k, vy = kyvy + KV,

B,. For any scalar k,,k, € K and any vectors v, eV
(kyk, vy =k, (K,v, )

B,. For unitscalar 1€ K

lv, =v, forany v, eV



A few examples of vector spaces are given below.

1. The set of all complex numbers C is a vector space.

2. The set of all square matrix i.e. nxn matrix where the operation addition ‘+’ corresponds to
sum of corresponding elements in both matrix and operation multiplication “*’ means
multiplying each entry by real number.

3. Set of all polynomials:
a’+a't+a’t’ +————+a’t’
a' e K ; is a vector space over K with respect to usual operations of addition of polynomials
and multiplication of a polynomials by a constant.
To demonstrate the notion of linear dependence and independence of vectors and vector space

we will proceed as follows:

A set of vectors {vl,v2 —— —,vn} of vector space V are said linearly independent if there exist
a set of scalar {a,,a,,.......,a, } € K such that

a'v, +a’v, +-———+a"v, =0 11
implies thatall a* =a*=——-—=a" =0

Similarly a set of vectors which is not linearly independent is called linearly dependent i.e. a set

of vectors {v,,v,,———,V, } of vector space V are said to be linearly dependent if there exist a
set of scalars {a,,a,,.......,a, }e K such that
a'v, +a’v, +————+a"v, =0 192

implies that not all of the a ’s are zero or one of the a’s is not zero.

If the null vector is an element of a set of vectors of a vector space V the set of vectors is
linearly dependent i.e. if O is one of the vectors of set {v,,v,,———,v, }, say v, =0 then

lv, +0v, +————+0v, =0
and the coefficient of v, is not zero.

Again a set of vectors are linearly dependent if one of the vectors can be expressed as a linear

combination of the others. Suppose {v, —-v,, —-v, } is set of vectors of vector spaceV . Then

vectors will be linearly dependent if

v, =>aly,

By using Einstein’s summation convention we can write the above vector as

2



| VECTOR& TENSOR

V,=avy,
=V =aly,
i.e. V is called the linear combination of vectors v,,v,,———v, . The set of all such linear

combinations of finite elements of the set belonging the vectors is called linear span of that set.

A set of vectors of vector space V which are both linearly independent and spans the vector
space is called the basis of the vector spaceV . The number of vectors in any basis set of finite

dimensional vector apace is called the dimension of the vector space.

A vector space may have two or more basis sets. Let {e,.e,,....e,} or {e,} and
{e',.€,,....e’,} or {e’,} are two basis sets of a vector spaceV . Then for any veV it is
possible to write

V =v?e, and V =v'?e, for some scalar.
The expression for V in terms of e, i.e. V. =v®e, is unique. The scalars v are called the
components of V_relative to the basis {e, }. Each basis vector of a basis set {e, } can be written
as a linear combination of the basis vectors of another different basis set{e’, } . Transformation
law can for this be written as

e, =X, € 1.3
and conversely the primed basis can be written as

e. = Xloe, 1.4
where X and X© are the matrices of nxn order i.e. each contain n® elements but both
matrices are different. Now putting the value of e in (1.3) we have

e, = X; Xoe, 15
By uniqueness of components we write

Cyb _ ob
XoXo =0, 16

If the superscript and subscript in & appears both same then we obtain the dimension of vector
space.

S =n
In similar fashion we can write

a'yb _ ca
Xy Xo =0 17

Now write the vectors V =v®e, in terms of matrix X° as



vV =vXe, 1.8
and by uniqueness of components
VY = Xbv e
Then XV = XXV =6V2=V® 1.9
Thus we can summaries the relation between prime and unprimed basis as
e, =X>e, and e, =X7e, 1.10
and the components are related by
V¥ =XAVP and VP°=Xav® 111

and XEX0 =62 and X"X2=67 1.12

1.2 DUAL SPACE:
Let V be a vector space over a field K. then a real valued function is defined as a rule that
assigns each vector of V to an unique element in K. mathematically, if f is a real valued
function on V then
f:V>K ,

The set of all such function satisfy the axioms of vector space and hence form a vector space.
Now we are interested to define linear functional to demonstrate our key point dual space.
Linear functional is also real valued function on vector space such that

f(au +bv) = af (u) +bf (v)
forall a,beF and u,veT . In short we can say that the linear functional on vector space V is
a linear mapping from V into K. For linearity of f , we can define addition and multiplication of

linear functional by the following statements:
(f+9)(u)= f(u)+g) 1.13

(af )(u)=a[f(u)] 1.14

Also the sum of linear functionals and multiplication of a linear functional by a scalar acts as a
linear functional.
The set of all linear functionals on a vector space V also forms a vector space which is the dual
of original vector space V and is generally denoted byV *.
Now we will verify that linear functionals forms a vector space onV .

A;. Foreach f,g,heV*and ueV

((f+g)+h)u)=(f +g)u)+h(u)
4



=[f (u)+g(u)]+h(u)
= f (u)+[g(u)+h(u)

| VECTOR& TENSOR

(due to associatively of the elements of K for addition)

= f (u)+(g+h)(u)
=(f +(g+h))()

Thus (f +g)+h=f +(g +h) as above equality holds for eachu eV .

A, For0,f eV and ueV (6 means zero functional)

0+ )w)=0w)+ f ()
=0+ f (u)
= (u)
Thus 0+ f = f because of equality holds for each ueV.
Similarly (f +0)= f
As. Foreach f eV there exists (— f)eV such that
[F+(= )lw)= 1)+ f)u)
fu)-f ()

1=

Il
o

=0(u)

Thus f +(- f)=0 as above equality holds for each ueV .

Similarly - f +f=0
Aa. (f+g)u)=f(u)+9g()
=g(u)+ f(u)

=(g+f)(u)

Thus f +g=g+ f asabove equality holds for each ueV .

B.. (@(f +g))u)=a[(f +g)(u)]
=a[f(u)+g(u)]
= (af )(u)+(ag)(u)
=[(af )+ (ag)](u)

Thus a(f + g)=(af )+ (ag) because of equality holds for each u € V.

B.. ((ab))(u)=(ab)[ (u)

5



Thus (ab)f = a(bf ) as above equality holds for each ¥ € V.
Bs. (LF)(u)=1{f (u)
= (1f)(u)=f(u)

Therefore the elements of V" satisfy all the axioms of vector space. To define the elements of

V" i.e. dual space we use a sign (~) called tilde over the elements i.e. 2 while to define element
of V we use a sign ( -) called bar over or below the element i.e. (') or (u). Also the vectors in

dual space V" are called the covariant vector while the vectors in original vector space V are

called the contravariant vector. Again basis vectors of V" carry superscripts components relative

to basis vector carry subscripts. Thus if A is a vector of dual space i.e. covariant vector then

we can write it in terms of basis vector

A=2,68"
where {e, } is the basis set of V.
Let €7 be the real valued function that assigns any vector A eV into a real number which is it’s
a’th component.
g% (1)=1".
In particular the basis vector e, has only b’ th component and all other vanishes. So we have
€%(e, )= 1.15
The dimension of V" will be the same as V. and in order to define any &2 all the vectors {g, }
must be known. A change in any e, generally changes all the dual basis Ch

Now consider the action of a co vector 0 € V" on a arbitrary contravariant vector 1 eV

a(2)=alae,)

The quantity £z, =ﬁ(§a) are called the components of z on the basis dual to {ga }

6
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Now we show that {Ea} form a basis set in VV". Also we have the relation

x,e*=0 where x, e K and 0 is the zero functional.

implies that
0=x,8%(e,)=x,62=x, forall b.
which shows that {Ea} is linearly independent.
A change of basis {(1.3) and (1.4)} in vector space V induces a change of the dual basis. Let
denote the dual of the prime basis {e, } by {@a' } So by definition

€%(e,)=07 1.16
But by using (1.3) we can write

¥ (e,) =87 (X e, )= X{E¥ (e,)= XS87 = X

1.17
Now the matrix X2 has an inverse defined as X ).
Then
XIX0 =52 | XEXE =67 118
Multiplying (1.17) by X_,
x;ga’(gb):xac,x;’ =0y 1.19
Now comparing with (1.15) we get €° = X 2&?
Thus we can easily obtain the transformation law for components
am = (2)=(x;2")2)
= ngb (&): X:lb 1.20
Similarly
= He,)=H(xze,)
= Xgdle,)=X¢u, 1.21
Thus the dual basis of V" transform according to
€% = X8 g €T =X;8°

And component of 7z € V" transform according to
He =Xt and He = X by
By the procedure mentioned above to compute the dual V™" of V" with dual basis { f a} of V*©

such that:



ia(éb)=5:

Let express any vector A e V™ in terms of components as

A=A f

—a
Under a change of basis of V, components of vectors in V transform according to A* = X2 2".
This induces a change of dual basis of V", under which components of vectors in V" transform

according toz, = X24,. In tumn this induces a change of basis of V™ under which the

components of vector in V"~ transform according to A% = X2 2 (Because the inverse of the

inverse of a matrix is the matrix itself). That is the components of vectors in V"~ transform in
exactly the same way as the components of vectors in V.

This means that if we set up a one to one correspondence between vectors in V and V"~ by

making A*e, in V correspond to A* f in V™", where {fa} is the dual of the dual of {g, }, then

this correspondence is basis independent.
A basis independent one to one correspondence between vector spaces is called natural
isomorphism and naturally isomorphic vector space identified by identifying corresponding

vectors. Consequently we shall identify T~ with T.

1.3 TENSOR PRODUCT:

Let T and U be two vector space over R . Then T and U” indicates the duals of T and
U respectively. From these two vector spaces we can construct a new vector space under an
operation called “tensor product” i.e. the Cartesian product T xU is the set of all ordered pairs

of the form(v,w) ; veT,weU . Thus the space of all sets of ordered pairs forms a vector
space. [5]
A bilinear functional f on T xU is a real valued function f :T xU — R which is bilinear i.e.

satisfy the following condition:

f(mu, +nu,,v) =mf (u,v) +nf(u,,v)

Fu, kv, +1v,) =k f(u,v,)+11(uv,)

Where m,n,l e Rand u,u;,u, €T andv,v,,v, €U .

As we have seen that linear functional on a vector space forms a vector space under the
operation addition and multiplication by scalar whose set is known as the dual of original vector

space so it is easy to show that the set of all bilinear functional on vector space T xU forms

8
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another vector space under the operation additions and multiplication by a scalar which is the

dual T"xU " of the original vector spaceT xU . Hence we can conclude that the tensor product
TxU of Tand U as the vector space of all bilinear functional on T"xU".

Alternatively,

A vector which is a member of the tensor product space is called a tensor. Since a tensor

product means product spaces it is possible to define a tensor which

is the tensor product 4 ® x of individual vectors 2 €T and x €U by setting

A®p=2"u"ey 1.22
where A% and 4" are the components of 1 and L respectively relative to the basis of T and
U _which induces the basis of T ® U . Though this definition is given via bases, it is in fact basis
independent.

Xf =e

a _p =ab

In particular, e 1.23

The tensors inT ®U having no form like 2 ® u are called decomposable. [3]

The dimension of T ®U is the product of the dimensions of T and U also in a natural way

bases of Tand {e,}of U induces a basis {e,} ofT ®U . The components of any

P T ®U relative to the basis given in terms of the dual bases of T and U~ by
P* =P(g?&")

Let find out the transformation rule for the component P* and induced basis vector e,, when

new bases are introduced into T andU . Let the bases of T & U are transformed according to

ey = Xy and e, =Xge, 1.24
This induces a new basis {e,, }in T ®U and for any (1,7)eT ®U" we get

Eap (Z:ﬁ) = Ao My = X3 Xy A Hg 1.25
or, &y (A, /1) = XEX§ e (4, )

Thus we obtain

€y = Xo Xy € 1.26
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Now for any basis vector e, ,,of T ®U and forany PeT ®U we get

P=pP*e_, 1.27
Substituting the value of (1.26) in (1.27)

P=P™X. Xy ey

By uniqueness of components

P = XSXoP™

In similar fashion we can show that

P =X X P™

Also a tensor showing N contravariant vectors and M co variant vectors(dual) is said to have

valence (},).Again vectors are tensors of type (})and they are linear function of one-

form(dual).Similarly one-form(dual) are tensors of type (7).

1.4 METRIC TENSOR:

The components g, of a symmetric covariant tensor having valence (3)is called metric

tensor while it must keep the following properties.

a) Symmetric i.e. g,, = 0,
b) Non singular i.e. |g,,|# 0
Equivalently has an inverse i.e.|g,,| has an inverse.

Let T is a vector space. Then by virtue of the theory of vector space, a metric tensor provides T

with an inner product (A, u) of vectors 4, €T defined by
(A =9Lm) =0 =g(u"e, 1'e,) = u" 2 9(e,.8,) = #* 'Yy 198
In particular, 9(e..€) =94

Since the matrix [g,,] is non singular, its inverse must exist. Let [g*°] be the a’th row b’th

column of this inverse. Then we obtain

gabgbc = 5:
10
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ba

Also due to the property g,, = g,,We have g* =g

In tensor algebra metric tensor also serve as a mapping. It maps a vector into one form (linear

real valued function of vectors) in a 1-1 correspondence

Let AT then g(4,) for some fixed A is a one forms. Thus

A=g4) 1.29
Let us take the component version of the equation
A=2(,)=9(4.e,)
=g (Ve 8.)=2"9(e,.8.) = 2" Qs, = 9’
In the above equation last equality follows from the symmetry in g, .Similarly
9% = 9% gy A'

=50 A'

=1°
Which shows that the map is invertible .The metric provides a unique pairing between one
forms and vectors.
Let us define the length of some vector in terms of metric tensor. Let A €T be any contra

variant vector. Then the length denoted by |/1|2 is the inner product (1, 1) defined as

A =4, A =g(2,2) =gy 22

1/2

Thus we obtain,  [4]= | QA2

|1/2

A A

The modulus signs are used due to g may be indefinite for any covariant vector s its length is

defined similarly

" =(E =9 (@, m)=9" uu,

1/2

Hence |z]=

gab /uazub|
By the definition of inner product we can also find the angle between two non null contra

variant vectors A, u as

11



coséd :M
14|
gab /’i’a /ub

cosé =
VA [T

In case of indefinite metric tensor we get |cos€| »1 giving as it were a complex angle

between the vectors.

Again we are always free to choose a new basis {e ; }in which the new metric components
gi'j’ = 9(5. ’Ej’) = g(xilf & 1X;' g ) = Xilf X}' g(ék’él) = Xilf X;' Qu

or, g ;= X{ gy X;
Consider the above equation as a matrix equation. Then it is convenient to rewrite this equation

as
9y = Xi G X
Again by imposing the matrix algebra, it is easy to see this matrix equation
g’ =XTgX
where X "is the transpose of the matrix X , where entries are X, we will now see that a claver

choice of X will reduce the matrix g’ to a very simple form. Since X is arbitrary, we ill take it

to be the product of two matrices

X =0D
where O is the orthogonal matrix (O =0") and D is the diagonal matrix (in
particular D" = D).Then we get

XT=0OD)' =D'0" =DO™* (by using matrix algebra)
And

g'=DO'g OD

It is well known that any symmetric matrix such as g can be reduced to diagonal form, g, by a

similarity transformation using an orthogonal matrix. So let us choose O to do this:

gy =07'g0

12
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g’zngD

Ifg,is the matrix diag (9;,9,, 9.5 eeeeene g,)and as yet our undermined matrixD is

diag (d,,d,,d.,........... d,) Then g’ is

9'=(0,d7,9,d;, 9;d;........9,d;)

-1/2
We now choose d; (‘gi‘) so that each element the diagonal of g’ is either lor -1. We
cannot use d;to change the sign ofg;, only its magnitude. Now the diagonal elements of g,

are the eigen values of g, and are unique apart from the order in which they appear. Moreover,
since ghas an inverse, none of the eigen values is zero. If we choose O to make all the

negative ones appear first, then we have proved the theorem that any vector space with a metric
tensor has a basis on which the metric tensor has the canonical form diag (-1............... -1,
1. 1) Such a basis is said to be orthonormal. If s is the number of +1”s and t is the
number of -1”s in the canonical form then s-t is the signature of the metric (the difference in the
number of minus and plus signs) and s+ t is the rank of the metric (the number of non zero
eigen values) .If the a metric is continuous, the rank and signature of the of the metric tensor

field are same at every point [15].

The metric tensor may be differentiable as one requires but it must at least be continuous. This
implies that its canonical form must be constant everywhere since it is composed of only
integers and integers cannot change continuously. So we speak the signature of the fieldg. As
long as one can choose the basis transformation matrix X freely at each point, one can
transform from any given basis field to a globally orthonormal basis in which the components
of g are its canonical one. But this transformation field X is not usually coordinate
transformation and in fact it is generally impossible to find a coordinate basis which is also

orthonormal in any open region U of a manifold.

1.5 TENSOR ALGEBRA: In this context we shortly discuss the algebraic operations of
tensors.

(A) LINEAR COMBINATION:

Two tensors of type (p,q) can be added and the some produces another tensor of same type i.e.

(p,q) . Then we can write



- My, y7i - - - - Hyfo e, y7i My y7i
e C;” ;. Is the linear combination of A;*’* 4 and B}’ 7

(B) DIRECT PRODUCT:

Given a tensor of type (p,q) ie A “»and a tensor of type (p'.q)i.e.

q

Q18 a, - - - -
oo v then their direct product is given by
Aylyz .............. Hp Qg apy _ My Hp i, Hp g ap
M1 A g Aq TV g Ve A1 Ag i Y PR Cp—— v

is a tensor of type (p+ p’,q+q’) .This process is also known as outer product .

(C) CONTRACTION OF TENSOR:

The algebraic operation by which the rank of a mixed tensor (covariant & contravariant) is
lowered by 2 is known as contraction. In the contraction process one contravariant index and
one covariant index of a mixed tensor are set equal and the repeated index summed over. The

resulting tensor is of rank lowered by two than the original tensor i.e.

(D) INNER PRODUCT

The direct product of two tensor followed by a contraction is known as inner product i.e.

A/lluuz ------ Uy pViVaeVpal _C/l1,/1z ------ HpVyee Vg
Aps Ageoeenees Ag 010 s oy Mgs Ag e Aq-1 Op e oy’

But this operation also be performed by two arbitrary tensor followed by same process. i.e.

Ayl,,uz......,up B/il,vz ...... Vo~ Hpe VoV
Ay s Ageenees Aq O oy Ag oA oy

F) LOWERING & RAISING OF INDICES:

his process can be of course be combined in various ways. A particular important operation is

given by a metric tensor, the raising and lowering of indices with the metric. Let us consider a

tensor A;M7i ;4 and the direct product plus contraction with the metric tensor g, , gives

which is a (p-1,g+1) tensor,

14
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1.6 TENSOR DENSITIES:

While tensors are the objects which in a sense transform in the nicest and the simplest possible
way under coordinate transformations, they are not only the relevant objects. An important class
of non- tensors is so called tensor densities. The prime example of tensor density is the

determinant g =—detg,, of the metric tensor (-ve sign included only to make g + ve in
signature (- +++). [10][6][18]

Tensor densities are needed in volume and surface integral as well as in formulating an action

principle from which field equation can be derived in a convenient way.

Consider a transformation from coordinates x*and x'#. An element of four dimensional

volume element transform as
dx"%dx"dx"2dx"® = J dx°dx*dx’dx® 1.30
where J is the Jacobean of transformation given by

ox'’® ox® ox® ox°
ox®  oxt ox* ox®
ox’t ox™t ooxt oxt

ox® oxt ox* ox® 131
ox’?® ox® ox® ox”?
ox®  oxt ox* ox®

a(XrO !1 12 73)
o(x°x*x*x%)

In short we can write J as

_|X] L g | X 1.32
OX ox'’
where the 2" equation follows by taking matrix of both sides of the identity
ox'* . .
( )( ) o, (matrix equation) 1.33
ox"*
Now we can write the equation (1.30) as
d*x’ =Jd*x 1.34
We get the transformation of covariant metric tensor as follows:
O = X" Qo Xy 135

Let us consider (1.35) as a matrix equation and take determinant on both sides of (1.35)

15
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:J " ru
9=°9 1 where X * = o

) 1.36
or,g=J°g OX

a

where g'=det(g),).In general gis negative quantity, so take a square root of the negative of
(1.36)
V=9 =v-0 1.37
or, £ =J¢'
where £ =,/—g and {'=,/—g’'and ¢ iscalled curly of g.
Consider a scalar quantity s that remains invariant under co-ordinate transformation i.e.

u r
0 )X pv X g 5 vy

s=A"B .
6”6' ox” ox*

or,s=A"B =53’
Also consider the following volume integral over some four dimensional region Q
[sy=g d*x=[s¢d*x=s¢"3d*x=[s}"d*x 1.38
Q Q Q Q'
Where Q'is the region in the co-ordinate x'“that correspond to x*.Equation (1.37) implies
that

jsgd“x = Invariant 1.39
Q

For this reason s¢is called scalar quantity that is its volume integral is an invariant. From

(1.36) and (1.37) we see that ¢ is a scalar density of weight -1; so that £" is a scalar density of

weight w.In general a tensor density of weight W is an object that transform as

ox*a ox* ox’

T”“‘Z ...... _de t(—)W OX*“ ox* ax”"‘Tﬂlyzv ..... o

[ZAZ e

There is one more tensor density which like the kornecker tensor has the same component in all

coordinate systems. This is the totally antisymmetric Levi-civita tensore“"° defined by

1 ;if pvpo is the even permutation of referenceorder.
e’ =7.-1;if pvpo is the odd permutation of referenceorde.
0 ; if anytwoor moreindicesareequal..

16



Chapter two

MANIFOLDS

2.0 INTRODUCTION:

In general relativity the mathematics of curved space where the curvature is created by energy
and momentum is closely related to the concept of manifold. So a manifold (in which a curve is
considered as a set of points) is an essential tool. After discussing some preliminary topics we
will begin with the notion of manifold which generalizes the concept of a surface or a curve
in R*.However the definition will be given without reference to an embedding in R" .Rather it
will generalizes the idea of a parametric representation of a surface i.e. homeomorphic map
from an open piece the surface in the plane R?.Such a parametric representation is called a

chart or a co-ordinate system. The surface is then covered by the domains of the charts .Charts

are used to define on manifolds objects and attributes originally defined onR".

The concept of differentiable manifold generalizes the idea of differentiable surface in
Euclidian space i.e. R® and has enough structure so that the basic concepts of calculus can be
carried out.From the notion of directional derivative in Euclidian space we will obtain the
notion of tangent vector to a differentiable manifold .We will study the the mapping between
manifolds and the effect that mappings have on the tangent vector. Also we will discuss

covariant differentiation of vectors and parallel displacement in manifold.

To study this chapter I have to deal with the following books: [1], [2], [3], [8], [11], and [15].



MANIFOIDS

2.1 TOPOLOGY:
To discuss manifolds, we need to have basic knowledge of topology.

A Topological space is a set with structure allowing for the definition of neighboring points and

continuous functions

Definition: A system U of subsets of a set X defines a topology on X if U contains

(a)The null set and the set X itself.

(b)The union of every one of its subsystems

(c)The interaction of every one of its finite subsystems

The sets in U are called the open sets of the topological space (X,U) often abbreviated to X.

Example: The open sets of R, defined by unions of open intervals a ( X ( b and the null set is

a topology on R. Let us test this:

The properties (a) and (b) are obviously satisfied and straight forward. To verify (c) let us

consider

A:U'Aﬁ ::UBi

iel jeld
A and B; are open sets. Then

Ane=Uns)

is open since the intersection of two open intervals is either an empty set or an open interval.
This topology is called usual topology on R.

Let X be a non empty set and let the open set consist of ¢ and X; This topology is called trivial.
Let X is a non empty set and let the open set consist of all subsets of X, ¢ and X included. This
Topology is called the discrete topology.

A topological space is a Hausdorff (separated) if any two distinct points possess disjoint

neighborhoods. In a Hausdorff space the points are closed subsets. The usual topology on R is

Hausdorff. The discrete topology is Hausdorff. The trivial topology is not Hausdorff.

17



2.2 COVERING:

A system {U,} of (open) subsets of X is a (open) covering if each element in X belongs to at
least one .{U,;}i.e.(UU, = X) Ifthesystem {U,} has a finite number of elements the covering

is said to be finite. Unless otherwise specified a covering will always be as open covering.

A sub covering of the covering U is a subset of U which is itself a covering. A covering U is
locally finite if for every point x, there exist a neighborhood N(x), which has a non empty

intersection with only a finite number of members of U.

A subset Ac X is compact if it is Hausdorff and if every covering of A has a finite sub

covering.

2.3 MANIFOLDS:

A manifold is one of the most fundamental concepts in mathematics and physics which
captures the idea of a space that may be curved or may have complicated topology. Then a
manifold is defined as a Hausdorff topological space such that every point has a neighborhood
homeomorphic to R" i.e. a set of points M is defined to be a manifold if each point of M has an
open neighborhood which has continuous 1-1 map onto an open set in R" .(ByR" we mean the
set of all n’tuples of real numbers (x',x*,x’...x")).But in local region ‘M is look like R" (By

local like we don’t mean that the metric is same but only basic notion of analysis like open sets,
functions and coordinates). The entire manifold is constructed by smoothly sewing together
those local regions. The dimension of the manifold is essentially n. the definition of manifold
involves only open sets and not the whole of M and R"because we don’t want to restrict to
global topology of M.

Example of manifolds:

(1) E, is an n-dimensional manifold with a single identity chart defined by

X (Y)Y )= Y
(2) The set of all (pure boost) Lorenz transformations is like wise a three dimensional
manifold; the parameters are the three components of the velocity of the boost.
(3) For R-particles, the numbers consisting of all their position (3R number) and

velocities (3R numbers) define a point in 6R-dimensional manifold, called phase space.
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(4) For particularly common manifold is a vector space. To show such a space is a

manifold we draw a map from it to some R". Let the vector space be n-dimensional and choose

any basis {@1 yeenees € } Any vector U is then represent able as a linear combination

U=a,g +a,6 +.————+a,€,
But u is a pointV , so this establish a map from V toR", ur> (a1 ...... a, ) In fact every point in
R" correspond to a unique vector in V under this map. So not only is V covered entirely by
the single coordinate system, we have just constructed, but V is identical as a manifold

withR".
2.4 DIFFERENTIABLE MANIFOLD:

A differentiable manifold is essentially a topological space with certain structure which is
locally homeomorphic toR".

Let M be a manifold and y is a one to one map from a neighborhood U of M onto an open
setin R" i.e. w assigns to every point peU an n-tuple of real numbers (Xl X e, X" )

A chart (U,p) of a manifold M is an open set U of M, called the domain of the chart,

together with a homeomorphism y :U —V of U onto an open set V in R". The coordinates

(Xl, X e , X”) of the image l//(X)E R" of the point xeU — M are called the coordinates
of x (local coordinate) in the chart(U,y). A chart (U,y) is also called a local coordinate

system.

FIG: 1

Consider a number of open neighborhood which covers M and define them by U, and for

a

each neighborhood there is a distinct coordinate function which may be denoted by . The
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open neighborhood must have overlaps if all points of M are to be included in at least one and

these overlaps enables us to give a more characterization of manifold.

Suppose U’ is an open neighborhood overlapping U and U’ has a map ' onto an open
region of R". The intersection of U and U’ is open and is given two different coordinate
systems by the two maps. To relate this coordinate system, pick a point (Xl, G ,X“)
from the image of overlap under the mapy . As defined before, i has an inversey ', so there

is a unique point p in the overlap which has these coordinates undery . Also let, ' assigns

If the partial derivatives of order k or less of all these functions {yi } with respect to all the {Xi }
exist and continuous then the maps y and y' strictly the charts (U ,z//), (U ’,1//') are said to be
C* related.

Consider two charts (U,y) and (U',") which are said to be compatible if the combined map
w'ow™ on the image w(U NU') of the overlap of U and U’ is a homeomorphism
(continuous one-one and having continuous inverse).

An atlas of class C* on a manifold M is a collection of sets {(U .,y )} of charts of M such
that the domains {U . } cover M and homeomorphism satisfy the compatibility condition.

A topological manifold M together with an equivalence class or compatible class of C* atlases
isa C* structure on M and we say that M is a C* manifold.

Strictly speaking a differentiable manifold is a manifold such that the maps w' oy ™" of open

sets of R" into R" are differentiable but not necessarily continuously differentiable. Very often
the expression, differentiable manifold, smooth manifold are used to mean a C* manifold
where k is large enough for the given context, eventuallyk =oo. A manifold of class C'
(which includes C* fork >1) is called a differentiable manifold. In most cases it is impossible

to cover the manifold with a single co-ordinate neighborhood such as the upper part of a sphere
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in a stereographic projection. The differentiability of a manifold endows it with an enormous

amount of structure: the possibility of defining tensors, differential forms and lie derivatives.

Two co-ordinate system X'and y' on an open set of R"are said to define same orientation if
the Jacobean determinant J = D(x')/D(y’) is positive at all points of the set. A chart
(U, @) on a manifold M defines a orientation of U by means of the orientation provided by the
co-ordinates (¢'(X)=x")on @U)eR".A differentiable manifold is said to be orientable if
there exists an atlas such that on the overlap U NV of any two charts (U,e)and
V,»):;D(¢')/D(w’) ) 0. A manifold defined in terms of such an atlas is said to be oriented.
An orientation on a manifold i.e. at a point p € M can also defined in terms of the orientation

of the tangent vector space T (M).If the manifold is orientable a frame transported along any

path in the tangent bundle of the manifold comes back to its starting point with the same

orientation.
2.5 DIFFEOMORPHISM:

Let M and N be two differentiable (C*) manifold of dimension m and n respectively.
Let f :M — N. The function w o f o™ represents f in the local charts(U,p), W,w) of M
and N. the differentiability of f:M — R is simply a particular case of the situation now

considered.

FIG:2
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f is C',differentiable atx for r<k if wofogp™ is C" differentiable at ¢(x). In other

words f is differentiable {C"} at x if the coordinates (y" = f“(xi)) of y are differentiable
{C"} functions of the coordinates (Xi) of x. f is C" mapping from M to N if f is C' at
every point Xe M .

In particular f isa {C'} diffeomorphism if f is bisection and f and f ' are continuously
{C"} differentiable. Diffeomorphism are to differentiable manifold what homeomorphism is to

topological space and what isomorphism are to vector space.

The composition of deffeomorphism is again a deffeomorphism. Thus the relation of being
deffeomorphic is an equivalence relation of the collection of differentiable manifolds. It is quite
possible for a locally Euclidian space to possess distinct differentiable structures which are
deffeomorphic. In a remarkable paper Milner showed the existence of locally Euclidian space
(S” is an example)- which possess non diffeomorphic structure .There are also locally Euclidian

space which possess no differentiable structure at all .

Now let find a relation between the coordinate system X' and x’'. Take a point p in U nU’

which gives the image (Xl DX e , X”) under the map y and (x'1 X2, , X'") under the
mapy . The primed coordinates can be written in terms of unprimed coordinates by the

equations

where (f', f2, f° . fN)=f=poy™

Similarly

where (g',gz, ........ ,g”)zgzt//o((//')_l.

The function f and its inverse ¢ are both one to one and differentiable and it follows that the

Jacobean | '.|| and
|ox] |

arc non-z¢Ero.

2.6 SUBMANIFOLD:

A subset S of a manifold M of dimension n is a sub manifold of M if every point x €S is in the

domain of a chart (U, ) of M such that
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of M.

If S already has a manifold structure, it is called a sub manifold of M if it can be given a sub
manifold structure which is equivalent to the already existing structure. Sub-manifolds are
defined by a system of equations. Thus we can say a sub manifold of a manifold M is a
manifold which is a smooth subset of M.

An m-dimensional sub-manifold S of an n-dimensional manifold M is a set of points of M
which have the following property: in some open neighborhood in M of any point p of S there
exists a coordinate system for M in which the points of S in that neighborhood are the points
characterized by x' =x>=...=x""=0.

If M is ordinary three dimensional Euclidian space, then ordinary smooth surfaces and curves
are sub-manifolds. In four dimensional Minkowski space-time, the 3-dimensional space of
events simultaneous to a given event in the view of a particular observer (same time coordinate)

is a sub manifold.

The solutions of differential equations are usually relations
say {yi = f, (X1 ........ X" )} , I=1.... p, can be thought of as sub-manifolds with coordinates
{X1 ........ x" } of larger manifold whose coordinates are {y1 ........ YoX . X" }

Suppose p is a point of a sub manifold S (of dimension m) of M (of dimension n). a curve in S
through p is also a curve in M through p, so naturally a tangent vector to each curve at p is a
element of both T, the tangent space of M at p and V,, the tangent space to S at p. in fact, V; is

a vector subspace of Ty not in V, has no unique projection onto V..

The solution of one-forms at p is just the reverse. Let T; be the dual of T, the set of one forms
at p which are functions defined on all T,,. similarly let at V; be the dual of V, the one-forms S
itself has at p. any one-form in T: defines one in V; : this only involves restricting its domain
from all of T, down to its subspace V,. but there is no unique element T; corresponding to a

given element of V; , since simply knowing the values of a one-form on V, does not tell us

what its value will be on a vector not in V,, thus a vector defined on a sub manifold S is also a

vector on M and a one-form on M is also a one-form on S. but neither statement is reversible.
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2.7 ALITTLE MORE GEOMETRY ON MANIFOLD [15]:

We have introduced maps between two different manifolds and how maps could be composed.
We now turn to use of such maps in carrying along tensor fields from one manifold to another.
Let us consider two manifolds M and N, possibly of different dimension, with the coordinate
system X" and y* respectively. We imagine that we have a map ¢:M —N and a
function f : N > R .[11]

FIG: 3
It is obvious that we can compose ¢ with f to construct a map(f o¢):M — R, which is

simply a function on M. such a construction is sufficiently useful that it gets its own name; we
define the pullback of f by ¢ denoted ¢, f , by:

g.1=(f9)
The name makes sense, since we think of ¢, as “pulling back” the function f from N to M.
We can pull function back but we can’t push them forward. If we have a functiong:M — R,
there is no way we can compose g with ¢ to create a function on N; the arrow sign don’t fit

together correctly. But recall that a vector can be thought of as a derivative operator that maps

smooth functions to real numbers. This allows us to define the push forward of a vector. If V(p)
is a vector at the point p on M, we define the push forward vector ¢V at the point ¢(p) on N
by giving its action on functions on N:

(v )(f)=V(s.1)
So to push forward a vector field we say “the action of ¢*V on any function is simply the

action of V on the pullback of that function”.

This is a little abstract and it would be nice to have a more concrete description. We know that a

basis for vectors on M is given by the set of partial derivatives 0, = P and a basis of N is
X
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0

2 "

Therefore we would like to relate the

given by the set of partial derivativesd, =

components of V=V*0  to those of (¢*V): (¢*V )a 0,. We can find the sought- after relation

by applying the pushed- forward vector to a test function and using the chain rule
(pv)o,f=vio,(gf)
=V“0,(f o9)

—ve Y g
ox*

The simple formulae makes it irresistible to think of the push forward operation ¢* as a matrix

operator, (¢*V )a = (¢* )ZV #, with the matrix given by (¢* )'; = Ziz _

The behavior of a vector under a push forward thus bear an unmistakable resemblance to the

vector transformation law under change of coordinate. In fact it is a generalization, since when
M and N are the same manifold the construction are (as we shall discuss) identical, but don’t be
fooled, since in general 1 and « have different allowed values and there is no reason for the

a

matrix to be invertible

ox*
2.8 TANGENT VECTOR AND TANGENT SPACE ON MANIFOLD:

The tangent vector space TX(M) on a manifold M at a point xe M is used to define
differential properties of objects in a neighborhood of x independently of local coordinates. The

tangent vector space ‘models’ the manifold at x, most approximation in physics and
mathematics consist in replacing locally a given manifold by its tangent vector space at a point
X, such an approximation can be called local linearization. T, (M ) is a isomorphic to R" if M is
a manifold of dimension n.

Let us imagine that we want to construct the tangent space at a point p in a manifold M, using
only things that are intrinsic to M (no-embedding in a higher dimensional space etc). Consider
the set of all parameterized curves through p-that is the space of all (non-degenerate) maps

7:R— M such that P is in the image of y. Let 7/(/1) be a curve passing through the point p of

M described by the equationx® =x*(4), a=1.....n. Also consider a differentiable function
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f(X1 ....... X") ie. f(xa) on M. At each point of the curve f has a value. Therefore along the

curve there is a differentiable function g(/l) which gives the value of f at the point whose

parametric value is 4 . Hence

g(2)= F(x'(A)nx"(2))= £(x°)

This implies
dg _dx* of
di da ox®
which is true for any function g so we can write
d _dx* 0
dA dA ox® 2.1

a

One would say that the set of numbers {C;X/l

} are components of a vector tangent to the curve

. : : : X°
x%(A) since curve has a unique parameter, so to every curve there is a unique set { il }

which are then said to be components of the tangent vector to the curve. Thus every curve has a
unique tangent vector. If p be the point whose parametric value is 0 then the tangent vector V.

at p can be written as

0
ox®

V =v?

The real coefficientsv® are the components of vectors V at p with respect to the local

coordinate system (X ....... X") in the neighborhood of p. Now we will make the following
claim:

“The tangent space T, can be identified with the space of directional derivative properties

along the curves through the point p”.

To establish this idea we must demonstrate two things: first that the space of directional
derivatives is a vector space and the second that it is the vector space we want (It has the same
dimensionality as M, yields a natural idea of a vector pointing along a certain direction and so
on) [15].

The first claim, that directional derivative forms a vector space, seems straightforward enough.
. d d . o
Imagine two operators a and an representing derivatives along two curves through p. there
n
d

. . : : d
is no problem adding these and scaling by real numbers, to obtain a new operatoraa + bd—.
n
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It is not immediately, obvious, however, that the space is closed i.e. that the resulting operator is

itself a derivative operator. A good derivative operator is one that acts linearly on functions and
obeys the conventional Leibniz (product) rule on product of functions. One new operator is

manifestly linear, so we need to verify that it obeys the Leibniz rule. We have

ad pd (fg)=af d—g+ag£+bf d—g+bgi
di dn di di dn dn

= aibﬂ g+ ad—g+bd—g f
di dn di dn¢ .

Thus the product rule is satisfied and the set of directional derivatives is therefore a vector
space.
Is it the vector space that we would like to identify with the tangent space? The easiest way to

become convinced is to find a basis for the space. Consider again a coordinate chart with the
coordinate X* . Then there is a obvious set of n directional derivatives at p, namely the partial

derivatives 0, atp.
We are now going to claim that the partial derivative operators {6 ﬂ} at p form a basis for the

tangent space T ,.(it follows immediately that T is n-dimensional since that is the number of

FIG: 4

basis vectors). To see this we will show that any directional derivative can be decomposed into

a sum of real number time’s partial derivatives.

Consider an n-manifold M, a co ordinate chart¢:M — R", acurve y:R—>M and a
. : d
function f : M — R . If A is the parameter along y , we want to expand the vector operator a

in terms of partial derivatives 0, [15].
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Using the chain rule

)7
_dx o f
da *

The first line simply takes the informal expression on the left hand side and rewrite it as an

honest derivative of the function(f o 7): R — R . The second line just comes from the definition
of the inverse map ¢~ . The third line is the formal chain rule and the last line is a return to the
informal notation of the first. Since the function f is arbitrary

d _dx”
dA  d1 “ 29

Thus the partials {6 #} do indeed represent a good basis for the vector space of directional

derivatives which we can therefore safely identify with the tangent space. We already know that

d . .
the vector represented by a is a tangent vector to the curve with parameter A .

Thus equation (2.2) can be thought of as a restatement of (2.1) where we claimed that the

"
components of tangent vectors were simply il

The only difference is that we are working on an arbitrary manifold and we have specified our

basis vector to be é(ﬂ) = aﬂ.
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One of the advantages of the rather abstract point of view we have taken towards vectors is that

the transformation law is immediate. Since the basis vectors are é( =0, the basis vector in

)
some new coordinate system X' are given by the chain rule

ox*
Ou = ox* -

We get the transformation law of the vector components by the same technique used in flat

space, demanding the vector V. =v*“0, be unchanged by a change of basis. We have

, . OX*
V"@# :V"@y, =V# % 0,
u ox*
And hence (as the matrix is the inverse of )
ox*“ ox'#
VH = ox” u
ox* 2.3

Since the basis vector is usually not written explicitly, the rule (2.3) for transforming
components is what we call the “vector transformation law”. We notice that it is compatible

with the transformation of vector components in special relativity under Lorentz

transformations, V* = A/ V* since a Lorentz transformation is a special kind of coordinate

transformation with x* = A*; x* . But equation (2.3) is much more general, as it encompasses the

behavior of vectors under arbitrary changes of coordinates (and therefore bases), not just linear
transformation. As usual we are trying to emphasize a some what subtle on-tological direction-
“tensor component do not change when we change coordinate, they changes if we change the
basis in the tangent space” but we have decided to use the coordinates to define our basis.

Therefore a change of coordinates induces a change of basis.

- 1 . .
/’/ \-I‘ e y .
- ™. - ~
s ™, rd ™
) d, y ’
= { W d lu
= 1
| W9 | KM ‘EI ay
| [ 2"
'\ i \
-, / M, /
. e ™ A
s . o
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If the tangent vector V has ambient coordinate (v;.....vs) and local coordinate v'...... v"), then
they are related by
v=y v
k=1 OX
And V'= aivk
k=1 ayk

Definition of %[2]: Take a pointpeM . Then % is the vector at p whose local
X X

coordinate under X is given by

oY .. [Lif j=i
j’th coordinate =(—J =5 = o
ox' 0 if j=i

o

ox'

Its ambient coordinates are given by
j th coordinates = gf

2.9 RIEMANNIAN MANIFOLD:

A smooth inner product on a manifold M is a function <—,—> that associates to each pair of

smooth contravariant vector fields X and Y a smooth scalar (field) <X,Y> satisfying the

following properties:

Symmetry: (X,Y)=(Y,X) VXandY

Bilinearity: (aX, Y )=aB(X,Y) V¥ X,Y and scalars @,
(X,Y +2Z)=(X,Y)+(X,Z)
(X+Y,Z)=(X,Z)+(Y,Z)

Non-degeneracy: If (X,Y) =0 for everyY , then X =0

A Riemannian manifold is a manifold M together with a continuous 2-covariant tensor field g,
called metric tensor, such that
(i) g is symmetric

(ii) for each X € M | the bilinear form g is non degenerate;
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Since M is finite dimensional in this chapter this means g, (v,w)=0 for all ve T, if and only

if w =0. Such a manifold is said to posses a Riemannian structure.
Before we look at some examples, let us see how these things can be specified. First notice that,

if x is any chart and p is any point in the domain of x then

<X ,Y> =Xy J<%,§> This gives us smooth function
X

9; =<§,%> such that (X,Y)=g; X'y’
Which constitutes the coefficients of type (O, 2) symmetric tensor. This tensor is called the
fundamental tensor or metric tensor of the Riemannian manifold.
A Riemannian manifold is called proper if

9,(v,w)>0 forall veT, v#0 xeM
Otherwise the manifold is called pseudo-Riemannian or is said to be possess an infinite metric.

The index of a proper Riemannian manifold M" is n. On such a manifold a basis (frame) (¢;) is

called orthonormal if

Example:
(i) M = E, with the inner product g; =,

ij

(i) M =E, , with given by the matrix

1 00
010 O
0 01 O
0 00 —c’

where c is the light velocity. We call this Riemannian manifold flat Minkowski space M * .

2.10 COVARIANT DIFFERENTIATION:

By a parallel field we mean a vector field with the property that the vectors at different points are
parallel. But on a manifold, what does the nation of parallel field mean? For instance, in E, there

is an obvious notion: Just take a fixed vector V and translate it around. On the torus there are

good candidates for parallel fields (as in fig 7) but not on the two sphere. [2]
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Let us restrict attention to parallel fields of constant length; we can recognize such a field by
taking the derivatives of its co-ordinate or by following a path and taking the derivative of the
vector field with respect tot: we should come up with zero. But we wouldn’t always come up
zero if the co-ordinates are no rectilinear since the vector field may change direction as we move

along the curved co-ordinate axes.
- Xj
Let, X'is such field and check its parallelism by taking the derivatives ——along some path

dt

x' = x'(t) .However there are two catches to this approach: one is geometric and the other is
algebraic.

Geometric look, for example, at the field on either torus in the above figure. Since it is circulating

X y ] o
and hence non- constant so—— # 0 which is not what we want. However the projection of ——

dt dt
parallel to the manifold does vanish, we will make this precise below:
1
Algebraic since, Yj = % X" then by product rule
dt  ox*ox" dt  ox" dt 24

. o . X
Showing that unless the second derivatives vanish —— does not transform as a vector field.

dt
What this means in practical terms is that we can check for parallelism at present — even in Es if
the co-ordinates are not linear.

First let us restrict to M is embedded in Eg with the metric inherited from the embedding. The

dX
projection of —— along M will be called the co-variant derivative of X (with respect to t) and

dt

DX
written o V. X.
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Again we would like to define covariant derivative operator V to reform the functions of partial

derivatives but in way of independent of co-ordinates. We therefore require thatV be a map from
(k, 1) tensor fields to (k, 1+1) tensor fields which has the following two properties.[15]
(1) Linearity: V(T +8)=VT +VS

(2) Leibniz (product) rule: V (T ® S)=(VT)®S+T ®(VS)

If V is going to obey the Leibniz rule, it can always be written as the partial derivative plus some

linear transformation. Thus to make a covariant derivative we first take the partial derivative and
then apply a correction to make the result covariant.
Consider the co-variant derivative of a vectorV“. It means that for each direction ¢, the co-

variant derivative V , will be given by the partial derivative 0, Plus a correction specified by a
matrix (Fﬂ)g (an n x n matrix, where n is the dimension of manifold for each p). In fact the
parenthesis are dropped usually and write there matrices, known as the connection co-efficient
asI'/, . Which is the rule of parallel displacement of vector. We therefore have,

VY =0 V"+I, V"’
V V" defined in this way is indeed a (1, 1) tensor and the usual transformation rule is

] V'
vy =X gy
oy* ox”

Frequently, the covariant derivativeV V" is also denoted by a semicolonV V" =V ", Just as
for functions, one can also define the covariant directional derivative of a vector field V along
another vector field X by
Vv,V =X"V V*
Similarly the co-variant derivative of a co-vector is given by
V.V, =0V, -T.V,

An important distinction between co-variant derivative and lie derivative is that: Dragging back a
vector for the lie derivative required the entire congruence so that two vectors U and W had to be

defined in a neighborhood of curve ¥ ; parallel transport by contrast requires only the curve ¥,

the fieldsU andW on the curve and of curve the connection on the curve. Thus we can write

now

Vo (FW) = f VoW + WV, f
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The notion of parallel transport along a curve requires that it must be independent of the

parameter on the curve. Therefore we conclude that for any function g
Again at a point the covariant derivatives in different directions should have the additive property
(VUW)p + (VVW)P = (VU+\7W)P

The connection can’t be regarded as a tensor field.
2.11 INVARIANT INTERPRETATION OF THE COVARIANT DERIVATIVES: [6]

The appearance of the Christoffel symbol in the definition of covariant derivative may at first
sight appear a bit unusual (even though it also appears when one just transforms Cartesians
partial derivatives to polar co-ordinate etc). There is a more invariant way of explaining the

appearance of this term, related to the more co-ordinate independent way of looking at tensors
explained above. Namely since V“(X) are really just the co-efficient of the vector
fieldV (X) =V *(x)d . when expanded in the basis 0, , a meaningful definition of the derivative of

a vector field must take into account not only the change in the co-efficient but also the fact that
the basis changes from point to point and this is precisely what the Christoffel symbol do .
Writing

vv=v, Vv',)=©N")0, +V"(V,0,)
We see that we reproduce the definition of the covariant derivative if we set

ey

v,o,=T,.0,

Then we have
_ A A v

vvV=0N +T , V)0,
which agree with the above definition .
In some example the Christoffel symbol indeed describe the change of the tangent vectors 0,
For instance on the plane, in polar co-ordinates one has

V.0, =T70,=0

which is correct because O, indeed does not change when moves in the radial direction. O,

changes however, when one moves in the angular direction given byd,. In fact it changes its

direction proportional to 0, but this change as stronger for small values of I' than for larger one.

This is precisely captured by non zero Christoffel Symbol.
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2.12 COVARIANT DERIVATIVE OF TENSOR AND SOME PROPERTIES:

(A) COVARIANT DERIVATIVE OF TENSOR OF TYPE ( 2.2):

If the (p, q) tensor is the direct product of p vectors and q co-vectors, then we already know is
covariant derivative. We simply adopt the formulae for an arbitrary (p,q) tensor is the sum the
partial derivative. A Christoffel symbol with positive sign for each upper indices p and a

Christoffel symbol with a negative sign for each of the lower indices q. Then in equation

V (T@".8%:8,.8, ) =(V, T)E" .68, .8,)+T(V, 8" .88, .8, )+ TE".V, 815, .5,)

+T(@",8":V, §,.8,)+T(E€",8"16,.V, §,)

VisVa __ VisVa Vi oWV, Vi, Vi,0 o Vi,V o
or,ayTﬂlJz _VHT%JZ FMT%AZ FMTM,M +FMI TUJZ +T

ViVa
M Ay Tﬂ] ,o

ViV, _ Vi,V v oV, vy V.o _T0o ViV, _TO Vi,Vs
orV, T =0, T A0 T U Ty — U T — L, T

Ho

(B) COVARIANT DERIVATIVE FOR TENSOR DENSITY:

As we know that, if T is a (P,q;W) tensor density, then g""’T is a (p,q)tensor. Thus

w/2 . . . . .
V(9" T) isa (p,q+1) tensor. To map this back to a tensor density of weight W we multiply

this by ¢ e arriving at the definition [6]

VHT :gfw/Z V‘u(gW/ZT)
W ensor
=5y QT +VIT

where V" just means the usual covariant derivative for (P,q) tensor defined above.
For example. For a scalar density ¢ one has
w
V., p= 5,1(04‘5(3,,9)(0

In particular, since the determinant g is a scalar density of weight -2, it follows that

vV,9=0
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which obviously simplifies the integration by parts in integrals defined with the

measure+/g d*X.

(c) THE COVARIANT CURL OF A COVECTOR: IfU, is a covariant vector then its covariant curl
is
vu -vu,=0U, —FjVU/I -o,U, +1“ViU/I
=0,U,-d,U,
(Symmetric Christoffel symbol drop out in ant- symmetric Linear Combination). Thus the
Maxwell field strength F,, =0J,A, —0, A, is a tensor under general co-ordinate transformations;

no metric of covariant derivative is needed to make it a tensor in general space time.

(D) THE COVARIANT CURL OF AN ANTI SYMMETRIC TENSOR:

LetA,, . be completely ant symmetric. Then as for the curl of covector the metric and

Christoffel symbol drop out of the expression for the curl, we get

The square bracket denotes the complete anti symmetrization.
(e) THE COVARIANT DIVERGENCE OF AVECTOR:

By covariant divergence of a vector field one means the scalar

P
VN#=3V*+ThV ) s

Again a useful identity for the contracted Christoffel symbol is

-1/2 +1/2
rﬁll = g ai(g ) 2.6

Here is an elementary proof for this identity. The standard expansion formula for the
determinant

2.7

m,,

g=>(D"g,

where |m .v|18 the determinant of the minor of g, i.e. of the matrix obtained by removing the

the row and v the column fromg,, . If follows that

9=y,

00, 2.8
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Again another consequence of (2.7) is

Z(_l)#ﬂ/giv g;tv =0 ’ﬂ’ U
v 2.9

Since this is in particular, the determinant of a matrix with §,, = 0,,1.e of matrix with two equal

TOwWS.

Together these two results can be written as

Z(_l)/ﬁvglv g,uv = é‘,uvg
v 2.10
Multiplying (2.8) by 9, and using (2.10)
0
9. a—g =0,,9
9w 2.11
or the simply identity
0 v
Py 9 - 9'g
9w 2.12
0 v
alg = a—gal gyv = g g/“ alg,uv
Thus, 9w 2.13
OI’, g _laﬂ g = g ﬂvalgyv
On the other hand the contracted Christoffel symbol is
1—~‘u _ l ‘uva
uA 2 g },g;tv
which establishes the equation (2.6)
Thus the covariant divergence can be written as
u o oN-1/2 1/2\y u
Vyv =4 a/4(g v ) 2.14

and one only needs to calculate g and its derivative, not the Christoffel symbol themselves, to

calculate the covariant divergence of a vector field

(F) COVARIANT DERIVATIVE COMMUTES ON SCALAR:

This is of course a familiar property of the ordinary partial derivative but it is also true for the
second covariant derivatives of a scalar and is a consequences of the symmetry of the Christoftel
symbols in the second and third indices and is also known as the no torsion property of the

covariant derivative. Namely, we have
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VV,O0-VV 0=V, d-V 35,0
A A
=0,0,0-T.®-8,0,0+T,,0
=0

But the second covariant derivatives as higher rank tensors don’t commute.

(g) V,COMMUTES WITH CONTRACTION:

This means that if A is a (P,() tensor and B is the (P—1,q4—1) tensor obtained by contraction
over two particular indices, then the covariant derivative of B is the same as the covariant
derivative of A followed by contraction over these two indices. This comes about because of

cancellation between the corresponding two Christoffel symbols with opposite sign. Consider a
(1,1) tensor A} and its contraction A, .The latter is just the partial derivative. This can also be
obtained by taking first covariant derivative of A.
v v v A A v
V,A =0,A +T A -1, A
and then contracting:
v _ v v A A v
V,uAV _6;4Av +F‘uﬂ.Av _F/IVAl
The most transparent way of stating this property is that the kornecker delta is covariantly

constant 1.€.
Vﬂ@v =0

(G) THE METRIC IS CO-VARIANTLY CONSTANT:

SinceV , 0, is tensor we can choose any co-ordinate system we like to establish if this tensor is

zero or not at a given pointX. Choose an inertial co-ordinate system at X .Then the partial

derivatives of the metric and the Christoffel symbol zero there. Therefore the covariant derivative

of the metric is zero. Since V ,,, is a tensor, this is then true is every co-ordinate system.
2.13 PARALLELISM:
In a diffentiable manifold there is no intrinsic notion of parallelism between two vectors defined

at two different points. However given a metric and a curve connecting these two points, one can

compare the two by dragging one along the curve to the other using the covariant derivative.
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Thus the concept of moving a vector along a path, keeping constant all the while is known as
parallel transport. As we shall see, parallel transport is defined whenever we have connection
(rule of parallel transport); the intuitive manipulation of vectors in flat space makes implicit use
of this Christoffel connection on this space. The crucial difference between flat and curved space
is that, in a curved space, the result of parallel transporting a vector from one point to another
will depend on the path taken between the points. Let us consider a two sphere to see the case of
parallel transport. Start with a vector on the equator, pointing along a line of constant longitude.
Parallel transport it up to the North Pole along a line of longitude in the devious way. Then take
the original vector. Parallel transport it along the equator by an angle @ and then move it up to
the North Pole as before. It is clear that the vector, parallel transported along two paths, arrived at
the same destination with two different values (rotated by €).[15]

It therefore appears as if there is no natural way to uniquely move a vector from tangent space to
another. We can always parallel transport it but the result depends on the path and there is no
natural choice of which path to take.

Parallel transport is supposed to be the curved space generalization of the concept of “Keeping

the vector constant” as we move it along path; similarly for a tensor of arbitrary rank. Given a

curve X“(A), then the requirement of constancy of a tensor T along this curve, in flat space is

simply
dT _dx* dT 0
di dA dx”
We therefore define the covariant derivative along the path to be given by the operator
Do
Az da ~

We therefore define the parallel transport of the tensor T along the pathX”“(4) to be the

requirement that, along the path
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(Ejﬂlyz AAAAAA Hy zdxav T#]ﬂz AAAAA Hy =0

aa )., ...~ dd 2.15

X/”
This is well defined tensor equation. Since the both tangent vector A

and the covariant

derivative VT are tensors. This is known as the equation of parallel transport. For a vector it takes

the form

Ay +TY LSV
dA di (Absolute derivative along a curve) 2.16

We can consider the parallel transport equation as a first order differential equation defining an
initial value problem; given a tensor at some point along the path, there will be a unique
continuation of the tensor to other points along the path such that the continuation solves

equation (2.16). We say that such a tensor is parallel transported.

2.14 SOME CONSEQUENCES OF PARALLEL TRANSPORT:

(a) Taking T to be the tangent Vector X* =X“(7) to the curve itself. The condition
for parallel transport becomes

DX #
dr

i.e. precisely the geodesic equation. Thus geodesics, as we have already seen these are curves

=0 X+ X'X* =0

with zero acceleration can equivalently be characterized by the property that their tangent vectors
are parallel transported (do not Change) along the curve. For this reason geodesic are known as
auto parallels.

(b)  The notion of parallel transport is obviously dependent on the connection and different
connections lead to the different answers. If the connection is metric compatible (metric is co

variantly constant) the metric is always parallel transported with respect to it. Thus

D dx?
— g, =—V =0
) 9. A +(9,,)

It follows that the inner product of two parallel-transported vectors is preserved i.e. if V* and

W " are parallel transported along a curve X“(4) we have
D
d

D D
VAW + —V*W"+g, V(——W")=0
/lgl“/) gyv(d/l ) g#v (dﬂ, )

D
—( g, VW)=
AL )=(

This means that parallel transport with respect to a metric compatible connection preserves the

norms of vectors, the sense of orthogonanlity and so on.
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(c)  We can write down an explicit and general solution to the parallel transport equation.

First notice that for some path 7 : 4 — X?(4) solving the parallel transport equation for a vector
V# amounts to find a matrix P}'(4,4,) which relates the vector at its initial value V“(4,)to its
value somewhere later down the path

VA =P, (4, 4V 7 (4,) 2.17

The matrix P)'(4,4,) is known as parallel propagator that depends on the path 7 . If we define

dx?
A (1) = —T*
(D 7 da 2.18

Where the quantities on the right hand side are evaluated atX" (1), then the parallel transport

equation become

iV” =AV”
dd r

Since the parallel propagator must works for any vector, substituting (2.17) in (2.18) shows that
P#(4,4,) also obeys the equation

d
S PHALA) = AY(A) PT(AA
d/I”( 0) = A (1) B4 4) 2.19

To solves this equation first integrate both sides
A

Pi(A,4,) =84+ [ AL pg(n,2,)dn 2.20
Ao

The kornecker delta, it is easy to see, provides the correct normalization for4 = 4, [6].
We can solve (3.17) by iteration, taking the right hand side and plugging it into itself repeated by
giving
A An
P/ () =84+ [ At dn+ [ [ AL () AZ () dnldyp+———————————
Ao Aoto 2.21

The n’th term in this series is an integral over n- dimensional right angle triangle or n-simplex.
2.15 LINEAR CONNECTION ON MANIFOLD:

A linear connection V on a manifold M is a mapping that sends every pair of smooth vector
fields (X,Y)to a vector field VY such that
Vi@Y+2)=av,Y+V,Z

For any constant scalar a .But
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Vi (fY)= 1V, Y +(XF)Y
When f is a function and it is linear on X .

VevZ=V,2+1V,Z

Action on a function f , V, is defined by
VvV, f=Xf

Let {e,} be the basis for the vector fields and denote V, by V,. Because of V e, being a

vector there exist scalars I, such that
Vaeb = I_‘bca ec
To get component version, let X = X *e, and then from definition of connection
VY=V, . (Y’,)
= XV, (Y%,)
=XV, (Y?)e, +X2Y"(V,e,)
=X(Y")e, + X*Y T e,
or, V,Y =[X(Y?)+X?*Y°T?, ]e,

or, V,Y =[e, (Y*)+Y° T2 X%,

or, (V,Y)" =[e, (Y’ )+Y I 1X*?

or, (V,Y)* = (covariant derivative of Y°)X?

or, (V,Y)’=Y?2 X*?
In above TI?, are called the components of the connection which are also called a rule for
parallel displacement of a vector along a curve. Again V,Y is completely specified by giving
the components of the connection .In above equation Y;Z are components of the (1,1) tensor
VY .Neither of the two terms in Y;t; transform like the tensor components but the sum i.e
0

OX
b _yb , bye
or, Y, =Y_ +I,Y

Yo=—(Y")+I,Y°

transform like the tensor components.

THEOREM [14]: If a manifold possess a metric g then there exist a unique symmetric
connection, Levi-Civita connection or metric connection V such that

Vg=0
Proof: Suppose ¢ is a metric .Let X,Y,Z be the vector fields. Since g(X,Y) is a function then

we get
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X(9(Y,2)) =V (9(Y,2))
=(Vx (Y, 2)+9(VY,2)+9(Y,VZ)

or, X(9(Y,2))=9(V,Y,2)+9(Y,V, Z) 2.22
Similarly

Y(9(Z,X)=9(V,Z,X)+9(Z,V,X) 2.23

and Z(9(X,Y)=09(V,X,Y)+9g(X,V,Y) 2.24

Adding the first two equations and then subtracting the third equation we get

X(9(Y,2)+Y(9(£, X)) = Z(9(X,Y) = g(VY,Z)+g(Y,VZ) +g(V,Z, X) +g(Z,V, X)
—9(V.X,Y)=g(X,V;Y)

or, g(Z,Vy X) = X(9(Y,2))+Y(9(Z, X)) = Z(9(X,Y) - 9(V«Y,2)=9(Y,VZ) =g(V,Z, X)
+9(V, X,Y)+9(X,V,Y)

or, g(Z£,VyX)+9(Z,VyX) ==Z(9(X,Y)) +Y(9(Z, X) + X(9(¥,2) + 9 (£,Vy X) = g(VY,Z)
+9(V,X,Y) =g(Y,VyZ) +9(X,V,Y)~-g(V,Z,X)

or,29(Z,VyX)= —Z(g(X,Y)+Y(9(Z, X)+ X(9(Y,2))+9(Z,V,Y =V X)
+g(Y>VzX —VXZ)—g(X,VYZ _sz)

1
or,g(Z,Vy X) =§{—Z(9(X,Y))+Y(Q(Z,X)+ X(9(Y,2)+9(Z,[X,YD+9(Y,[Z,X]) = 9(X.[Y,Z])}
Here the symmetry of the connection has been used to set
V,Y -V, X =[X,Y]

If (e,) be the vector basis we may set Z=e, X =e,and Y =e, .Then we obtain

or, g (eaﬁvc eb) Z%{ eb(gac)+ec(gba)_ea(gcb)+ g(ea [ec ’eb])+ g(eb [ea 9ec])_ g(ec [eb ’ea])}

1
or, gad 1—‘bdc = E{ gac,b + gba,c _gcb,a +}/gb gad +}/:c gbd _7/l§ja gcd}

Where [e, ,e.]=y:. e, and the quantity y/. are called commutator co-efficient or structure

constant.
If the basis i1s co-ordinate induced then the last three terms will be vanishes .and hence we

obtain the formulae defining the connection co-efficient or Christoffel symbol as
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1
gad 1—‘bdc = 5( gac,b +gba,c _gcb,a)

a1
or, 1—‘l;jc =4 ‘ E( gac,b +gba,c _gcb,a)

Whenever a manifold M possess a metric we will usually use the metric connection without

explicitly saying so. However in a metric manifold not all the connections are metric.
2.16 SPIN CONNECTION:

The co-variant derivative of a tensor is given by its partial derivative plus a correction term for

each index involving the tensor i.e. Connection co-efficient. The same procedure will be true

for non-co-ordinate basis but we replace the ordinary connection co-efficient Fjv by the spin

connection denoted by w, % .Each Latin index gets a factor of the spin connection in the usual
way:

V, XL =0, XL+wW, % Xy —w,° X?
The name spin connection comes from the fact this can be used to take co-variant derivatives of
spinors which is actually impossible using conventional connection co-efficient.
The usual demand that a tensor be independent of the way it is written allows us to derive a

relationship between the spin connection (vielbeins) and the F:V ’s .Consider the co-variant

derivative of a vector X , first in a purely co-ordinate basis:

VX =(V, X")dx* ®0,
=(8AXV+F;AXi)dX”®5V 2.25
Now find the same object in mixed basis and convert into the co-ordinate basis.
VX =(V, X%)dx” ® é @
= (0, X*+w, 5 X")dx" ® €&
={0,(X")+w,° el X }dx* ®(e7 0,)
=eJ(el0, X" +X"0,el+w,% e X )dx“ ® 0,
or, VX =( 0,X" +e;d,e;X* +e e) w,%\ X*)dx* ® 0, 2.26
as(oc »>v,v > A1)
Comparing with (2.25) we obtain

a

v v a v Ab
FM= e, aﬂev +e,e, W, 5

Or equivalently we can write
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A v p:
w,% = ele I',,—e 0,6e
A bit manipulation allows us to write this relation as the vanishing of the co-variant derivative
of the vielbein (German word)

vV,e =0

which is sometimes known as the ‘tetrad Postulate’ and always true.
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Chapter three

GEODESIC CONGRUENCE

3.0 INTRODUCTION:

In this chapter we have developed mathematical techniques required in the description of

congruence’s- the term designating an entire system of non-intersecting geodesics while
consider only the cases of time like geodesics as it is virtually identical to the space like
geodesics. To discuss the behavior of congruence’s we introduce the expansion scalar as well as
shear & rotation tensors. We have derived a useful evolution equation for the expansion which
is well known Raychowdhury equation. On the basis of Raychowdhury equation we have
shown that the gravity tends to forces geodesics, in the sense that an initially diverging
congruence’s (geodesic flying a part) will be found to diverge less rapidly in the future and an
initially converging congruence’s (geodesics coming together) will converge more rapidly in
the future. Also we have presented Forbenius theorem which states that a congruence is hyper
surface orthogonal — the geodesics are everywhere orthogonal to a family of hyper- surface if

only if its rotation tensor vanishes.

The following books are used as references to study this chapter: [5], [6],[18], [19],[20].



GEODESICS CONGRUENCES

3.1 GEODESICS:

In a flat space time a geodesic is the shortest distance between two points i.e. a straight line .It
has the property that its tangent vector is parallely transported along itself. But in a manifold
geodesic is a curve analogous to straight line in a flat space which extrimizes the distance
between two fixed points.

Consider a non-null curve ¥ on M described by the relation X“(1) where Aan arbitrary

parameter is and let P and Q be two points on this curve. The distance between P and Q i.e. arc

q 7
1=]y/tq, Wﬁwﬂ
p

or, Izj,/i 9, X* X7 dA
P

length along 7 is given by

a

7 and in the square root the positive (negative) sign is chosen if the curve is space

where X* =

like (time like).lIt is clear that | is invariant under a reparametarization of the curve 4 - u(4),

Q a p
dx” dx
s(t):j\/ig“ﬂ du du d

(where s (t) =length of path fromt=a to Q, setting P=a)

using the arc length

a

X
ds

The reason for choosing to do this is that the tangent vector T* = is then a unit vector in the

sense that[[T[* = +1.
If we consider a curve in E;, then the derivative of the unit tangent vector (again with respect to
s is normal to the curve) and its magnitude is a measure of how fast the curve is turning and so

we call the derivative of T, the curvature of 7 .

If ¥ happens to be on a manifold, then the unit tangent vector is still

o _ Ox7 _dx” Jds _ dx“ /dt
dS dt dt pr qu
9% g g
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Since the differential form of arc length is, ds® = igaﬂdx“dx/’ .

But to get the curvature, it is needed to take the co-variant derivative of the tangent vector T“.So
dx*
ds
d dx* dx™ dx"
or, VT*)=—(—)+I, —
) ds( ds ) ds ds

2,a m n

or, v(r“) =2 T dx” dx
ds ds ds

2ya m n

or, P% = d XZ +I ax dx
ds ds ds

But we get the first curvature vector P of the curve y is given by

V()= v(

)

where P =V(T*%)

_dzx“ dx™ dx"

Pd — a 7 T

ds 2 ™ ds ds

A curve on M whose first curvature is zero is called the geodesic .Thus a geodesic is a curve that

satisfy the system of second order differential equation

d?x“ dx™ dx"
+Io =0 3.1
ds? ds ds

which is well known geodesic equation .Here we note that P is a tangent vector at right angles to

the curve 7 which measures its change relative to M. If the distance between any two points on a
geodesic is zero then the geodesic is called the null geodesic .1t is characterized by
9o Kﬁ =
di da
and also by equation (3.1).

3.2 GEODESIC DEVIATION EQUATON [5]:

In a certain sense the main effect of the curvature (gravity) is that initially parallel trajectories of
freely falling non-interacting particles (dust, pebbles) do not remain parallel i.e. the gravity has
the tendency to focus (defocus) the matter. This statement finds its mathematically precise
formulation in the geodesic deviation equation.

The geometrical picture of the Riemannian tensor is best illustrated by examining the behavior of
the neighboring geodesics. Let 7, and y;are two such geodesics described by the relation x“(t)

in which t is an affine parameter .The geodesic may be time like or space like or null. We are to

develop the notion of deviation vector between these two geodesics and derive an evolution
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FIG: 1

(Deviation vector between two neighboring geodesics)

equation for this vector. Let us introduce an entire family of interpolating geodesics between 7,
and 7, in the space(as in figurel). To each geodesic we assign a level s <[0,1] such that y,
comes with the level s= 0 and y, with s=1. Let us describe the whole geodesic system with

relation x“(s,t) , in which s serves to specify which geodesic and ! is an affine parameter along

a

OX
the specified geodesic. The vector field U“ = at is tangent to the geodesic and satisfy the

equation U % U” =0 If we keep t fixed in the relation x“(s,t) and vary s instead, we obtain

another family of curves labeled by t and parameterized by s .In general these curves will not

a

. . « _ OX . ) - .
be geodesics .The family has&” = 2 as its tangent vector field and the restriction of this vector

to 7o, §“|S =0, gives a significant notion of deviation vector between y,and y, which

characterized by the condition

[U,£1"=U "V, &7 =&V, U =0
= L& - LU =0
= &9U7-U9 &M =0
= £9Uf=u9 &0 3.2

We wish to derive an expression for its acceleration.

D2§“_ *U”) U"=U"V (U’ “
dt? =(é:;,b’ );v =U"V,( Vﬂég) 3.3
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In which it is understood that all the quantities are to be evaluated on y, .In flat space time the
geodesics 7, and y, are straight although their separation may change with t; this change is

necessarily linear i.e.

D2 a
dté: =0 in flat space time. 34

D2§a
dt?
vector will be found to be proportional to the Riemannian tensor.

A non-zero result for will therefore reveal the presence of curvature and indeed this
Considering the condition U%U” =0 and £%,U” =U%, &7 itis possible to show that U , s
constant along 7, i.e.
e, = Uy ,u0
dt '
= gfﬂuauﬂ +§“Ua;ﬂuﬂ
=U?Y EPU,
-2 U,),, ¢
=0
Because U,U“ =e=constant. The parameterization of the interpolating geodesics can therefore
be turned so that on 7, , £“ is everywhere orthogonal to U “i.e.
&y, =0
This means that the curves t=constant cross y, orthogonally. This adds weight to the
interpretation of £“ as a deviation vector. Now calculate the relative acceleration of y, with

respect to 7, and let us start from the equation (3.3)

D2§a Y ,
di2 :(é—’;ﬂUﬂ);VU
=U5&n, U7 By the helpof (3.2)
2¢a
o %:Ufﬂvéﬁuv+ufﬂgﬁuv 3.5

But the Riemannian tensor is given by

U, -U%,=-R:,,U"

upv
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Thus the equation (3.5) becomes
DZé;a ~
dt?

—(ULUY), & UL UL, & R, VR0 U, ELUTE

(U, —R;

i UNEUTHUG ELUTe
The first term vanishes by virtue of geodesic equation and the second and fourth terms cancel

each other.

Thus we obtain

D2 “ [22 ! v
dfz = —Ry,, U"E"U
DZ a Y
or, % =—Rj ,U”E"U° 36

Equation (3.6) is the required geodesic deviation equation. It shows that curvature produce a
relative acceleration between two neighboring geodesics even if they start parallel, curvature
prevents the geodesics from remaining parallel.

3.3 CONGRUENCE OF TIME LIKE GEODESIC:

Consider an open region R on space time. Then congruence is defined as a nonintersecting
family of curves such that through each point inR there passes one and only one curve from this
family. We would like to determine the behavior of the deviation vector £“ between two

neighboring geodesics (as in figure 2) in the congruence as a function of proper time z along the
reference geodesic.

Fig: 2

Here we would consider the geometric set-up as same as considered in the previous section and

the relations given below:
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U, =-1 VEAVER
And U% &P =£2,U” u“é, =0

a

dx . . «
Where U® = q tangent to the geodesic—will be assumed to hold. In particular & is orthogonal
T

to U“ i.e. the deviation vector points in the directions transverse to the flow of congruence.

3.4 TRANSVERSE METRIC:

Let U“ be the associated time like vector field of a given congruence and the space time metric

9. can be decomposed into a longitudinal part —U,U , and a transverse part h,, given by
9, =-UU,;+h,

or, h,=9g,+UU,

The transverse metric is purely spatial in the sense that it is orthogonal to U“ i.e.

an 0= s
u“h, =0=h,U
It is effectively three dimensional: in a co-moving Lorentz frame at some point P within the

congruence,

U, ="(-1000) : g, =diag(-1111) and h,, =" diag (0111)

where = means equal in the specified co-ordinate system.

3.5 KINEMATICS:

Let introduce a tensor field, B,;, =U ., which is purely transverse like h,, since
U“B,, =U"U,., =%(uaua);ﬁ =0
and
B,U” =U, U’ =0
It determines the evaluation of the deviation vector. From & %U” =U % &7 we obtain
AV P 3.7
and we see that B; measures the failure of the £“ to be parallely transported along the

congruence. We now decompose the tensor field B, into trace, symmetric trace free and anti-
symmetric parts. [5]
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This gives
L h
B, = 59 op T Oap T W,y
where @=B; =U{ isthe expansion scalar.
1 .
0.5 =By —gﬁhaﬂ is the shear tensor .

W,,; = By, is the rotation tensor.

In particular the congruence is diverging (geodesics flying a part) if the expansion scalar is

greater than zero i.e.€)0 and it will be converging (geodesics coming together) if #{0.
3.6 RAYCHOWDHURY EQUATION:

Let us derive an evolution equation for expansion scalar ¢ and so begin by developing an

equation for B, itself. We get

B, U"=U,.,U"
=W —Rayp U
=, U".,-U, U4 R, UU”
or,B,, U" =-B, B4R, , U"U" 3.8

Again from the definition of curvature tensor we obtain

(V,V,=V,V,)U" =R‘

UV
Contracting on the indices a and u we get
(V,V,-V,V)U" =R, ,U"
or, (V,V,-V,V_)U“=R,,U"
Multiplying on both sides by U” we obtain
B a B a _ a B
u’v,v,u“-u”v,v u“=R, ,U*U
The first term in the above equation can be written as
u’v,v,u*=v_U’V,U“)—(V,U”)(V,Uu®)
Thus the above equation can be written as
u’v,(v,us+v,u”)(v,us)-v, Uu’v,u“)+R,U“U” =0
But the third term vanishes due to U”V ,U“ =0.So we obtain

Uﬂvﬂ(vaU“)Jr(vauﬁ) (vﬂU“)+RaﬂU“uﬂ=o
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or, UV, (V,U")+(V,U,)(V/U")+R, ,U“U’ =0

Here the first term the rate of change of divergence =V _U“ along U“ i.e.

de
Uu’v,(v,us) = —
ﬂ( a ) dT
Then the equation for @is obtained by taking the trace [6]

do " »
& - (V,U,)(V/U“)-R, U“U’

_ aip a | A

= —UMU ——RMU U

— ap ay | B
or, o —BMB —Ra/,U U

But we get,

1

B,;=>0h,,+0,,+W
3

af ap ap

(From the definition of shear tensor)
1
Then B“B,, = 592 +0%0,, —WwPhw,,

Substituting these values we get

dg 1
52_5‘92 -o%0,, +Ww”w,, —R, UU”’ 3.9

which is well known Raychowdhury equation for congruence of time like geodesics. Since the
shear and rotation tensor are purely spatial (transverse), c*o,, = 0and w”w,;, >0 with the

equality sign holding if only if the tensor is zero.

3.7 FOCUSING THEOREM:
The importance of Raychowdhury equation for congruence of time like geodesic is revealed by
the following theorem:

Let a congruence of time like geodesic be hyper-surface orthogonal so that the rotation tensor

w, ; =0 and let the strong energy condition o+ P, >0 hold for the statement

(I'aﬁ—%T gaﬂ)V“Vﬁ >0

Then the Raychowdhury equation become
déo 1

2 af aff ay | B
E = —59 -0 Gaﬂ + W Waﬂ _RaﬂU U
The first two terms in R.H.S are non- positive and one then assume the geometry such that
R,,U“U >0
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Then the above equation implies

g—f = —%92 ~0%0,, +W”’wW,, R, U“U” <0 210
This means that the expansion must therefore decrease during the congruence evolution. Thus an
initially diverging (@) 0) congruence will diverge less rapidly in the future while an initially
converging (6(0) congruence will converse more rapidly in the future. This statement is known
as FOCUSING theorem.

The interpretation of this result is that gravity is an attractive force whose effect is to focus
. i . daée . .
geodesics. According to the equation (3.10) P is not only negative but actually bounded from
T

above by:

Rewriting this equation as:
19 > 192 = 1
dr 3 dr @
Now integrating the above equation we obtain
1 g ! B
o(r) 60) 3

= 0() > 67(0) +% where 6, = 6(0)

= Ccaustic

FIG:3

(Geodesic convergence into a caustic of the congruence)

This shows that if the congruence is initially converging (&, ( 0) , then 8(r) — —oo within a

. 3 . . i . .
proper time TSW.The interpretation of this result is that the congruence will develop a
0

caustic, a point at which some of geodesics come together. Obviously a caustic is singularity of

the congruence and Raychowdhury equation loses their meaning at such point.
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3.8 FORBENIUS THEOREM:
Some congruence having a vanishing rotation tensor. i.e.W,;, =0 are said to be hypersurface

orthogonal which means that the congruence is everywhere orthogonal to a family of space like

hyper-surface R (as in figure 4)

X3

Yo

b

FIG: 4

(Family of hyper surfaces orthogonal to a congruence of time like geodesic)
The congruence will be hyper-surface orthogonal if U“ is everywhere proportional to the normal
n“ to the hyper-surface. Let these are described by the equation of form ®(x“) =c, where c is
constant specific to each hyper-surface. Then

n,oc® , and U, =-u®

a ,a

for some proportionality constant 4 .( suppose that @ is increases towards the future and the
positive quantity 4 can be determined from the normalization condition U “U, = -1).
Differentiating the above equation we obtain

Usip=—H @iy =P, 1

Now consider the completely anti-symmetric tensor
1
UipU,y = é(ua:ﬁuy Uy, U, +U, U, =U, U, U, U, _Ua:yUﬁ')

o, Uy, ) U,y =3 LaD, - 1)U, + (i, ~® 1)U, 44, 0 1)U,
—(u®.y, — P ju I, —(p®,, — @ u U, (D, —D o )U,}
=0
Using the fact that (® ., = D@.,,).
We therefore have hyper-surface orthogonal means

U,,.;U,,=0. 3.11

a,f "y
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The converse of this statement that U;,.,U ;=0 implies the existence of a scalar field ® such

that U, oc® , is also true. Equation (3.11) is very useful because whether or not U“ hyper-

surface is orthogonal can be decided on the basis of the vector field alone without having to find

@ explicitly .Again we have never used geodesic equation in derivation of the equation (3.11)
and also we did not use the fact that U“ was normalized .So equation (3.11) is quite general i.e.
“A congruence of curves is hyper-surface orthogonal if U, ,U ;=0 where U“ is tangent

to the curves.”
This statement is known as the FROBENIUS theorem.
We see that # must be constant on each hypersurface because it varies only in the direction

orthogonal to the hyper-surfaces. Thus  can be expressed as a function of ® and defining a
new function ¥ = .[/t(CD) d® , we find that U, is not only proportional to a gradient, it is equal to

one: U, ==Y It is remarkable that if U, can be expressed in this form, then it automatically

satisfy the geodesic equation:

u

1. 1
s _ s _ B _ B — B —
s =0V =W =S (V) =2 U ), =0

Thus we can summarize as, a vector field U“ (time like, space like or null not necessarily
geodesic)is hyper-surface orthogonal if there exist a scalar field P such that U, «c® ,which
implies that U,.,U ; =0.If a vector field is time like and geodesic , then it is hyper-surface
orthogonal if there exist a scalar field ¥ such that U, =-¥_, which implies that

=U 0

W

ap [aifl =

3.9 INTERPRETATION OF EXPANSION SCALAR (9):

Here we will show that expansion scalar & is equal to the rate of change of congruence’s cross

sectional volume 6V i.e.

1d
0= Wd_rév 3.12
Let us introduce the notion of cross sections and cross sectional volume. Select a particular
geodesic 7 from the congruence and on this geodesic pick a point P at which 7 =7, .Construct -
in a small neighborhood around P, a small set 6 2.(z,) of points P’ such that :

(@ Through each of these points there passes another geodesic of the congruence.
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(b) Ateachpoint P’ 7isalsoequal to 75.i.e. 7=7;.

Fig: 5

(Congruence cross section about a reference geodesic )

This set forms a three dimensional region, a small segment of hyper-surface 7 =7, (as in figure
5). We assume that the parameterization has been adjusted so thaty intersect 62 (7p)
orthogonally. We will call 62.(z,) the congruence’s cross section around the geodesic » at
proper time 7 =7, .We want to calculate the volume of this hyper-surface segment and compare

it with the volume of 6 2(z,) where Q is the neighboring point on 7.

Let us introduce co-ordinates on 6 X (z,) by labeling y* (o =1,2,3) to each point P'in the set.
We use Y“to label the geodesic since through each point of these there passes a geodesic from
the congruence. By demanding that each geodesic keep its label as its moves away from
0 2.(rp) we simultaneously obtain a co-ordinate system Y“ in 62(zy) or any other cross
section .This construction therefore defines a co-ordinate system (z,y“) in a neighborhood of
the geodesic 7 and there exist a transformation between this system such that

Xt = X*(r,y%)

Because Y“is constant along the geodesic, we have

ox?®
u®= . 3.13
( o ),
On the other hand we have the vectors
ox?
e, =(=>). 3.14
oy

are tangent to the cross section .These relation implies that the lie derivative of €. along U
vanishesi.e. L, e’ =0

Also we have U, e, =0 holding ony .
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Let introduce a three tensor h,, defined by

hab = gaﬁ eg ebﬁ 3.15
A three tensor is a tensor with respect to co-ordinate transformations y“ — y'“ but a scalar with
respect to transformations x* — x'®. This acts as a metric tensor on 6 2(r).For displacements
contained within the set (so thatdz =0); x“ =x“(y®) and
ds® =g, dx“ dx”

=0, () (2—fdyb)

= g, €5 ef dy"dy’

=h,, dy*dy’
Thus h,, is the three dimensional metric on the congruence’s cross sections. Because 7 is
orthogonal to its cross section (U,e; =0), we have that h, =h,e; e/ on 7 where
h,; = 9,5 —U,U, is the transverse metric. If we define h® to be the inverse of h,,, then it is
expressed as  h” =h*eZe/ on y.
The three dimensional volume element on the cross section or cross sectional volume is given by

&V =+/hd®y where h=det [h,, ].Because the co-ordinates y* are co-moving (as each geodesic
moves with a constant value of its co-ordinates), d°y does not change as the cross section & 2(z)

evolves fromz =7, to7 =7,. Achange in &V therefore comes entirely from a change on Jh:
1d 1 d 1 d
— — N =——=—h==h*_—h, 3.16
oV dr \/F dr \/_ 2 dr ®
Let us calculate the rate of change of three metric:
d h,, = “e/). U*
E ab — (gaﬁ €.6 );/1
= gaﬁ(e:;,u U ﬂ)ebﬂ + gaﬁ e;‘ (ebﬁ,,u U #)
=0, U5 e )el +9,,er UZel)
= Uy, eref+U,  elef
= (Uﬁ;a +Ua;ﬂ) e: eéf
d «
or, ahab = (B, +B,)es el
Multiplying the above equation by h* and evaluating ony , we obtain
ab d al a
h _z_hab :(Baﬂ+Bﬂa) (h bea ebﬁ)
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= 2B,
=2B,,97
=20

1., d
i.e.0=5hf‘*’d—rhab 3.17

1 d
From (3.17) we get, 8 = > h? Ol—hab which is as same as equation (3.12) .
T
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Chapter four

HYPERSURFACE

4.0 INTRODUCTION:

Mainly three topics related to hypersurface are discussed in this chapter. With sufficient pre-
requisite ideas the first part is concerned the intrinsic geometry of a hypersurface in which we

studied an induced three dimensional metric h, on a particular hypersurface after the

embedding of the space time with metricg,,, .

The second part is concerned with the extrinsic geometry of a hypersurface or how the is
embedded in the enveloping space time manifold .We studied how the space time curvature
tensor can be decomposed into a purely intrinsic part (the curvature tensor of the hypersurface)
and an extrinsic part that measures the bending of the hyper surface in space time (this bending

is described by a three dimensional tensor K, known as extrinsic curvature). We also found

the Einstein tensor in terms of induced metric and extrinsic curvature.

The third part is concerned with possible discontinuities of the metric and its derivative on a
hypersurface. In this topic we studied how the hypersurface partitions space time into two

regions and distinct metric tensor in each region.

This chapter is mainly quoted from the book [5].Also the following books are used as
references [2],[19][18].



HYPERSURFACE

To discuss the concept of hypersurface first we should define scalar field.

SCALAR FIELD: A smooth scalar field on a manifold M is just a smooth real valued map

®:M — E, .In other words it is a smooth function of the co ordinates of M as a subset of E,.

Thus @ associates to each point m of M a unique scalar ® (m). If U is a subset of M, then a

smooth scalar field on U is a real valued map ®:U — E,. If U= M, then such a scalar field is

called local .[2]

If @is ascalar field on M and X is a chart then we express @ as a smooth function ¢ of the
associated parameters X', X ————X". If the chart is X we will write @ for the function of

the parameters X*X? ——— X". But we must have ¢ =9 at each point of the manifold.

4.1 HYPERSURFACES:
In a four-dimensional space-time manifold, a hyper surface is three-dimensional sub manifolds
that can be either time like or space like or null like. A particular hypersurface > is selected
either by putting a restriction on the co ordinates

d(x*)=0

or by giving a parametric equation of the form

K =X (y)

where y®(a =1,2,3) are the intrinsic co ordinates to the hypersurface.

FIG: 1

For example, a two sphere in a three dimensional flat space is described either by

Dd(x.y,z2)=x>+y?+2°-R*=0

where R is a radius of sphere or given by
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X =RSin@Cosd ;y = RSindSin® ;z =RCosé
where @ and @ are intrinsic co ordinates .In figure (1) the relation x*(y*) describes the

curves contained in Y.

42 NORMAL VECTOR:
The vector @ , is normal to the hypersurface because the value of @ changes only in the
direction orthogonal to X . A unit normal n, can be introduced if the hypersurface is not null.
This is defined by
n“n, =e=-1;if X isspace like.

n“n, =e=1 ;ifthe X is time like.

and it is demanded that n® points in the direction of increasing
®:n“® )0

ed

a

/|g/47 q),,uq),y‘

if the hypersurface is either space like or time like.

Also n isgivenby, n, =

If the hypersurface 2. is null then g* ¢ ¢ is zero .So in that case the unit normal

is not defined and so in that case we let

be the normal vector. The sign is so chosen that k“ is future directed when® increases

towards the future. Because k“ is orthogonal to itself (k“k, = 0)this vector is also tangent to
the null hypersurface. as in figure (2).By computing kf’ﬂk/’ and showing that it is

proportional to k“ ,we can prove that k* is tangent to null geodesics contained in 2 .

& = constant

FIG: 2
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We have
ka;ﬂ = ¢;aﬂ¢'ﬂ = ¢;/}a¢’ﬁ :%(¢,/}¢Yﬂ);a
because ¢ﬁ¢ﬁ is zero everywhere on X, its gradient must be directed along k, and we
have (4 ,¢”)., = 2lk, for some scalar |. We have found that the normal vector satisfies
al f _ a
k3k” =1k

the general form of geodesics equation. The hypersurface is therefore generated by null

a

geodesics and k* = o
dA

is tangent to the generators. In general the parameters A is not affine

but in special situation in which the relation ¢(x®)=constant describe a whole family of null
hypersurface (so that ¢ﬁ¢’ﬂ is not zero not only on X but also in neighborhood around}_.)

I=0and A is an affine parameter. When the hypersurface is null it is advantageous to install on
a coordinate system that is well adapted to the behaviors of the generators. We therefore let the

parameter A be one of the coordinator and we introduce two additional coordinators.
6" (A=23) to label the generators , these are constant on each generators , thus will shall
adopt

y* = (4,6 4.1
when Y is null ;varying A while keeping 6 constant produces a displacement along a single

generator and changing 8” produces a displacement across the generators.

4.3 INDUCED METRIC ON HYPERSURFACE:
The metric intrinsic to hypersurface . is obtained by restricting the line elements to
displacement confined to the hypersurface. Recalling the parametric equations

X% =x*(y?*).We have that the vectors

are tangent to curves contained in X .Thus implies that e;n, =0 in the null case and
e;k, =0 inthe null case. Now for displacement within ., we get

dsy” = g,,dx“dx”

= g, (25 dy")(25dy")
=h,, dy?dy” 4.3
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where h, =g, ese’ 4.4

is called the induced metric or first fundamental form of the hypersurface. It is scalar with
respect to transformation x* — x'“ of the space time co ordinates but it transforms as a tensor
under transformation y* — y'® of the hypersurface co ordinates. Such objects are known as
three tensors. These relation simplify when the hypersurface is null and we use the co
ordinates of equation y* = (1,6") ; A=2,3.

ox*

Then e = (6_/1) = k“and it follows that

o
h, =gaﬁk“k/’ =0

and h, =g,k =0

a

. X i
Because by construction e = (27) , isorthogonal to k .In the null case therefore

ds? = 0,5 6 d6°

X . I
where o5 =9,,€x el el = (27)1 .Here the induced metric is a two tensor .We conclude

by writing down the completeness relation for the inverse metric. In the non null case

9 =enn” +h* el e/ 45
where h®is the inverse of the induced metric .Equation (4.5) is verified by computing all inner
products between n“and e; .In the non null case we must introduce everywhere on >, an

auxiliary null vector field N“ satisfying N, k“ =-1and N_e; =0

where k“ is the tangent vector field, defined as k“ = ox
The inverse metric can be expressed as
g =-k“ N’ -N“k” + o ef e} 4.6

AB

where o™ is the inverse of o ,;.Equation (4.6) is verified by computing all inner product

between k* ,N“and ey .

4.4 LIGHT CONE IN FLAT SPACE TIME:
An example of a null hypersurface in flat space time is the future light cone of an event P,

which we place at the origin of a Cartesian co-ordinate systems x“. The defining relation for
this hypersurface is ® =t—r =0 where r? = x* + y® + z.The normal vector is
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z
1l1_)

k, =-0,(t—r)=(-1, .
rr

= |x

A suitable set of parametric equations t=A, Xx=A4SindCose,y =A1SindCosgy, z = 1CosH
in which y?® = (4,6, ) are the intrinsic co-ordinates; A is an affine parameter on the light cones
null generators which moves constant values of 6* = (6, ¢) .From the parametric equation we
compute the hypersurfaces tangent vectors [5][19]

e; = 66)(/1 = (1, SindCos ¢, Sin&Sing, CosH) = k*

e, %XH = (1,Cosé@Cos g, Cosé&Sinp,—ASin )

e = aax — (L-ASin6Sing, 2SinAC0s,0)
¢

4

We may check that this vectors are orthogonal to k“. Inner product between e, and e define

the two metric o,;  and we find
0,007 d0°® = 22 (d9? +Sin*0dep?)
Not surprisingly, the hypersurface has a spherical geometry and A is a real radius of the two

sphere.
4.5 DIFFERENTIATION OF TANGENT VECTOR FIELDS:
4.5(a) TANGENT TENSOR FIELD:

In this section we consider that the hypersurface 2. is either space like or time like .With a

hypersurface . it is common situation to have tensor field A" that are defined only on
2. and which are purely tangent to the hypersurface .Such tensor admits the following

decomposition:

4.7

a

where e; =

are basis vectors on . .Equation (4.7) implies that
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which confirms that A" is tangent to the hypersurface .We note that an arbitrary tensor

A" can always be projected down to the hyper surface ,so that only its tangential

components survive .The quantity that effects the projection is

h? =h®*e’e/ =g”-enn’

and h®h”.....T*is evidently tangent to the hypersurface. The projections

4.8

give the three tensors A associated with the tangent tensor field A“’~"; Latin indices are

lowered and raised with h_, and h® respectively. Equation (4.7) and (4.8) shows that one can

and its equivalent three tensor
"""""" transform as a tensor under transformation
y® — y'® of the co-ordinates intrinsic to 2., it is scalar under transformation x“ — x'“ of the

space time co-ordinates.
4.5 (b) INTRINSIC COVARIANT DERIVATIVES:

We will consider how tangent tensor field are differentiated .We want to relate the covariant

derivatives of A% (with respect to connection that is compatible with the space time

metricg,,) to the co variant derivative of A®-(defined in terms of connection that is
compatible with the induced metrich,, .
For simplicity we shall restrict our case to the case of tangent vector field A” such that
A“ =A%y, A’n,=0. A =Ae;
We define the intrinsic covariant derivative of a three vector A, to be the projection of

A,.; onto the hypersurface:

A

4

_ p
o = A, 488 4.9

We will show that, A

.o as defined here is nothing but the covariant derivative of A,
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defined in the usual way in terms of connection T, that compatible with h,, . Let us express R

.H.S of equation (4.9) as

— B
A ;,Beaaebﬁ - (Aae;!);ﬁef - Aae:;ﬁeb

a

— B NrY4
= A48 —€,.56h ATE]

oA, ox”
== e —ele, el A°
=A T, A° 4.10
where we have defined
1_‘cab = ecyeay;ﬁebﬂ 411
Equation (4.10) becomes then
Ay = Ay — T 4.12

which is familiar expression for the covariant derivative. The connection used here is the one

defined by (4.11) and it is compatible with induced metric. In other words I',,, as defined by

(4.10) can also expressed as

r., =2(h,, +h

cab 2 bc.a hab,c) 4.13

ca,b
This could be easily done by directly working out the R .H.S. of (4.11).1t is easier, however to
show that the connection is such that:

h

— anfar —
abfe = h,,€.€ el =0

indeed
h.seaerel =(g,,—€n,ny), erefe
=—e(n,,n,+n,n, Jeselel
=0

because n,e; =0.
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4.5(c) EXTRINSIC CURVATURE:

The quantities A, =A,.;e; ey are the tangential components of the vector A?% e/’ .We would

like to investigate now whether this vector possess a normal component.

Let us express A“ze/ and g oA s/ and decompose the metric into its normal and tangential

part as below:
9” =en“n” +h*ee/

This gives
Asel =(en“n, +he

a “ B
aemp)A,/j eb

=e(n, A% e/)n" +h*" (A, enel)es

where we see that the second term is tangent to the hypersurface .Using the fact that

A

4

» = A, ,esef and A“ is orthogonal to n“, the above equation becomes

Asel =—e(n, A"/ )IN* +h™A el

alb ~a

a
a

= A®

ves =€ A°(n, zerel)n”

At this point we introduce the three vector

Ka = na;ﬂegebﬂ 4.14

called the extrinsic curvature or second fundamental form of the hypersurface > . In terms of
this we have

A% = Ales —e ATK o0 4.15
and we see that Ajb gives the purely tangential part of the vector field while -e A*K,
represent the normal components. This answers our requirements: the normal components
vanish if only if the extrinsic curvature vanishes.
We note that if e is substituted in place of A® then A®=o7and A,  =A,, —T3A
and equation (4.14) imply

a f _1Cpa a
€, 48 =Tpec—eKyn

which is known as the Gauss —Weingarten equation.[5][19]
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The extrinsic curvature is very important quantity and it is a symmetric tensor i.e.

K, = K., .The symmetry of the extrinsic curvature implies the relation
a . p 1 anp
Kab = n(a;,b’) €, €y = E(Lngaﬁ)ea €p

and the extrinsic curvature is therefore intimately related to the normal derivative of the metric

tensor. We also note the relation
K=h®*K, = ne,
which shows that K is equal the expansion of a congruence of geodesic that intersect the hyper

surface orthogonally. (So that their tangent vector is equal ton” on the hypersurface). From this

result we conclude that the hypersurface is convex if K)0 (congruence is diverging) or concave
if K(0 (congruence is converging).

Thus we see that while h, is concerned with the purely intrinsic aspects of hypersurface
geometry, K, is concerned with the extrinsic aspects — the embedding of the hypersurface in

the enveloping space-time manifold. Taking together these tensors provide a virtually complete

characterization of the hypersurface.
4.6 GAUSS CODAZZI EQUATION:

4.6(a) GENERAL FORM: We have introduced the induced metric h,, and its associated intrinsic

covariant derivative. A purely intrinsic curvature tensor can be defined by the relation;

AC‘ab - A‘:‘ba =—R{a 4.16
which of course implies
Riab =Tiba = Tiap + Tan Tip =Ty L 4.17

We show that, whether this three dimensional Riemannian tensor can be expressed in terms

of R}, , -the four dimensional version, evaluated on >..

We get

a

a;p

a

p_1d qa
e.,e =0, e —eK,n“

Then we can write

(e:;ﬂ el))B ) v eg = (r:b eg —€ Kabna') B eg 418

Let us first develop the L.H.S of (4.17)
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LHS= (ef,el) 4€!

_ pa B ar a B 4
=e;, € e/ +e; ey €

a
:ea:ﬁ7

_ aa
- ea;ﬂ7

B dnap B
e, el +e5., [y —€ Kyn”)

V] d (P i
e el +1“bc(1“ade‘;—e K n“)—€ Kbcea“;ﬂn

Let us develop the R.H.S of (4.17)
R.H.S= (g ef —eK,n“.). e

_1d a d ja y a a Ay
_rab,ced +rab ed;yec_E Kab,cn —€ Kabn;y ec
= ra?b,ceg +r:b (rdpc e;_ € chna)_ € Kab,cna_ € Kabn{;xy eé/

From equation (4.17) we get,

B d p B —
€ap € € + T (Tey—€ Kyn®)—e Ky el ,n"=
d d p
1—‘a\b,ceg{ +rab (rdc eg_ € chna)_ € Kab,cna_ € Kabnfly eé/

or’e:;/}yebﬂ ecy = Fe:jb,c m

ef +TgpThes—elgKen“—eK,y ni—«¢ Kapn%el

~TaThe’+eTaK n“+ekK,, ei;ﬂnﬂ

a d m .« d m .a d a d a
€4 +rabrdce _Fbcrad em—l_erchadn _Erabchn

m

Or’eg;ﬁyebﬂ eé/ = 1—‘a(\jb,c

—e K N“—eKyntel+e K, es,n’ 4.19

Similarly we get, eZ  e’e/(y — B, — y,b —c,c —b)

a;yp ~c

a /4 _1d a d m . a d m . a d a d a
ea;yﬂ € € = 1_‘ac,bed +I ac 1_‘db €m _rcb 1_‘ad Ente 1_‘cb Kad n"—e l_‘ac den -
eK,pn” —e K, n%el +e K er n’ 4.20

Now subtracting (4.19) from (4.18) we get

d
(6, —e5 )6l € = (T + T Ty — T

ab,c ac,b

m ~d a any a Af
-Ipl)en—« Kabn;yec +e Kacn;ﬂeb

d o a d a a
—elZKen"—eK n“+el Kyn“+eK, n
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H aAnB Ay _RPM QM d H d H
or’_Raﬂyea eb ec - Racbem+ € (Kac,b _rab ch)n —€ (Kab,c _rac de)n

e KN el —eK,n’ e

=R"

ach

erﬁ+ € (Kaclb - Kablc)nﬂ—i_ € Kac n?ﬁ eél_ € Kab nf;eé/

or,R* e“ele/ =R

u u N uaB
afya abcEm T € (Kablc - Kaclb)n +€ Kab n;y € —€ Kac n;ﬁeb

Projecting along e,, we get,

Raﬁyé e: e{)ﬁ eé/ eg = R

d+e(Kad Kbc _Kachd) 4.21

abc

and this the desired relation between R,,., and the full Riemannian tensor. Projecting
instead along n,, gives

R n“efelel =K. — K. 4.22

uapfy
Equation (4.20) and (4.21) are known as Gauss —Codazzi equation. They reveal that space time

curvature can be expressed in terms of the extrinsic and intrinsic curvature of a hypersurface.
4.6(b) CONTRACTED FORM OF GAUSS CODAZZI EQUATION:

We obtain that the general form of Gauss —Codazzi equation can be expressed as:

d+e(Kad Kbc _Kachd) 4.23

abc

anfa? ad _
Rar,),yﬁeaebeC eg =R

and RﬂaﬁYnﬂ e:ebﬂ ecy = Kab\c - Kac\b 4.24
The Gauss-Codazzi equation can be expressed in contracted form, in terms of the Einstein

tensor
Gaﬂ = Ra,b’ _%gaﬂR )
The space time Ricci tensor is given by
Ry = gﬂyR#ayﬁ
=(en“n”"+h™ese/)R

=eR n“n” +h™R

of

uapBy
“ar

en €

uapy pafy=m
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where h™ is the inverse metric of h  =g,e; e/ i.e. called induced metric .Also the Ricci

scalar is given by
R=g“R,,

=(en“n” +h*e%e’) (e R,.,n“n" +h™R _erer)

=2 A BAHAY mn Ha? na np
=€" R, ,n“n"n“n"+eh™R ere n“n

ab & AB AHEAY ab, mn HaYadnB
+eh®R,, ,ele n“n” +h®h™R eje’e’e,

or, R=2eh®R,_,n“e’ n"e/ +h®h™R _ e e’e’ el

nayp uayp =m

where we use the fact that ,

Hpanrnbf —
R,a,sN“N“N"N" =0

and we obtain with the help of (4.22)

R=2¢ Raﬂn“nﬂ +h abhmn{Rmanb+e(Kmb Kan - KmnKab)} 4.25

To obtain the value of the first term in the above equation, let us consider the definition of

. . « B )
Riemannian tensor R, ;given by :
a _Nn“ — _R“% s
n;yd" n:M B Rﬁyo"n

p _ h a
or,R,;n" =n%, —n%

a

B _ ) a s
or,R,;n"n% =n% n°—n%n
Thus we may write

a

ap
— a B a B
_—n;aﬂn +n;ﬂan

.pn“n? =n% n?—n? n’
=—(n%,n"),; +n% 0l +(nGn”), —nGnf,
=—(n%n”)., +K*+(n%n”)., —n%n’,
or,R,,n*n” =—(n“n’)., +(n%n”) , +K*—n%n”
=(n%n” =n“n%) , +K*—n%n’,
where K =n?, is the trace of the extrinsic curvature .Let us calculate the 3" term of the
above equation separately,

a B _ qluger
NpNie =97 07 Nyp Ny

_ B Pu a ny ay
=(en"n“+h™)(en“n” +h“)n,,n
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or,n%n’ =(en’n“+h#)h“n, . n,
=h"h*n, n,.
=h""h*n, . ee/n esel
=h""h" K, K,
— KabKab

a b
or,n%ns =K¥K,
where we have used the fact that n“n,,., =3(n“n,) , =0.

Thus we can write now
R,;n“n” =(n%n” —n“n’). +K?-K*K,

Putting the values in equation (4.24)
R=2e{(n%n” —n“n%)  +K?-K*K, |

+h abhmn{Rmanb+ € (Kmb Kan - KmnKab)}

or,R=2¢ {K2 - K®K, +(n%n’ —n® nfﬂ);a}
+R+e (K*K, -K?)
or,R="R+e (K —K®K ) +2e(n%n’ —n“n’) 4.26

where *R=h®*R[ s the three dimensional Ricci scalar. Equation (4.25) indicates the four

dimensional Ricci scalar evaluated on the hypersurface.
We can write now the Einstein tensor
Gaﬁ' = Raﬁ' _%gaﬁR

Uon mn -
n“n”+h™R, e el

=€ Ruwﬁ

1 a al a 24
5 (eh, +hyele PR+e(K2=K®K,)+2e(n%n’ —n“n’) |

uay

or,G,,nn’ =eR,, ,n“nn“n” +h™R e~ e/n“n’

—%{3R+e (K2 —K®K,)+2e(n%n’ —n“n’). |

anb B
(eh,, +hyeze;)nn
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s
or,G,,n“n” =0+h™h*“h "R, .ele/n.n

—%e h,nn?{*R+e (K2 —K®K,)+2en%n” —nn) |

i B -
since,R,,,,n“n'n“n” =0ande;n, =0

(24 1 a al (24 a
or,G,,n“n” = —5€ h,sn nﬁ{3R+e(K2—K "Ks)+2e(nn” —n nfﬁ);a}

:—%e n,n’ PR+ e (K2 —K®K,)+2e (% n” —n“n’,). |

:—%GSRJF%E(KZ ~K®K_,)

=—%e{ R+ (K2 -K*K,)}

or,—2G,,n“n” =€ R+e(K*-K®K,)
or,—2eG,,n“n” =R+ e (K* —K*K,,)

where e=n“n, = nﬂnﬂ =1incase of timelike hyper surface.
Hencewe write then,
-2eG,,n“n’="R+ e (K* ~K*K_,) 4.27
and G, e/n” =K}, -K 4.28

where®R = h* R, is the three dimensional Ricci scalar.
The importance of equation (4.26) and (4.27) lies with the fact that they form the part of the

Einstein field equation on a hypersurface .. It is noted that G, e“n” the remaining part of this

Einstein tensor, can not be expressed solely in terms of h,,, K, and related quantities.

4.7 CONSTRAINED IN INITIAL VALUE PROBLEM:

In Newtonian mechanics, a complete solution to the equation of motion requires the
specification of initial values for the position and velocity of each moving body. But in field
theories, a complete solution to the field equation requires the specification of field and its time
derivatives at one instant of time. Since the Einstein field equation is2™ order partial

differential equations, we would expect that a complete solution should require the specification

73



of g, and g, atone instant of time. While this is correct, it is desirable to convert this

decidedly non-covariant statement into something more geometrical.
The initial value problem in general relativity starts with the selection of a space like hyper-
surface . which represent an instant of time. This hypersurface can be chosen freely. On this

hypersurface we put some arbitrary co—ordinates y®.

The space —time metric g,,, when evaluated on2. , has components that characterizes the
displacements away from the hypersurface. For example, g,, is such a component if > is a
surface of constant t. These components cannot be given meaning in terms of geometric
properties of > alone. To provide meaningful initial values for the space-time metric, we must

consider displacement within the hypersurface only. In other words the initial values for g,

can only be the six components of the induced metrich,, =g, ,es e/ ; the remaining four
components are arbitrary and this reflects the complete freedom in choosing the space time co-
ordinates x“ .

Similarly the initial value for the time derivative of the metric must be described by a three

tensor that carries information about the derivative of the metric in the direction normal to the

hypersurface. Because K, =5 (L,9,,)€; e/, the extrinsic curvature is clearly an appropriate

choice. (L, stands for lie derivative)

The initial value problem of general relativity therefore consists in specifying two symmetric
tensor fields h,, and K, on a space like hypersurface. . In the complete space time, h,, is
interpreted as the induced metric on the hypersurface while K, is the extrinsic curvature.
These tensors cannot be chosen freely; they satisfy the covariant equations of general relativity.
They are given by

-2eG,,n“n’="R+ e (K*K, —-K?)

and  G,e;e) =Ky —K,
together with the Einstein field equation

Gaﬂ = 87zTaﬂ
such that
R +K? —K®K,, =164T,,n“n’ =167p
and Kj, —K,=82T,,e/n’ =87,

af “a
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The remaining components of the Einstein field equations provide evolution equation for h,_,

andK, .

4.8 JUNCTION CONDITION AND THIN SHELL.:

A hypersurface . partitions space time into two regions v andv~as in figure (3). Inv " the

metric is g, and it is expressed as a system of co- ordinate x{.Similarly in v~ the metric is
9., anditisexpressed in co-ordinate x“. Now what condition should be put on the metrics to

ensure that v* and v~ are joined smoothly at> -so that the union of g, and g_, forms a

valid solution to the Einstein equation.

Fig: 3
The answer of this question is not entirely straightforward because in practical situation, the co-

ordinate system x; will often be different and it may not be possible to compare the metrics

directly. To circumvent this difficulty we will endeavor to formulate junction conditions that
involve only three tensor on 2. .In that case we will assume that 2. is either time like or space
like.

4.9 NOTATION AND ASSUMPTION:

We assume that the same co-ordinates y“ can be installed on both sides of the hypersurface
and we choose n“, the unit normal to > to point from v~ to v*".We suppose that an
overlapping co-ordinate system x“ distinct from x{ can be introduced in the neighborhood of
the X .(This is for our short term convenience ;the formulation of the junction condition will
not involve this co-ordinate system ).We imagine the hypersurface > to be pierced by a

congruence of geodesics that intersect it orthogonally. We take | to denote proper distance (or

proper time) along the geodesics and we will adjust the parameterization so that | =0 when
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geodesic cross the hypersurface. Our convention is that | is -ve in v~ and | is +ve in v".We
can think of | as a scalar field: The point P characterizes by the co-ordinates x“ is linked to X

by a member of congruence and | (x?) is the proper distance from % to P along the geodesic.

a

. . X
Our construction is that n“ is equal to ddl at the hypersurface and that

n, =€0,l
We also have n“n_ =e.We will also use language of distribution. We introduce the Heaviside
distribution (1) [5] and is
equalto+1 if 10
orequalto-1 if 10

and intermediate if 1=0

We note the following properties:

e’ =0(),0()e(-1)=0,L0()=45()
where o(l) is the Dirac distribution .We note that the product ©(l)5(l) is not defined as
distribution. The following notation will be useful:

[Al=A(7) [, =AC) | 4.29
where A is any tensorial quantity defined on both sides of the hypersurface; [A] is therefore the
jump of a across 2. .We note the relation

[N“]=[e;]1=0 4.30

a a

where e; = o The first follows from the relation n® = - and the continuity of both | and

2"

x“ across 2. ,the second follows from the fact that the co-ordinates y* are the same on the both

sides of the hypersurface.

4.10 FIRST JUNCTION CONDITION:

Let us begin by expressing the metricg,,, in the co-ordinate x“ as a distribution valued tensor:

Qs :®(I)g;ﬂ +®(_|)g;ﬁ 4.31
where gjﬂ is the metric in v* expressed in the co-ordinates x“ .We want to know whether the

metric (4.24) makes a valid distributional solution to the Einstein field equation. To deduce we
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must verify that geometrical quantities constructed from g,, such that Riemannian tensor are

properly defined as distribution. We must then try to eliminate or at least give an interpretation
to, singular terms that might arise in these geometrical quantities. Differentiating (4.31) we
obtain [5]

9up, =095, +OM)G,, ,+ (9,010, 4.32

The last term is singular and it causes problem when we compute the Christoffel symbols,

because it generates terms proportional to ®(1)o(l).1f the last term is allowed to survive,
therefore the connection would not be defined as a distribution .To eliminate this term, we

impose continuity of the metric across the hyper surface: [ggﬂ]: 0.This statement holds in this

co-ordinate system x“only. However we can easily turn this into a co-ordinate invariant

statement; 0= [gaﬁ ]e;" e) = [gaﬁeg‘ ef] ; the last step is followed by (4.23).We have obtained

then

lo.pezef =0 =[n,]=0 4.33
The statement that the induced metric must be the same on the both sides of X .This is clearly
required if the hypersurface is to have a well defined geometry. Equation (4.33) will be our first

junction condition and it is expressed independently of the co-ordinates x“ or, x{ .

4.11 RIEMANNIAN TENSOR:
To find the second junction condition, more works are required. We must calculate the
distribution valued Riemannian tensor. Using the result of (4.26), we can write the Christoffel

symbol as:

T =59 (94,4955~ 9p,5)
or, Ty, = 19“ [{©(1)g;,, +O(-1) g, ,+e5)[g,]n}
+H{o)g;, , +0(-1)g;, ,+<o)[9,1n,}
—{e)g,, s +0(-1)g, s+co)g, In,} ]
or, ng = % o(l) gaﬁ(g;ﬁ’,y +g;5,ﬁ_g;}7,5)
+ %®(—|)9a5(9§m +0s, — g/}y,a‘)

or, T% =O()I;* +O(-I)T,”
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where 1“;7“ are the Christoffel symbol constructed from gjﬁ. A straightforward calculation
then reveals

I s=00 ;+0(-NI, ;+eo()[T;]n,
and from this we get the Riemannian tensor :

Ris =15

Bro BSy

_T° aTH _TaTH
Uy s+ s —Tuslp,

or,Re, =0}, +O(-NT;¢ +e 515 In, —O();%, -6,

Pr.o Pr.o

—eo(CgIn, {0, +O(-)T, HO) I +O(-1)I

W

{5 +6(-)Ir HeI, +e(-)Ir,*

+a +a +a + +a1+
=05, —Tys+ 1, gy 5Ty

T+ O, T, + T T —TeT,

=~ po Ho = Py

+es){IreIn, ~[T51n,}

or,Rys= (1) Rys + O(-1) R+ 5() Ay, 4.34

7/

where A7, =e{[l;In, —[T; In}

We see that the Riemannian tensor is properly defined as a distribution but the 6 function
term represent a curvature singularity at >..The second junction condition will seek to eliminate

this term. Failing this, we see that a physical interpretation can nevertheless be given to the
singularity which is our next topic.

Although they are constructed from Christoffel symbol, the quantities A7 form a tensor

because the difference between two sets of Christoffel symbol is a tensorial quantity. We must

find now an explicit expression for this tensor.
The fact that the metric is continuous across . in the co-ordinates x“ implies that its tangential

derivative must also be continuous. This means that if g, is to be discontinuous, the

discontinuity must be directed along the normal vectorn®. Therefore there must exist a tensor
field k,, such that

[gaﬂ, ;/] = kaﬂ n;/ 435

Also this tensor is given by
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k =elg,,,In’ 4.36

with the help of (4.30) we get
[ rﬁay ] = [ %gaﬁ (ga‘ﬁ,y +0s5.5 7t _gﬂy,a‘)]
= %[gad (kg n, +ks ny—kg ny)l

=1(k&n, +k“n, -k, n?) 4.37

Putting the value of (4.36) and (4.37) we obtain

AZW; =€( [1"2}]”7—[1"57 ]I’I(; )
€ a a a a
:E(k(s n,n, —kin,n;—k,n“n +k, n“n;)

This is the & function part of the Riemannian tensor. Contracting over the first and third

indices, we get the 6 function part of the Ricci tensor.

A

(S
Vg = ”ﬂﬁza(kwn” nﬁ+kuﬂn”na—knanﬂ—ekaﬂ) 4.38

where k =Kk . After an additional contraction, we obtain the ¢ function part of the Ricci
scalar
A=A =e(k,n“n"—ek) 4.39

Using (4.33) and (4.34) we calculate the Einstein tensor

1
Ga/;’ = Aaﬁ’ —EAgaﬂ

where A, and A are the Ricci tensor and Ricci scalar for & function respectively.

4.12 SECOND JUNCTION CONDITION:
The surface stress energy tensor is given by [5]

1 1
S, =—(A,-=A
ap 87r( ) 9ur)

(S
— u Fn _ -
or,87rSaﬂ—2(kWn ng,+k,n"n,—kn,n,—ek,)

—%gaﬁ E(kw n“n”—ek)
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- B
or, 167€S,, =k, n“n,+k n"n, —kn,n,—ek
—(k

op
H Y
NN —ek)gaﬁ

From this we notice that S_, is tangent to the hypersurface: S, n” =0.It therefore admits the

decomposition

S =S*e’ e/

a

where S, =S, e; e/ is a symmetric three tensor. This is evaluated as follows:

167S,, =k, es e/ —e(k,, n“n"—ek)h,,

=k, erel -k, (9" —h™enel)h,, +kh,,
_ B, pmn
_—kaﬂeg‘eb +h kMen’je,fhab

On the other hand we have,

[na,ﬁ] = _[F,Zﬂ ]n;/

1
= —E(kmnﬁ +k,zn, —K,zn, )n”

=%(e Ky —K,nz,n" —k n_ n
which allows us to write
K,]= “ef =Sk e”ef
[ ab]_[na;ﬁ]ea eb _E aff ea eb
Combining these we have,
(S
Sab = _8_( [Kab]_ [K]hab)
T

which relates the surface stress energy tensor to the jump in extrinsic curvature from one side of

2. to the other. We conclude that a smooth transition across 2. requires [K,, = 0] the extrinsic

curvature must be the same on the both sides of the hypersurface. This requirement does more

than just remove the & function term from the Einstein tensor.

Again [K,, =0]implies Ay ; =0, which means that the full Riemannian tensor is then non-

singular at . .

The condition [K,, =0] is our second junction condition and it is expressed independently of

the co-ordinates x“ and x{ .If this condition is violated, then the space time is singular at2. .
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Chapter five

EMBEDDING OF SPACE TIME IN FIVE DIMENSIONAL WEYL SPACES

5.0 INTRODUCTION:

In this chapter we review the Weyl geometry in the context of higher dimensional space time.
In recent year our ordinary space time may be viewed as a hyper surface embedded in a higher
dimensional manifold often referred as the bulk. As far as the geometry of this hyper surface is
concerned, it has been generally assumed that it has a Riemanian geometrical structure. After
introducing the Weyl theory in a modern geometrical language we present some results that
represent extensions of Riemannian theorems. We consider the theory of local embeddings and
sub manifolds in the context of Weyl geometry and show how a Riemannian space time may be

locally and isometric ally embedded in a Wey! bulk.

An important class of higher dimensional models in the brane world scenario share the
following properties : (a) Our space time is viewed as 4D Riemannian hyper surface (brane)
embedded in a 5D Riemannian manifold (bulk) (b) The geometry of the bulk space is
characterized by a warped product space. (c) Fermionic matter is confined to the brane by
means of an interaction of the fermions with a scalar field which depends only on the extra

dimension.

In this chapter we discuss the problem of classical confinement and the stability of motion of
particles and photons in the neighborhood of brane for the case when the bulk has the geometry
of warped product space .We studied confinement and stabilities properties of geodesics near

the brane that may be affected by Weyl field.

This chapter is mainly a review work of the article “On the embedding of space time in five
dimensional Weyl spaces” of F.Dahia, G.A.T.Gomez and C.Romero, published in the journal of
mathematical physics 49, 102501(2008) .



EMBEDDING OF SPACE TIME IN FIVE DIMENSIONAL
WEYL SPACE.

5.1 WEYL TENSOR: The Einstein equation given as
G, =kT,

can be regarded as ten algebraic equations for certain traces of the Riemannian tensorR , .But

R,,,. has twenty independent components .The reason is that we solve the Einstein equation

for the metric g, and then calculate the Riemannian curvature tensor for that metric .However

this reason does not really provide an explanation of how the information about the other
components are encoded in the Einstein equation. It is interesting to understand this because it
is precisely these components of the Riemannian tensor which represent the effects of gravity in

vacuum i.e where T, = 0,like tidal forces and gravitational waves.

The more insightful answer is that the information is encoded in the Bianchi identity
Vii Ry =0
which serves as propagation equation for the trace parts of the Riemannian tensor away from

the region where T #0.
To see this, first of all let decompose the Riemannian tensor into its trace part R (Ricei part)

and R (Ricci scalar) and its traceless part C, __-is called the Weyl tensor which is basically the

uypo
Riemannian tensor with all of its contractions removed.

In any n>4,the Weyl tensor is defined [15] [21] by :

1

upo RMpG _m(g#pr + RﬂPgVO' o gYPRNO' o Rrpg;m)

R
(n=1H)(n-2)

C
(949,60 =9,9,0)

This definition is such that C has all the symmetries of the Riemanian tensor i.e

Cuypa = C[W]C[pcr]
CWPU = CPO'#7
C#[VPO'] =0

and that of all of its traces are zero i.c
c# =0.

ruc
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In the vacuum R =0 and therefore
TW(X) =0= prcr = Cﬂypa ()
and as anticipated ,the Weyl tensor encodes the information about the gravitational field in

vacuum.

Again the Weyl tensor is also useful in other context as it is conformally invariantie C, _ is

invariant under conformal rescaling of the metric
f
9,(x)—>e'g, (%)
in particular the Weyl tensor is zero if the metric is conformally flat i.e. related by a conformal

transformation to the flat metric and conversely vanishing of the Weyl tensor is also a sufficient

condition for a metric to be conformal to the flat metric.
5.2 WEYL GEOMETRY:

Now we will review some basic definition and results, which are valid in Riemannian and Weyl
geometries. Again Weyl geometry may be viewed as a kind of generalization of a Riemannian
geometry and some theorems that will be presented here are straightforward extensions of
corresponding theorems of the former. These extensions have a different and new flavor
especially when they are applied to the study of geodesic motion. Let us start with the definition
of affine connection.

Let M be a differentiable manifold and T(M) , the set of all differentiable vector fields on M.
An affine connection is a mappingV:T(M)xT(M) — T(M), which is denoted by

UV) >V, V, satisfying the following condition or properties:

@  Vy,uW=1fV,W+gv,Ww

b V,U+W)=V,U+V W

(¢ VvV, (fu)=v(Hu+fv,u
where U,V,W € T(M) and f, g are C”scalar function defined on M. From the above results an
important result comes which help us to define a co-variant derivative along a differentiable
curve.
PROPOSITION:

Let M be a differentiable manifold endowed with an affine connection V and V is a vector

field defined along a differentiable curve &:(a,b)c R — M Then there exist unique rule which

associates another vector field % along the curve o with V such that [17]:
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D( +U) _DV DU
di di  da

and D(TV) :iv + fﬂ
dA dA di

where a =a(A)and A e(a,b).If the vector field U(A) is induced by a vector field

U eT(M),then % =V, U ,where V is the tangent vector field to the curve o i.e. V = d%

Now we define he concept of parallel transport along a curve. Let M be a differentiable

manifold with an affine connection V and «(a,b)c R—> M be a differentiable curve on M
and V is a vector field defined along o = a(A) .The vector field V is said to be parallel if

DV . . . .
—— =0 i.e its co-variant derivative vanishes for any value of the parameter 4 € (a,b).

di

Among all admissible affine connection defined on a manifold, an important role in
Riemannian and also in Weyl theory is played by a special class of connection —namely the
torsion less connection defined as below:

An affine connection V defined on a manifold M is torsion less (symmetric) if for any U,

Ve T(M) the following condition is hold.

v,U-V,V =[V,U]

Now we introduce the concept of Weyl manifold throughout the following definition:

Let M be a differentiable manifold endowed with an affine connection V, a metric tensor g and
a one form field o -called Weyl field, globally defined on M. We say that Vis Weyl
compatible (W-compatible) with g if for any vector fields U,V,We T(M) the following
condition is satisfied:

VIgU.W)]=g(V\UW)+gU,V,W)+a(V)gU.,W) 5.1

This is of course a generalization of the idea of Riemannian compatibility between V and g. If
the one form o vanishes throughout M, we recover the Riemanian compatibility condition. It is
natural to expect that a generalized version of the Levi-Civita theorem hold if we restrict

ourselves to torsion less connections. Indeed we have the following result:

THEOREM: In a given differentiable manifold M endowed with a metric g and a
differentiable one-form field o defined on M, there exist a only one affine connection V such
that (a) V is torsion less.

(b) V is W-compatible.
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Proof: Let us first suppose that V exist. Then from (1) we have the following three equations:

VIgU,W)]=g(V,U,W)+gU.,V,W)+a(V)gU,W) 5.2
WLg(V,U)l=g(V,V,U)+g(V,V,U)+oW)g(V,U) 5.3
ULgW.V)]=g(V W, V) +g(W,V V) +oU)gW,Vv) 5.4

Adding (5.2) and (5.3) and then subtracting (5.4) we get
VIgU.W)J+W[g(V,U)]-U[gW,V)]=g(V,U.W)+gU,V,W)+c(V)gU,W)

+9(VyV,U)+9(V,V,U)+oW)g(V,U)

—g(VyW,V)-g(W,V V) -oU)gW,V)

or, g(VyV.U) = VIgU.W)]+W[g(V,U)] -U[gW,V)]
-9(V\U,W)-gU.,v\W)-a(V)gU.W)
—9(V,VyU)—aW)g(V,U) +g(V ,W,V)
+g(W,VyV)+aU)gW,Vv).

or, g(Vy,V,U)+g(v,V,U) = V[gUW)]+W[g(V,U)]-U[gW,V)]
-g(Vy,U -V VW) -gvV,,u -V ,W,V)
—g(Vy\W -V, V,U) +oU)gW,V) —a(W)g(V.U)
—o(V)gU,W).

or, 2g9(V,V,U) = V[gUW)]+W[g(V,U)]-U[gW.V)] - g([V,U],W)
—g(W,ULV)-g([V.W]LU) +oU)gW,V) —aW)g(,U)
-o(V)gU,W). 5.5
The above equation shows that the affine connection V ,if it exist —is uniquely determined from
the metric g and the Weyl field of one form o . Now to prove the existence of such connection

we just define V ,V by means of (4.5). Now choose that U =e,,V =¢,,and W =e_and in a

local co-ordinate system {x?};a=1,2,3----n. the terms in (5.5) having commutator vanishes.
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So we obtain then
or, 2g(vcebbea) = eb [g(ea7ec)]+ec[g (eb7ea)]_ea [g (ecaeb)]
+o(e,)a(e;.e,)—o(e)g(e..e)—o(e,)g(e,.e)

or, 29 (rbkcekﬂea): eb(gac)+ec(gba)_ea(gcb) + 0,90 =00 — 01 Yx

or, zrg(c O = eb(gac)+ec(gba)_ea(gcb) + 0,00 ~ 09 0194
k 1 ak 1 ak
or, 1—‘bc = Eg (gac,b + gba,c - gcb,a) _Eg (gbao-c + gaco-b - gbco-a)
or, IYX = K _L * (00,0, + 9,0, — 0,.0,)
° bc bC 2g gba c gac b gbc a

Thus the components of connection is completely determined in terms of the components of g
ando .
We say that the Weyl compatibility condition (5.1) may be interpreted as requiring that the co-
variant derivative of the metric tensor g in the direction of a vector field Ve T(M) does not
vanish-as in Riemannian geometry but in stead that it be regulated by the Weyl field o defined
in the manifold M. Thus we have

Vg=0®g
where Vg = 0 ®(g is the direct product of g and o.
Let us discuss a geometrical property of Weyl parallel transport, which is given by the

following corollary.

Corollary: Let M be differential manifold with an affine connectionV, a metric g and a field

of one form o .If V Weyl compatible, then for any smooth curve & = a(4)and any pair of two

parallel vectors V and U along « ,we have

d d
3 dVU)=atm) ev.U) 5.6

where a4 denotes the vector tangent to the curve « .Let us integrate the above equation along
a , starting from the point p, = a(4,) .
d
Tl ,U
q 9V-V) q

o) TR
&5



= log g(V,U) =Ia(;7)dﬂ+logc

j: o‘(i)dﬂ,

= gV()U(4,)} =Ce”
Applying initial condition we get
g{U(4)V(4)}=C

Thus we obtain

f a(j—ﬂ)d/l

gV (DU (L) =9{U(4)V(4)} e” 5.7
Putting V=U and denoting L (1), the length of the vector V(A1) at an arbitrary point p = (1)

of the curve,

VI=lgv.v)
\)gabvav b
NV,

Now in local co-ordinates {x*} . Equation (4.6) leads to

L o, dx* Ay e
di dA

:>2Ld—L:Ga dx
dA dA
dL o, dx*
=—=-2
di 2 di

Consider a set of all closed curves « :[a,b]e R —> M i.e. witha(a) = a(b) . Then the equation

L2

t 4
o(—)di
di
g {Vihub)i=g{U(@)V(a)} e
defines a holonomy group whose elements are in general ,a composition of homothetic
transformation and an isometry. The elements of this group correspond to an isometry only

when
§ o*(i)dxl =0 ; forevery loop .
da

It follows from the Stokes theorem that & must be exact form i.e there exist a scalar function ¢
such that o = d¢ . Thus in that case we have Weyl integrable manifold.

Weyl manifold are completely characterized by the triple (M, g, o ), which is known as Weyl
frame. It is noted that the compatibility condition (5.6) remains unchanged when transformed
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into another Weyl frame (M,J,&) by performing the following simultaneous transformation
ongand o
g=e"g 5.8
and o =0 —d¢g 5.9
where ¢ is the scalar function defined on M. The conformal map (5.8) and the Gauge

transformation (5.9) define classes of equivalence in the set of Weyl frames. The compatibility
condition (5.6) led Weyl to his attempts at unifying gravity and electromagnetism —extending
the concept of space time to that of collection of manifolds equipped with a conformal structure

i.e the space time would be viewed as a class [g] of conformally equivalent Lorentzian metrices.

5.3 ISOMETRIES IN RIEMANNIAN SPACE:

Let M" and N" be two smooth manifolds with Riemannian structure g and y respectively.
The mapping f : M" — N" is called isometry if f is diffeomorphism and the reciprocal image
f*y of y isequalto g[11]i.e.

f*y =g
The induced metric f * y is sometimes called the first fundamental form ofM".Two
manifolds are said to be isometric if there exist an isometry of one onto another. The mapping

f:M" —> N" is called local isometry if for each xe M" there exists a neighborhood U of x
and V of f(x) such that f is an isometry of U onto V. The isometry of M " onto itself form

a group.
5.4 SUBMANIFOLDS AND ISOMETRIC EMBEDDING INWEYL GEOMETRY::

Let (M, g,0) and(M,3,5) be differentiable Weyl manifolds of dimensions m and n =m+k
respectively. A differentiable map f:M — M is called an immersion if the following
conditions are hold:

(a) the differential f.:T,(M)—>T; M is injective for any PeM.

(b) o(V)=0c(f.V) forany V e T,(M).

The number k is called the co-dimension of f .
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The immersion f:M — M is called isometric at a point PeM if g(U,V)=g(f.U, f.V) for
every U, V in the tangent space T,(M).If in addition, f is a homoeomorphism onto f (M)
then f is an embedding. If M — M and the inclusion i:M ¢ M — M is an embedding then

M is called a sub manifold of M .It is important to note that locally any immersion is an
embedding. Indeed f:M — M be an immersion,then around each PeM, there is a
neighborhood Ue M such that the restriction of f to U is an embedding onto f (U).We may

therefore identify U with its image under f, so that locally we can regard M as a sub-
manifold embedded in M with f actually being the inclusion map. Thus we shall identify each
vector V e T, (M) with .V e Tf(P)(I\W) and consider T, (M) as a sub-space of Tf(P)(I\W) .

Now in the vector space T,(M), the metric Jallows to make a
decompositionT, (M) =T, (M)+T,(M)"; where T,(M)" is the orthogonal complement of
T.(M)cT,(M).That is for any vector V eT,(M)with PeM, we can
decomposeV intoV =V +V*, where V eT,(M) and V' eT,(M).Let us denote Weyl

connection on M by V and prove the following theorem.

Theorem: If V and U are local vector fields on M and V and U are local extensions of these
fields to M, then the Weyl connection will be given by
v,U =(V,U)' 5.10

where (jﬂT)T is the tangential component of (§\7LT) .

Proof: Let start with the Weyl compatibility condition

V[ gU,W)]=g(V,UW)+gU,V.W)+5(V)gU,W) 5.11
where V,U,W €T(M) .Now suppose that V,U,W are local extension of the vector fields
V,U,WtoM . Clearly at a point Pe M we have

VIgU ,W)]=V[gU ,W)]=V[gU,W)] 5.12
where we have taken into account that the inclusion of M into M is isometric. On the other

hand evaluating separately each term of R.H.S of (5.12) at P yields



=g{(V;U) W) =g{(V,U)" W 5.13
with an analogous expression for g(VVU,vV) . From the above equations and the fact that
o(V)=0o(V) we finally obtain

V[ gUW)]=g{(V,U)" W} +g{U,(V,W)") +a(V)g(U,W)
From the Levi-Civita theorem extended to Weyl manifold which asserts the uniqueness of

affine connection V in a Weyl manifold we conclude that (5.10) holds in other words the

tangential components of the co-variant derivative WVU evaluated at points of M —is nothing

more than the co-variant derivative of the induced Weyl connection from the metric g on M by

g(v,u)=g(f.v,f.U)
5.5 EMBEDDING THE SPACE TIME IN WEYL BULK [17]:

It is possible to have a Riemannian sub manifold embedded in a Weyl ambient space, since a
Riemannian manifold is a particular type of Weyl manifold in which the Weyl field o
vanishes. Therefore a sub manifold M embedded in a Weyl space M will be Riemannian if only
if the field of one forms o induced by pullback from & vanishes throughout M. that is the
necessary and sufficient condition for M to be an embedded manifold is that o(V) =0 for any
VeTM).

To illustrate the above, let us consider the case in which the manifold M is foliated by a family

of sub manifolds defined by k equations y” =y, =constant, with the space time M
corresponding to one of these manifolds y* =y, =constant. In local co ordinates {y*}of M
adapted to the embedding the condition o(V)=0 reads o,V“ =0where

o=0,dx" and V =V ﬂﬁﬂ . In case of Weyl integrable manifold o = d¢. In this case o(V)=0

for any Ve T(M) if only if 6_¢; = 0. Therefore in a Weyl integrable manifold if the scalar field

OX
is a function of the extra co- ordinate only, then the space time Sub- manifold M embedded in
the bulk M is Riemannian.
The fact that Riemannian space-time M embedded in a Weyl bulk M does not mean that
physical or geometrical effects coming from the extra co ordinate /dimensions should be absent.
A nice interesting illustration of this point is given by the behavior of geodesic motion near the
M. Thus a Weyl field may affect the geodesic motion in the case of bulk with warped product

geometry.
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5.6 GEODESIC MOTION IN A RIEMANNIAN WARPED PRODUCT SPACE:

Let us consider the case where the geometry of the bulk contains two special ingredients.

(a) It is Riemannian manifold

(b) Its metric has the structure of the warped product space.
The importance of warped product geometry is closely related to the so-called brain-world
scenario. Let us consider the matter of geodesics in warped product spaces, first considering the
Riemannian case. A warped product space is defined in the following way:
Let (M,g) and (N,h) be two Riemannian manifolds of dimension m and r with matrices g and

h respectively. Consider a smooth function f : N — R which will be called warping function.
Then we can construct a Riemanian manifold by setting M =M x N and defining a metric
g=e’"g®K where K is the tensor of type like as g. For simplicity let M = M* and N=R,
where M * denotes four dimensional Lorentzian manifold with signature (+ - - - ) referred to as
space time.

In local co ordinates {y® =(x%,y*)} the line element corresponding to this metric will be
written as:

ds’ =g, dy® dy"
The equation of geodesic in five dimensional space time M will be given by :

d’y* + ®ra dy® dy® _

2 bc 5.14
di di di

where A is an affine parameter and T denotes the five dimensional Christoffel symbol of

second kind defined as :
a1 - _ _
(S)Fbc 259 ‘ (Tave + Tocor — Tnea)

Denoting the fifth coordinate y*by y and the remaining coordinate y*(space time coordinate)

by x* ie. y?*=(x*,y).We can separate the 4D — part of the geodesic equation (5.14) is as

follows:
2yH a Yij
B BB iy B8y
dA di dA a1 dxl da
d°x dx dx” . dy dy dx*
or, diz gﬂk(gkaﬁ gkﬂa gaﬁk) dﬂ/ — (5)1—*:4 a)2 _2(5) fa HH
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LU CHPRE: WU PR e EC RN I PR ASC
- (Y 2oy HEC
or, d’x” L wpa X ax” _ ok (dy) 9 & n dy dx”
dA 7 di da dA “da da
——9”4(g4a/3+94ﬁa ga“)zxﬂ ddxj
or, IX0 wopu & OT 5.15
da di dA
where we define &* as
gr=bry My 2@y W g, , 40, G0 2%

Let us turn our attention to the 5D brane world scenario where the bulk correspond to the 5D
manifold M which was supposed to be foliated by a family of sub manifolds (in the case of
hypersurface) defined by the equation y=constant.

It turns out that the geometry of a generic hypersurface, say y=Y,, will be determined by the
induced metric g, (X) = G4 (X, Y,) . Thus on the hypersurface we have
ds® =q,,(X, y,)dx“dx”

The quantities which appear on the L.H.S of (5.15) are to be identified with the Christoffel
symbol associated with the metric in the leaves of the foliation above.

Let us consider the class of warped geometries given by the following line element:

ds’ =e®'g,, dx“dx” —dy’ 5.16
where f = f(y)and g, =0,,(X).

g 94, = £0, where the prime sign denotes

N | —

For this metric we get ©'T/=0 and ®'T} =

the derivative with respect to y .Thus in case of warped product space the R.H.S of (5.15)

reduces to
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dx*“
Ho_ _
4 f( i )( i1
and hence the 4D —geodesic equation becomes
d’x* e, Ox“ dx” dx*  dy
—_— — = 22f'(—)(— 5.17
d? CArTIry FTRATYL

Again the geodesic equation for the fifth co-ordinate is given by

d’y L ops X dx” dx” Lo O dy dx*

dy
(5)r4 _2:0
a1 di 41 dA ““(d,1)

where,

| _ _
F:4 :594 (g4v,4 + 044 g4v,4) =0
o _ 1 _up — — _
Foc4 _Eg (gﬂa,4 + gﬂ4,a - ga4,ﬂ) =0
| Y _ _
And F:ﬁ :5944(ga4,ﬁ +0p40 — gaﬁ,4)

g gaﬂA

I\JI»—‘

=%.1.(e2f 9up) 4 as §¥ =-1

= fe’’g,,.

Hence the geodesic equation for the fifth co-ordinate become

Ay, ey 7 dx!

=0
a2 Y9 "4 da
d’y _dx® dx”
, i f ! = 5.18
or ar [T di d;L g44( ) 1=
as M =M * x R. But for time like and null like geodesic we get,
g 90O
®d da

a b

and Oab %% = 0 respectively.

Hence equation (5.17) becomes for time like geodesic
2

d 2/ N
dA

and for null like geodesic ,

dy .,
f+— =0 5.19
[ (dﬂ)]
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2
d 2’+f’(ﬂ)2 -0 5.20
dA di

equation (5.18) and (5.19) are ordinary differential equation of second order in principle —

can be solved if f'= f'(y) is known. A qualitative picture of the motion in the fifth dimension

dy

may be obtained by defining the variable q=— and then investigating the autonomous
dA

dynamical system:

_ Wy and d_q: P(@,y) 5.21

=92 da

with P(qy) =- f'(e +q*) where €=1 in case of (5.19) and €=0 in case of (5.20).In the

investigation of dynamical system a crucial role is played by their equilibrium points

which in case of (5.21) are given by

ﬂ:o and d—q=0 5.22
dA dA

the knowledge of these points together with their stability properties provides a huge

information on the types of behavior allowed by the system.

A. The case of massive particles: In case of non zero rest mass particles the motion in the

fifth dimension is governed by the dynamical system

dy
dy _ 5.23
ar J

dq 2
and —+f'(l+gq7)=0
q, ra+an
dg )
il 1+a%)
The critical points of (5.23) are given by q=0 and the zeros of the function f'(y) (if they

exist) which we generally denote by Yy,.These solution pictured as isolated points in the phase

plane, correspond to curves which lie entirely on a hypersurface M of our foliation (since for
them y=constant).It turns out these curves are time like geodesics with respect to the hyper -
surface induced geometry.

To obtain information about the possible modes of behavior of particles and light rays in such
hypersurface, we test the nature and stability of the corresponding equilibrium points. This can
be done by linearising equation (5.23) and studying the eigen values of the Jacobean matrix

about the equilibrium points .Assuming that the function f’'(y)vanishes at least at one
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points Y, . it can readily be shown that the corresponding eigen values are determined by the
sign of second derivative f"(y,) at the equilibrium points and some possibilities arise for the

equilibrium points of the dynamical system (5.23).

We shall discuss only the following three cases:

Case 1: Iff"(y,) )0, then the equilibrium point(q =0,y =Y, ) is a center. Thus correspond to
the case in which the massive particles oscillate about the hypersurface M (y =y, ). Such cyclic

motion is independent of the ordinary 4D-space time dimensions and except for the conditions

f'(y,)=0 and f'(y,) )0, the warping function completely remains arbitrary.

Case 2:1ff"(y,) (0, then the point(q =0,y =Y, ) is a saddle point. In this case the solution

corresponding to the equilibrium point is highly unstable and the smallest transversal
perturbation in the motion of particles along the brain will cause them to be expelled into the
extra dimension. An example of this unstable “confinement” at the hypersurface y=0 is

provided by Gremms warping function

f (y) =—b|InCosh(cy) 5.25

where b and ¢ are positive constant.

Case 3: There are no equilibrium points at all. The warping function f(y) does not have any

turning points for any value of y. This implies that in this we can’t have confinements of
classical particles to hypersurfaces solely due to gravitational effects.

An example of this situation is illustrated by warping function

2

1
=5 ln(Ay?) 5.26
Similarly for a large value of y the warping function (L) approaches that of the Randall-
Sundrum metric
ds* =e " |y dx” dx” —dy’ 527
where k is constant. In this case f'(y) =%k according to whether y is positive or negative.

Again there exist no equilibrium points and therefore no confinement of particles is possible

due only to gravity.
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B .The case of Photon: The motion of photon is governed by the dynamical system

dy _

az

and ﬂ=—fq2 5.28
dA

The equilibrium points in this case are given by = 0, so they consist of a line of equilibrium

points along the Y-axis with eigen values both equal to zero.

Any point along the Y axis is an equilibrium point and correspond to a 5D null geodesics in the
hyper surface y =constant. The existence of photons confined to hyper surfaces does not depend
on the warping factor.

As well known, in the brain world scenario the stability of the confinement of matter fields at
the quantum level is made possible by assuming an interaction of matter with a scalar field. An
example of how this mechanism works is clearly illustrated by a field theoretical model devised
by Rubakov in which fermions may be trapped to a brain by interacting with a scalar field that
depend only on the extra dimension. On the other hand the kind of confinement we are
concerned which is purely geometrical and that means the only force acting on the particle is
the gravitational force. In a purely classical picture (non-quantum) one would like to have
effective mechanisms other then a quantum scalar field in order to constrain massive particle to
move on a hypersurface in a stable way. At this point two possibilities arises. One is to assume
direct interaction between the particle and a physical scalar field. Following this approach it has
been shown that stable confinement in a thick brane is possible by means of direct interaction of
the particles with a scalar field through a modification of the Lagrangian of the particle.
Another approach would appeal to pure geometry: for instance modeling the bulk with a Weyl
geometrical structure. As we shall see in this case the Weyl field may provide the mechanism

necessary for confinement and stabilization of the motion of particles in the brane.
5.7 GEODESIC MOTION IN PRESENCE OF WEYL FIELD:

We shall discuss the geodesic motion pictured in a Weyl field. Let us consider the case the
warped product bulk is an integrable Weyl manifold (M, G, ¢) . If the Weyl scalar depends only
on the extra co-ordinate, then Weyl field of one forms o =d¢ induced on the hyper surface of

the foliation vanishes. Indeed any tangent vector V of a given leaf has the form

V=V9,
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o¢

Thus we haveo(V)=V* ( —) =0. Therefore if M represent our space time embedded in an

integrable Weyl bulk M with ¢ = ¢(y) then we can sure that M has a Riemannian structure. In
a Weyl manifold the co efficient of Weyl connection Ty, are related to the Christoffel symbol

as:
| _ _
Ty :{gc}_ggad (O 0c + 940y — Tpe04)

Now the geodesic equation of the fifth co-ordinate y in the warped product space for a massive
particle is obtained from the definition given above. The geodesic equation in the fifth co-
ordinate is given by
d’ d*y o ps dx” dx® _
a2 a1 da

d?y [ | _ _ dx® dx¢
or, d_/lzl+_ {gc}_Eg4d(gdbo-c+gdco-b_gbco-d):| di di =0
d’y [ 1 . _ _ | . - dx® dx°©
or, d/12+ —0 (gab,c+gac,b_gbc,a)_59 (IO + T4c0p — T 0g) FYRCT =0
d?y [ 1 _, _ _ _ | _ _ dx® dx¢
or, dﬂz + Eg (g4b,c+g4c,b_gbc,4)_gg (g4bo-c+g4co-b_gbc04) Hdﬂ, =
dzy I —44 :| dx® dx°
+
or, dﬂz i ( gbc4) ( gbc 4) dl d/1
as §,, =0, =0 (b,c=0,1,2,3)
2
or, l[g G dx® dx°
d,12 et "Il
or d’y 1_  dx®dx® 1 _ dx® dx®

+ = = r - ki
a2 294 ar a7 29 %41 Tz
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d’y 1 ot dx® dx” dy .,
4+ — - 7 i
Or’ dﬁZ 2 |:(e gaﬂ),4 dﬂ, dﬂ (g44),4(d/1)
1 dx“ dx” dy
—5{ (e’ gaﬁ)04ﬁa_ 040, (a)z} = 0
2 a B a B
o Y prgerg, OO 1T oy
dA dA di 2 dA diA  dA

-

d’y _odx®dx® _ dy,| 1 _odx*dx" _ dy
PR 3 = _ e O I, = == _ )2
or |:gab di da g44(dl 2 04| Y di dA g44(dﬂ,

oWy —y 5.29
2 N da

or,

dzy i dy 2_ 1 { dy 2} 1 dy .,
PR DAL AT PR S UL AT I L) AT
o Ry i Rl LAy i iy

dzy I dy 2_ I:l dy 2:|
RS AT WAL A PR R L. A
iy LY R PRy

d’y [, dy.,] [1 dy 2}
, +fl1+(—)" |-o(e,) |=+(=)" |=0
or PE _+(d/1)_ o(e,) 2+(d/1)

-

d’y dy 2} 0 |:1 dy 2}
ST PILC ACE P PRI AL AT
Malye [+(d/1) G 2GR

-

or d2y+f{1+(j—ﬁ)2}—(di4) {L(ﬂ)z} -0

da’ OX 2 da
2

or, 9 g AL ACH BT I AL 2SN R 5.30

d dA 2 di

, d¢ . odx*dx” . .
where ¢’ =——. On the other hand for photon ,putting §,, ————=0 in equation (5.29) we
dy di da

obtain

97



d?y e Ay dys
+ f I N2 e 2) N2 0
d2? (dxl ¢ (dﬁ,)
d’y dy..
3 +(f' = =D =0 5.31
or, = +(f'= ¢k )
Equation (5.30) and (5.31) respectively define the following dynamical system.
dy _
"
dq ’ ’ 2 ¢' ’
— =g - f +——f
=10+
and
dy _
iz
dg 2
—H r_ f '
o= @=1)a

the presence of the derivative of the Weyl scalar in the above equation may completely change
the picture of the solution of determined by the dynamical system considered before. This is
due to the existence of equilibrium points. There topology and stability properties now depend
not only on the values of the derivative of the warping function take at the brane but also on the

derivative of the Weyl scalar field ¢(y).

Finally, in case of photon the Weyl scalar field ¢ has no influence on the confinement. The
presence of scalar Weyl is equivalent to perform a conformal transformation in the Riemannian
metric § = e>'g @k . This essentially result in change the warping function from f to f —¢/2.

Because the existance of confined photon in the hypersurface is independent of the warping

function, the Weyl scalar has no effect in the confinement.
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Chapter six

SOLUTION OF EINSTEIN FIELD EQUATION IN ROTATING FRAME

6.0 INTRODUCTION:

The discovery of a class of stationary solution of Einstein vacuum field equation i.e. the Kerr
metric (1963) and the proof of its unique role in the physics of black hole have made an
immense impact on the development of general relativity and astrophysics. This can hardly be

be more eloquently demonstrated than by an emotional text from Chandrasekhar:

“In my entire scientific life —extending to forty five years ,the most shattering expression has
been the realization that an exact solution of Einstein field equation of general relativity
discovered by the New zeland mathematician Roy Kerr , provides the absolutely exact

representation of untold number of massive black hole that populate the universe........

In this chapter we derive an axially symmetric metric based on two physical assumptions i.e.
steady rotation of star and the field around it is axially symmetric. Then we found the Einstein
vacuum field equation for that metric .From these equations we derive the Ernst form of
Einstein equation and also express it in terms of spheroid al co-ordinates. A systematic
mathematical formulation of this Ernst form of Einstein equation led to the required Kerr
solution in Boyer-Lindquist form.

This chapter is mainly quoted from the book [7].Beside this, the following books are used as
references : [9] ,[21].



SOLUTION OF EINSTEIN FIELD EQUATION IN ROTATING FRAME

6.1 AXIALLY SYMMETRIC STATIONARY METRIC:

To derive an axially symmetric stationary metric consider a suitable co-ordinate system and
some physical assumptions. The first assumption is that, the field is generated by time
independent (steady) rotation of a star made of perfect fluid and its energy momentum tensor is
given by

T =(p+P)U“U" —Pg*" 6.1
Again the second is that, the star and the field around it posses axial symmetry about the axis of
rotation which passes through the center of star. This center of star will be treated here as an

origin of co-ordinate system and the axis of rotation is the Z-axis. Due to time independence
and axial symmetry it is reasonable to assume the existence of time like co-ordinate x° = tand
an angular co-ordinate x* = ¢ respectively of which the metric co-efficient and all the matter

variables are independent. Hence consider a co-ordinate system (x°,x",x?,¢) such that

agbc — agbc — 0 62

ox° op
as ¢ is the angular co-ordinate about the axis of rotation, the co-ordinate values (t.x*,x*,)
and (t.x*,x*, ¢+ 27z) correspond to the same point in the space time :

(t,x", x%, @)= (t,x', x>, @+ 27)
The metric as well as the field generated by the rotation of star is not invariant under the

transformation t — —t ,since such a transformation would reverse the sense of rotation

resulting in a different space time or invariant under the transformation ¢ — —¢ since such

transformation would also reverse the sense of rotation. But invariant under a simultaneous

reversal of t and ¢.i.e. (t,p) > (-t,—¢) . Thus we get
Jor =902 = 913 =Ups =0
The most general such metric can be written as:
ds® = g,,dt° +2g,dtde + g,,dp” + g ,,dx"dx® 6.3
Let us write the metric (3) in the following way,

ds? = fdt? — 2kdtde — Idp? — Adp? — 2Bdp dz — Cdz? 6.4
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where f,k,l,A B,Care function of pand z.Let us consider an arbitrary co-ordinate

transformation (p,z) to(p’,z") as follows :

p' =F(p,z) and z'=G(p,2) 6.5

Now taking differential we can write

dp'=Fdp+F,dz

6.6
— dp =L (dp'— F,d2)
Fl
And, dz'=G,dp+G,dz
s dz =2 (d2'~ G,dp) 6.7
G,
where a—FEFl,a—FEF2 and ﬁsGl,ﬁst. 6.8
op 0z op 0z
From equation (6.6) we get,
1 F F
dp=-"|dp' ——%dz'+ -2G.d
P F, { P G, G, 1 P}
1 ' '
=dp= [G,dp’—G,dz' + F,G,dp]
12
dpe——(6,dp'— F,dz)
FG,-FG, ° 2
We get the Jacobean of transformation as
J= AF.G) _ FG, - F,G,
o(p,2)
Hence we obtain
dp=J7(G,dp’' - F,dz") 6.9
And similarly,
dz =J ' (-G,dp’ + F,dz") 6.10
Now substituting the value of dp and dz in the equation (6.4)
ds® = fdt? — 2kdtdp —Idp® — Adp® — J *[(AG? - 2BG,G, + CG/)dp?
+2{-AG,F, + B(G,F, + G,F,) —CG,F, }dp'dz’
+(AF? —2BF,F, + CF?)dz'*] 6.11
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The functions F and G are so far arbitrary and are required to satisfy the following two coupled

non linear partial differential equations as a function of pand z.
AG? - 2BG,G, + CG? = AF2 — 2BF,F, + CF? 6.12
and - AG,F, +B(G,F, +G,F,)—CG,F, =0 6.13
where we assume that for given A, B, C the system of equation (6.12) and (6.13) has a non

trival solution with J = 0 .Then in the co-ordinate system (p',z") the metric (6.11) has its co-

efficient of dp’® equal to its co-efficient of dz'?and the co-efficient of dp'dz’ vanishes. Now
write the metric (6.11) by dropping out prime sign as follows [7]:

ds® = fdt® — 2kdtdep —ldp* —e* (dp” +dz?) 6.14
where f,k,l are not same as in (5.11), but f,k,I, « in (6.14) are function of pand z.
Equation (6.14) is known as the Weyl Papapetrou form where (x* = p,x? =z)and let
a=e".
From the metric (6.14) we get the following metric components:

Op = f, Jos = Y30 =Kk, 01 =02 =, Jg =1
| 11 2 —1 5

-k
and g% = L glt=g®=—og®=g¥ =
O ket 7Y T 7Y Ty

—1
33 _
'3 (If +k?)

Also det(g,.)=0= —a’(If +k?).
From definition we get T2 = %gap(g e T Gpen — gbcyp)

Then we can calculate the non-zero T" ' s for the metric (6.14)

0, +1k,) Lot

01 2 00
2(If +k?) 2a
If, + Kk, K,

r(?z :% r‘023 =
2(If +k?2) 2a

Lo (I, k) o

13 2 11
2(If +k?) 2a

o (-lk, +Kl,) T

23 = 2 12 =
2(If +k?2) 2a
f a

It —_~ 2 _ Tz

0= oy 22 2a
a -1,

rlll:Z_; r323 = 22

fk —kf

Fllz Zﬁ 1—‘130 =( - zp)

2a 2(If +k?)
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-k fk, —kf
r(%s: - Iﬁzso :( : 22)
2a 2(If +k?)
. —a, s (kkp+flp)
I, = 13 = Ane L2y
2a 2(If +k?)
—1 (kk, + fl,)
]‘_‘;3:_;7 FZSS =—2
2a 2(If +k?)

6.2 EINSTEIN EQUATION FOR ROTATING METRIC:
Now we are interested to find out the Einstein vacuum equation for the metric (6.14) i.e. for the
rotating metric.
The vacuum Einstein equations are given by
R,, =0 6.15

Let us level the co-ordinates as(x’,x",x* x*)=(t,p,z,9¢). The Riemannian Christoffel
curvature tensor is given by:

Reea = Dogc ~ oo + T — Tl
Then contracting on pand d we obtain the Ricci tensor.

R.=I}. -T}

bp,c bc,p + 1—‘bhpl—‘hré _Ftl)qcrhr:) 6.16

. o 2 110 2 10 01 31 0 -2 32
+ Ryg =—Tg01 —Too2 + {laol00 + Tool 20 + Torloo + Tonlag + Tgalop + Foalsg

113 213 110 2 0 11 2 1 12 2 2

+ Lgalho + Doalao b —{Toolh0 + ool 20 + Topl iy + Toolan + Tolsy + Tgolss

£, 06, 0KK,) O, k) T, O, +KK,)

2a 2(If +k?) ' 2a 2(If +k?)  2a 2(If +k?)

+(fkp_kfp) (_kp)+L(|fz +kk,) (T, —Kf,) (—kz)+(fkp_kfp) (-k,)
20f +k?) 2a  2a2(f +k?)  2(If +k?) 2a  2(f +k?) 2a

| (fk, —kf,) (_kz)_{ L(”p+kkp)+L(|fz+kkz)+ia_p+Lﬁ+La_p
2(If +k?) 2a 2a 2(If +k®) 2a2(If +k?) 2a2a 2a2a ?2a-?2a

Coa f (k) (1 k)
2a2a 2a 2(If +k?) 2a 2(If +k?)

_ f/’ fz
——(z—a)p _(z_a)z +
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or R, _ﬁ_hﬁpf,ﬁ a f, fki—kk,f, fk?—Kkf, +If,f+kkpfp +Iff +kk, f,
2a 2a 2a’ 2a® 2a(f +k?) 2a(If +k?) da(lf +k?) 4a(If +k?)
ffl +kk, f, i1 +kk, f, af, af

Cda(f +k2)  da(if +k?)  2a° 22’
or, R, =12 _ta ! {f2+167 +2kk f, +2kk f —2fk>—2fk? —fl f —fl f}
v 700 P z 7z PP P z PP 1

2a  2a  da(lf +k?)

or,—2aD 'Ry = (D*f,), +(Df,), + D f (I f, +1,f, +k> +k?)
where D =If +k% D =1/\/If +k’
or,—2e“D'Ry =(D'f ) +(D7*f,), + D (I f, +I,f, +k>+kZ)=0 6.17

with the help of (6.15)
Again,

Ro= Ko KA ke kT (0,0 =) O, k) (k)
% 2a  2a’ 2a 2a* 2a2(f +k?) 2a2(If +k?) 2(f +k?) 2a
+(fkp_kfp) (_Ip)+(|fz +kk, ) (_kz)+(sz —kf,) (_Iz)+(kkp+ ﬂp) (_kp)
20f +k?) 2a  2(If +k?) 2a  2(If +k?) 2a  2(If +k?) 2a
L (ke + 1) (k,) (If, +kk,) (-k,) k,a, k a, k,a, Kk, a,

2(If +k*) 2a 2(f +k?) 2a 2a2a 2a2a 2a2a 2aZ2a

k, (R, + 1)k, (kk,+ 1)K, (I, +Kk,),
2a 2(If +k?) 2a 2(If +k?) 2a 2(If +k?)

K-k, 1, fk,—kf, I fk, —kf,

Ky fo K =lk, f,

or,R,=—2+-2+ L L2 P~ 4 2 - -z
“ " 2a 2a 2a2(f +k?) 2a 2(If +k?) 2a 2(If +k?) 2a 2(If +k?)
k
orR, =y Ka T 2Kl f —If k +2kf,I, Ik, f, - fl k, —fk,I,}

2a  2a  da(lf +k?)

or,2aD Ry, = (D), +(Dk,), + D3k(I, f, + f,1, +k2 +k2)

or,2e“D 'Ry, = (D’lkp)p +(D7k,), + D’3k(lp f o+ 1l + kﬁ +k?)=0 6.18
Similarly,
~2e“D'R,, = (D‘llp)p +(D7,), + D‘3I(Ip f,+1fl, +kf, +k?)=0 6.19

We have D? = If +k?; where D can be considered as the real part of an analytic function
analytic (p+iz) of (p+iz).Let E be the imaginary part of analytic (o +iz).i.e.

analytic (p+iz)= D(p,z)+IE(p,2)
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Now,

D,=— 1 (f,+fl,+2kk)

"2 IF + k2

1 1
=, T2, T, 2K 4 2KK,)

D - -
7 2 If +k2 (If +k?)*'?

And, D, = —— 2 (1 f+2bf, +1f, +2k2+ 2Kk, ) ————_(If, + I, + 2kk, )’

2.J(f +k?) A(If +Kk?)**

Then we can calculate,

(If, + fl, +2kk )?

1
D, +D, :W(Ippf +21 f +1f  +2k> +2kk )

1 1

—W(pr + ﬂp +2kkp)2—m(lfz + ﬂz +2kkz)2
1

bl f+2b f, +If  +2k”+2Kk,)

2.J(If + k%)

2\-1/2 fPP fzz 1

—a(lf +k) [l 1z

(24124 2K,
2a  2a da(if +k*) 7

k kzz
+2kk , f —2fk2—2fk2—fl_f —fl f,)}+2k {ﬁ+£
1
+——— 2kl f —If k +2kf 1 —Ik f —fl k —flk
4a(|f+k2)( p o p PP 777 zZ 7 P P ZZ)}
I | 1
+f{22 ez = (2k% +2Ik? - fI2 - fIZ —2kk | —2kk I
{2a 2a 4a(|f+k2)( ? Lo Le v

+ILf, +1F 1) ]
Using (6.17) (6.18) and (6.19) We can write
D,, + D, =aD{-IRy, + 2kR, + fR;;}=0
or,e”D(IRy, — 2kRy; — fRy;) =—~(D,, +D,,) =0 6.20
Thus the function D satisfy the two dimensional Laplace equation in the variables p and
z . Let us consider the transformation (p,z) — (o', z') given by :
p =D(p,2) : Z=E(p,2) 6.21

where E is the conjugate function of D. Since D is the real part and E is the corresponding

imaginary part of analytic function of p + iz, then by Caucy-Riemann equation
D,=E, and D, =-E, 6.22

Because of (6.22) ,we can write from (6.21)
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(dp)? +(d2)* = (D; + E;)(dp2 +dz?) 6.23

From the equation (6.23) we see that the form of metric (6.14) is unaltered by the

transformation (6.21) since we can define a new function z given by

e’ =e*(D3+E2)™ 6.24
Now expressing all functions f,1,k, z interms of (p,Z) and after transformation omitting the
prime sign we obtain the algebraic relation in f,k,l [7] such as

D? = fl +k? = p? 6.25
D=4 fl+k*=p
Now to get the non-trival Einstein field equation for the metric (6.14) we proceed as follows
Ry, =Tp,+n, +05, +05, T, — I, +{Tely + Tl + Tl + T,

112 212 013 313 110 210 11 2711
+ 1—1121—‘11 + 1—1121—‘21 + 1—‘131—‘01 + 1—‘131—‘31} _{Fllrm + 1—‘111_‘20 + I_‘111—‘11 + I_‘111—‘21
12 212 143 213
+ 1—‘111—‘12 + 1—‘111—‘22 + 1—‘111—‘13 + 1—‘111—‘23}

{(lfp+kkp)} (apj {flp+kkp} (a J {pr+kkp }2
Or,Ru: o p+ o —+ — 9 N ,0+ —Z + .
2(If +k?) 2a) - |20f +k*)[ 7 (2a), | 2(f +k*)
(fk,—kf,) kI, -1k,) (a) (a) (a)
T +KY) 20f +K2) | 2a _(Ej _(Z]

a,)" (K, -lk,)(fk,—kf,) [kk,+fl, ]
_(Ej TN k) 2(1f +K2) +{2(” +k2)}

(2 (1, 1) _i(lf2+kkz)+(a_pj2_(az j2+(apjz_(azy_(kkz+ fl) a

~Y2a 2(If +k?) 2a2(f +k?) \2a) \2a) (2a) \2a) 20f+k?) 2a

By usingD®=fl+k*>=p?, the above equation become after simplification

o,1, 0 ,a,, 0,4, 1
R, = 5(;)+$(£)+E(Z)+4—ﬁ{lzfj+2kapkp+k2k/f+2(fkkplp—lf k?

1

—K2f 1 IkE k) + kK2 +2K F 1 +12f2)— Gap

La,(If, + fl +2Kk,)
—(If, + fl, + 2kk,) }

Putting a =e* and after simplification we obtain

i, 1
ﬁ—z—pz(fplp +k§)

or, 2Rll :_{_ﬂpp _/’IZZ +1Llpp_1 +p—2(fplp +k§)}

1
Rll :E(ﬂpp +ILIZZ)_
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Hence
2Rll:_/Llpp_#zz+/'lpp_1+p_2(fplp+k§) 626

Similarly we get
R_(I‘LH%) 3, (8, |fl,+Kk {%%ap (5, +kk) (f +kk) - (fk—KF) (k| -1k)
2l [P l2a), () A+ (), (2a), " 2Af ) A1) 21f+E) A1f+K)
{apJ(egj {aZI ij {q}[ap}(qlap) (kL —Ik) (fk —kf) (F,+Kk) (F1,-+kK)
22)\2a) \al ) \@\a) \@\a) A4 A1f+HD)  Af+E) Af+)
QLB
2 2f+4) 22+ (2a)\a) (2a) 2

RS s

By using p* = fl+k?and a =e* and after simplification

1 4, 1
R, :_§{7+ 2,7 (I, f,+1,f, +2k k,)}
Hence
e .
2Rlzzuzp1+§p2(szp+lpfz+2kpkz)=0 6.27
Similarly,
2Ry =—p1,, — ty —p i, + p 2 (F,], +K,7) =0 6.28

For simplicity let us write the non- trival Einstein equations for rotating metric at a time

2Rll = _ﬂpp _I[lZZ +ﬂpp71+p72(fplp +k§)=0
R, = p* +%p2(lz £+l f, +2k k,)=0

2Ry ==, — 1y, —p’l,up +p’2(leZ +k22) =0
Because D? = fl +k* = p®only two of the above three equations are independent Let use a
function w in lieu of k defined by
w=f'k
Let us eliminate kand |from the equations (6.17) and (6.18) and so compute the following

quantities:
We get,

106



| SOLUTION OF EINSTEIN FIELD EUATION IN ROTATING FRAVE

and k, = f,w+ fw,

2 k2 2

Also, 1 =P _° and 1=£—_ fw?
ff f

) 2p sz

..IP:T— fz"—Zwap—fpw2
2

and IZ:—’DfoZ—fZWZ—ZwaZ

From equation (6.17) we get
(D*f,), +(Df,), +D°f (1, +1,f, +k2+k;)=0
Putting the values of derivatives of kand | in the above equation

(P f), + (), +p (L f, +1f,+K2+k;)=0

2
f
or, = p e e L, 2L £ - 1)

2
waz(—'O]c::Z - fZW2—2WWZf)+(pr+ pr)2+(fzw+ fw,)’] =0

2 2

_ g} . _ o f o f Y
or, —pzfp+p1fpp+p1fzz+2pzfp—plTp—psz+,03f f 2w?

AW —2p 0 ww F2F —pF AW 42w T2 f 4+ p fiwl = 0
or, f(f , +f,+pf ) —f24p2f (W2 +W))=0
Cf(f, 4 4 p )= 2 £ 24 p P W W) =0 6.29

Again from (6.18) we get
(D7k,), +(D7k,), +D°k(l, f, + f,I, +k2 +k;)=0

2
f
or,(pfw, +pwf) +(pfw, +p W), +p‘3fw[fp(ZTp—pf2” —f,w?—2ww, f)

2

+ fz(—% f, - fw’ —2ww, f)+(f w+ pr)2+(fzw+ fw,)?]1=0
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or, —pfw +2p7 W, f +pfw —ptwi +p7wf +2p7w, f,+p 7 fw,

-1 -1
+p W 2p W, J’T f2w—pf f2we—2p 2 F2w? f w — 22w

—p W =2 AW fw, 4 o E AW 4 o Pl + 2070 F AW w

+p % 2w+ p FPww? + 2p % F 2w fow, =0

or, —pfw, +2p7 w f +p7fw +p7wf _+2p7w, f,+p7 fw,
-1 -1
+p‘1fzzw+p‘2pr—’DTfpzw—pTffw+,o‘3f3ww/§+p‘3f3WWz2 =0
or, p[{ f(w,+w, —p7w)+2w f +2w,f}

Ry o)~ £ £ )]0

-1
or, f(w,+w, —p~w)+2w f +2w,f, =0

6.30
By the help of equation (6.29).
Now subtracting (6.28) from (6.26) we get
1
ypz—zpl(fplp—lez+kj—kf)
i - Ep [ 226 P pww - 2wt B £ f 2w 2w f
o’#p_ Zp[fprp P P P +f22+2 + z z
+f2w+ £2w2 +2ww ) — f2w? — f2w) —2ww, f f, ]
. __f—lf E 2(f£2 _£2 _E —] ZVVZ_\NZ
TR p+2pf (f7-1)) 2,0 fow -w;) 6.31
Again from (6.27) we get
1 4
yzz—Ep (1, f,+1 1, +2k k,)
L P f it fwr—2wi 20 ¢ P ¢ g
__Ep [_?pz_pzw_w sz+T z_?pz
—2ww, ff, — f fw?+2f fw?+2f f ww, +2f fww, +2f°w,w, ]
yz=—f‘lfzJr/)f‘zfpfz—p‘lfzwpwZ
6.32

The gravitational field of a uniformly rotating bounded source must depend on at least two
variables. Finding any solution of Einstein equation depending on two or more variables is quite

difficult and physically interesting. The first exact solution of Einstein equations to be found
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which could represent the exterior field of a bounded rotating source was that of Kerr (1963).

An essential property of such solution is that it should be asymptotically flat, since the
gravitational field tends to zero as one move further and further away from the source. The Kerr
solution was the first known rotating solution, which was asymptotically flat with source having
non-zero mass. No interior solution has yet been found which matches smoothly onto the Kerr
solution. It is believed that Kerr solution represents the exterior gravitational field of a highly
collapsed rotating star —a rotating black hole.

Although many stationary axially symmetric exact solutions of Einstein equations (6.29) and
(6.30) are known, very few of these are asymptotically flat and so their physical interpretation is
uncertain. The first rotating asymptotically flat solutions to be found after the Kerr solution
were the Tomimatsu-Sato solution (1972.73). These solutions differ from the Kerr solution in
one important respect. The Kerr solution has the property that when the angular momentum of
the source producing the field tends to zero, the solution tends to the Schwarzschild solution —
representing the exterior field of a spherically symmetric source. This behavior is what one
would expect for realistic star, because for the latter departure from spherical symmetry is
usually caused by rotation and if the rotation vanishes one would get a spherically symmetric
star —whose exterior field is the Schwarzschild solution. However the Tomimatsu-Sato
solutions do not tends to the Schwarzschild solution when the angular momentum parameter of
the source tends to zero. Though there is no easy way to derive Kerr solution, we will proceed
to find the solution through the Ernst’s form of Einstein equations for the axially stationary
symmetric metric derived before.

6.3 ERNST FORM OF EINSTEIN EQUATION:

From equation (6.30) we have

f(w,+w, —p7w)+2w, f +2w,f, =0
or, (-p7w, f+2fw +fw_ +2w,f +fw,)=0
or, o (=p7w, f+2f w, +fw +2w,f, +fw,)=0
or, —pw, f2+2p7 f fw +p 2w +2p7 fw, f, + p7 FPw,, =0
or, (pf*w)), +(p7f?w,),=0
Thus equation (6.30) can be written as;
(pf2w,), + (p ' f?w,), =0 6.33

which implies the existence of a function U such that
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U,=—pfw, ; U,=p"f?w, 6.34

L=
= U2=p7f'w; ; U/ =p?f'w

z

let us express the equation (6.29) in terms of f and U
f(f,+f,+p f)—f2—f7+p?f (W) +w)=0
or, f(f +f,+p f )1 —f2+p2f (p*f U7 +p?f U2)=0
or, f V=1 +f?-U2-U;. 6.35
By eliminating w from the equation (6.34) we get the following equation;
fviu=fU,,+U,+p"U)
=f(p U, +2f 7 f U +2f U, +—p U )
41 1
=f@f~f U, +2f7f,U,)
f VU=2f M, +2fU, 6.36
Putting the value of w, and w, from (6.34), equation (6.31) and (6.32) can be written as

follows:
' 1 -2 2 2 1 -2 2 2
,upzzpf (fp—fz)+5pf (Up—UZ) 6.37

and w,=pf?f f,+pf?U U, 6.38
where ' = u+log f . Now define a complex function E as follows:

E=f+iU 6.39
Let us consider a single complex equation

(Re E)V2E=E2 +E’ 6.40

or,f (E, +E, +p‘1Ep)= (fp+iUp)2+(fZ +iU,)?
or, f{f  +iU_ +f,+iU,+p™f +ip™U }

S{f2-U2 4 f2-U2+2i(f,U, + fU,)}
or, f(f , +f,+if )+if (U, +U,+p7U,)

=(fpz+ fzz—Uﬁ—UZZ)—i—Zi(prp—i— f,U,)

From the above equation it is seen that (6.35) and (6.36) are the real and imaginary part of

equation (6.40).Let us consider a new unknown function & in stead of E defined by

_(&-D 6.41
¢+

Let &”be the complex conjugate of &.
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Then we get

E_E-DE+) (- (€-4)
E+D(E +D)  (G& +E+& +1) (E& +E+E +1)

(real part) (imaginary part)
Now E, = 25, > And E, = 2, >
(£+1) (&+1)
I G e ASHNE, g
” (&+1)° : &+’

Now calculate,
V’E =E_ +E,+p'E,
A5 +DE,, —48, +2AL+DE, -4 1 2%,

- (&+1)° p(E+1)°
L 2EHN (€, L+ pE) A (E+ED)

B (& +1)°

L 2AEHY VA (E+E)

| (& +1)°

g 2V A5 S
E+D° 6+’
Putting the value of V°E, E, and E, inequation (6.40)

(&£ -1 { 2v?e _4(§§+:5)}:4(55+53)
(£ +E+E+D €+ (E+)° | (€+D
(-1 avie  MEee) A DE e

TEDE D) €+ @) (E)NE +D)
EE ) v AEHDE +E) 42 ~1)(E +ED)

TENE D) €+ (E+D*(E +D
c e, ASEENE +14EE -
,(EE -)VviE =
or, (&€ -1V oD
. 287 (E2+E0)(E+D)
,(EE - VEE =
or, (&€ ~1) V2 Za0

or, (§& -)V?* = 257 (&) +¢&7) 6.42
which is known as the Ernst form of Einstein equation.
Let us introduce prolate spheroidal co- ordinate (X, y)instead of variables (p.z) as follows:

p=(x*-D)"> @1-y»)"* ; z=xy 6.43
111



 SOLUTION OF EINSTEIN FIELD EUATION IN ROTATING FRAVE

which can be solved for x and y as follows:

x=%(D+ E) where D={p?+(z+1)*}"?

And y=%(D—E) where E ={p” +(z-1)}"

Now we express the equation (6.41) in terms of spheroidal co-ordinates and so compute the
followings:

_OSX 05y
" xdp oyop

0 1 1 1 1
) {@ (B+E)+§y(B—E)}

_l ERPE PR S N il PR SN I DR 1Y
& 2{5 D) )} 2fox<D+E)+2§W(D E)}

1 1
+E1, (o) i) -+
Again
- 05 ox o0& oy
= ox oz oy oz
z+1 z-1|1 1 z+1 z-1
el e e e
And
£ O 2, 2D e O
é:zz - é:xx(az) gxy é:x é:yy( Z) +§y 822

or, &, == gxx{”l Z__l} —éxy{(Hl) (Z—l)}

E D2 E’
RE (z+1)? (z-1)° g {z_+1_z_—1}2
2*|D E D E3 D E
+1§y{1_1_(z+31) (2 ;L)}
2D E D E
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But we get

LV =g, 46407,
T (PSS SPIE S 1 G- RSP N
aGrpreG-plr o e

P !t 1 1oy L
o &y G g+ g -6

=)’ + éWE(D _E)

)|+ a2t

4 D

(z+1)° (z- 1)?° 1 (z+1)
_5”{ 2 E? } é{D E D°
1 (z+1)? (z 1)?
+5§y{5—g— e } HaEe D G-l

or, V¢ = e:{— A —{% S A

(z-1)°
e

+§{1 1+1{1_1_(2+31) e 31)} oL 13}
D E 2|D E D E 2 E° D

(z+1)? (z-1)°
+§xy|: 2 (F__Z) 2{ D2 E2 }:|

2
‘. p_(i+£)2+l z+1+z -1)°
4 D E 4

or Vz‘f:g{ig_p_z(iﬁiah1{1+1_<z+31>2_(z—31>2H
D E 2 D° E 2D E D E
R e R
D E 2 E

pt 1 1. 1f(@Ez+1)* (z-1)°
+§‘V{T(F E2)+2{ D? E? H

(z-)) +1
el

z-1

E

}2
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To calculate the co-efficient of &, , &, &, &, and &, compute the followings:

1 1
x==(D+E =—(D-E
2( ) y 2( )
, D?+2ED+E? , D?—2ED+E?
or,x" = or,y° =
4 4
And
E?-D’=p°+(z-1)°-p*—(z+1)?* E?+D*=p° +(z-1° + p* + (2 +1)?
=7 -271+1-7*-2z-1 =2p*+27°+2
=47 =2(x* = x°y* =1+ y*) +2x?y? +2
= 4xy =2(x* +y?)

Now the co-efficient of &, :

2 2
p_(i+l)2+1 Z_+1+Z_1
4 D E 4 D E

p° D? +2ED+E* +£ E?(z° +2z+1)+2ED(z* -1)+ D*(z* - 2z +1)

4 D2E? 4 D2E?
_pix? . 7°(D?* +2ED + E?)+2z(E* - D?*)+ (E®* - 2ED + D?)
- D’E? 4D’E?
_ szz . 72x2 . 872 . yz

D’E*’ D’E® 4D’E® D’E’®

_p2X2+X4y2_2X2y2+y2
B D2E?
X4_X4y2_X2+X2y2+X4y2_2X2y2+y2
- D2E?
x¢ = x2 —x2y? 4 y?
- D2E?
=y -1
D2E?

The co-efficient of &,

2 2
p_(i_i)%rl z+l z-1
4 D E 41 D E

p’ E*-2ED+D* 1E’(z°+2z+1)-2ED(z’ -1)+D*(z° -2z+))

+
4 D’E? 4 D2E?2

?y*  z?(E*-2ED +D?)+2z2(E*-D?)+(E® +2ED + D?)
2E2+ 4D2E2

_P
D
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2

_pYy Ty 8 X
D’E’ ' D’E’ ' 4D’E’ | D’E’

~ y2 (X2 = X2y —1+ y2) + X2y — 2x2y? + X2

D2E?2
y4 _yz —x2y2 %2
- D2E?
(X2 =yAH)-y?)
B D2E?2

The co-efficient of &,

(___ 1(z+D)* (z-9)°
2| D? E?

_p° E*-D? ! E*(z° +2z+1)-D*(z° -2z +1)
2 E°D* 2 E’D?
_p ’(-4z2) +7*(E* - D?) +2z(E* + D*) + (E* - D?)
2E°D?

= Axy(x2 = x2y? =14 Y2) + X2y (—Axy) + Axy(x2 —x7y? —14 y® + x°y? +1) —4xy
- 2E2D?

=0

The co-efficient of &,

1.1 p 1+i)+1{i+1 (z+1)° (z—1)2}

D E 2'D® E¥ 2|D E D° ES

_D+E 1 ,0_2+(z+1)2 1 ,0_24_(2—1)2 +E+D
DE D*|2 2 E3| 2 2 2ED

= 3EZIJEFE?;D D (x> =x2y? =1+ y* +X°y* + 2xy +1)
2E3 ——(X* =x%y? =14+ y2 +X°y? —2xy +1)

_ 3E+3D
2ED
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_3E+3D 1
2ED  2D°

(X+y)-

2E2( -Y) sinccE=x—yandD=x+y

_Bx(* —y*) —(x=y)’ (x+y) - (x+ y)* (X~ Y)

2D’E’
_ (X -y )(Bx-x+y-x-Y)
2D’E?
_2x(x2 - y?)

D?E?
The co-efficient of &,

1 1. 1[1 1 (z+1)? (zD 1
PR — J— [ — + R
D E 2|D E D = 2 F D®
_ E—D+___£_ (z-1)° 1 +a+n LE-D
ED E®|2 2 [ D2 2 2ED
3E-3D 1
= x2 —x2y? -1 x2y? —2xy +1
ED 2E3( y2—1+y? + X2y —2xy +1)
1 2 2,.,2 2 2.,2
— X5 —X —1+vy +X +2xy+1
2D3( y y y y+1)
3E-3D 1
= X— -Yy) - X+ Y)(X+
2ED 253( Y)(X—Y) 203( Y)(X+Y)
3E-3D
= -y)- X+
2ED 2E2( ) 2D2( )
_ 3(2Y)(x° — Y ) + (x4 y) (X = y) = (X=y)* (X + )
2E?D?
(X2 —yA)(-BY+ X+ Yy —X+Y)
2E?’D?
—2y(x* —y?)
- ED?

Therefore we can write

(X2 =y)H(x* =D . (X -yHA-y?) 2x(x* —y*) . 2y(x*—y?)
Vzéf: D2E?2 St D2E2 Sy + D2E2 Sy~ E2D2 Sy
Now calculate,

STV P S SRS S N LA s I
Qﬁfz—4<%AD+EHfAD E% {5( )+&y( %
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— |

2

or, £2 + £2 4E S {£(E+D)+¢& (E-D)f + IE? DZ [ {E(z+1)+ D(z+1)}
+&{E(z+1)-D(z -}

or, & + &7 = by G 2x+ g, (29 + Dz [£ L= Y)Y +1) + (x+ Y)(xy + D}
+&EAX=Y)(xy +D) - (x+ Y)(xy -D} I’

or, & +&, = 4E T~ (AXPE7 +Ay2E! —8XYE L) +—— 1EID? [, (2xTy—2y) + &, (2x —2xy7)]

or, £2+&7 = 1E D2 [ £2(4x* —4x"y? —4x* +4X°y? +4x*y* —8x°y +4y?)

+EL(AXPY? —AxPyt —Ay? +4y" +Ax7 —8X7Y? +4AX7Y ) + £ £, (BCY +8X°Y°
+8xy—8xy°® +8x°y —8x’y*® —8xy+8xy®)] (puttingthe valueof p)

or,é2+ &l = [E5(XF =X —x2y2 4+ y2) + E2 (X = x2y? +y* —y?)

4E D2

LS tE) = [&0(* =y ) (X" =D+ &7 (x* - y*)A-y*) ]

ED2

Putting the value of V& and (£2 +£7) in equation (6.42)

< (=YX D) (x* —y»)A-y?) 2x(x* —y?) . 2y(x*-y?)
(§§ 1)[ D2E2 gxx D E2 gyy—i_ D2E2 gx E2D2 é:y]
=28 EDZ [EE(2 -y (X =D+ (X —y)A-y?) ]

or, (é:é:* _1) [ (X2 _1) é:xx + (1_ y )gyy + 2X§x _2y§y]
=25 [(x* =D&+ (L-y") &) ] 6.44
Equation (6.44) is also an Ernst form of Einstein equation. Let us write the equation (6.34) in

terms of x and y .We get

=—pf‘2Up
or, w%+w ¥ _ -p 72U, x Uyay
* 0z Y o1 op op
z+1 z-1 z+1 z-1 _ P p,1 1
or, —+—}+= S Y = —pfU S (== ——=
w. {5 ow ¢} [ 2(D E) AL,

117



 SOLUTION OF EINSTEIN FIELD EUATION IN ROTATING FRAVE

or, W {E(z+)+D(z-D}+w,{E(z+1)-D(z-1)} = —p* f?*[U,(E+D)+U (E-D)]

or, [w,{(x=y)(xy+D+(x+y)(xy-D}+ w,{(x=y)(xy+1)—(x+y)(xy —1)}]
=-p® f7[2xU, -2yU, ]

or, w, (2x*y—-2y)+w, (2x—-2xy’) =—f?(x* -D(A-y*)(2xU, -2yU )

or, W, 2y(x*-1)+w, 2x(1-y*)=—f ?(x* -1)(1-y*)(2xU, —2yU )
2XW
or, 2ny y
A-y ) (x? —1)

Comparing the co-efficient of 2x and 2y from both sides of the above equation, we obtain

—f2(2xU, —2yU)

w
sz :f—ZUy : 2y =_f72UX
d-y7) (x* -1
or, w, =(1-y*)f?U, ; or, w,=@1-x*)f?U, 6.45

Let us express (6.37) and (6.38) in terms of x and y and so compute the followings

S L
P ap Yap
11
L2+, 20

2ED[f (E+D)+f, (E-D)]

_ —D [2xt, +2y(~1,)]

Y%
f = (xf, - yf
ED(xyy)

P

2
P
And f? :W(x2 fo—2xyf, f, +y*f})

Now,
=t 2,2
et e bz,
— [ FAE@+D+Dz-D}+ 1{E(+D)-Dz-D}
— I [0 y) (4D + (X YOy =D+ £ D 0y +D = (x4 ) (-1
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or, f, = 55D [ f,(2x*y-2y)+ f, (2x-2xy?) ]

= LRy =)+ 1 (o))

And f? =—E21D2 [ £20xy? —2x°y? +y?) + £2(x* —2x%y? + x*y?)
+2 £, 03y = x*y° —xy +xy*)]
Again

u, =u, *u, ¥
r op op

-_P _
~%ED [U,(E+D)+U,(E-D)]

P
U =2 (xUu, -yu
ED( ,—YU,)

P

2
And Uﬁz#(xzuijyZUj—nyUXU)

Similarly we get

1 2 2
U,=—-{U, (xy- U,(x—x
. =gp LU (Y =) +U, (x=xy7)}

And U? = —E21D2 [UZ(x*y? +y2=2x°y?)+U 7 (x* + x*y* —2x*y?)
+20U, (Cy—-x*y* —xy +xy°) ]
Therefore
1
u;-uU;= S [UZ(p*x2=x"y? —y? +2x7y*) +U [ (p?y? - x* - x7y* +2x°y?)
—2U0,U, (xyp® + X7y =x°y* —xy +xy°) ]
And
1
pr _ fZZ — E2D2 [fx2 (pZXZ _X4y2 _y2 +2X2y2)+ fyZ(pZyZ _X2 _X2y4 +2X2y2)

=28, f, (xyp® + Xy =x°y* —xy +xy°) ]
From equation (6.37) we get

,ax+ ,ay=1

P Do o2 (F2 - £2)+ (U2 -U?
/uxap ﬂyap P {(f,-1)+U,-U))}

P , 1,
or, ﬁ [,Ux(E"‘D)"‘,Uy(E_D)]:E'Df 2{(fp2_f22)+(U;_U22)}
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-2
D2E?
=2f, 1, (xyp® +X°y = x°y® —xy + xy®) J+{UZ (p*Xx* - x'y? —y? + 2x%y?)

1 ’ ’
or, o= [ 2xu, —2yu}, 1= [{fZ(p°x*=x'y? —y? +2x%y?) + 2 (p"y? —x* = x*y* + 2x%y?)

+Ul(p%y? —x* —x?y* +2x7y?) = 20U, (xyp® + X°y = X°y® —xy+xy*) }]

-2

or, 2xu, ~2yu;, = T [{X (¢ =xy? —1+y?) -y (¢ -2 + D} (17 +UD)
+{y (X =xy? =1+ y?) - x*(L+y* - 2y*)}(f) +U))
~2{ 2xy (¢ —1) (- YA M, £, +U,U,)]

or, 2Xu, —2Yu, = :;—D [x{ x(x* =1)(1— y*)IM +x{x@1-y?)(y* 1IN
—2x{y (x* 1) (1-y*)JO-y {y(x* -1)*IM
+ y{y(x* =1)(L— y*)IN - 2y{x(x* —-1)(1- y*)}O]

where M = (fZ+U?) ,N=(f’+U}) and O=(f, f,+UU))

2
or, 24, ~ 2y = L= [ X{X(¢ ~D(A-y)IM +x(- y*)(y? ~DN

=2y(x* =) (1-y*)Or+ y {-y(x* -)*M
+y(x* 1)1 y*)N —2x(x* -1)@-y*)O}]

Equating the co-efficient of x and y from both sides of the above equation

2

241, ZE)_E [ X(x* =1)(A-y*)M +x(1- y*)(y* DN - 2y(x* -1)(1- y*)O

' f72 1_ ? 2 2 2 2 2 2 2
) :ﬁ[x(x “D(F2+UZ) +x(y? —D(f 2 +U2)—2y(x? ~1)(f, f, +UU,)

6.46

and
-2

—2p,= fDE [-y(x* =D*M + y(x* =1)(L— y*)N —2x(x* - (1 - y*)O]

by = P L0 S0 U2 Y-y (8 U+ XL 40,0,
6.47
Effective feature of Ernst equation (5.44) is that the Kerr solution is given by the following
simple solution of it,
E=px—iqy 6.48
where p and q are constant with p? +q® =1.Now putting the value of (6.48) in (6.41) we

get
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E_ px—iqy —1
C px+igy +1

_(P’X* - +iqy(px—1) —iqy(px+1) +q°y’
{(px+1) —iqy) H(px +1) +iay}

_ pxP+g’y* -1 2iqy

= 6.49
(px+1)*+g%y*  (px+1)*+q”y”
Comparing the real and imaginary part of (6.39) and (6.49)
p°x*+q°y’ -1 : - 2qy
f= 7 ' U=s— & —7 6.50
(px+1)"+0q%y (px+1)"+0q%y

From (6.50) we get
_—2q9{(px+1)* +a°y"}+40°y’

T (D Y
Let us find the value of w from (6.45).We get
w, =(1-y*)f?U,
V) {(;>2le)2 :qjyz}; —2q{(px +1)22+qz>2/21+24013y2
(p°x"+q%y" -1 {(px+1)° +q7y"}

or, w, =(1-

2y2 _ pZXZ _1_2px)

or, w, =2q(1-y° (@
=200y T R gy 1)

W = Zq(l— yZ){(p2X2 + q2y2 —1)—2pX(pX+1)}

or,
(p2X2 +q2y2 _1)2

x* +q°y* -1)-2p°x(px+1)}
(p*x* +q°y* -1)*

d px+1

dx {p2x2 +0%y? —1}

2
or, w,=2p g0 y*) PP

or, w,=2p qd-y?)

Integrating on both sides with respect to x we get

An1_ 2
.,

where w, is an integrating constant. Again to obtain the value of x compute the followings:
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f _ p2X2+q2y2 _1
(px+1)% +q2y?

or. f = 2P(Px+D)° +a’y*}-2p(px+D(p°x* +9°y’ 1)
7 {(px+1)? + gy}
_2p°x* +4p”x-2pq’y’ +2p
{(px+D* +q*y*}

_2p{(px+1)°* —q*y*}
{(px+1)? +9°y*}
2 _ APH(Px+D* -a’y’Y

" {(px+1)> +q*y*}

Similarly,
_ 49°y(px+D)
T {(px+D)? + Y
» _ 169'y* (px+1)°
f)’ = 2 2.,274
{(px+1)°+q°y“}

Again,

_ -2y
(px+1)*+q°y?
or U —_ Apay(px+1)
C {(px+D)? Py
Uz - 16p°ay” (px+1)°
o {(px+1)* +q°y?}

And
U _—2q(p°x* +2px+1+q°y*) +49°y’
' {(px+1)* +q°y*}
or. U - —2H(px+1)°-q*y’}
! y 2 2,272
{(px+1)" +q7y"}
uz 2 Aa{(px+D)° —a’y’Y

! {(px+1)?+q°y*}*

Now compute

2,22 AP (px+D)” - gy} | 16p°q°y" (px+1)°
T x4+ D2+’ Y {(px+1)2 + Py}
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or. f24u? = AP TP+ —a’y*Y +4q°y* (px+1)°] 6.52
T {(px+1)* +q’y*}
And
ez, 22 Aa(px+D)’ —q’y}  169"y* (px+1)°
T {(px+D)? +ayY {(px+D)* +a%y?Y
or. 2.y < ACH(px+D)’ -’y }+49%y* (px+1)°] 6.53
Y {(px+1)? +q°y*}*
Again
_ 8pa’y(px+1{(px+1)* -a’y*} 8pa’y(px+D{(px+1)°* -q’y’}
ff +UU, =
S {(px+1)* +q°y?}* {(px+1)* +q°y?}*
=0 6.54

Putting the value of (6.52), (6.53) and (6.54) in equation (6.46)

2 -2 2 ~2y272 2,2 2
YO ey —gy AN Ay Y +AgTy (px+d)

L2 -y?) {(px+1)* +q*y*}*
4 agex(y? 1) UKD a7y Y + A7y (px+1)°
{(px+1)* +q*y*}
, 1-y? Xx+1)?2 +qg2y*}¥? X+1)2 +qg2y*}¥?
or, 4 - (2_y ) Alpx+d)” c21_y}2 [4p? (¢ —x) UPHD +a 7y}
2(x*=y7) (px*+q°y -1 {(px+1)*+q°y“}
D?+q°y*y
+ 402 (xv2 — X {(px+
T o+ gy )
, 1—y? 1
or, ﬂx=2((xz_y>/)2) (0°x% + q2y? _1)? [ 4p2(x* = x)+40%(xy* - X) ]
, 2X@-yA)(p*xE+q’y? -)) :
or, u, = 7P 1y D) since p>+q° =1
or ' = 2% — 2xy?
T Xy (P + gy - )
or. o C2x=2xy2(pP+q®)+2pix® —2p?x®
e (x> —y*)(p*x* +q°y* -1)
or. 1 = 2P°X(C—y*)-2x(p*x* +q°y° 1)
e (x* - y?)(p*x* +q%y* -1)
2
or, u = 2p°X 2X

(P22 +q2y* -1)  (x*—y?)
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Integrating on both sides with respect to x

#' =log(p*x* +9°y® —1) —log (x* — y*) + log A
A(p*x* +g%y* -1)

or, u' =log

(x* —y*)
or, et = A(pZXZZJquZyZ -3 6.55
(x*=y%)
where A is an arbitrary constant.
But from definition of x'(e* = fe*) we get
o = Al(PX+1)* +q°y’] 6.56
(x* = y%)

Let us introduce co-ordinate r and @ related to x and y by the relation given below

px+1= pr and z=Cosd 6.57

That implies x = (r —1) .And also introduce constants mand arelated to p and g as follows:
p

pt=m,p'g=a and m*-a’*=1 6.58
The mass and angular momentum of the Kerr solution will turn out be m and ma respectively
while these constant being evaluated here in units such that m and aare related as in (6.58).
To transform the Kerr solution to its standard form i.e. Boyer - Lindquist (1967) form let us start
with the form given by (6.14).

ds? = fdt* — 2kdtdp —ldg* —e* (dp”® +dz)
For the Kerr solution f ,k = (fw) ,e” are given by the relations (6.50), (6.51) and (6.52)
respectively which are functions of xand y .Also the function | is given by f *(p* —k?).

With the use of (6.43), (6.57) and (6.58) let express (p,z) interms of (r, &) as follows:

D :(X2 _1)1/2 (1_y2)1/2 And Z:Xy
={(r- %) -1'* 1-Cos?9)""* = (r - ¥,) Cosé
2,2 N2
- (2P 25!” P_y¥2 Sing or,z =(r-m)Cos@

_(r? _2%+i2—1)“2 sin¢
p

or, p=(r>=2mr+m?-1"?sing

p=(r>=2mr+a®)"?Sing
. Z=(r—m)Cosé 6.59
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Let us evaluate e“ in terms of (r,&) by the help of equation (6.57) and (6.59)
u_ Al(Px+D)° +9°y’]
(x*-y%)
{p(r- %)+ +q*Cos’0
(r—%)*-Cos*0
2

e

(r* + g Cos’6)

IS

(i_ﬂJri_CosZ@)
p2 p* p* P’

(r* +a*Cos’0)

or,e” =A
(r’m? —2rm® + m* —m?Cos?0)
o _A (r* +a*Cos®0) 6.60
m? (r-m)? +(a®> —m?)Cos?0 '

From (6.59) we get
dpzé(r2 —2mr+a®) ™% 2(r —m)dr Sind+(r* —2mr+a*)"?Cosf#dé

~dp® =(r* =2mr+a’®)™ (r—m)®dr® Sin’6+(r? —2mr+a*)Cos’ddé* +2(r —m)SindCosddrdg
And
dz = —(r—m)Sin&d& + Cosddr
oo dz? = (r—m)*Sin*4d@? + Cos*@dr? —2(r —m) Sin@Cos@&dadr
Hence

dp® +dz® = (r* —=2mr+a*)™ (r—m)®dr? Sin°d+(r* —2mr+a®)Cos’6dé”
+2(r—m)SindCosAdrd&+ (r —m)?Sin6de? + Cos*ddr? — 2(r —m) SindCos@d&dr
or, dp® +dz* = (r* —=2mr+a’®)™ (r—-m)>dr? Sin’d+(r* —2mr +a*)Cos*#d6&*
+(r—m)?Sin*9d@* +Cos*Adr?
or, dp? +dz’ = (r* —2mr+a®)™* (r—-m)>dr? —(r*> —=2mr+a*)™ (r—m)®Cos’dr? + (r —m)*d&*
—(r—m)?Cos*0d@?* + (r* —2mr +a*)Cos’6dé* + Cos*Adr?
or, dp® +dz® = (r* —2mr+a*)™ (r—-m)*dr®+(r—m)*d&”

_ _ 2
+Cos?0dé? (r? —2mr+a? —r? + 2mr +m?) + Cos*4dr? Z(r—m)+1
r—2mr+1l

or, dp®+dz’=(r*-2mr+a®)™" (r—m)*dr® +(a’® —m?)Cos*4d&* + (r —m)*do?
+(r? =2mr+1)"(a* —m?)Cos’@dr?
. dp® +dz® =[(r—m)® +(a® —m?)Cos’] [(r* —2mr +a*)™dr?* + d6*] 6.61

Again,
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k = fw
_(p*x*+9%y*-1) 2gp”'(L-y*)(px+1)
(px+D*+q%y*  (p°x*+q’y*-1)
_2g9p7 (- y)(px+D)
(p2X2+q2y2 _1)2
2gp™ (1—Cos?0) {p(r _rl))H}

G —:)+1}2 +q°Cos’0

_ 2qrSin®*g
r’p®+q°Cos’0
2 p?qrSin®e
qZ

I3

(r* +—,Cos%0)

_ 2marSin®e
(r® +a’Cos’0)

=2marSin®d(r’ + a’Cos’9)™* 6.62

or, k

And

f o (X +qy" )
(px+1)* +9°y”
r> —2mr+a*Cos’@
r’ +a’Cos’0
=(1-2rmY) 6.63
where >, =r? +a*Cos’0

or, f =

Again
I =f7(p* —k?)
r’ +a’Cos’6 : 4a’m’r’Sin*@

or.| :(rz(—Zmr+a2C0226?) [(r" ~2mr+a%)Sin‘6 - (r? +a’Cos?6)?
or = (r? +a%Cos’0)Sin’0 _(r* —2mr+a®)(r? +a’Cos’6)* —4a*m*r?sin*@ ]

" (r*—2mr+a®Cos’6) (r? +a%Cos?0)?

2

o, | Sin"6 [ (r2 —2mr +a’ Cos?0)

- (r? —2mr + a’Cos?6)(r? + a’Cos?6)
(r* +r2a® +r?a*Cos’0—2mra* Cos’6 + 2ma’r + a*Cos*6)]

or, | = 2mra’Sin*@(r* + a’Cos’d) ™ +(r* +a*)Sin*@

or, | =2mra’Sin*9>* +(r* +a®)Sin’ 6.64
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Putting the value of k,I, f,e” in equation (6.14) we get the required Kerr solution i.e. the

Kerr metric (setting A=m? and w, =0)
ds® = (1-2mrX;')dt? —4amr Sin*0 Y  dedt
—(2ma’®rsSin?0X +r’ +a*)Sin‘pde® - X, (2 dr? +de?)
6.65
whereY, = (r’ +a*Cos®9) and X, =(r’> —-2mr+a?).
By examining the Kerr metric in the asymptotic region r — « we get

2m

2m ~ 4amSin?@
r

ds? = (1—27m)dt2 —@-1gr2 _r2(de? + Sin20de?) dedt

Writing  (x°, x',x?,x%) = (t,r,6, 9) , let us write the inverse metric components of (6.65)
0% =(2,2,) ' [(r* +a*)* - X, a*Sin’4g]
gt =-2"%, ;9% =-X" ; g¥=-(2,X%,Sin*0) (X, -2mr)
and g% =(X,2,)"(2amr)
For the following discussion let us assume m?)a’.In the Schwarzschild metric the horizon
is determined by the equation g,, =0 and it is null surface but in the Kerr solution the
equation correspond to the surface is

r’ +a’Cos*9-2mr =0 6.66

or,r =m+m(m?® —a’Cos?)"'?
which is not null surface. So these can not be the horizons of the Kerr metric. Now consider
instead (6.66) the surface >, =0i.e.
r’—2mr+a’*=0
or, r=m+(m?—a?)""? 6.67

Let us these surfaces by >, and > .These surfaces are null surfaces since they satisfy the form

F=0with g** F F, =0.No outgoing null or time like geodesics cross surface >, ,so >,

is the horizon for the Kerr metric. Let us denote the surfaces of 6.66) S, and S_.The

meaning of these is as follows: The killing vector corresponding to the time independence of

(6.65) is % i.e. the vector £“ —(1,0,0,0) . This vector is time like only outside of S, and inside

of S_,itisnullon S, and space like in between S, and S_. The surface S, is called

stationary limit surface since it is only outside this surface that a material particle can remain

at rest with respect to infinity.
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The surface S, is time like except at two points on the axis where it coincides with X, and
where it is null. The region between S, and ., is called ergosphere .Particles can escape to
infinity from this region but not from inside X, . Also in the ergosphere it is possible for a

material particle or light wave to remain at rest with respect observer at infinity.

P S, (Stationary Limit Surface)
Ergosphere

Ring Singularity

2

S.

>+ (Horizon)

FIG: 01

The metric (6.65) has a ring singularity within the surface S_.The surfaces S, and >, are
non singular. Inside the surface > one gets the closed time like curves, so one gets violation

of causality and thus unphysical behavior. Such a violation of causality does not occur outside

2._. Thus the unphysical region is covered by the region between > and ., , from which
material particles and signals can not emerge to the region outside >, , to communicate with a
distant observer. For this reason the unphysical nature of the geometry within >._ is thought
to be acceptable and the Kerr solution for m? ) a’is believed to represent the field of

highly collapsed rotating star- a rotating black hole. For a® ) m? violations of causality occur

in the regions accessible to distant observers and hence in this case the metric is unphysical.
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