

Md. Shamim Hossain

Biswas

Publication Partner: IJSER

12/1/2008

 The Congestion Analysis of Transmission Control Protocol

 http://dx.doi.org/ 10.14299/ijser.01.12.2008

International Journal of Scientific & Engineering Research
ISSN 2229-5518 1

IJSER © 2020
http://www.ijser.org

IJSER

Publication Partner:

International Journal of Scientific & Engineering Research-IJSER (ISSN: 2229-5518)

 http://dx.doi.org/ 10.14299/ijser.01.12.2008

 The Congestion Analysis of Transmission Control Protocol

A network congestion-avoidance technique

Md. Shamim Hossain Biswas

 Publishing Partner:

 IJSER.
 www.ijser.org
 ISSN: 2229-5518

International Journal of Scientific & Engineering Research
ISSN 2229-5518 2

IJSER © 2020
http://www.ijser.org

IJSER

Publication Partner:

International Journal of Scientific & Engineering Research-IJSER (ISSN: 2229-5518)

http://dx.doi.org/ 10.14299/ijser.01.12.2008 iii

Preface

Alhamdulillah, all praises to ALLAH (subhanahu wa ta′ala) who gives me the ability to complete this

thesis work. I could not have finished my work if Almighty ALLAH did not make it possible.

I am thankful to my advisor Md. Shafiul Alam Khan who guided me throughout the work. He

provided me with resources that I needed to carry out the work and gave me important guidelines

whenever I was in a dilemma.

I would like to thanks our honorable professor Dr. Md. Mahfujur Rahman who suggested me to do

thesis if I want to make a scientific carrier in Computer science. He also helped me during topic

selection.

I also would like to vote of thanks our Chairman Dr. Md. Shamsul Alam who is the head of CS

department due to encourage me to do simulation of desired outcome.

I would like to vote of thanks to our assistant professor Mr. Md. Kazi Jahidur Rahman who has

arranged the presentation by his own effort. He has made the CS department light by leadership

knowledge.

Finally I would like to thank my parents and friends who were supportive throughout the work. I

also want to give special thanks to Scholar M. Mostafa kamal who was the renowned person made

me proficient in English Language during this thesis activities and last but not least I would like to

give special thanks Dr. Suria Pervin (Assistant professor, Department of computer science, Dhaka

University) who gave me good guideline in completion this thesis.

International Journal of Scientific & Engineering Research
ISSN 2229-5518 3

IJSER © 2020
http://www.ijser.org

IJSER

Publication Partner:

International Journal of Scientific & Engineering Research-IJSER (ISSN: 2229-5518)

http://dx.doi.org/ 10.14299/ijser.01.12.2008 iv

Copyright and Trademarks

I hereby declare that this research monograph becomes the property of Md. Shamim Hossain Biswas and to be

placed at the worldwide database access library for future computer security researchers and also be available

Online.

Md. Shamim Hossain Biswas is the owner of this Monograph and own all copyrights of the Work. IJSER acts as

publishing partner and author will remain owner of the content.

Copyright©2008, All Rights Reserved

No part of this Monograph may be reproduced, stored in a retrieval system, or transmitted, in any form or by

any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as described below,

without the permission in writing of the Author & publisher. Copying of content is not permitted except for

personal and internal use, to the extent permitted by national copyright law, or under the terms of a license

issued by the national Reproduction Rights Organization.

Trademarks used in this monograph are the property of respective owner and either IJSER or authors do not

endorse any of the trademarks used

Md. Shamim Hossain Biswas

BSc in Computer Science & Engineering (Stamford University)

ACCA-Foundation (London School of Business and Finance, UK)

ORCID: 0000-0002-4595-1470

shamim44-165@diu.edu.bd

Cell: +8801531-262445

International Journal of Scientific & Engineering Research
ISSN 2229-5518 4

IJSER © 2020
http://www.ijser.org

IJSER

mailto:shamim44-165@diu.edu.bd

Publication Partner:

International Journal of Scientific & Engineering Research-IJSER (ISSN: 2229-5518)

http://dx.doi.org/ 10.14299/ijser.01.12.2008 v

TABLE OF CONTENTS

 Page

PREFACE iii

COPYRIGHT AND TRADEMARKS iv

TABLE OF CONTENTS v

LIST OF FIGURES vii

LIST OF TABLES viii

ABSTRRACT ix

CHAPTER 1 INTRODUCTION

1.1 Motivation and Background 1

1.2 Problem Specification 3

1.3 Method Specification 3

1.4 Thesis Organization 4

CHAPTER 2 BACGROUND

2.1. Description of TCP 5

2.2 TCP Header 6

2.3 TCP Connection Establishment 7

2.4 TCP Connection Release 8

2.5 TCP Connection Management Modeling 8

2.6 TCP Transmission Policy 10

2.6.1: The Window Principle 10

2.6.2 Acknowledgments and Retransmissions 13

2.7 TCP Timer Management 13

2.8 Wireless TCP and UDP 16

2.9 TCP in Wireless or Cellular Mobile System 18

2.10 Link Characteristics that Impact TCP Performance 18

2.11 High Propagation Delay 18

2.12 Error Control 19

2.13 Retransmission 20

2.14 Forward Error Correction 20

2.15 Block Codes 20

2.16 Fountain Codes 24

2.17 Convolution Codes 24

2.18 Turbo Codes 24

CHAPTER 3 CONGESTION CONTROL METHODOLOGY

International Journal of Scientific & Engineering Research
ISSN 2229-5518 5

IJSER © 2020
http://www.ijser.org

IJSER

Publication Partner:

International Journal of Scientific & Engineering Research-IJSER (ISSN: 2229-5518)

http://dx.doi.org/ 10.14299/ijser.01.12.2008 vi

3.1 Introductory Description 25

3.2 Description of Congestion Control Parameter 28

3.3 Congestion control Technique 29

3.4 Congestion Control Algorithms 38

CHAPTER 4 PROBLEM FORMULATION & RESULT DISCUSSION

4.1 Congestion control in TCP 43

4.2. Optimum Forward error correction 43

4. 3 TCP Routing Agent 44

4.4 TCP Congestion Control simulation details 45

4.4.1 Flowchart of TCP Congestion Control 54

4.4.2 Sender ACK Processing Flowchart 56

4.4.3 Congestion Control simulation Diagram 57

4.4.4 Summary of Forward Error Correction simulation 57

4.4.5 Forward Error correction 61

4.4.6 Parameter of FEC 64

4.5 Simulation Result of TCP Congestion Control 65

4.6 Simulation Result of Forward Error Correction 81

CHAPTER 5 CONCLUSION AND FUTURE WORK

 5.1 Conclusion 88

 5.2 Author Contribution 88

 5.3 Recommendation for Further Study 89

REFERENCES 90

APPENDIX A 92

APPENDIX B 94

APPENDIX C 104

International Journal of Scientific & Engineering Research
ISSN 2229-5518 6

IJSER © 2020
http://www.ijser.org

IJSER

Publication Partner:

International Journal of Scientific & Engineering Research-IJSER (ISSN: 2229-5518)

http://dx.doi.org/ 10.14299/ijser.01.12.2008 vii

LIST OF FIGURES

NO Page

Figure 1.1 TCP/IP protocol stack 1

Figure 1.2 Functions of layers of TCP/IP MODEL 2

Figure 2.1 TCP Header 6

Figure 2.2 (a)TCP connection establishment in the normal case. (b) Call collision. 7

Figure 2.3 TCP connection management finite state machines 10

Figure 2.4 Simple Transmission-Flows 10

Figure 2.5 Window Principles, Message Packet 11

Figure 2.6 Window Principles 11

Figure 2.7 Message Packets 11

Figure 2.8 Window Principles Applied to TCP 12

Figure 2.9 Acknowledgment and Retransmission Process 13

Figure 2.10 Timer management 14

Figure 2.11 Splitting a TCP connection into two connections 17

Figure 2.12 Block coding technique 21

Figure 2.13 Redundancy & Check bit calculation System 21

Figure 2.14 Constructing H (11, 7) from 7 bit data frame. 22

Figure 2.15 Redundancy bits calculation 23

Figure 2.16 Adding check bits 23

Figure 2.17 Error correction mechanism 24

Figure 3.1 (a) A fast network feeding a low-capacity receiver (b) A slow network

feeding a high-capacity receiver

26

Figure 3.2 An Example of the Internet Congestion algorithm 28

Figure 4.1 Procedure of Receiver system 54

Figure 4.2 Sender Acknowledgement Segment 55

Figure 4.3 Sender segment processing System 56

Figure 4.4 Congestion Control simulation 57

Figure 4.5 Flowchart at the sender end 61

Figure 4.6 Flowchart of processing at the receiver end 62

Figure 4.7 Checksum Generator 63

Figure 4.8 Data unit and Checksum 63

Figure 4.9 Simulation Model of FEC 64

International Journal of Scientific & Engineering Research
ISSN 2229-5518 7

IJSER © 2020
http://www.ijser.org

IJSER

Publication Partner:

International Journal of Scientific & Engineering Research-IJSER (ISSN: 2229-5518)

http://dx.doi.org/ 10.14299/ijser.01.12.2008 viii

Figure 5.1 Logical Congestion window view 87

LIST OF TABLES

NO Page

Table 2.1 Calculating the check bit for Hamming code. 22

Table 4. 1 The following mentioned result is for sender performance of 5 second

simulation on run

65

Table 4. 2 The following mentioned result is for sender performance of 10 second

simulation run

66

Table 4. 3 The following mentioned result is for sender performance of 30 second

simulation run.

68

Table 4.4 The following mentioned result is for sender performance of 50 second

simulation run.

72

Table 4.5 The following result is for Forward error correction of receiver side

performance

82

International Journal of Scientific & Engineering Research
ISSN 2229-5518 8

IJSER © 2020
http://www.ijser.org

IJSER

Publication Partner:

International Journal of Scientific & Engineering Research-IJSER (ISSN: 2229-5518)

http://dx.doi.org/ 10.14299/ijser.01.12.2008 ix

ABSTRACT

This thesis deals with the investigation of transmission control protocol (TCP) performance in non-

wire line (Cellular Mobile System) environments. TCP Congestion Control analysis has been analyzed

in Java Programming Language. The congestion control has been simulated in Java programming

language environment and it also investigates of the effects of combining forward error correction

(FEC) with TCP in simulation environment of Java. FEC reduces the number of retransmissions and

shows better congestion control behavior, which can effectively run the network at a higher load. In

TCP/IP Protocol Architecture, TCP provides reliable end-to-end communication. Traditional TCP

implementations are tuned to work well over wired networks. A packet loss is occurred in a wired

network mainly due to network congestion. On the other hand in a wireless link packet losses are

caused mainly due to bit errors resulted from noise, interference, and various kind of fading. TCP has

no idea whether a packet loss is caused by congestion or bit error. TCP assumes loss is caused by

congestion and turns on its congestion control algorithms to slow down the amount of data it

transmits. So invoking congestion control algorithm for bit errors of wireless channel reduces TCP

throughput drastically. Proposal of this thesis is to analysis congestion/packet loss. FEC means

adding some redundancy information along with data that means this redundancy will consume

some portion of the available bandwidth. But using FEC reduces the number of retransmission at TCP

level and thus preserves time to send more data. As a result overall performance may be increased.

By simulation in Java Programming Language and in Windows Environment the comparison

between various TCP versions is done and it is demonstrated that in certain cases performance of

accurate data transmission can be increased significantly.

Keywords: TCP/IP, Cellular Mobile System, forward error correction, throughput,

congestion/packet loss. Wireless-link-packet, Java Programming, Eclipse Framework, Simulation,

Add-hoc network.

International Journal of Scientific & Engineering Research
ISSN 2229-5518 9

IJSER © 2020
http://www.ijser.org

IJSER

Publication Partner:

International Journal of Scientific & Engineering Research-IJSER (ISSN: 2229-5518)

http://dx.doi.org/ 10.14299/ijser.01.12.2008 1

CHAPTER 1

INTRODUCTION

1.1. Motivation and Background

Data communications has dramatically increased in popularity over the last decade. Millions of users

exchange a wide variety of information, mainly by using the World Wide Web (WWW). Companies,

Universities, Schools and millions of homes are connected and access the web daily for business and

leisure activities. The basic access technology in computer networking has been wire based. However

the increasing demand for connectivity from anywhere at any time has led to the development of

wireless networking technologies. These new access media pose several problems to the traditionally

used communication protocols. This thesis is concerned with the impact that wireless technologies

have on one of the major protocols used in today‟s Internet: the Transmission Control Protocol (TCP).

Before presenting the details of this protocol and the challenges it faces in non-wire line

environments, general overview of the Internet is given. With non-wire line environments means all

the access techniques that use wireless transmissions, like radio networks, wireless Local Area

Networks (LAN) [2] or Cellular Mobile System. A picture of TCP/IP protocol stack [1] is shown in

Figure 1. Each layer performs a specific task. The discussion of this stack is given from the bottom up.

Figure 1.1: TCP/IP protocol stack

The lowest layer is the physical layer (PHY), which represents the physical medium used for

communication. A wide range of transmission media can be used, for example coaxial cable, fiber-

optic, or twisted pair. Next is the Data Link Layer (DLL) which is split into two subs-layers: Medium

Access Control (MAC) layer, that controls the access to the physical medium, and Logical Link

Control (LLC) layer, that can provide reliable, connection oriented service between two neighboring

network elements. The center piece of the Internet protocol stack is the Internet Protocol (IP). It is

located on the third (network) layer in the stack. Every computer connected to the Internet needs to

International Journal of Scientific & Engineering Research
ISSN 2229-5518 10

IJSER © 2020
http://www.ijser.org

IJSER

Publication Partner:

International Journal of Scientific & Engineering Research-IJSER (ISSN: 2229-5518)

http://dx.doi.org/ 10.14299/ijser.01.12.2008 2

run this protocol. There is no alternative. IP is responsible for finding a path through the network

from the sending to the receiving end-host, a task called routing. Intermediate nodes, called routers,

forward the packets from one hop to the next until the destination is reached. The IP protocol is

considered to be unreliable, which means it is allowed to lose or re-order data packets during

transmission.

Figure 1.2: Functions of layers of TCP/IP MODEL

Figure 1.2: Functions of layers of TCP/IP MODEL

Above the network layer is the transport layer. This layer generally only exists in end hosts of the

Internet, not in the routers. There are two protocols used at the transport layer: User Datagram

Protocol (UDP), which is unreliable and only provides addressing to the specific application in the

end-computer, and Transmission Control Protocol (TCP), which is a reliable transport protocol. The

highest layer in the Internet protocol stack is the Application layer. In this layer a unlimited variety of

application protocols can exist. The most common ones are the World Wide Web (WWW), e-mail and

File Transfer (FTP). Traditionally the physical media used to interconnect computers have been wire-

based. The common characteristics of these media are the very low probability of data loss due to bit

errors, the fast transmission of one packet between two end hosts, usually in the millisecond range,

and the same bandwidth availability for the forward (sender to receiver) and the return (receiver to

sender) path. In recent years the use of non-wire line physical media has become more and more

common in computer networks. Wireless networks can support user mobility and can be deployed

with much less infrastructure then their wired counterparts. Cellular Mobile System can provide

APPLICATION LAYER

PROVIDES APPLICATION ACCESS TO COMMUNICATION ENVIRONMENT

TRANSPORT LAYER

PROVIDES A DELIVERY SERVICE FOR THE APPLICATIN LAYER

INTERNET LAYER

ESTABLISHES, MAINTAINS AND TERMINATES END-TO-END NETWORK COMMUNICATION

NETWORK ACCESS LAYER

ESTABLISHES DIRECT CONNECTION TO PHYSICAL MEDIA AND HANDLES DATA FLOW CONTROL

International Journal of Scientific & Engineering Research
ISSN 2229-5518 11

IJSER © 2020
http://www.ijser.org

IJSER

Publication Partner:

International Journal of Scientific & Engineering Research-IJSER (ISSN: 2229-5518)

http://dx.doi.org/ 10.14299/ijser.01.12.2008 3

access to users in geographically remote areas, serve as an emergency backup if the wired

infrastructure is destroyed, or connect distant network islands. These new media have quite different

characteristics to the wired network. The delay between packet transmission and reception can be

much higher, because of the limited bandwidth of the wireless media or the long propagation delay a

Cellular Mobile System hop. Wireless links are often noisy, which means that packet loss due to bit

errors is quite likely. There is also the possibility of different bandwidth on the forward and return

channel.

1.2 Problem Specification

A packet loss is occurred in a wired network mainly due to network congestion. On the other hand in

a wireless link packet losses are caused mainly due to bit errors resulted from noise, interference, and

various kind of fading. When TCP detects a packet loss, it assumes this loss is caused by congestion

and turns on its congestion control algorithms [3] and eventually slows down the amount of data it

transmits to adjust with the low capacity of the network. When a packet is lost, TCP has no idea

whether this loss is caused by congestion or bit error. As a result when packets are lost due to bit

errors of wireless channel TCP wrongly interprets these losses as due to congestion and invokes

congestion control algorithms, and reduces data transfer rate. This wrong act of TCP makes matters

worse.

1.3 Method Specification

Now the question is how to get rid of these losses. These problems can be reduced by congestion

control techniques what are TCP Tahoe, TCP Reno, TCP New Reno, TCP SACK, TCP Vegas and TCP

FACK. Two intuitive strategies to hide the packet losses from TCP are Retransmission and Forward

Error Correction (FEC). In Retransmission technique for congestion control, when a sender detects a

packet loss, it just transmits it again. In FEC technique the sender add enough redundancy

information along with data so that the receiver is able to figure out what the original data was. Every

wireless technology has a mean to recover the losses resulted from the uncertainty of wireless

channel. Common practice is to use FEC [4], retransmission or a combination of both at the link level.

There are reasons why error recovery techniques are usually performed at link level. Because

retransmission is faster at link level, and advantage of applying FEC at the link level is that more

information about the channel can be utilized. One important thing is that rely only on retransmission

is not possible, because which itself may be in error. But in practice many existing wireless standards

use very limited or no FEC. So there is every possibility that some of the bit errors at wireless channel

appear at TCP level [5].

International Journal of Scientific & Engineering Research
ISSN 2229-5518 12

IJSER © 2020
http://www.ijser.org

IJSER

Publication Partner:

International Journal of Scientific & Engineering Research-IJSER (ISSN: 2229-5518)

http://dx.doi.org/ 10.14299/ijser.01.12.2008 4

1.4 Thesis Organization

An outline of the thesis is given in this section. Chapter 1 gives a motivation and background,

Problem Specification, Method Specification and out line. Chapter 2 gives a description of TCP, such

as, Introduction TCP Protocol, TCP Header, TCP Connection Establishment, TCP Connection Release,

TCP Connection Management Modeling, TCP Transmission Policy, The Window Principle,

Acknowledgments and Retransmissions, TCP Congestion Control, Introductory Description,

Description of Congestion Control Parameter, Different Congestion control techniques, Tahoe TCP,

RFC 896 – Nagle‟s Algorithm, Karn‟s Algorithm, Jacobson‟s Congestion Control Algorithms, Reno

TCP – Fast Recovery, RFC 2018- Selective Acknowledgements, a Reno TCP extension, RFC 2582 –

New Reno TCP, Vegas TCP – A Proactive Approach, Congestion Control Algorithms, Slow Start and

Congestion Avoidance, Fast Retransmit/Fast Recovery, Re-starting Idle Connections, Loss Recovery

Mechanisms, TCP Timer Management, Wireless TCP and UDP, TCP in Wireless or Cellular Mobile

System, High Bit Error Rate, High Propagation Delay, Error Control, Retransmission, Forward Error

Correction, Block Codes, Hamming Code , Fountain Codes, Convolution Codes, Turbo Codes,

Forward Error Correction using Java, Checksum, Designing the Sender, Designing the Receiver,

Simulation Model of FEC, Parameters of FEC. Chapter 3 gives the congestion control methodology.

Chapter 4 introduces the implementation of Congestion Analysis using Java language and problem

formulation of Congestion Control and Forward Error Correction on cont and also represent

simulation results. It Chapter 5 represents the discussion and further study of this thesis. The last of

the chapter, two simulation of Congestion Control one TCP Congestion Control using Tahoe and

Reno in Appendix B and another one is Forward Error Correction in Appendix C both have been

simulated using Java programming Language. In appendix A, a simple sender receiver program has

been done.

International Journal of Scientific & Engineering Research
ISSN 2229-5518 13

IJSER © 2020
http://www.ijser.org

IJSER

Publication Partner:

International Journal of Scientific & Engineering Research-IJSER (ISSN: 2229-5518)

http://dx.doi.org/ 10.14299/ijser.01.12.2008 5

CHAPTER 2

BACKGROUND

2.1. Description of TCP

The Transmission Control Protocol (TCP) is the most commonly used transport layer protocol in the

Internet. It provides reliable, end-to-end, non- real-time data transfer. Since its original specification in

1981 TCP has undergone several changes and enhancements. This chapter will give an overview of

the development of TCP, describe the most commonly used versions in today‟s Internet and

introduce some experimental versions investigated in this thesis. In this chapter, we will give a

general overview of the TCP protocol [6]. In the next one, we will go over the protocol header, field

by field. A key feature of TCP, and one which dominates the protocol design, is that every byte on a

TCP connection has its own 32-bit sequence number. When the Internet began, the lines between

routers were mostly 56-kbps leased lines, so a host blasting away at full speed took over 1 week to

cycle through the sequence numbers. At modern network speeds, the sequence numbers can be

consumed at an alarming rate, as we will see later. Separate 32-bit sequence numbers are used for

acknowledgements and for the window mechanism: The sending and receiving TCP entities

exchange data in the form of segments. A TCP segment consists of a fixed 20-byte header (plus an

optional part) followed by zero or more data bytes. The TCP software decides how big segments

should be. It can accumulate data from several writes into one segment or can split data from one

write over multiple segments. Two limits restrict the segment size. First, each segment, including the

TCP header, must fit in the 65,515-byte IP payload. Second, each network has a maximum transfer

unit, or MTU, and each segment must fit in the MTU. In practice, the MTU is generally 1500 bytes (the

Ethernet payload size) and thus defines the upper bound on segment size.The basic protocol used by

TCP entities is the sliding window protocol. When a sender transmits a segment, it also starts a timer.

When the segment arrives at the destination, the receiving TCP entity sends back a segment (with

data if any exist, otherwise without data) bearing an acknowledgement number equal to the next

sequence number it expects to receive. If the sender‟s timer goes off before the acknowledgement is

received, the sender transmits the segment again. Although this protocol sounds simple, there are a

International Journal of Scientific & Engineering Research
ISSN 2229-5518 14

IJSER © 2020
http://www.ijser.org

IJSER

Publication Partner:

International Journal of Scientific & Engineering Research-IJSER (ISSN: 2229-5518)

http://dx.doi.org/ 10.14299/ijser.01.12.2008 6

number of sometimes subtle ins and outs, which we will cover below. Segments can arrive out of

order, so bytes 3072-4095 can arrive but cannot be acknowledged because bytes 2048-3071 have not

turned up yet. Segments can also be delayed so long in transit that the sender times out and

retransmits them. The retransmissions may include different byte ranges than the original

transmission, requiring a careful administration to keep track of which bytes have been correctly

received so far. However, since each byte in the stream has its own unique offset, it can be done. TCP

must be prepared to deal with these problems and solve them in an efficient way. A considerable

amount of effort has gone into optimizing the performance of TCP streams, even in the face of

network problems. A number of the algorithms used by many TCP implements will be discussed

below.

2.2. TCP Header

Every TCP segment begins with a fixed-format, 20-byte header [6]. The header fields shown in figure

2.1 are as follows:

The Source Port and Destination Port fields identify the source and destination ports, respectively.

These two fields plus the source and destination IP addresses, combine to uniquely identify each TCP

connection. The sequence number identifies the byte in the stream of data from the sending TCP to

the receiving TCP that the first byte of data in this segment represents. The Acknowledgement

number field contains the next sequence number that the sender of the acknowledgement expects to

receive. This is therefore the sequence number plus 1 of the last successfully received byte of data.

 Figure 2.1: TCP Header

The header length gives the length of the header in 32-bit words. This is required because the length

of the options field is variable. The 6-bit Flags field is used to relay control information between TCP

peers. The possible flags include SYN, FIN, RESET, PUSH, URG, and ACK [9]. The SYN and Fin flags

are used when establishing and terminating a TCP connection, respectively. The ACK flag is set any

International Journal of Scientific & Engineering Research
ISSN 2229-5518 15

IJSER © 2020
http://www.ijser.org

IJSER

Publication Partner:

International Journal of Scientific & Engineering Research-IJSER (ISSN: 2229-5518)

http://dx.doi.org/ 10.14299/ijser.01.12.2008 7

time the Acknowledgement field is valid, implying that the receiver should pay attention to it. The

URG flag signifies that this segment contains urgent data. When this flag is set, the Urgent Pointer

field indicates where the non-urgent data contained in this segment begins. The PUSH flag signifies

that the sender invoked the push operation; which indicates to the receiving side of TCP that it should

notify the receiving process of this fact. Finally, the RESET flag signifies that the receiver has become

confused and so wants to abort the connection. The Checksum covers the TCP segment, the TCP

header and the TCP data. This is a mandatory field that must be calculated by the sender, and then

verified by the receiver. The Option field is the maximum segment size option, called the MSS. Each

end of the connection normally specifies this option on the first segment exchanged. It specifies the

maximum sized segment the sender wants to receive. The data portion of the TCP segment is

optional.

 2.3. TCP Connection Establishment

Connections are established in TCP by means of the three-way handshake discussed. To establish a

connection, one side, say, the Server passively waits for an incoming connection by executing the

LISTEN and ACCEPTS primitives, either specifying a specific source or nobody in particular. The

other side, say, the client executes a CONNECT primitive, specifying the IP address and port to which

it wants to connect, the maximum TCP segment size it is willing to accept, and optionally some user

data. The CONNECT primitive sends a TCP segment with the SYN bit on and ACK bit on off and

waits for a response. When this segment arrives at the destination, the TCP entity there checks to see

if there is a process that has done a LISTEN on the port given in the Destination port field. If not, it

sends a reply with the RST bit on to reject the connection. If some process is listening to the port, that

process is given the incoming TCP segment. IT can then either accept or reject the connection. If it

accepts, an acknowledgement segment is sent back. The sequence of TCP segments sent in the normal

case is shown in Fig :(a). Note that a SYN segment consumes 1 byte of sequence space so that it can

be acknowledged unambiguously [6].

International Journal of Scientific & Engineering Research
ISSN 2229-5518 16

IJSER © 2020
http://www.ijser.org

IJSER

Publication Partner:

International Journal of Scientific & Engineering Research-IJSER (ISSN: 2229-5518)

http://dx.doi.org/ 10.14299/ijser.01.12.2008 8

Figure: 2.2(a) TCP connection establishment in the normal case. (b) Call collision.

In the event that two hosts simultaneously attempt to establish a connection between the same two

sockets, the sequence of events is as illustrated in Fig.2.2 (b).The result of these events is that just one

connection is established, one two because connections are identified by there end points. If the first

setup results in a connection identified by (x, y) And the second one does too, only one table entry is

made,. Namely, for(x, y) The initial sequence number on a connection is not) for the reasons we

discussed earlier. A clock-based scheme is used; with a clock tick every 4 sec. For additional safety,

when a host crashes, it may not reboot for the maximum packet lifetime to make sure that no packets

from previous connection are still roaming around the internet somewhere.

2.4 TCP Connection Release

Although TCP connection are full duplex, to understand how connections are released it is best to

think of them as a pair of simplex connections. Each simplex connection is released independently of

its sibling [6]. To release a connection, either party can use send a TCP segment with the FIN bit set,

which means that it has no more data to transmit. When the FIN is acknowledged, the direction is

shut down for new data. Data may contain to flow indefinitely in the other direction, however. When

both directions have been shut down, the connection is released. Normally, four TCP segments are

needed to release a connection, one FIN and one ACK for each direction. However, it is possible for

the first ACK and the second FIN to be contained in the same segment, reducing the total count to

three. Just as with telephone calls in which both people say goodbye and hang up the phone

simultaneously, both ends of a TCP connection may send FIN segments at the same time. These are

each acknowledged in the usual way, and the connection is shut down. There is, in fact, no essential

difference between the two hosts releasing sequentially or simultaneously. To avoid the two-army

problem, timers are used. If a response to a FIN is not forthcoming within two maximum packet

lifetimes, the sender of the FIN releases the connection. The other side will eventually notice that

nobody seems to be listening to it any more and will time out as well. While this solution is not

perfect, given the fact that a perfect solution is theoretically impossible, it will have to do. In practice,

problems rarely arise.

2.5 TCP Connection Management Modeling

The steps required establishing and release connections can be represented in a finite state machine

with the 11 states listed in Fig.2.3 [6] in each state, certain events are legal. When a legal event

happens, some action may be taken. If some other event happens, an error is reported. Each

connections starts in the CLOSED state. It leaves that state when it does either a passive open

(LISTEN), or an active open (CONNECT). If the other side does the opposite one, a connection is

established and state becomes ESTABLISHED. Connection release can be initiated by either side.

When it is complete, the state returns to CLOSED. The finite state machine itself is shown in Fig.2.3.

International Journal of Scientific & Engineering Research
ISSN 2229-5518 17

IJSER © 2020
http://www.ijser.org

IJSER

Publication Partner:

International Journal of Scientific & Engineering Research-IJSER (ISSN: 2229-5518)

http://dx.doi.org/ 10.14299/ijser.01.12.2008 9

The common case of a client actively connecting to a passive server is shown with heavy lines-solid

for the client, dotted for the server. The lightface lines are unusual event sequences. Each line in Fig.

2.3 is marked by an event/action pair. The event can either be a user-initiated system call (CONNECT,

LISTEN, SEND or CLOSE), a segment arrival (SYN, FIN, ACK or RST), or in one case, a timeout of

twice the maximum packet lifetime. The action is the sending of a control segment (SYN, FIN or RST)

or nothing indicated by – Comments are shown in parenthesis. One can best understand the diagram

by first following the path of a client (the heavy solid line), then later following the path of a server

(the heavy dashed line). When an application program on the client machine issues a CONNECT

request, the local TCP entry creates a connection record, marks it as beginning in the SYM SENT state

and sends a SYN segment. Note that many connections may be open (or being opened) at the same

time. on behalf of multiple applications, so the state is per connection and recorded in the connection

record. When the SYN+ACK arrive, TCP sends the final ACK of the three-way handshake and

switches into the ESTABLISHED state. Data can now be sent and received. When an application is

finished, it executes a CLOSE primitive, which causes the local TCP entity to send a FIN segment and

wait for the corresponding ACK (dashed box marked active close). When the ACK arrives, a

transition is made to state FIN WAIT 2 and one direction of the Connection is now closed. When the

other side close. Too, a FIN comes in which is acknowledged. Now both sides are closed, but TCP

waits a time equal to the maximum packet lifetime to guarantee that all packets from the connection

have died off, just in case the acknowledgement was lost. When the time goes off, TCP deletes the

connection record. Now let us examine connection management from the server‟s viewpoint. The

server dose a LISTEN and settles down to see that turns up. When a SYN comes in, it is

acknowledged and server goes to the SYN RCVD state. When the server‟s SYN is itself

acknowledged, the three-way handshake is complete and the server goes to the ESTABLISHED state.

Data transfer can now occur. When the client is done, it dose, it does a CLOSE, which cause a FIN to

arrive al the server. The server is then signaled. When the client‟s acknowledgement shows up, the

server releases the connection and deletes the connection record.

International Journal of Scientific & Engineering Research
ISSN 2229-5518 18

IJSER © 2020
http://www.ijser.org

IJSER

Publication Partner:

International Journal of Scientific & Engineering Research-IJSER (ISSN: 2229-5518)

http://dx.doi.org/ 10.14299/ijser.01.12.2008 10

Figure: 2.3 TCP connection management finite state machines [6]

The heavy solid line in Figure 2.3 is the path for a client. The heavy dashed line is the path for a

server. The light lines are unusual events. Each transition is labeled by the event causing it and the

action resulting from it, separated by a slash.

2.6 TCP Transmission Policy

A simple transport protocol uses the following principle, send a packet and then wait for an

acknowledgment from the receiver before sending the next packet. If the ACK is not received

within a certain amount of time, retransmit the packet.

Figure 2.4: Simple Transmission-Flows

While this mechanism ensures reliability, it only uses a part of the available network bandwidth. The

transmission-flows is depicted in figure 2.5.

2.6.1: The Window Principle

Consider now a protocol where the sender groups its packets to be transmitted as in figure 2.5 and

use the following rules:

International Journal of Scientific & Engineering Research
ISSN 2229-5518 19

IJSER © 2020
http://www.ijser.org

IJSER

Publication Partner:

International Journal of Scientific & Engineering Research-IJSER (ISSN: 2229-5518)

http://dx.doi.org/ 10.14299/ijser.01.12.2008 11

Figure 2.5: Window Principles, Message Packet

The sender may send all packets within the window without receiving an ACK, but must start a

timeout timer for each of them.

 The receiver must acknowledge each packet received, indicating the sequence number of the

last well-received packet.

 The sender slides the window on each ACK received.

In our example, the sender may transmit packets 1 to 5 without waiting for any acknowledgment:

Figure 2.6: Window Principles

At the moment the sender receives the ACK 1 (acknowledgment for packet 1), it may slide its window

to exclude packet 1. The window principle is depicted in figure 2.7. Message Packets at this point, the

sender may also transmit packet 6 which is shown in figure 2.8.

Figure 2.7: Message Packets

Imagine some special cases:

 Packet 2 gets lost: the sender will not receive an ACK 2, so its window will remain in the

position 1 (as last picture above). In fact, as the receiver did not receive packet 2, it will

acknowledge packets 3, 4 and 5 with an ACK 1, since packet 1 was the last one received ``in

sequence''. At the sender's side, eventually a timeout will occur for packet 2 and it will be

retransmitted. Note that reception of this packet by the receiver will generate an ACK 5, since

it has now successfully received all packets 1 to 5 and the sender's window will slide four

positions upon receiving this ACK 5.

 Packet 2 did arrive, but the acknowledgment gets lost: the sender does not receive ACK 2, but

will receive ACK 3. ACK 3 is an acknowledgment for all packets up to 3 (including packet 2)

and the sender may now slide his window to packet 4.

This window mechanism ensures:

International Journal of Scientific & Engineering Research
ISSN 2229-5518 20

IJSER © 2020
http://www.ijser.org

IJSER

Publication Partner:

International Journal of Scientific & Engineering Research-IJSER (ISSN: 2229-5518)

http://dx.doi.org/ 10.14299/ijser.01.12.2008 12

 Reliable transmission.

 Better use of the network bandwidth (better throughput).

 Flow-control, as the receiver may delay replying to a packet with an acknowledgment,

knowing its free buffers available and the window-size of the communication.

The Window Principle Applied to TCP. The above window principle is used in TCP, but with a few

differences:

 As TCP provides a byte-stream connection, sequence numbers are assigned to each byte in

the stream. TCP divides this contiguous byte stream into TCP segments to transmit them. The

window principle is used at the byte level; that is, the segments sent and ACKs received will

carry byte-sequence numbers and the window size is expressed as a number of bytes, rather

than a number of packets.

 The receiver determines the window size, when the connection is established, and is variable

during the data transfer. Each ACK message will include the window-size that the receiver is

ready to deal with at that particular time.

The sender's data stream can now be seen as shown in figure 2.8:

Where:

A- Bytes that are transmitted and have been acknowledged.

B- Bytes that are sent but not yet acknowledged.

C- Bytes that may be sent without waiting for any acknowledgment.

D- Bytes that may not yet be sent.

Figure 2.8: Window Principles Applied to TCP

Ensure that TCP will block bytes into segments, and a TCP segment only carries the sequence number

of the first byte in the segment.

2.6.2 Acknowledgments and Retransmissions

International Journal of Scientific & Engineering Research
ISSN 2229-5518 21

IJSER © 2020
http://www.ijser.org

IJSER

Publication Partner:

International Journal of Scientific & Engineering Research-IJSER (ISSN: 2229-5518)

http://dx.doi.org/ 10.14299/ijser.01.12.2008 13

TCP sends data in variable length segments. Sequence numbers are based on a byte count.

Acknowledgments specify the sequence number of the next byte that the receiver expects to receive.

Now suppose that a segment gets lost or corrupted. In this case, the receiver will acknowledge all

further well-received segments with an acknowledgment referring to the first byte of the missing

packet. The sender will stop transmitting when it has sent all the bytes in the window. Eventually, a

timeout will occur and the missing segment will be retransmitted. Suppose a window size of 1500

bytes, and segments of 500 bytes. A problem now arises, since the sender does know that segment 2 is

lost or corrupted, but doesn't know anything about segments 3 and 4. The sender should at least

retransmit segment 2, but it could also retransmit segments 3 and 4 (since they are within the current

window).

1. Segment 3 has been received, and for segment 4 it is not known: it could be received, but

ACK didn't reach us yet, or it could be lost also.

2. Segment 3 was lost, and received the ACK 1500 upon the reception of segment 4.

Figure 2.9: Acknowledgment and Retransmission Process

2.7 TCP Timer Management

TCP uses multiple timers (at least conceptually) to do its work [6]. The most important of these is the

retransmission timer. When a segment is sent, a retransmission timer is started. If the segment is

acknowledged before the timer expires, the timer is stopped. If on the other hand, the timer goes off

before the acknowledged comes in, the segment is retransmitted (and the timer started again). The

question that arises is: how long should the timeout interval be? This problem is much more difficult

in the Internet transport layer than in the generic data link protocols. In the latter case, the expected

delay is highly predictable, so the timer can be set to go off just slightly after the acknowledgement is

International Journal of Scientific & Engineering Research
ISSN 2229-5518 22

IJSER © 2020
http://www.ijser.org

IJSER

Publication Partner:

International Journal of Scientific & Engineering Research-IJSER (ISSN: 2229-5518)

http://dx.doi.org/ 10.14299/ijser.01.12.2008 14

expected ,as shown in figure (a). Since acknowledgements are rarely delayed in the link layer(due to

lack of congestion), the absence of an acknowledgement at the expected time generally means either

the frame or the acknowledgement has been lost.

Figure 2.10: Timer management [6]

Figure 2.10: (a) Probability density of acknowledgement arrival times in the data link layer. (b)

Probability density of acknowledgement arrival times for TCP. TCP is faced with a radically different

environment. The probability density function for the time it takes for a TCP acknowledgement to

come back looks more like Fig 2.10:(b) than Fig:(a). Determining the round-trip time to the

destination is tricky. Even when it is known, deciding on the timeout interval is also difficult. If the

timeout is set too short, say T1 in Fig 2.10 :(b) Unnecessary retransmission will occur, clogging the

Internet with useless packets. If it is set too long, (e.g.., T2), performance will suffer due to the long

retransmission delay whenever a packet is lost. Furthermore, the mean and variance of the

acknowledgement arrival distribution can change rapidly within a few seconds as congestion builds

up or is resolved. The solution is to use a highly dynamic algorithm that constantly adjusts the

timeout interval, based on continuous measurements of network performance. The algorithm

generally used by TCP is due to Jacobson (1988) and works as follows. For each connection, TCP

maintains a variable, RTT that is the best current estimate of the round-trip time to the destination in

question. When a segment is sent, a timer is started, both to see how long the acknowledgement takes

and to trigger a retransmission if it takes too long. If the acknowledgement gets back before the timer

expires, TCP measures how long the acknowledgement took, say M. It then updates RTT according to

the formula

 RTT = αRTT + (1-α) M ………………….Equ.(1)

When a smoothing factor determines how much weight is given to the old value. Typically α = 7/8.

International Journal of Scientific & Engineering Research
ISSN 2229-5518 23

IJSER © 2020
http://www.ijser.org

IJSER

Publication Partner:

International Journal of Scientific & Engineering Research-IJSER (ISSN: 2229-5518)

http://dx.doi.org/ 10.14299/ijser.01.12.2008 15

Even given a good value of RTT, choosing a suitable retransmission timeout is a nontrivial matter.
Normally, TCP uses βRTT, but the trick is choosing β. In the initial implementations, β was always 2,
but experience showed that a constant value was inflexible because it failed to respond when the
variance went up. In 1988 , Jacobso proposed making β roughly proportional to the standard
deviation of the acknowledgement arrival time probability density function so that a large variance
means a large β, and vice versa. In particular, he suggested using the mean deviation as a cheap
estimator of the standard deviation. His algorithm requires keeping track of another smoothed
variable, D, the deviation, whenever an acknowledgement comes in, the difference between the
expected and observed values, |RTT – M|, is computed. A smoothed value of this maintained in D
by the formula

 D = αD + (1 - α) |RTT – M |…………….. Equ.(2)

Where may or may not be the same value used to smooth RTT. While D is not exactly the same as the

standard deviation, it is good enough and Jacobson showed how it could be computed using only

integer ads, subtracts and drifts - a big plus. Most TCP implementation now uses this algorithm and

set the timeout interval to

 Timeout = RTT + 4*D…………………. Equ.(3)

The choice of the factor 4 is somewhat arbitrary, but it has two advantages. First, multiplication by 4

can be done with a single shift. Second, it minimizes unnecessary timeout and retransmission because

less than 1 percent of all packets come in more than four standard deviations late. (Actually, Jacobson

initially said to use 2, but later work has shown that 4 gives better performance) One problem that

occurs with the dynamic estimation of RTT is what to do when a segment times out and is sent again.

When the acknowledgement comes in , it is unclear whether the acknowledgement refers to the first

transmission or a later one. Guessing wrong can seriously contaminate the estimate of RTT. Phil Karn

discovered this problem the hard way. He is an amateur radio enthusiast interested in transmitting

TCP/IP packets by ham radio, a notoriously unreliable medium (on a good day, half the packets get

through). He made a simple proposal: do not update RTT on any segments that have been

retransmitted. Instead, the timeout is double on each failure until the segments get through the first

time. This fix is called Karn‟s algorithm. Most TCP implementation uses it.The retransmission timer is

not the only timer TCP uses. A second timer is the persistence timer. It is designed to prevent the

following deadlock. The receiver sends an acknowledgement with a window size of 0, telling the

sender to wait. Latter, the receiver updates the window, but the packet with the update is lost. Now

both the sender and the receiver are waiting for each other to do something. When the persistence

timer goes off, the sender transmits a probe to the receiver. The response to the probe gives the

window size. If it is still zero, the persistence timer is set again and the cycle repeats. If it is nonzero,

data can now be sent.A third timer that some implementations use is the keep alive timer. When a

connection has been idle for a long time, the keep alive, timer may go off to cause one side to check

whether the other side is still there. If it fails to respond, the connection is terminated. This feature is

controversial because it adds overhead and may terminate an otherwise healthy connection due to a

International Journal of Scientific & Engineering Research
ISSN 2229-5518 24

IJSER © 2020
http://www.ijser.org

IJSER

Publication Partner:

International Journal of Scientific & Engineering Research-IJSER (ISSN: 2229-5518)

http://dx.doi.org/ 10.14299/ijser.01.12.2008 16

transient network partition. The last timer used on each TCP connection is the one used in the TIMED

WAIT state while closing. It runs for twice the maximum packet lifetime to make sure that when a

connection is closed; all packets created by it have died off.

2.8 Wireless TCP and UDP

In theory, transport protocols should be independent of the technology of the underlying network

layer. In particular, TCP should not care whether IP is running over fiber or over radio [6]. In practice,

it does matter because most TCP implementations have been carefully optimized based on

assumptions that are true for wired networks but that fail for wireless networks. Ignoring the

properties of wireless transmission can lead to a TCP implementation that is logically correct but has

horrendous performance. The principal problem is the congestion control algorithm. Nearly all TCP

implementations nowadays assume that timeouts are caused by congestion, not by lost packets.

Consequently, when a timer goes off, TCP shows down and sends less vigorously (e.g.., Jacobson‟s

slow start algorithm). The idea behind this approach is to reduce the network load and thus alleviate

the congestion. Unfortunately, wireless transmission links are highly unreliable. They lose packets all

the time. The proper approach to dealing with lost packets is to send them again, and as quickly as

possible. Slowing down just makes matters worse, if, say, 20 percent of all packets are lost, then when

the sender transmits 100 packets/sec, the throughput is 80 packets/sec. If the sender slows down to

50 packets/sec, the throughput drops to 40 packets/sec. In effect, when a packet is lost on a wired

network, the sender should slow down. When one is lost on a wireless network, the sender should try

harder. When the sender does not know what the network is, it is difficult to make the correct

decision. Frequently, the path from sender to receiver is heterogeneous. The first 1000 km might be

over a wired network, but the last 1 km might be wireless. Now making the correct decision on a

timeout is even harder, since it matters where the problem occurred. A solution proposed by Bakne

and Badrinath (1995), indirect TCP, is to split the TCP connection into two separate connections, as

shown in Fig. the first connection goes from the sender to the base station. The second one goes from

the base station to the receiver. The base station simply copies packets between the connections in

both directions. The advantage of this scheme is that both connections are now homogeneous.

Timeouts on the first connection can slow the sender down, whereas timeouts on the second one can

speed it up. Other parameters can also be tuned separately for the two connections.

International Journal of Scientific & Engineering Research
ISSN 2229-5518 25

IJSER © 2020
http://www.ijser.org

IJSER

Publication Partner:

International Journal of Scientific & Engineering Research-IJSER (ISSN: 2229-5518)

http://dx.doi.org/ 10.14299/ijser.01.12.2008 17

 Figure 2.11: Splitting a TCP connection into two connections [6].

There are two connections. The disadvantage of the scheme is that it violates the semantics of TCP.

Since each part of the connection is a full TCP connection, the base station acknowledges each TCP

segment in the usual way. Only now receipt of an acknowledgement by the sender does not mean

that the receiver got the segment, only that the base station got it. A different solution, due to

Balakrishnan et al.(1995), does not break the semantics of TCP. It works by making several small

modifications to the network layer code in the base station. One of the changes is the addition of a

snooping agent that observes and caches TCP segments going out to the mobile host and

acknowledgement coming back from it. When the snooping agent sees a TCP segment going out to

the mobile host but does not see an acknowledgement coming back before its (relatively short) timer

goes off, it just retransmits that segment, without telling the source that it is doing so. It also

retransmits when it sees duplicate acknowledgement from from the mobile host go by, invariably

meaning that the mobile host has missed something. Duplicate acknowledgements are discarded on

the spot, to avoid having the source misinterpret them as congestion. One disadvantage of this

transparency, however, is that if the wireless link is very loss, the source may time out waiting for an

acknowledgement and invokes the congestion control algorithm. With indirect TCP, the congestion

control algorithm will never be started unless there really is congestion in the wired part of the

network The Balakrishnana et al. paper also has a solution to the problem of lost segments originating

at the mobile host. When the base station notices a gap in the inbound sequence numbers, it generates

a request for a selective repeat of the missing bytes by using a TCP option. Using these fixes, the

wireless link is made more reliable in both directions, without the source knowing about it and

without changing the TCP semantics. While UDP does not suffer from the same problems as TCP,

wireless communication also introduce difficulties for it. The main trouble is that programs use UDP

expecting it to be highly reliable. They know that no guarantees are given, but they still expect it to be

near perfect. In a wireless environment, UDP will be far from perfect. For programs that can recover

from lost UDP messages but only at considerable cost, suddenly going from an environment where

messages theoretically can be lost but rarely are, to one in which they are constantly being lost can

result in a performance disaster.

International Journal of Scientific & Engineering Research
ISSN 2229-5518 26

IJSER © 2020
http://www.ijser.org

IJSER

Publication Partner:

International Journal of Scientific & Engineering Research-IJSER (ISSN: 2229-5518)

http://dx.doi.org/ 10.14299/ijser.01.12.2008 18

Wireless communication also affects areas other than just performance. For example, how does a

mobile host find a local printer to connect to, rather than use its home printer? Somewhat related to

this is how to get the www page for the local cell, even if its name is not known. Also, WWW page

designers tend to assume lots of bandwidth is available, Putting a large logo on every page becomes

counterproductive if it is going to take 10 sec to transmit over a slow wireless link every time the page

is referenced, irritating the users no end. As wireless networking becomes more common, the

problem of running TCP over it become more acute.

2.9 TCP in Wireless or Cellular Mobile System

In recent years there has been a strong interest in extending the Internet access technologies to

wireless (Cellular Mobile System links). There are many advantages in using these technologies. For

example they enable user mobility and network access anytime from anywhere. They can have a high

bit error rate (BER), often combined with fading, can be asymmetric in nature (different forward and

return channel bandwidth) or have a high propagation delay. Not all of these characteristics might be

present in any given link but all of them, or even a subset of them, pose difficulties to the traditional

TCP protocol.

2.10 Link Characteristics that Impact TCP Performance

High Bit Error Rate

There are two main problems when using TCP over a channel that has a high BER. The first is TCP‟s

inability to distinguish between packet losses due to congestion and due to corruption; the second is

that some TCP variants cope badly with multiple packet losses per congestion window.

Losses due to Corruption: TCP has been developed for reliable terrestrial links which have a

very low BER. Because of the low probability of corrupted packets, all TCP congestion control

strategies take lost packets as an indication of congestion. For every lost packet the TCP sender cuts

down its transmission rate at least by half. In the case of TCP Tahoe, or when the losses are so severe

that a timeout occurs, the data transmission drops back to one packet per round trip time.

Multiple Losses per Congestion Window: Some TCP variants (especially Reno) cope badly

when several packets per congestion window are lost. Consecutive losses lead to a consecutive

halving of the congestion window which is undesirable in wireless as well as in wire line

environments. If multiple packets are lost, recovery can take a considerable amount of time.

2.11 High Propagation Delay

Cellular Mobile System links can have a very high or very variable propagation delay, depending on

the altitude of Mobile user and the number of hops necessary for a connection. There are three main

problems that TCP faces when used over high delay links:

International Journal of Scientific & Engineering Research
ISSN 2229-5518 27

IJSER © 2020
http://www.ijser.org

IJSER

Publication Partner:

International Journal of Scientific & Engineering Research-IJSER (ISSN: 2229-5518)

http://dx.doi.org/ 10.14299/ijser.01.12.2008 19

 Slow Congestion Window Growth

 Long Time to Recover from Lost Packets

 Receive Window Limitation and

 Variable Propagation Delay

Slow Congestion Window Growth: The round trip time is a vital parameter for the congestion

window growth. During Slow Start, congestion window doubles per round trip time and during

Congestion Avoidance, congestion window is increased by one per round trip time. Because of this

dependency between round trip time and congestion window increase, it is obvious that the higher

the round trip time the slower the congestion window growth. This is especially profound during the

Slow Start phase which is meant to probe quickly for available bandwidth.

Long Time to Recover from Lost Packets: Since the loss detection is based on an exchange

of acknowledgments it always takes at least one round trip time for the sender to detect the loss of

one packet and to retransmit it. The retransmission timeout value is also based on the round trip time

as well as the variation of the round trip time samples. Therefore the larger any one of these values is,

the higher the retransmission timeout will be. A high timeout value means a potentially long idle time

during which the connection waits for the timeout to expire and for data transmission to

recommence. Finally, as already mentioned, each loss is taken as a congestion indication. After a loss

the transmission rate is reduced.

Receive Window Limitation: For high delay (or high bandwidth) links this value is quite large

and it is possible that TCP will never be able to use the available link bandwidth. This is caused by the

receive window limitation. The advertised receive window is always the upper bound for the

congestion window growth. Unfortunately there is only a 16 bit field in the TCP header reserved to

transmit this receive window to the sender.

Variable Propagation Delay: Not too much research has been done up to date to investigate

TCP behavior over networks with variable propagation delay.

2.12 Error Control

Error control is a necessary function in communication networks. In general, several different error-

handling mechanisms co-exist in the same network. Some errors are caused by short-lived noise in a

specific location of the network that causes individual bits in the data stream to be altered. This is a

problem of the physical transmission of information, for example thermal noise in the electronic

components can cause errors. These types of errors are called bit errors, noise-induced errors or

transmission errors. A second type of error occurs on a higher layer in the network, where packets are

switched through different links. If links are overloaded, packets May have to be dropped due to

International Journal of Scientific & Engineering Research
ISSN 2229-5518 28

IJSER © 2020
http://www.ijser.org

IJSER

Publication Partner:

International Journal of Scientific & Engineering Research-IJSER (ISSN: 2229-5518)

http://dx.doi.org/ 10.14299/ijser.01.12.2008 20

limited buffer space in the routers or switches, this is known as congestion losses. There are two main

approaches for handling errors and losses:

 Retransmission & Forward Error Correction (FEC)

2.13 Retransmission

When retransmissions are used, all packets in which errors are detected are discarded. Hence, losses

are caused by packets being discarded either due to transmission errors or due to congestion. Packets

that have been discarded must be retransmitted by means of automatic repeat request (ARQ)

protocols. The retransmission of lost data can also be handled in different ways, one approach is that

the acknowledgements specify exactly the missing packets, and only those packets are retransmitted,

which is known as selective repeat.

2.14 Forward Error Correction

The second approach to handling errors and losses is forward error correction, where redundant

information is proactively sent to the receiver in order to allow it to correct errors. The redundant

information is generated by means of channel coding. In forward error correction (FEC) [7], a receiver can

use an error correcting code. Which automatically corrects certain errors? In theory, it is possible to correct any

error automatically. Error correcting codes, however, are more sophisticated than error detection codes and

require more redundancy bits.The concept underlying error correction can be most easily understood by

examining the simplest case: single-bit errors. Single-bit errors can be detected by the addition of a

redundant (parity) bit. A single additional bit can detect single-bit errors in any sequence of bits

because it must distinguish between only two conditions: error or no error. A bit has two states (0 and

1). These two states are sufficient for this level of detection. But what if we want to correct as well as

detect single-bit error? Two states are enough to detect an error but not to correct it. An error occurs

when the receiver reads a 1 bit as 0 or a 0 bit as 1. To correct the error, the receiver simply reverses the

value of the altered bit. To do so, however, it must know which bit is in error. The secret of error

correction, therefore, is to locate the invalid bit or bits.For example, to correct a single bit error in an

ASCII character, the error correction code must determine which of the 7 bits has changed. In this

case, we have to distinguish between eight different states: no error, error in position 1, error in

position 2 and so on, up to error in position 7. To do so requires enough redundancy bits to show all

eight states. Channel coding is used in many commercial systems, for example compact discs and

mobile communication systems. There are several types of channel codes, and the ones used in this

thesis are block codes. In this section alternative codes are shortly described.

2.15 Block Codes

A block code is applied to a block of data symbols and generates a number of redundant symbols,

a.k.a. parity symbols. Each symbol consists of one or more bits, depending on the code. The error

correction capability is higher for codes with more parity symbols, but the parity symbols also use

International Journal of Scientific & Engineering Research
ISSN 2229-5518 29

IJSER © 2020
http://www.ijser.org

IJSER

Publication Partner:

International Journal of Scientific & Engineering Research-IJSER (ISSN: 2229-5518)

http://dx.doi.org/ 10.14299/ijser.01.12.2008 21

some of the transmission capacity. Well-known examples of block codes are Hamming codes and

Reed-Solomon codes.

Figure 2.12: Block coding technique [7]

To correct bit errors a block of bits is encoded and transmitted over a link, then the decoder attempts

to correct bit errors if any are present. If the number of bit errors within a block is lower than the code

can correct, the original data block is recovered. In packet loss recovery a block of packets is encoded

to generate packets of parity information, i.e. the first symbols in each data packet are encoded to

produce the first symbols in each of the parity packets as shown in Figure 2.12 .

Hamming Code

Hamming code provides a practical solution. The Hamming code [7] can be applied to data units of

any length and uses the relationship between data and redundancy bits that can be added to the end

of the data unit or interspersed with the original data bits.

For the no of redundant bits 2r >= m+r+1 inequality must be satisfied. Here m=no of data bit and

r=no of redundant bit. If m=7 to satisfy the inequality r=4. In figure 10.14 these bits are placed in

position 1, 2, 4 and 8. For clarity in the example below, these bits are r1, r2, r4 and r8.

Figure 2.13: Redundancy & Check bit calculation System

1 2 3 4 5 6 7 8 9 10 11

R1 R2 D0 R4 D1 D2 D3 R8 D4 D5 D6

International Journal of Scientific & Engineering Research
ISSN 2229-5518 30

IJSER © 2020
http://www.ijser.org

IJSER

Publication Partner:

International Journal of Scientific & Engineering Research-IJSER (ISSN: 2229-5518)

http://dx.doi.org/ 10.14299/ijser.01.12.2008 22

 0 1 2 3 4 5 6 7 8 9 10

Table 2.1: Calculating the check bit for Hamming code.

Decimal Binary Check Bits(First 1 of
corresponding
position)

Check bits depends on(all the no
contains 1 of that bit position)

1 0001 √ 1,3,5,7,9,11

2 0010 √ 2,3,6,7,10,11

3 0011

4 0100 √ 4,5,6,7

5 0101

6 0110

7 0111

8 1000 √ 8,9,10,11

9 1001

10 1010

11 1011

Figure 2.14: Constructing H (11, 7) from 7 bit data frame.

Calculation The r Values

International Journal of Scientific & Engineering Research
ISSN 2229-5518 31

IJSER © 2020
http://www.ijser.org

IJSER

Publication Partner:

International Journal of Scientific & Engineering Research-IJSER (ISSN: 2229-5518)

http://dx.doi.org/ 10.14299/ijser.01.12.2008 23

Figure 2.15: Redundancy bits calculation

The original character is in its appropriate position in the 11 bit unit frame. The even parity

calculation is used form those data bit.

Figure 2.16: Adding check bits

The receiver takes the transmission and recalculates 4 new parity bits, using the same set of bits used

by the sender plus the relevant parity r bit for each set. Then it assembles the new parity values into a

binary number in order of position (r8, r4, r2, r1). In the given example, this step gives a binary

number 0111 (7 decimal), which is the precise location of the bit error. 1000 is equivalent to decimal

International Journal of Scientific & Engineering Research
ISSN 2229-5518 32

IJSER © 2020
http://www.ijser.org

IJSER

Publication Partner:

International Journal of Scientific & Engineering Research-IJSER (ISSN: 2229-5518)

http://dx.doi.org/ 10.14299/ijser.01.12.2008 24

8. So bit position 8 is in error. When the receiver identify that an error has occur then the receiver just

inverse the bit and calculate the value. Error correction is shown in figure 2.19.

Error Detection and Correction

Figure 2.17: Error correction mechanism

2.16 Fountain Codes

The decoding complexity of block codes in general increases rapidly with the code length. Recent

progress in the area of channel codes has lead to the development of codes with decoding complexity

that only grows linearly with the code length. These are actually a form of low-density parity check

codes that were initially proposed by Gallagher in 1963, but practical codes have only been developed

in the 1990‟s. For the erasure channel these codes are known as fountain codes due to their

application in the digital fountain concept for distribution of large files.

2.17 Convolution Codes

A digital finite impulse response filter performs the encoding. The data does not have to be divided

into blocks before the encoding, as opposed to block codes. The decoding is made by Viterbi

algorithm [8]. Where different nodes in a trellis represent the states of the encoding filter, and the

transitions between different states are represented as edges.

2.18 Turbo Codes

Turbo codes are based on combining several encoders using interleaving to produce codes of very

long lengths with limited decoding complexity. The basic codes of the turbo codes can either be block

codes or convolution codes. Decoding is made by means of message passing between multiple

International Journal of Scientific & Engineering Research
ISSN 2229-5518 33

IJSER © 2020
http://www.ijser.org

IJSER

Publication Partner:

International Journal of Scientific & Engineering Research-IJSER (ISSN: 2229-5518)

http://dx.doi.org/ 10.14299/ijser.01.12.2008 25

decoders, similarly to the decoding of low-density parity check codes. For end-to-end FEC it does not

have any clear advantages.

CHAPTER 3

TCP CONGESTION CONTROL METHODOLOGY

3.1 Introductory Description

When the load offered to any network is more than it can handle, congestion builds up. The Internet

is no exception. We will discuss algorithms that have been developed over the past quarter of a

century to deal with congestion. Although, the network layer also tries to manage congestions, most

of the heavy lifting is done by TCP because the real solution to congestion is to slow down the data

rate [6]. In theory, congestions can be dealt with by employing a principle borrowed from physics: the

law of conservation of packets. The idea is to refrain from injecting a new packet into the network

until an old one leaves (i.e. is delivered). TCP attempts to achieve this goal by dynamically

manipulating the window size. The first step in managing congestion is detecting it. In the old days

detecting congestions was difficult. A timeout caused by a lost packet could have been caused by

either noise on a transmission line or packet discard at a congested router. Telling the difference was

difficult. Nowadays, packet loss due to transmission errors is relatively rare because most long-haul

trunks are fiber (although wireless networks are a different story). Consequently, most transmission

International Journal of Scientific & Engineering Research
ISSN 2229-5518 34

IJSER © 2020
http://www.ijser.org

IJSER

Publication Partner:

International Journal of Scientific & Engineering Research-IJSER (ISSN: 2229-5518)

http://dx.doi.org/ 10.14299/ijser.01.12.2008 26

timeouts on the internet are due to congestion. All the Internet TCP algorithms assume that timeouts

are caused by congestion and monitor timeouts for signs of trouble the way miners watch their

carriers. Before discussing how TCP reacts to congestions, let us first describe what it does to try to

prevent congestion from occurring in the first place, when a congestions is established, a suitable

window size has to be chosen. The receiver can specify a window based on its buffer size. If the

sender sticks to this window size, problems will not occur due to buffer overflow at the receiving end,

but they may still occur due to internal congestion within the network.

In Fig 3.1: a, b .we see this problem illustrated hydraulically. In Fig 3.1: (a). We see a thick pipe

leading to a small-capacity receiver. As long as the sender does not send more water than the bucket

can contain, no water will be lost. In Fig 3.1: (b). The limiting factor is not the bucket capacity, but the

internal carrying capacity of the network. If too much water comes in too fast, it will back up and

some will be lost (in this case by over following the funnel)

Figure 3.1: (a) A fast network feeding a low-capacity receiver (b) A slow network feeding a high-

capacity receiver [6].

International Journal of Scientific & Engineering Research
ISSN 2229-5518 35

IJSER © 2020
http://www.ijser.org

IJSER

Publication Partner:

International Journal of Scientific & Engineering Research-IJSER (ISSN: 2229-5518)

http://dx.doi.org/ 10.14299/ijser.01.12.2008 27

The Internet solution is to realize that two potential problems exist at network capacity and receiver

capacity and to deal with each of them separately. To do so, each sender maintains two windows: the

window that receiver has granted and a second window that is congestion window. Each reflects the

number of bytes the sender may transmit. The number of bytes that may be sent is the minimum of

the two windows. Thus, the effective window is the minimum of what the sender thinks is all right

and what the receiver thinks is all right. If the receiver says a “Send 8 KB” but the sender knows that

bursts of more than 4 KB clog the net-work, it sends 4 KB. On the other hand, if the receiver says

“Send 8KB” and the sender knows that bursts of up to 32KB get through effortlessly, it sends the full

8 KB requested.

When a connection is established, the sender initializes the congestion window to the size of the

maximum segment in use on the connection. It then sends one maximum segment. If this segment is

acknowledged before the timer goes off, it adds one segment‟s worth of bytes to the congestion

window to make it two maximum size segments and sends two segments. As each of these segments

is acknowledged, the congestion window is increased by one maximum segment size. When a

congestion window is n segments, if all n are acknowledged on time. The congestion window is

increased by the byte count corresponding to n segments. In effect, each burst acknowledged doubles

the congestion window.

The congestion window keeps growing exponentially until either a timeout occurs or the receiver‟s

window is reached. The idea is that if bursts of size, say 1024, 2048 and 4096 bytes work fine but a

burst of 8192 bytes gives a timeout, the congestion window should be set to 4096 to avoid congestion.

As long as the congestion window remains at 4096 no bursts longer than that will be sent, no matter

how much window space the receiver grants. This algorithm is called slow start, but it isn‟t slow at all

(Jacobson 1988). It is exponential. All TCP implementation are required to support it.

Now let us look at the Internet congestion control algorithm. It uses a third parameter, the threshold,

initially 64 KB, in addition to the receiver and congestion windows. When a timeout occurs, the

threshold is set to half of the current congestion window and the congestion window is reset to one

maximum segment. Slow start is then used to determine what the network can handle, except that

exponential growth stops when the threshold is hit. From that point on, successful transmissions

grow the congestion window linearly (by one maximum segment for each burst) instead of one per

segment. In effect, this algorithm is guessing that it is probably acceptable to cut the congestion

window in half, and then it gradually works its way up from there.

As an illustration of how the congestion algorithm works, see Figure 3.2: The maximum segment size

here is 1024 bytes. Initially, the congestion window was 64 KB, but a timeout occurred, so the

threshold is set to 32 KB and the congestion window to 1 KB for transmission 0 here. The congestion

window then grows exponentially until it hits the threshold (32 KB). Starting then, it grows linearly.

International Journal of Scientific & Engineering Research
ISSN 2229-5518 36

IJSER © 2020
http://www.ijser.org

IJSER

Publication Partner:

International Journal of Scientific & Engineering Research-IJSER (ISSN: 2229-5518)

http://dx.doi.org/ 10.14299/ijser.01.12.2008 28

Transmission 13 is unlucky (it should have known) and a timeout occurs. The threshold is set to half

the current window (by now 40 KB, so half is 20 KB), and slow start is initiated all over again. When

the acknowledgements from transmission 14 start coming in, the first four each double the congestion

window, but after that, growth becomes linear again.

If no more timeout occur, the congestion window will continue to grow up to the size of the receiver‟s

window. At that point, it will stop growing and remain constant as long as there are no more

timeouts and receiver‟s window does not change size. As an aside, if an ICMP SOURCE QUENCH

packet comes in and is passed to TCP, this event is treated the same way as a timeout

Transmission number/round

 Figure 3.2: An Example of the Internet Congestion algorithm [6].

3.2 Description of Congestion Control Parameter
This section provides the definition of several terms that will be used throughout the remainder of

this document.

SEGMENT: A segment is any TCP/IP data or acknowledgment packet (or both).

SENDER MAXIMUM SEGMENT SIZE (SMSS):

International Journal of Scientific & Engineering Research
ISSN 2229-5518 37

IJSER © 2020
http://www.ijser.org

IJSER

Publication Partner:

International Journal of Scientific & Engineering Research-IJSER (ISSN: 2229-5518)

http://dx.doi.org/ 10.14299/ijser.01.12.2008 29

The SMSS is the size of the largest segment that the sender can transmit. This value can be based on

the maximum transmission unit of the network, the path MTU discovery algorithm, RMSS (see next

item), or other factors. The size does not include the TCP/IP headers and options.

RECEIVER MAXIMUM SEGMENT SIZE (RMSS):

The RMSS is the size of the largest segment the receiver is willing to accept. This is the value

specified in the MSS option sent by the receiver during connection startup or, if the MSS option is not

used, 536 bytes the size does not include the TCP/IP headers and options.

FULL-SIZED SEGMENT:

A segment that contains the maximum number of data bytes permitted (i.e., a segment containing

SMSS bytes of data).

RECEIVER WINDOW (rwnd): The most recently advertised receiver window.

CONGESTION WINDOW (cwnd):

A TCP state variable that limits the amount of data a TCP can send. At any given time, a TCP must

not send data with a sequence number higher than the sum of the highest acknowledged sequence

number and the minimum of cwnd and rwnd.

INITIAL WINDOW (IW): The initial window is the size of the sender's congestion window after the
three-way handshake is completed.

LOSS WINDOW (LW): The loss window is the size of the congestion window after a TCP sender
detects loss using its retransmission timer.

RESTART WINDOW (RW): The restart window is the size of the congestion window after a TCP
restarts transmission after an idle period.

FLIGHT SIZE: The amount of data that has been sent but not yet acknowledged.

3.3 Congestion control Technique

Tahoe TCP

Two variables are used to achieve congestion control in Tahoe one is congestion window (cwnd) and

the slow start threshold (ssthresh) [9]. The congestion window governs the amount of data a

connection is currently allowed to transmit, while the slow start threshold determines in which phase

of the congestion control procedure the connection is currently in. Tahoe‟s congestion control

mechanism consists of two phases: Slow Start, which is executed at the beginning of the connection

and after every packet loss, and Congestion Avoidance, which is entered when cwnd reaches the

value of ssthresh. In addition to the new congestion control strategy TCP Tahoe also proposes a new

retransmission mechanism called Fast Retransmit. Fast Retransmit takes the reception of a threshold

number of duplicate acknowledgments as loss indication and retransmits the packet immediately. A

timeout is still used to recover losses; if not enough duplicate acknowledgments arrive. After a packet

International Journal of Scientific & Engineering Research
ISSN 2229-5518 38

IJSER © 2020
http://www.ijser.org

IJSER

Publication Partner:

International Journal of Scientific & Engineering Research-IJSER (ISSN: 2229-5518)

http://dx.doi.org/ 10.14299/ijser.01.12.2008 30

loss cwnd is set to 1 and Slow Start is re-entered. Ssthresh is set to half of the congestion window size

when the loss occurred, which is considered as a safe transmission rate. Those who implements Tahoe

follows some algorithm that are mentioned bellow shortly.

RFC 896 – Nagle’s Algorithm

Implementation of Nagle‟s Algorithm ensures only 1 segment can be outstanding any time, ensuring
that no continual streams of segments are sent. Of course, there are situations where data does have
to be pushed through to the receiver TCP quickly.

Karn’s Algorithm: Using this algorithm, the ambiguity problem of TCP is specified and solved.

Jacobson’s Congestion Control Algorithms: Jacobson opinions; a host should only inject

1 packet into the network for every packet removed. If this “packet conservation principle” would

have obeyed, congestion collapse would become the exception then the rule [9]. Jacobson found in

general packet conservation that can be violated when

 Connections don‟t get to an equilibrium state where full windows of data are exchanged.

 Sender Injects new packet before old packet has exited due to erroneous retransmits.

 Equilibrium can‟t be reached because of resource limits along the path.

By implementing mechanisms in TCP to enforce packet conservation, TCP can better deal with

network congestion. The 3 mechanisms implemented are [9] –

Slow–start:

Mechanism: A congestion window (cwnd) is added to the connection. When starting initially or

restarting after segment loss, set cwnd to less than or equal to 2 segments. On receiving an ACK,

increase cwnd by 1 when transmitting data, send the minimum of the receiver's advertised window

and cwnd. Using slow start increases the congestion window gradually but exponentially until the

sender hits the receiver's advertised window size and reaches equilibrium. This allows the connection

to reach their equilibrium state while eliminating sudden influxes of data into the network that risks

stability. TCP Receiver sends a duplicate ACK immediately when an out–of–order data carrying

segment arrives. TCP Sender immediately retransmits what appears to be the missing segment when

3 duplicate ACKs arrive.

Reno TCP – Fast Recovery

To compliment Fast Retransmit, Jacobson developed a complementary Fast Recovery algorithm [14].

The inclusion of Fast Recovery into Tahoe TCP resulted in a new TCP released referred to as “Reno”

TCP [16]. In Tahoe TCP, triggering of the Fast Retransmit mechanism also triggers congestion

International Journal of Scientific & Engineering Research
ISSN 2229-5518 39

IJSER © 2020
http://www.ijser.org

IJSER

Publication Partner:

International Journal of Scientific & Engineering Research-IJSER (ISSN: 2229-5518)

http://dx.doi.org/ 10.14299/ijser.01.12.2008 31

avoidance (and by extension slow start), resulting in a slow recovery from a cwnd with a size of 1.

Jacobson proposes that the following algorithm be followed when duplicate ACKs are received [10].

1. When the 3rd duplicate ACK is received by the sender [11],

 set ssthresh max (
𝐴𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑈𝑛𝐴𝐶𝐾𝑒𝑑 𝐷𝑎𝑡𝑎 𝑖𝑛 𝑆𝑒𝑛𝑑 𝑊𝑖𝑛𝑑𝑜𝑤

2
, 2𝑆𝑒𝑛𝑑𝑒𝑟 𝑀𝑎𝑥 𝑆𝑒𝑔𝑚𝑒𝑛𝑡 𝑆𝑖𝑧𝑒)

2. Fast retransmit the lost segment (as per Fast Retransmit) and set

cwnd=old cwnd + 3 Sender Maximum Segment Size

3. For each additional duplicate ACK received beyond the 3 which triggered Fast Retransmit,

increment cwnd by Sender Maximum Segment Size and transmit another segment if allowed by

cwnd and the receiver's advertised window.

4. For the next ACK arriving that acknowledges new data, set cwnd=ssthresh. This ACK should be

elicited by the segment retransmitted in step 2 and should acknowledge all intermediate segments

sent between the lost segment and the receipt of the 3rd duplicate ACK, providing none of these

segments were lost too. Continue congestion avoidance with reduced cwnd.

Essentially, the arrival of the duplicate ACK stream indicates that the ACK “clock” (congestion

control and avoidance) is preserved – there is no need to probe the network via slow start to start an

ACK stream flowing to “strobe” additional packets into the network. In addition, the duplicate ACKs

also indicate that the segments which triggered these ACKs have left the network and so the packet

conservation principle allows the injection of additional packets into the network. A step 1–3 reflects

this.

By skipping slow start, a sending TCP Layer only drops to ½ its original transfer rate instead of going

to slow start, allowing it to recover faster. Note that Fast Recovery works best when only 1 segment is

lost within a window – studies done by [12] found that Fast Recovery does not recover efficiently

from multiple segment losses within a single window.

RFC 2018- Selective Acknowledgements, a Reno TCP extension:

Given that Fast Retransmit/Recovery only retransmits 1 segment, the loss of multiple segments in a

send window leads to inefficient recovery as Reno has to go through multiple Fast Retransmits and a

full retransmission timeout before recovery occurs via slow start/congestion avoidance [12, 13].

Selective Acknowledgement (SACK) is an optional Reno extension that relieves this problem [14]. In

essence, the multiple retransmit problem arises because the sender transmits segments that are

already have being correctly received by the source (successive fast retransmits). By allowing ACKs

sent by the receiver to contain a SACK option field listing the out of order segments received, the

International Journal of Scientific & Engineering Research
ISSN 2229-5518 40

IJSER © 2020
http://www.ijser.org

IJSER

Publication Partner:

International Journal of Scientific & Engineering Research-IJSER (ISSN: 2229-5518)

http://dx.doi.org/ 10.14299/ijser.01.12.2008 32

sender can deduce and retransmit only lost segments. Subsequent arrivals of missing data are

acknowledged normally by the receiver.

The SACK option field is composed of sets of two 32 bit sequence numbers. Each set represents a

contiguous block of received out of order data – the 1st number represents the “left edge” (i.e. 1st

sequence number) whereas the 2nd number represents the “right edge” (i.e. sequence number

following the last sequence number of this block). Sequence numbers below the block (i.e. smaller

then Left Edge of Block sequence number) and above the block (i.e. larger then or equal to Right Edge

of Block sequence number) represent missing data at the receiver.

Provided that both sender/receiver agree to use SACK, the receiver should generate an ACK with

SACK option for every valid segment that arrives when the receiver has out of order data in its

buffers. Also note that since SACK is an advisory option, the receiver may discard data reported in a

SACK option if they run out of buffer space. For every SACK ACK, the receiver should define SACK

blocks in the SACK option field such that [14] –

 The first SACK block specified must contain the segment which triggered this ACK, even if that

segment is going to be discarded and the receiver has already discarded adjacent segments. The only

exception is if that segment advanced the ACK Number in the header. This allows the sender to

determine whether these SACK blocks represent the most recent change in the receiver‟s buffers.

 Except for the newest segment, all SACK blocks must not report any old data which is no longer

actually held by the receiver.

 Since many distinct SACK blocks as possible in the SACK option, there may be insufficient space to

specify all missing blocks.

 The SACK option is filled out by repeating the most recently reported SACK blocks (based on first

SACK blocks in the previous ACK) that are not subsets of a SACK block already included in the

SACK option being constructed. This assures that any segment remaining part of a non–contiguous

block of data held by the data receiver is reported in at least three successive SACK options. After the

first SACK block, the following SACK blocks in the SACK option may be listed in arbitrary order.

A Sender receiving an ACK with a SACK option should record the SACK blocks for future reference

to allow selective segment retransmission. For example, assume that each segment in the transmission

queue has a “SACKed” bit. When an ACK with a SACK option arrives, the sender will turn on the

“SACKed” bit for segments SACKed by the specified SACK blocks and have their retransmission

timers disabled. Any segment with an off SACKed bit and is less than the highest SACKed segment is

available for retransmission when timeout occurs.

International Journal of Scientific & Engineering Research
ISSN 2229-5518 41

IJSER © 2020
http://www.ijser.org

IJSER

Publication Partner:

International Journal of Scientific & Engineering Research-IJSER (ISSN: 2229-5518)

http://dx.doi.org/ 10.14299/ijser.01.12.2008 33

However, should a timeout occur on a segment retransmission, the sender should turn off all

SACKed bits and re–enable their retransmission timers as the receiver may have discarded their out

of order segments? The sender must then start retransmitting segments from the left edge of the

window. Segments are not released from the retransmission queue until it is ACKed normally.

Although RFC 2018 does not specify how SACK interoperates with Reno congestion control

algorithms, RFC 2581 states that the inclusion of SACK should not alter the essence of Reno‟s

congestion control algorithms [10]. This involves [14] –

 When the first loss in a window of data is detected, the sender must set

set ssthresh max (
𝐴𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑈𝑛𝐴𝐶𝐾𝑒𝑑 𝐷𝑎𝑡𝑎 𝑖𝑛 𝑆𝑒𝑛𝑑 𝑊𝑖𝑛𝑑𝑜𝑤

2
, 2𝑆𝑒𝑛𝑑𝑒𝑟 𝑀𝑎𝑥 𝑆𝑒𝑔𝑚𝑒𝑛𝑡 𝑆𝑖𝑧𝑒)

 Until all missing segments in the window are successfully retransmitted, the number of segments

transmitted in each RTT MUST is no more than half the number of outstanding segments when the

loss was detected.

 Once all lost segments in a window are successfully retransmitted, cwnd must be set to no more

than ssthresh and congestion avoidance must be used to further increase cwnd.

 Loss in two successive windows of data, or the loss of a retransmission, should be taken as two

indications of congestion and, therefore, cwnd (and ssthresh) must be lowered twice in this case.

SACK is often incorporated into RENO [15] by using SACK information from duplicate ACKs to

determine what segments to retransmit during step 3 of the Fast Recovery algorithm defined above

[16]. Via this method, simulations show that SACK, compared to Tahoe, Reno or New Reno, recovers

the most efficiently from multiple segments being dropped in a single window.

RFC 2582 – New Reno TCP:

For TCP implementations not supporting SACK, Janey Hoe [17] proposed an alternative scheme to

recover from multiple lost segments by responding to partial ACKs. When segments are lost within a

single window, the first new information available to the sender comes when the sender receives an

ACK for the Fast–Retransmitted packet. In the case of a single segment loss, the ACK clears the entire

send window. In the case of a multiple segment drop, the ACK only acknowledges some of the

segments sent before the Fast Retransmit. This is a partial ACK. Hoe suggested that the arrival of

partial ACKs during Fast Recovery should indicate another lost segment which should also be

retransmitted. This involves changes to steps 1 and 4 of the Fast Recovery algorithm defined

previously and adds a step 5. It defines 2 new variables, “recover” and "send high". Send high‟s initial

value is the initial send sequence number. After each retransmit timeout, the highest sequence

number transmitted so far is recorded in the variable "send high". The altered steps, as defined in

RFC 2582 and implemented in “New Reno” TCP [18], are –

International Journal of Scientific & Engineering Research
ISSN 2229-5518 42

IJSER © 2020
http://www.ijser.org

IJSER

Publication Partner:

International Journal of Scientific & Engineering Research-IJSER (ISSN: 2229-5518)

http://dx.doi.org/ 10.14299/ijser.01.12.2008 34

1. When the third duplicate ACK is received and the sender is not already in the Fast Recovery

procedure, check to see if those duplicate ACKs cover more than "send_high". If they do, set

2. set ssthresh max (

, 2𝑆𝑒𝑛𝑑𝑒𝑟 𝑀𝑎𝑥 𝑆𝑒𝑔𝑚𝑒𝑛𝑡 𝑆𝑖𝑧𝑒) and

record the highest sequence number transmitted in the variable "recover", and go to Step 2.

3. If the duplicate ACKs do not cover "send_high", then do nothing. Do not enter Fast

Retransmit/Recovery, change ssthresh in anyway, carryout out step 2 or 3.

4. When an ACK arrives that ACKs new data, this ACK could be the acknowledgment elicited

by the retransmission from step 2, or elicited by a later retransmission. If this ACK ACKs all

data up to and including "recover", then all segments in the send window have being ACKed.

Set 𝑐𝑤𝑛𝑑 = 𝑠𝑠𝑡𝑟𝑒𝑠 𝑎𝑛𝑑 𝑒𝑥𝑖𝑡 𝐹𝑎𝑠𝑡 𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦. If this ACK does not ACK all data up to and

including "recover", this is a partial ACK. Retransmit the first unACKed segment.

5. 𝑆𝑒𝑡 𝑐𝑤𝑛𝑑 = 𝑜𝑙𝑑 𝑐𝑤𝑛𝑑 – 𝐴𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝐷𝑎𝑡𝑎 𝐴𝐶𝐾𝑒𝑑 + 1 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑆𝑒𝑔𝑚𝑒𝑛𝑡 𝑆𝑖𝑧𝑒

Send a new segment if permitted by the new value of cwnd. For the first partial ACK that

arrives during Fast Recovery, reset the retransmit timer for all segments.

 After a retransmit timeout, it records the highest sequence number transmitted in the

variable "send_high" and exit the Fast Recovery procedure if applicable.

Essentially, a “recover” variable is used to determine whether the ACK returned in step 4 is a partial

ACK and by extension, whether more then 1 segment was dropped. If the ACK was a partial ACK,

the sender effectively stays in Fast Recovery mode and retransmits 1 segment per RTT for every

Partial ACK received until all dropped segments are retransmitted or a retransmission timeout on a

dropped segment forces the sender into slow start/congestion avoidance mode. The adjustments

made to cwnd in step 4 also ensure that when Fast Recovery eventually ends, only ssthresh amount of

data is in flight in the network. In addition, send_high is used to prevent multiple fast retransmits

triggered due to duplicate ACKs arriving from a previous Fast Retransmit cycle. By recording the

highest sequence number transmitted in the last Fast Retransmit cycle (step 5), incoming duplicate

ACKs are checked to ensure that they did arise from out of order segments arriving at the receiver

during the current segment transmission cycle, in which case Fast Retransmit/Recovery is triggered

(step 1).

The algorithm proposed above is only 1 variant of New Reno. Other variants differ in whether they

reset segment retransmission timers once (as in step 4 above) or reset them for every partial ACK

received. The number of packets retransmitted for each partial ACK received may also vary. The

variant above is conservative in that it only transmits 1 segment per partial ACK. More aggressive

variants may transmit multiple segments per partial ACK received [19].

International Journal of Scientific & Engineering Research
ISSN 2229-5518 43

IJSER © 2020
http://www.ijser.org

IJSER

Publication Partner:

International Journal of Scientific & Engineering Research-IJSER (ISSN: 2229-5518)

http://dx.doi.org/ 10.14299/ijser.01.12.2008 35

A study [15] shows that New Reno can recover efficiently from more then 1 missing segment in the

sender window, provided that the number of missing segments was small. When large numbers of

segments are lost, New Reno performs as poor as Reno since it only transmits only 1 segment per

RTT. Consequently, a retransmission timeout usually occurs before all lost segments are transmitted,

resulting in New Reno being forced into Slow Start like Reno.

Vegas TCP – A Proactive Approach:

TCP Vegas is an extension to TCP Reno with modified or new versions of Reno‟s mechanisms.

Congestion Avoidance and Slow Start Mechanisms which are corrected those inefficiencies [20].

These are specified below.

Vegas’ Modified Retransmission Mechanism:

Implementations of Reno TCP use a coarse–grained timer (around 500ms) that does not measure

RTTs accurately or trigger segment retransmissions on time, resulting in a retransmission mechanism

that does not adapt quickly to network congestion. Vegas improves the mechanism‟s accuracy via –

 More accurate RTT measurement – The sender records the system time for every segment sent.

When ACKs arrive, the sender estimates new RTTs by subtracting the recorded system time of

ACKed segments with the current system time, yielding more accurate estimates of RTT.

 Timelier Retransmission– The sender retransmits segments in 2 additional situations.

When a duplicate ACK is received, Vegas checks if the difference with current system time and the

recorded sent system time for the relevant segment is greater then its RTO value, or

Non–duplicate ACKs are received and it is the 1st or 2nd non duplicate ACK after a segment

retransmission, Vegas checks if the difference with current system time and the recorded sent system

time for the recently retransmitted segment is greater than its RTO value.

If yes to either of the above, Vegas retransmit the relevant segment immediately without waiting for

the arrival of 3 duplicate ACKs or a coarse retransmission timeout.

In essence, ACK arrivals are used as triggers to determine if timeouts have occurred. This allows

Vegas to retransmit sooner and more accurately then what Reno‟s coarse timers allow. In the event

that ACKs are lost en masse in the system, Vegas can still fall back on Reno‟s coarse timers for

segment retransmission.

 More accurate treatment of cwnd – Under the current Reno specifications, cwnd can be reduced

multiple times for multiple segment losses that occurred before the last cwnd reduction. Given that

International Journal of Scientific & Engineering Research
ISSN 2229-5518 44

IJSER © 2020
http://www.ijser.org

IJSER

Publication Partner:

International Journal of Scientific & Engineering Research-IJSER (ISSN: 2229-5518)

http://dx.doi.org/ 10.14299/ijser.01.12.2008 36

multiple segment losses that happened before the last cwnd reduction do not indicate that the

network is congested for the current reduced cwnd size, cwnd should not be halved again since it has

already being reduced. To correct this, Vegas only decreases cwnd on segment retransmission if the

recorded timestamp for when the retransmitted segment was last transmitted was after the last cwnd

reduction, preventing excessive reduction of cwnd.Vegas‟s New Congestion Avoidance Mechanism

Reno‟s Congestion Avoidance mechanism is reactive – cwnd is only adjusted when segment losses

occur. In effect, Reno must create losses for it to adjust to changes in the level of network congestion.

In contrast, Vegas takes a proactive approach and attempts to anticipate network congestion and

adjust cwnd prior to segment losses occurring to reduce retransmissions. Vegas does this by

implementing

 Congestion Detection Mechanism – To anticipate network congestion, Vegas takes constant

measures of network throughput. If the measured throughput drops significantly at any point in

time, network congestion has occurred. The precise algorithm is defined below.

1. Let BaseRTT = RTT when connection is not congested. This is usually the minimum RTT ever

achieved on a connection.

 Expected Throughput = Data Sent During 1 RTT / BaseRTT

 Where Data Sent During 1 RTT = Send Window size at any time.

 = A throughput threshold (in bps) determining when there is too little data in the network

 and cwnd needs to be increased.

 = A throughput threshold (in bps) determining when there is too much data in the

 network and cwnd needs to be reduced.

2. For every RTT (except during Slow Start), Vegas calculates Actual Throughput by Recording

the size of a marked segment and the system timestamp when this segment was sent and also

by recording the timestamp when the first ACK acknowledging the marked segment arrives.

The RTT for the marked segment is computed using the 2 timestamps gathered. CalculateActual

𝑇𝑟𝑜𝑢𝑔𝑝𝑢𝑡 = 𝑀𝑎𝑟𝑘𝑒𝑑 𝑆𝑒𝑔𝑚𝑒𝑛𝑡 𝑆𝑖𝑧𝑒 / 𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑𝑅𝑇𝑇

3. 𝐸𝑣𝑒𝑟𝑦 𝑡𝑖𝑚𝑒 𝑎𝑛 𝐴𝑐𝑡𝑢𝑎𝑙𝑇𝑟𝑜𝑢𝑔𝑝𝑢𝑡 𝑖𝑠 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑, 𝑐𝑤𝑛𝑑 𝑖𝑠 𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑏𝑦

 3.1 Let 𝑇𝑟𝑜𝑢𝑔𝑝𝑢𝑡 = 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝑇𝑟𝑜𝑢𝑔𝑝𝑢𝑡 – 𝐴𝑐𝑡𝑢𝑎𝑙𝑇𝑟𝑜𝑢𝑔𝑝𝑢𝑡

 3.2 If 𝑇𝑟𝑜𝑢𝑔𝑝𝑢𝑡 𝑖𝑠 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒, 𝑠𝑒𝑡 𝐵𝑎𝑠𝑒𝑅𝑇𝑇 = 𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑𝑅𝑇𝑇 and quit this process.

 3.3 If Throughput is positive, compare Throughput to and ,

 If 𝑇𝑟𝑜𝑢𝑔𝑝𝑢𝑡 < , 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 𝑐𝑤𝑛𝑑 𝑙𝑖𝑛𝑒𝑎𝑟𝑙𝑦 𝑑𝑢𝑟𝑖𝑛𝑔 𝑛𝑒𝑥𝑡 𝑅𝑇𝑇.

 𝑇𝑟𝑜𝑢𝑔𝑝𝑢𝑡 > , 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 𝑐𝑤𝑛𝑑 𝑙𝑖𝑛𝑒𝑎𝑟𝑙𝑦 𝑑𝑢𝑟𝑖𝑛𝑔 𝑛𝑒𝑥𝑡 𝑅𝑇𝑇.

International Journal of Scientific & Engineering Research
ISSN 2229-5518 45

IJSER © 2020
http://www.ijser.org

IJSER

Publication Partner:

International Journal of Scientific & Engineering Research-IJSER (ISSN: 2229-5518)

http://dx.doi.org/ 10.14299/ijser.01.12.2008 37

 < 𝑇𝑟𝑜𝑢𝑔𝑝𝑢𝑡 < , 𝑙𝑒𝑎𝑣𝑒 𝑐𝑤𝑛𝑑 𝑢𝑛𝑐𝑎𝑛𝑔𝑒𝑑.

As a result, by continually measuring the actual throughput experienced by the sender and

comparing it to the throughput expected when the network is not congested, Vegas can determine

whether there is too much/too little data in the network and adjust cwnd downward/upward as

required respectively.

Vegas‟ Modified Slow Start Mechanism:

Due to the reactive nature of Reno‟s Slow Start, it is very expensive in terms of losses when available

bandwidth is high and cwnd is large. This occurs as Slow Start doubles the size of cwnd every RTT.

When losses occur as cwnd oversteps the available network bandwidth, losses on the order of ½ of

cwnd are expected [20]. Vegas reduce this loss by incorporating Congestion Detection into Reno‟s

Slow Start.

Modified Slow Start Mechanism – In effect, Vegas only allows cwnd to grow exponentially for every

other RTT – the additional RTT cycle is used to obtain a valid measure of actual throughput from

which it can compare with the expected throughput to determine whether cwnd should continue to

grow exponentially or switch to linear growth. Hence –

1. Start Slow Start normally with 𝑐𝑤𝑛𝑑 = 1.

2. Let , 𝐵𝑎𝑠𝑒𝑅𝑇𝑇 = 𝑅𝑇𝑇 𝑜𝑓 1st segment sent

 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝑇𝑟𝑜𝑢𝑔𝑝𝑢𝑡 = 𝑆𝑖𝑧𝑒 𝑜𝑓 1𝑠𝑡 𝑆𝑒𝑔𝑚𝑒𝑛𝑡 𝑆𝑒𝑛𝑡 / 𝐵𝑎𝑠𝑒𝑅𝑇𝑇.

 = A throughput threshold (in bps) determining when the data transmission rate as defined

 by cwnd is approaching the available bandwidth the network has to offer. cwnd shall be

 increased linearly, not exponentially, after this point.

3. For all subsequent RTT cycles, if cwnd has grown in the last RTT cycle, keep cwnd constant,

transmit data normally and calculate ActualThroughput as specified in step 2 of the

Congestion Detection Mechanism defined above.

4. For all subsequent RTT cycles, if cwnd has not grown in the previous RTT cycle,

calculate 𝑇𝑟𝑜𝑢𝑔𝑝𝑢𝑡 = 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝑇𝑟𝑜𝑢𝑔𝑝𝑢𝑡 – 𝐴𝑐𝑡𝑢𝑎𝑙𝑇𝑟𝑜𝑢𝑔𝑝𝑢𝑡.

If (4.1) 𝑇𝑟𝑜𝑢𝑔𝑝𝑢𝑡 > , increase cwnd linearly from this point on. Exit Slow Start and

continue adjusting cwnd using the Congestion Avoidance Mechanism defined previously.

 𝑇𝑟𝑜𝑢𝑔𝑝𝑢𝑡 < , continue increasing cwnd exponentially. (4.2) Increase cwnd as required

 and transmit segments as allowed by cwnd.

In essence Vegas‟s modified Slow Start halts the exponential growth of cwnd when its

measured throughput falls below the expected throughput by a margin of, indicating that

the sender is nearing the bandwidth limit which the network can sustain without congestion.

International Journal of Scientific & Engineering Research
ISSN 2229-5518 46

IJSER © 2020
http://www.ijser.org

IJSER

Publication Partner:

International Journal of Scientific & Engineering Research-IJSER (ISSN: 2229-5518)

http://dx.doi.org/ 10.14299/ijser.01.12.2008 38

By switching to linear growth at this point, any losses are limited to the size of the linear

increase of cwnd, which is much lower then the ½ cwnd loss encountered by Reno for big

bandwidth connections.

Simulations studies [21,22,23,24,25] of Vegas performance supports the claim made by Brakmo,

O‟Malley and Peterson that Vegas gives an increase throughput over other TCP implementations like

Reno and Tahoe. However, the gains given by Vegas are situational – in situations when heavy

congestion hits, Vegas falls back on Reno‟s coarse gain retransmission timer, eliminating performance

gains of Vegas. In addition, Vegas also have the bonus of easy implementation. Unlike Reno

extensions like SACK, Vegas mechanisms only need to be implemented in the sender– performance

gains are still present even if the receiver is running a non–Vegas TCP implementation [20].

Currently, no different studies have being made on how Vegas mechanisms would interact with

SACK. However, it is envisaged that due to Vegas‟ low amount of retransmissions, SACK

implementation with Vegas would only present very limited improvements [20].

3.4 Congestion Control Algorithms

This section defines the four congestion control algorithms using these algorithm we have implemented our

congestion control simulation: slow start, congestion avoidance, fast retransmit and fast recovery, developed in.

In some situations it may be beneficial for a TCP sender to be more conservative than the algorithms allow,

however a TCP must not be more aggressive than the following algorithms allow (that is, must not send data

when the value of cwnd computed by the following algorithms would not allow the data to be sent).

Slow Start and Congestion Avoidance:

The slow start and congestion avoidance algorithms must be used by a TCP sender to control the

amount of outstanding data being injected into the network [11]. To implement these algorithms, two

variables are added to the TCP per-connection state. The congestion window (cwnd) is a sender-side

limit on the amount of data the sender can transmit into the network before receiving an

acknowledgment (ACK), while the receiver's advertised window (rwnd) is a receiver-side limit on the

amount of outstanding data. The minimum of cwnd and rwnd governs data transmission. Another

state variable, the slow start threshold (ssthresh), is used to determine whether the slow start or

congestion avoidance algorithm is used to control data transmission, as discussed below. Beginning

transmission into a network with unknown conditions requires TCP to slowly probe the network to

determine the available capacity, in order to avoid congesting the network with an inappropriately

large burst of data. The slow start algorithm is used for this purpose at the beginning of a transfer, or

after repairing loss detected by the retransmission timer. IW, the initial value of cwnd, must be less

than or equal to 2*SMSS bytes and must not be more than 2 segments. We note that a non-standard,

International Journal of Scientific & Engineering Research
ISSN 2229-5518 47

IJSER © 2020
http://www.ijser.org

IJSER

Publication Partner:

International Journal of Scientific & Engineering Research-IJSER (ISSN: 2229-5518)

http://dx.doi.org/ 10.14299/ijser.01.12.2008 39

experimental TCP extension allows that a TCP may use a larger initial window (IW), as defined in

equation 1

 𝐼𝑊 = 𝑚𝑖𝑛 (4 ∗ 𝑆𝑀𝑆𝑆,𝑚𝑎𝑥 (2 ∗ 𝑆𝑀𝑆𝑆, 4380 𝑏𝑦𝑡𝑒𝑠)). 𝐸𝑞𝑢. (1)

With this extension, a TCP sender may use a 3 or 4 segment initial window, provided the combined

size of the segments does not exceed 4380 bytes. We do not allow this change as part of the standard

defined by this document. However, we include discussion of (1) in the remainder of this document

as a guideline for those experimenting with the change, rather than conforming to the present

standards for TCP congestion control. The initial value of ssthresh may be arbitrarily high (for

example, some implementations use the size of the advertised window), but it may be reduced in

response to congestion. The slow start algorithm is used when cwnd < ssthresh, while the congestion

avoidance algorithm is used when cwnd > ssthresh. When cwnd and ssthresh are equal the sender

may use either slow start or congestion avoidance. During slow start, a TCP increments cwnd by at

most SMSS bytes for each ACK received that acknowledges new data. Slow start ends when cwnd

exceeds ssthresh (or, optionally, when it reaches it, as noted above) or when congestion is observed.

During congestion avoidance, cwnd is incremented by 1 full-sized segment per round-trip time

(RTT). Congestion avoidance continues until congestion is detected. One formula commonly used to

update cwnd during congestion avoidance is given in equation 2:

 𝑐𝑤𝑛𝑑 += 𝑆𝑀𝑆𝑆 ∗ 𝑆𝑀𝑆𝑆/𝑐𝑤𝑛𝑑…………………………………………Equ. (2)

This adjustment is executed on every incoming non-duplicate ACK. Equation (2) provides an

acceptable approximation to the underlying principle of increasing cwnd by 1 full-sized segment per

RTT. (Note that for a connection in which the receiver acknowledges every data segment, (2) proves

slightly more aggressive than 1 segment per RTT, and for a receiver acknowledging every-other

packet, (2) is less aggressive.) Implementation Note: Since integer arithmetic is usually used in TCP

implementations, the formula given in equation 2 can fail to increase cwnd when the congestion

window is very large (larger than SMSS*SMSS). If the above formula yields 0, the result should be

rounded up to 1 byte. Implementation Note: older implementations have an additional additive

constant on the right-hand side of equation (2). This is incorrect and can actually lead to diminished

performance. Another acceptable way to increase cwnd during congestion avoidance is to count the

number of bytes that have been acknowledged by ACKs for new data. (A drawback of this

implementation is that it requires maintaining an additional state variable.) When the number of

bytes acknowledged reaches cwnd, then cwnd can be incremented by up to SMSS bytes. Note that

during congestion avoidance, cwnd must not be increased by more than the larger of either 1 full-

sized segment per RTT, or the value computed using equation 2. Implementation Note: some

implementations maintain cwnd in units of bytes, while others in units of full-sized segments. The

International Journal of Scientific & Engineering Research
ISSN 2229-5518 48

IJSER © 2020
http://www.ijser.org

IJSER

Publication Partner:

International Journal of Scientific & Engineering Research-IJSER (ISSN: 2229-5518)

http://dx.doi.org/ 10.14299/ijser.01.12.2008 40

latter will find equation (2) difficult to use, and may prefer to use the counting approach discussed

in the previous paragraph.When a TCP sender detects segment loss using the retransmission timer,

the value of ssthresh must be set to no more than the value given in equation 3:

 ssthresh = max (FlightSize / 2, 2*SMSS)………………………………Equ. (3)

As discussed above, FlightSize is the amount of outstanding data in the network. Implementation

Note: an easy mistake to make is to simply use cwnd, rather than FlightSize, which in some

implementations may incidentally increase well beyond rwnd. Furthermore, upon a timeout cwnd

must be set to no more than the loss window, LW, which equals 1 full-sized segment (regardless of

the value of IW). Therefore, after retransmitting the dropped segment the TCP sender uses the slow

start algorithm to increase the window from 1 full-sized segment to the new value of ssthresh, at

which point congestion avoidance again takes over.

Fast Retransmit/Fast Recovery:

A TCP receiver should send an immediate duplicate ACK when an out- of-order segment arrives.

The purpose of this ACK is to inform the sender that a segment was received out-of-order and which

sequence number is expected. From the sender's perspective, duplicate ACKs can be caused by a

number of network problems. First, they can be caused by dropped segments. In this case, all

segments after the dropped segment will trigger duplicate ACKs. Second, duplicate ACKs can be

caused by the re-ordering of data segments by the network (not a rare event along some network

paths. Finally, duplicate ACKs can be caused by replication of ACK or data segments by the network.

In addition, a TCP receiver should send an immediate ACK when the incoming segment fills in all

or part of a gap in the sequence space. This will generate more timely information for a sender

recovering from a loss through a retransmission timeout, a fast retransmit, or an experimental loss

recovery algorithm, such as NewReno. The TCP sender should use the "fast retransmit" algorithm to

detect and repair loss, based on incoming duplicate ACKs. The fast retransmit algorithm uses the

arrival of 3 duplicate ACKs (4 identical ACKs without the arrival of any other intervening packets) as

an indication that a segment has been lost. After receiving 3 duplicate ACKs, TCP performs a

retransmission of what appears to be the missing segment, without waiting for the retransmission

timer to expire. After the fast retransmit algorithm sends what appears to be the missing segment, the

"fast recovery" algorithm governs the transmission of new data until a non-duplicate ACK arrives.

The reason for not performing slow start is that the receipt of the duplicate ACKs not only indicates

that a segment has been lost, but also that segments are most likely leaving the network (although a

massive segment duplication by the network can invalidate this conclusion). In other words, since

the receiver can only generate a duplicate ACK when a segment has arrived, that segment has left the

network and is in the receiver's buffer, so we know it is no longer consuming network resources.

Furthermore, since the ACK "clock" is preserved, the TCP sender can continue to transmit new

International Journal of Scientific & Engineering Research
ISSN 2229-5518 49

IJSER © 2020
http://www.ijser.org

IJSER

Publication Partner:

International Journal of Scientific & Engineering Research-IJSER (ISSN: 2229-5518)

http://dx.doi.org/ 10.14299/ijser.01.12.2008 41

segments (although transmission must continue using a reduced cwnd). The fast retransmit and fast

recovery algorithms are usually implemented together as follows.

1. When the third duplicate ACK is received, set ssthresh to no more than the value given in

equation 3.

2. Retransmit the lost segment and set cwnd to ssthresh plus 3*SMSS. This artificially "inflates"

the congestion window by the number of segments (three) that have left the network and

which the receiver has buffered.

3. For each additional duplicate ACK received, increment cwnd by SMSS. This artificially

inflates the congestion window in order to reflect the additional segment that has left the

network.

4. Transmit a segment, if allowed by the new value of cwnd and the receiver's advertised

window.

5. When the next ACK arrives that acknowledges new data, set cwnd to ssthresh (the value set

in step 1). This is termed "deflating” the window. This ACK should be the acknowledgment

elicited by the retransmission from step 1, one RTT after the retransmission (though it may

arrive sooner in the presence of significant out- of-order delivery of data segments at the

receiver). Additionally, this ACK should acknowledge all the intermediate segments sent

between the lost segment and the receipt of the third duplicate ACK, if none of these were

lost. Note: This algorithm is known to generally not recover very efficiently from multiple

losses in a single flight of packets. One proposed set of modifications to address this problem

can be found in

Re-starting Idle Connections:

A known problem with the TCP congestion control algorithms described above is that they allow a

potentially inappropriate burst of traffic to be transmitted after TCP has been idle for a relatively long

period of time. After an idle period, TCP cannot use the ACK clock to strobe new segments into the

network, as all the ACKs have drained from the network. Therefore, as specified above, TCP can

potentially send a cwnd-size line-rate burst into the network after an idle period recommends that a

TCP use slow start to restart transmission after a relatively long idle period. Slow start serves to

restart the ACK clock, just as it does at the beginning of a transfer. This mechanism has been widely

deployed in the following manner. When TCP has not received a segment for more than one

retransmission timeout, cwnd is reduced to the value of the restart window (RW) before transmission

begins. For the purposes of this standard, we define RW = IW. We note that the non-standard

experimental extension to TCP defined in defines RW = min (IW, cwnd), with the definition of IW

adjusted per equation (1) above. Using the last time a segment was received to determine whether or

not to decrease cwnd fails to deflate cwnd in the common case of persistent HTTP connections. In this

case, a WWW server receives a request before transmitting data to the WWW browser.

International Journal of Scientific & Engineering Research
ISSN 2229-5518 50

IJSER © 2020
http://www.ijser.org

IJSER

Publication Partner:

International Journal of Scientific & Engineering Research-IJSER (ISSN: 2229-5518)

http://dx.doi.org/ 10.14299/ijser.01.12.2008 42

The reception of the request makes the test for an idle connection fail, and allows the TCP to begin

transmission with a possibly inappropriately large cwnd. Therefore, a TCP should set cwnd to no

more than RW before beginning transmission if the TCP has not sent data in an interval exceeding the

retransmission timeout.

Loss Recovery Mechanisms:

A number of loss recovery algorithms that augment fast retransmit and fast recovery has been

suggested by TCP researchers. While some of these algorithms are based on the TCP selective

acknowledgment (SACK) option, such as others do not require SACKs. The non-SACK algorithms

use "partial acknowledgments" (ACKs which cover new data, but not all the data outstanding when

loss was detected) to trigger retransmissions. These enhanced algorithms are implicitly allowed, as

long as they follow the general principles of the basic four algorithms outlined above. Therefore,

when the first loss in a window of data is detected, ssthresh must be set to no more than the value

given by equation (3). Second, until all lost segments in the window of data in question are repaired,

the number of segments transmitted in each RTT must be no more than half the number of

outstanding segments when the loss was detected. Finally, after all loss in the given window of

segments has been successfully retransmitted, cwnd must be set to no more than ssthresh and

congestion avoidance must be used to further increase cwnd. Loss in two successive windows of

data, or the loss of a retransmission, should be taken as two indications of congestion and therefore,

cwnd (and ssthresh) must be lowered twice in this case.

International Journal of Scientific & Engineering Research
ISSN 2229-5518 51

IJSER © 2020
http://www.ijser.org

IJSER

Publication Partner:

International Journal of Scientific & Engineering Research-IJSER (ISSN: 2229-5518)

http://dx.doi.org/ 10.14299/ijser.01.12.2008 43

CHAPTER 4

PROBLEM FORMULATION & RESULT DISCUSSION

4.1 Congestion control in TCP

Congestion Control techniques such as Tahoe, Reno, New Reno, SACK, Vegas are used to control

congestion in network level. These techniques have been developed by different scientist or network

researchers. Those who research those techniques have been successful to long ago. These techniques

are very old opinion. Although, there are lot of techniques to control congestion that actually is not

published for security purposes, that‟s why we have known only aforesaid techniques. We have

simulated only two techniques such as Tahoe TCP and Reno TCP by Java programming language

after studying those congestion control techniques.

4.2 Optimum Forward error correction

Block codes can recover as many data packets as number R of redundancy packets are added in a

block. But those redundancy packets will also steal some of the available bandwidth that could have

been used to transmit data packets instead. So, for addition of more redundancy packets than it is

necessary to recover losses, the throughput will be negatively affected and network load

unnecessarily increased.

On the other hand, if addition of less redundancy packets than which is needed, besides that,

.recovery of those packets that have been lost is not possible, by increasing the network load with

some redundancy traffic it is not be able to successfully use them.

International Journal of Scientific & Engineering Research
ISSN 2229-5518 52

IJSER © 2020
http://www.ijser.org

IJSER

Publication Partner:

International Journal of Scientific & Engineering Research-IJSER (ISSN: 2229-5518)

http://dx.doi.org/ 10.14299/ijser.01.12.2008 44

The question springs to mind how much redundancy should add when applying FEC to maximize

the TCP throughput? In other words it is the “optimum” value of R that Maximizes for link-level

FEC.

Block coding error correction technique use hamming code for forward error correction. For any type

of block coding technique N=K+R.

Here N is the total no of bits or packets.

 K is the total no of data bits or packets.

 R is the total no of redundant bits or packets.

For this thesis hamming code is used for this coding 2r >= m+r+1.

Here m is the total no of data bits and r is the total no of redundant bits.

So to use hamming code it must satisfy this inequality. So hamming is represented by H (m+ r, m).

Hamming code can only handle single bit error. So it for large no of data bit is considered as a block

and for this a no of redundant bit is added then the benefit of forward error correction can not found.

To find the benefit of forward error correction hamming code is used for a small no of bits. For this

thesis the block is considered of 7 bits so to satisfy the inequality the value of r is 4. Because 24 >=

7+4+1 is right.

So the hamming code for this thesis is H (11, 7).

If throughput T is represented in terms of packet/s:

Then T = (No of acknowledged packet*1024*1024)/time…………………Equ.(1)

If FEC is used with TCP then the no of retransmission is reduced for wireless network. For wireless

network the bit error probability is high so for error in packets the no of retransmission is higher. So

form eq(1) the throughput degrades for wireless network. It is the main cause of using FEC with TCP.

For using FEC the encoding and decoding algorithm will be such that the encoding and decoding

algorithm should be faster because TCP maintain timeout. If the encoding and decoding algorithm is

slower then the performance also degrades because the no of retransmission is higher. So from eq(1)

the faster encoding and decoding algorithm will improve the performance.

4.3 TCP Routing Agent

There are several approaches in conventional routing algorithm in traditional wire line networks, and

some ideas from these are also used in ad-hoc networks. Among the traditional approaches the

followings are used generally:

 Link State

International Journal of Scientific & Engineering Research
ISSN 2229-5518 53

IJSER © 2020
http://www.ijser.org

IJSER

Publication Partner:

International Journal of Scientific & Engineering Research-IJSER (ISSN: 2229-5518)

http://dx.doi.org/ 10.14299/ijser.01.12.2008 45

 Distance Vector

 Source routing

 Flooding

Destination Sequenced Distance Vector-DSDV:

DSDV is a distance vector routing protocol. Each node has a routing table that indicates for each

destination, which is the next hop and number of hops to the destination. Each node periodically

broadcast routing updates. A sequence no is used to tag each route. It shows the freshness of the

route: a route with higher sequence no is more favorable. In addition among two routed with the

same sequence no, the one with less hops is more favorable. If a node detects that a route to a

destination has broken, then its hop no is set to infinity and its sequence no updated but assigned an

odd number: even numbers corresponds to sequence numbers of connected paths.

Ad-hoc On Demand Distance Vector – AODV:

AODV is a distance vector type routing. It does not require nodes to maintain routes to destination

that are not actively used. As long as the endpoints of a communication connection have valid routes

to each other, AODV does not play a role. The protocol uses different messages to discover and

maintain links: Route Requests (RREQ), Route Replies (RREPs), and Route Errors (RERRs). These

message types are received via UDP, and normal IP header processing applies. AODV does not allow

handling unidirectional links.

Dynamic Source Routing – DSR:

Designed for mobile ad hoc networks with up to around two hundred nodes with possibly high

mobility rate is the protocol works “on demand”, i.e. without any periodic updates. Packets carry

along the complete path they should take. This reduces overheads for large routing updates at the

network. The nodes store in their cache all known routes. The protocol is composed of route

discovery and route maintenance.

It consists of the following two steps

 Route discovery

 Route maintenance

Temporally Ordered Routing Algorithm-TORA:

This protocol is of the family of link reversal protocols. It may provide several routes between a

source and a destination. TORA contains three parts: creating, maintaining and erasing routes. At

each node, a separate copy of TORA is run per each destination. TORA builds a directed acyclic

graph rooted at the destination. It associated a height with each node in the network. Messages flow

International Journal of Scientific & Engineering Research
ISSN 2229-5518 54

IJSER © 2020
http://www.ijser.org

IJSER

Publication Partner:

International Journal of Scientific & Engineering Research-IJSER (ISSN: 2229-5518)

http://dx.doi.org/ 10.14299/ijser.01.12.2008 46

from nodes with higher height to those with lower heights. Routes are discovered using Query and

Update packets.

4.4 TCP Congestion Control simulation details

Class summary

Router Class This class is a simulation of network router

TCPReceiver Class This is a simulation of network receiver

TCPSegment Class This is a segment which can carry segment, ack

TCPSender Class This is a base class for sender

TCPSenderTahoe Class TCPTahoe implementation of sender

TCPSenderReno Class TCPReno implementation of sender

TCPSimulator Class The main class of Congestion control

Class Router

This class is a simulation of network router. Router routes the TCP segment that may be towards the

sender or towards the receiver. Router silently enforces that no more packets let pass through than

what the bottleneck capacity allow. The bottleneck resource that we have studied using this router is

the buffer space which determines the maximum queue length. If more packets arrive than queue of

router can hold, it will discord the access segment. If access segments arrive, router will drop only the

data segment. There is no limitation of ACK segment. If more ack segment arrives, it simply routes

towards the destination without discarding. In real world, all segments are subjected to the same

treatment at the network level.

Constructor summary

Public Router (int mismatchRatio, int bufferSize)

This constructor function silently enforces that this router introduce a resource bottleneck in the

network. The router buffer size is forced to be smaller than the mismatch ratio between the router‟s

input and output links.

mismatchRatio: it is the transmission speed between input and output links.

bufferSize: The given buffer size for router‟s queue.

Method summary

public int getBottleneckCapacity()

This method is used for retrieving of the bottleneck resource of this router. This value tells us the

maximum number of bytes that router can relay per unit of time. The router can transmit one

International Journal of Scientific & Engineering Research
ISSN 2229-5518 55

IJSER © 2020
http://www.ijser.org

IJSER

Publication Partner:

International Journal of Scientific & Engineering Research-IJSER (ISSN: 2229-5518)

http://dx.doi.org/ 10.14299/ijser.01.12.2008 47

segment at a time and can hold up to the buffer size segments. So, the routers capacity is calculated as

follows

(𝑏𝑢𝑓𝑓𝑒𝑟 𝑠𝑖𝑧𝑒 + 1) ∗ 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 𝑠𝑖𝑧𝑒.

Public void relay(TCPSegment[] packets_)

It keeps the segment up to buffer size and unaffected segment discards up to the mismatch ratio. I

mean mismatch ratio is the transmission speed between input and output link. For example, if

mismatch ratio is 10:1 of the pipe size, it means input link is 10 time faster than output link. Buffer

size must be less than mismatch ratio. If arrival input 10 segments and buffer size is 7, three segments

are discarded. Aging if 20 segments come, router r save1, 2……. 7number segment and 11 number

segments will be transmitted.

Class TCP Receiver

The TCP receiver receives a segment and retransmits an acknowledgement. It is the main work of

receiver. When receiver receives any segment, it has to work a lot to control congestion. Arrival

segment may lost, may be duplicate acknowledgement. Receiver buffer may have previously buffered

some segments. Those aforesaid problems have to be solved by receiver. Now I will describe different

method and field which are essential for receiver work.

Field Summary

Protected int lastBufferedIdx

It is the index of the last segment that has been buffered. -1 means there is no buffer segments.

Protected int lastByteRecvd

This field make a record of a segment sequence number has been received.

Protected int nextByteExpected

This is the currently expected segment from sender.

Protected int rcvWindow

It is the receiver window size in bytes.

Protected TCPSegment[] rcvBuffer

Receiver receives segments what goes from sender in receiver buffer.

Constructor summary

Public TCPReceiver() is used to initialize value in declared parameter. Here, we have initialized null

value which indicates that there is no value initially in receiver buffer.

Method summary
public int receive(TCPSegment[] segments_, TCPSegment[] acks_)

International Journal of Scientific & Engineering Research
ISSN 2229-5518 56

IJSER © 2020
http://www.ijser.org

IJSER

Publication Partner:

International Journal of Scientific & Engineering Research-IJSER (ISSN: 2229-5518)

http://dx.doi.org/ 10.14299/ijser.01.12.2008 48

It receives segment from sender and passes the acknowledgement segment. When receive

function of TCPReceiver class is called from run function of TCPSimulator class, receiver

checks all arrival segments which goes from sender before receiving by following mentioned

way. TCPSegment type‟s Segment array and ACK array has been declared whose size 100 in

TCPSimulator class. Receive function of receiver class will be called after calling send function

of sender class and relay function of r in router class. When send function of sender class will

be called, some segment will be kept in segment array including segment sequence number,

ack in segment array. Receive function of TCPReceiver class will receive a number of segments

that kept in TCPSegment array in receive buffer and TCPReceiver generate ack is kept in ack

array. At first step, receive funtion will check arrival segments whether arrival segment is null

or not? Null means lost segment. If segment array doesn‟t contain null, receive function can

understand that there are some segments in segment array. After that it checks arrival segment

sequence number. It itself ensures that whether arrival segment‟s sequence numbers are equal

to expected next byte or not? If yes, it will set next expected sequence number by sum of arrival

segment‟s sequence number plus its length. Then, it will check. Is there any segment in

receiver buffer that has been previously buffered? if there is no previously buffered segments

in receiver buffer, it will make a record of last byte received in sequence. On the other hand, if

there are available previously buffered segments, it will check whether it has been created any

gap by out of sequence or not? If yes, it will remove receiver buffer‟s segment one by one. To

remove segment it will call check Buffered Segments function. But , if the segment is lost, this

situation perform by out of Sequence Segment function.

protected TCPSegment outOfSequenceSegment(TCPSegment segment_)

This function will be called if segment is lost, receive function of receiver class also keep out of

sequence segment in receive buffer. In this simulation we assume that all buffered segments

are ordered in the ascending order of their sequence number. After receiving a out of sequence

segment, receiver window will be decreased according to received segment‟s length. Then, an

acknowledgement will be transmitted to sender. If a segment that comes to receiver from

sender contains null, no work will be performed.

International Journal of Scientific & Engineering Research
ISSN 2229-5518 57

IJSER © 2020
http://www.ijser.org

IJSER

Publication Partner:

International Journal of Scientific & Engineering Research-IJSER (ISSN: 2229-5518)

http://dx.doi.org/ 10.14299/ijser.01.12.2008 49

protected void checkBufferedSegments()

It will check if the previously buffered out of sequence segment. If there is a previously

buffered segment, it will remove previous buffered segments. Before removing, it will calculate

next expected byte‟s sequence number and increase receiver window with removing segment‟s

length. Remove system last until last buffer index‟s value will have larger or equal to zero.

Obviously, this system only for one segment. But, if there would have more than one segment

previously buffered in receiver buffer, in that situation, it had to shift remaining segments

towards the beginning of array. After that it will remove another segment from receiver buffer

in same way. if previously buffered segment‟s sequence number isn‟t equal to expected next

byte. It won‟t do anything for that case. After that it will give an acknowledgement that

indicates segment has been received by receiver.

public int getRcvWindow()

It is a accessor for retrieving the current size of the available buffer spaces in bytes. I mean, It

will return current receiver window.

Class TCP Segment

This is a segment. We have created segment by sequence number, length and ack. A segment can

carry data or ack or both. In our simulation we have created a segment without giving data. Because

of data is irrelevant. We don‟t have headache data. We need only send a segment. Whether data is not

essential, but segment is essential. That‟s why we have made a segment.

Field summary

Public int seqNum = 0;

It provides sequence number of segments

Public int length = 0;

It keeps the length of segment.

Public boolean ack;

It informs whether segment contains any ack or not?

Public boolean inError = false;

It indicates whether segment is corrupted by an error or not? This also introduces an error

checking mechanism for this simulation.

Constructor summary

Public TCPSegment(int seqNum_, int length_)

Public TCPSegment(int seqNum_, int length_, boolean ack_)

When sender sends a segment and receiver gives acknowledgement segment only then this

constructor function is called. A new object which is actually a new segment is created by aforesaid

parameter and kept in sender‟s segment array. Once it also transmits to receiver.

International Journal of Scientific & Engineering Research
ISSN 2229-5518 58

IJSER © 2020
http://www.ijser.org

IJSER

Publication Partner:

International Journal of Scientific & Engineering Research-IJSER (ISSN: 2229-5518)

http://dx.doi.org/ 10.14299/ijser.01.12.2008 50

Class TCP Sender

TCP sender class is also interring connected to TCP Sender Tahoe and TCP Sender Reno. Tahoe class

process acknowledgement segment and detect duplicate ACK, lost packet or another problem and

also recover but when three duplicate acknowledgement is received by Tahoe, TCP Sender Reno class

is called and recover loss segment.

Field Summary

protected int lastByteSent = -1;

It is the pointer which points last byte that has been sent so far.

protected int lastByteAcked = -1;

It is the pointer which points last byte that has been received so far.

protected int congWindow = TCPSimulator.MSS;

Current congestion window size in bytes

protected int SSThresh = 65535;

This is the constant parameter of Tahoe where slow start sending mode kick in.

protected static final int SLOW_START = 0;

It is the type of the sending mode of sender initial stage.

protected static final int CONG_AVOID = 1;

It is the type of the sending mode. It will be increased additively.

protected int sendMode = SLOW_START;

It is the current send mode. Its default value is slow start.

protected static final int TIMER_DEFAULT = 3;

It is a default value of timer, in our simulation its value is 3*RTT.

protected int timer = TIMER_DEFAULT;

It is a retransmission of timer. The timer is activated at the beginning of the transmission cycle.

When all outstanding segments are acknowledged, the timer is deactivated. When regular

acknowledgement is received and there are still outstanding , non acknowledgement segment, the

timer should be restarted.

protected int dupACKsGlobal = 0;

It is the counter of duplicate acknowledgements over multiple subsequent RTT periods.

Method summary

public int getTotalBytesTransmitted()

It is a accessor for retrieving total number of bytes what have been transmitted during

simulation run. This also used for reporting purposes of sender.

International Journal of Scientific & Engineering Research
ISSN 2229-5518 59

IJSER © 2020
http://www.ijser.org

IJSER

Publication Partner:

International Journal of Scientific & Engineering Research-IJSER (ISSN: 2229-5518)

http://dx.doi.org/ 10.14299/ijser.01.12.2008 51

public abstract void send(TCPSegment[] segments_, int rcvWindow_, boolean lostPacket_)

This is the abstract function of sender. It means to us that TCP Sender Class doesn‟t do any

work by using send function but those who inherits this class only those class can do some

work by using this send function. We have done this to use TCP Tahoe and TCP Reno class.

TCP Sender gets something done by TCP Tahoe and TCP Reno class. But it itself won‟t do any

thing. Sender sends two type segments. Obviously, Receiver will be able to distinguish

between this.

public abstract int processAcks(TCPSegment[] acks_)

It is same as previous abstract meaning. It processes the acknowledgement segment what

receiver has given for sender purposes.

Class TCP Sender Tahoe

Most of the work of sender has been done in TCP Sender Tahoe class.

Method summary

public int processAcks(TCPSegment[] acks_)

When process acknowledgement function is called, sender checks whether ACKs array is null or not?

If yes, process ACK function is terminated. If ACKs array contain any ACK, sender has to ensure that

whether this acknowledgement is for slow start or congestion avoidance. Because when any ACKs go

to sender, sender doesn‟t know it is of which mode. Arrival ACKs may be slow start modes‟ or

congestion modes‟. So, to be ensured. Sender checks current send modes‟ value. If current send

modes‟ value is equal to slow start modes‟ value, sender can understand that arrival ACKs is slow

start modes‟. After that process ACKs slow start function is called. On the other hand, If the value of

current send mode is equal to the value of cong avoidance mode, sender understands that arrival

ACKs is contestation avoidance modes‟. After that if current send mode is in congestion avoidance

mode, The function process ACKs Congestion avoidance will be called. After that global count of

duplicate ACKs will be updated with local duplicate acknowledgement count. If the number of

duplicate acknowledgements is greater than 2, the onThreeDuplicateACKs() function is called. If the

last sending byte is equal to the last receiving byte, timer will be updated. Otherwise sender can

understand that some segments are still outstanding. In this situation timer decrease and compare .if

timer value is less than or equal to zero, sender can sender understand that time out has occurred.

After that onExpiredTimeoutTimer() function is called.

protected boolean processAcksSlowStart(acks_[i_])

When process ACKS function is called, the following situation is created. Sender checks sequence

number of arrival ACKs. If it is greater than expected sequence number, it will make equal. After

that congestion window will increase with maximum segment size. When congestion window‟s

value exceeds the SSThresh value, sender enters into the congestion avoidance and current send

mode will be converted to congestion avoidance mode.

International Journal of Scientific & Engineering Research
ISSN 2229-5518 60

IJSER © 2020
http://www.ijser.org

IJSER

Publication Partner:

International Journal of Scientific & Engineering Research-IJSER (ISSN: 2229-5518)

http://dx.doi.org/ 10.14299/ijser.01.12.2008 52

protected boolean processAcksCongestionAvoidance(acks_[i_])

When this function is called, it will check the sequence number of present acknowledgement

comparing with last Byte received. If it is ok, congestion window will increase linearly. After that

timer will be updated. If present arrival ACKs sequence number conflict with last Byte received

ACK, it will be reported as duplicate acknowledgement.

onThreeDuplicateACKs()

When this function is called, the slow start thresholds value will be half of congestion window

value. Congestion window value will be equal to maximum segment size. This situation will

encourage the sender to retransmit the oldest packet. But how is it possible? It is simple. Send

mode has to be set to slow start mode. After that timer will be updated by calling function

resetMonitoringVariables()

resetMonitoringVariables()

When this function is called, it will update timer and reset the global counter of duplicate

acknowledgement segment.

onExpiredTimeoutTimer()

When this function is called, its work is to set, ssthesh value will be half of the congestion window.

Congestion window values convert to maximum segment size.

public void send(TCPSegment[] segments_, int rcvWindow_, boolean lostPacket_)

When send function of TCP Sender is called, it initializes the segment array with null because it is

new transmission so before transmitting segment array should have empty. Otherwise it may

contain garbage value which can stand as hindrance on the way of Congestion control. The

relevant parameter of congestion control is calculated in send function. The main work of this

function is to keep a segment object into the segment array. Before sending Sender checks whether

previous transmission has lost or not? This is identified by lost Packet parameter. If lost Packet

parameter contains true value, sender can understand that previous segment has been lost and it

retransmits that segment. This is the issue of Tahoe. Otherwise, sender sends segment depend on

the value of burst size. If burst size is greater than zero only then sender send full size segment.

Otherwise sender sends one byte segment for retain connection.

Class TCP Sender Reno

This class is used for recover loss. When three duplicate acknowledgement is received by sender only

then Reno class is called. It was supposed to transmit another segment after sending one segment if

allowed by congestion window and receiver‟s window but due to simplicity we don‟t do it. Here only

a concept has been given of TCP Reno that it recovers loss.

Field summary

public int uad

International Journal of Scientific & Engineering Research
ISSN 2229-5518 61

IJSER © 2020
http://www.ijser.org

IJSER

Publication Partner:

International Journal of Scientific & Engineering Research-IJSER (ISSN: 2229-5518)

http://dx.doi.org/ 10.14299/ijser.01.12.2008 53

It is the amount of UnACKed data in send window.

public int s

It contains two maximum segment size.

public int m

This variable has been used to calculate maximum value between uad and s

Class TCP Simulator

This is the main class of TCP congestion control. This simulated network consists of the network
elements of sender host, router and receiver host. These components are connected in a chain as
follows.

 SENDER <-> ROUTER <-> RECEIVER

The sender host send only data segment and receiver host generate only acknowledgement segment.

In other works, we assume a unidirectional transmission, for the sake of simplicity.This simulator

reports the value of congestion control parameters for each transmission by following system.

Iteration number

Congestion window

Effective window

Flight Size

SSThesh

Those are only for Sender side reports and at the end of simulation the sender utilization has been

reported.

Field Summary

public static final int REPORTING_LEVEL_1 = 1<<1;

This field reports when TCP segment loss occurs. It means loss is detected by three or more duplicate

acknowledgement or timeout timer expiration. When the sender enters the congestion avoidance

sending mode.

public static final int REPORTING_LEVEL_2 = 1 << 2;

This is the TCP Simulator reporting level 2. It reports every new TCP segment that is created.

public static int currentReportingLevel =(REPORTING_LEVEL_1 | REPORTING_LEVEL_2);

This field specifies the current reporting level of this simulator.

public static final int MSS = 1024;

This is the masimum segment size in bytes.

public static final int MAX_WIN = 100;

This is the maximum window size. In units.

public static final int SUCCESS = 0;

International Journal of Scientific & Engineering Research
ISSN 2229-5518 62

IJSER © 2020
http://www.ijser.org

IJSER

Publication Partner:

International Journal of Scientific & Engineering Research-IJSER (ISSN: 2229-5518)

http://dx.doi.org/ 10.14299/ijser.01.12.2008 54

This is the output of previous transmission.

public static final int DUP_ACKx3 = SUCCESS + 1;

This is the outcome of previous transmission that may be three or more duplicate acknowledgement.

public static final int TIMEOUT = DUP_ACKx3 + 1;

This is the outcome of previous transmission that indicates timeout.

int actualTotalTransmitted_

It contains how many bytes were transmitted during simulation on run.

int potentialTotalTransmitted_

It contains How many bytes could have been transmitted with the given bottleneck capacity, if there

were no losses due to exceeding the bottleneck capacity .

float utilization

The sender utilization means actual use of sender.

Constructor Summary

public TCPSimulator(int mismatchRatio_, int bufferSize_)

This is the constructor for our simulation. Its importance a lot; where sender, router, and receiver

have been activated.

Method Summary

public void run(int num_iter_)

It runs the simulator for the given number of transmission rounds.

public static void main(String[] args)

It is the main method for our simulation.

4.4.1 Flowchart of TCP Congestion Control

International Journal of Scientific & Engineering Research
ISSN 2229-5518 63

IJSER © 2020
http://www.ijser.org

IJSER

Publication Partner:

International Journal of Scientific & Engineering Research-IJSER (ISSN: 2229-5518)

http://dx.doi.org/ 10.14299/ijser.01.12.2008 55

4.4.2 Sender ACK Processing Flowchart

International Journal of Scientific & Engineering Research
ISSN 2229-5518 64

IJSER © 2020
http://www.ijser.org

IJSER

Publication Partner:

International Journal of Scientific & Engineering Research-IJSER (ISSN: 2229-5518)

http://dx.doi.org/ 10.14299/ijser.01.12.2008 56

 Figure 4.2: Sender Acknowledgement Segment

International Journal of Scientific & Engineering Research
ISSN 2229-5518 65

IJSER © 2020
http://www.ijser.org

IJSER

Publication Partner:

International Journal of Scientific & Engineering Research-IJSER (ISSN: 2229-5518)

http://dx.doi.org/ 10.14299/ijser.01.12.2008 57

Figure 4.3: Sender segment processing System

International Journal of Scientific & Engineering Research
ISSN 2229-5518 66

IJSER © 2020
http://www.ijser.org

IJSER

Publication Partner:

International Journal of Scientific & Engineering Research-IJSER (ISSN: 2229-5518)

http://dx.doi.org/ 10.14299/ijser.01.12.2008 58

4.4.3 Congestion Control simulation Diagram

4.4.4 Summary of Forward Error Correction simulation

Class FORWARDERRORCORRECTION

This class has been used to correct error what occurs during data transmission. There are lots of codes

for error correction. We have simulated forward error correction with Hamming (11, 7) code.

Hamming code is the single error correction technique. Error occurs when congestion occurs in

different network level. Although, there are some constant variants which are used to control

congestion, here we have shown only error correction technique.

International Journal of Scientific & Engineering Research
ISSN 2229-5518 67

IJSER © 2020
http://www.ijser.org

IJSER

Publication Partner:

International Journal of Scientific & Engineering Research-IJSER (ISSN: 2229-5518)

http://dx.doi.org/ 10.14299/ijser.01.12.2008 59

Filed Summary

Int l;

It has been used to count index of each bit in packet.

Int n;

It has been used to create a number of frames; where data bit and redundancy bit will be put.

Int cwnd=1;

It is the congestion window size.

Int flag =0;

It has been used to detect error. If any error is occurred anywhere in code, flag will be set to 1

otherwise it remains zero.

Int t_o;

It has been used to timeout purposes.

Int ack=1;

It is the acknowledgement segment what sender will receive from receiver.

Int I;

It has been used to redundant bit calculation.

Int simu_t;

It has been used as simulation time.

Int err=0;

It will report error.

Int n_out=0;

It has been used to generate new output.

Int n_err=0;

It has been used to report new error.

FileReader in;

It is the file reader building variable type of java. This variable has been used to read data; where in

is the data reader type object.

International Journal of Scientific & Engineering Research
ISSN 2229-5518 68

IJSER © 2020
http://www.ijser.org

IJSER

Publication Partner:

International Journal of Scientific & Engineering Research-IJSER (ISSN: 2229-5518)

http://dx.doi.org/ 10.14299/ijser.01.12.2008 60

FileWriter out;

This java building variable type. Here out is the writer type object.

FileWriter out_pkt;

This object has been used to write a packet in file; where out_pkt is a writer type object.

int[] pack = new int[220];

This is the packet array; where all data frame and 20 byte header will be kept.

FileWriter out_ak

This is the writer type object. The object out_ak will be used to write a data in file.

Constructor Summary

Public FORWARDERRORCORRECTION () {}

In this constructor function, three files have been created; where one is reader file others two are

writer files. The FileReader variable has been used to read data from a file and two FileWriter

variables have been used to write data in file.

Method Summary

void header()

In this header function, first we have created a twenty byte header. Header design depends on user.

The first 16 bits has been kept for source port. The other 16 bits has been kept for destination port. The

32 bits has been kept for sequence number. 32 bits has been kept for acknowledgement. The four bits

has been kept for TCP header length. The six bits has been kept for unused. Other six bits has been

kept for flag set. The 16 bits has been kept for word size. The 16 bits has been kept checksum and

other 16 bits has been kept for urgent pointer.

void packet()

This function has been used in this program to create a packet. The packet is a array variable.

Hamming code has been used to make a packet. In packet array, the five frames which have been

made by Hamming (11, 7) code have been kept. Each frame has been made with four redundancy bit

and 7 data bit. The redundant bits have been calculated with data bit which is user dependent. In each

frame has 11 bits code. The 7 ASCII characters have been taken as input data. Each ASCII character

has been converted to binary number and those binary numbers will be kept into data frame. We

have created twenty bytes header means 160 bits and 5 frames. In each frame has 11 bits. So number

of bits is 215 which have been kept in array packet.

void checksum()

International Journal of Scientific & Engineering Research
ISSN 2229-5518 69

IJSER © 2020
http://www.ijser.org

IJSER

Publication Partner:

International Journal of Scientific & Engineering Research-IJSER (ISSN: 2229-5518)

http://dx.doi.org/ 10.14299/ijser.01.12.2008 61

The checksum function has been used to create a checksum taking a sender side data bit. Sender

sends data including checksum. Receiver also makes a checksum. The 16 bits are kept for checksum

purposes that are fixed. A question may be raised by any one that‟s why we have divided packet

length by 16. The answer is very simple. We have applied a technique to count data. We have divided

the packet length with 16. After that, the length what we have gotten using that length we have

maintained a loop which contains from 1 to divided length and each counting packet index will be

increased with 16. So this logic will manipulate whole packet data.

For example: Suppose a packet length is 16000. If we divide it with 16, we will get output 1000. After

that if we maintain a loop from 1 to 1000; where another index purposes variable l which starting

point 0. Now if variable l increase 16 in each circle, and if variable l increases up to 1000 times, again

we will get packet length (1000*16=16000). It means to us that generating each bit of checksum has

been calculated considering whole data of packet.

void medium(int u,long t2)

The medium function has been used as media between sender and receiver. Media has also been used

to slow transmission. Sender has sent a sequence number and a timer to receiver. When media will

receive system timer by sender, media will perform some work. Then media count system timer.

These two timer values will be subtracted and compared with given system transmission timer into

media. If differencing value of timer is larger than given transmission timer, a timeout or an error will

occur. Then congestion window will be changed. If it is an error, congestion window will be half of

previous size and flag will set to 1. If there is no error or time out occurs, congestion window will

increase twice. These are all about media working system.

 int ft_out()

It will return total number of timeout packets.

currentTimeMillis()

It is a building function for java programming language. It will return current time in millisecond

from system.

int ft_err()

It will return total number of error packets.

int receive(int u)

Receiver receives number of sequence numbers from sender by receive function. When receive

function is called, receive function will generate a checksum from receiving data bits and checksum of

sender. Receiver will compare each checksum bit with sender checksum bit. If the checksum of

receiver and checksum of sender are equal, receiver can understand that there is no error in

transmission that may be for an error or timeout we can find out error by checksum but there is no

option to correct it. That‟s why Hamming code has been used because we can detect an error by

hamming code and also correct it. A sequence number is considerate as segment. Segment may lose

International Journal of Scientific & Engineering Research
ISSN 2229-5518 70

IJSER © 2020
http://www.ijser.org

IJSER

Publication Partner:

International Journal of Scientific & Engineering Research-IJSER (ISSN: 2229-5518)

http://dx.doi.org/ 10.14299/ijser.01.12.2008 62

for an error or timeout. After those work, receiver will also determine the error and correct the error

by hamming code. Receiver has used Hamming (11, 7) code for error detection and correction into the

receive function. For each redundancy bit, the number of fixed check bits has been used. For four

redundancies, four constant check variables have been used. Each constant check variable will care

some particular bits. After completing aforesaid work, the receiver will generate a window system for

reporting purposes. It means numbers of logical window views will be generated for each

transmission by following way.

public static void main(String[] args)

This is a compulsory function of forward error correction.

4.4.5 Forward Error correction

Forward error correction depends on the sender end and receiver end, Where Checksum has been

used for checking data both sender and receiver side. A diagram of Checksum is mentioned bellow.

Design of Sender

Figure 4.5: Flowchart at the sender end

Steps of sender design

International Journal of Scientific & Engineering Research
ISSN 2229-5518 71

IJSER © 2020
http://www.ijser.org

IJSER

Publication Partner:

International Journal of Scientific & Engineering Research-IJSER (ISSN: 2229-5518)

http://dx.doi.org/ 10.14299/ijser.01.12.2008 63

 Read the content of packet in binary format from a file

 Construct the packet header

 Generate the checksum

 Send the packet to the receiver

 Start the timer to check the time out

 Update the window size

 Design of Receiver:

Figure 4.6: Flowchart of processing at the receiver end

Steps of receiver design

 Receive the packet

 Generate the checksum and compare with the existing checksum

 If any error is found then try to correct error

 If error correction is possible or no error occurs then send ack packet

 If error correction is not possible discard the packet and wait for a retransmitted packet.

Checksum and Checksum Generator Diagram

The third error detection method we discuss here is called the checksum. Like the parity checks and

CRC, the checksum is based on the concept of redundancy [7]. In the sender, the checksum generator

International Journal of Scientific & Engineering Research
ISSN 2229-5518 72

IJSER © 2020
http://www.ijser.org

IJSER

Publication Partner:

International Journal of Scientific & Engineering Research-IJSER (ISSN: 2229-5518)

http://dx.doi.org/ 10.14299/ijser.01.12.2008 64

subdivides the data unit into equal segments of n bits(usually) These segments are added using ones

complement arithmetic in such a way that the total is also n bits long. That total (sum) is then

complemented and appended to the end of the original data unit as redundancy bits, called the

checksum field. The extended data unit is transmitted across the network. So if the sum of the data

segment is T, the checksum will be –T

Figure 4.7: Checksum Generator

Receiver 𝑇
−𝑇

𝑠𝑢𝑚 0 𝑐𝑜𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡

 -T T

Sender

Figure 4.8: Data unit and Checksum

 The sender follows these steps

 The unit is divided into k sections, each of n bits.

 All sections are added using ones complement to get the sum

 The sum is complemented and becomes the checksum

 The checksum is sent with the data

International Journal of Scientific & Engineering Research
ISSN 2229-5518 73

IJSER © 2020
http://www.ijser.org

IJSER

Publication Partner:

International Journal of Scientific & Engineering Research-IJSER (ISSN: 2229-5518)

http://dx.doi.org/ 10.14299/ijser.01.12.2008 65

Checksum Checker

The receiver subdivided the data unit as above and adds all segments and complements the result. If
the extended data unit is intact, the total values are found by adding the data.

 The receiver follows these steps:

 The unit is divided into k sections, each of n bits.

 All sections are added using ones complement to get the sum

 The sum is complemented.

If the result is zero, the data are accepted: otherwise, they are rejected

Simulation Model of FEC

Figure 4.9: Simulation Model of FEC

Here one sender and one receiver is used. The link between the sender and the receiver is wired and

bidirectional. The link is used for packet and acknowledgement transmission between the sender and

the receiver.

4.4.6 Parameter of FEC

The following parameters are varied for Forward Error Correction (FEC):

 Congestion Window

 Time out

 Retransmission if error correction is not possible

 Sequence no

 Ack processing

 Checksum generation

 Block coding

 Error generation

Sender Receiver

Packet

ACK

International Journal of Scientific & Engineering Research
ISSN 2229-5518 74

IJSER © 2020
http://www.ijser.org

IJSER

Publication Partner:

International Journal of Scientific & Engineering Research-IJSER (ISSN: 2229-5518)

http://dx.doi.org/ 10.14299/ijser.01.12.2008 66

4.5 Simulation Result of TCP Congestion Control

Table 4. 1: The following mentioned result is for sender performance of 5 second simulation on run

Iteration No CongWindow EffctWindow FlightSize SSThresh

0
Round 0:
 1024
 ack

1024

1024

0

65535

1
Round 1:
 1024
 1024
 ack
 ack

2048

2048

0

65535

2
Round 2:
 1024
 1024
 1024
 1024
 ack
 ack
 ack
 ack

4096

4096

0

65535

3
Round 3:
 1024
 1024
 1024
 1024
 1024
 1024
 1024
 1024
 ack
 ack
 ack
 ack
 ack
 ack
 ack

8192

8192

0

65535

International Journal of Scientific & Engineering Research
ISSN 2229-5518 75

IJSER © 2020
http://www.ijser.org

IJSER

Publication Partner:

International Journal of Scientific & Engineering Research-IJSER (ISSN: 2229-5518)

http://dx.doi.org/ 10.14299/ijser.01.12.2008 67

4
Round 4:
 1024
 1024
 1024
 1024
 1024
 1024
 1024
 1024
 1024
 1024
 1024
 1024
 1024
 1024
 ack
 ack
 ack
 ack
 ack
 ack
 ack
 ack

15360

14336

1024

65535

 Sender utilization: 35 %

Table 4.2: The following mentioned result is for sender performance of 10 second simulation run.

Iteration No CongWindow EffctWindow FlightSize SSThresh

0
Round 0:
 1024
 ack

1024

1024

0

65535

1
Round 1:
 1024
 1024
 ack
 ack

2048

2048

0

65535

2
Round 2:
 1024
 1024
 1024
 1024
 ack
 ack
 ack
 ack

4096

4096

0

65535

International Journal of Scientific & Engineering Research
ISSN 2229-5518 76

IJSER © 2020
http://www.ijser.org

IJSER

Publication Partner:

International Journal of Scientific & Engineering Research-IJSER (ISSN: 2229-5518)

http://dx.doi.org/ 10.14299/ijser.01.12.2008 68

3
Round 3:
 1024
 1024
 1024
 1024
 1024
 1024
 1024
 1024
 ack
 ack
 ack
 ack
 ack
 ack
 ack

8192

8192

0

65535

4
Round 4:
 1024
 1024
 1024
 1024
 1024
 1024
 1024
 1024
 1024
 1024
 1024
 1024
 1024
 1024
 ack
 ack
 ack
 ack
 ack
 ack
 ack
 ack

15360

14336

1024

65535

iter No: 5 Number of duplicateACK Received:3
5 1024 1 15360 7680
Round 5:
 1024
 Ack

6
Round 6:
(1-byte)
Ack

2048

1

7168

7680

7
Round 7:
(1-byte)
Ack

2048

1

7169

7680

International Journal of Scientific & Engineering Research
ISSN 2229-5518 77

IJSER © 2020
http://www.ijser.org

IJSER

Publication Partner:

International Journal of Scientific & Engineering Research-IJSER (ISSN: 2229-5518)

http://dx.doi.org/ 10.14299/ijser.01.12.2008 69

iter = 8 ****************** Timeout occurred!********************************
8 1024 1 7170 2048
Round 8:
 1024
 ack

9
Round 9:
(1-byte)
ack

2048

1

6146

2048

 Sender utilization: 29 %

Table 4.3: The following mentioned result is for sender performance of 30 second simulation run.

Iteration No CongWindow EffctWindow FlightSize SSThresh

0
Round 0:
 1024
 ack

1024

1024

0

65535

Round 1:
 1024
 1024
 ack
 ack

2048

2048

0

65535

2
Round 2:
 1024
 1024
 1024
 1024
 ack
 ack
 ack
 ack

4096

4096

0

65535

3
Round 3:
 1024
 1024
 1024
 1024
 1024
 1024
 1024
 1024
 ack
 ack
 ack
 ack
 ack
 ack
 ack

8192

8192

0

65535

4
Round 4:
 1024

International Journal of Scientific & Engineering Research
ISSN 2229-5518 78

IJSER © 2020
http://www.ijser.org

IJSER

Publication Partner:

International Journal of Scientific & Engineering Research-IJSER (ISSN: 2229-5518)

http://dx.doi.org/ 10.14299/ijser.01.12.2008 70

 1024
 1024
 1024
 1024
 1024
 1024
 1024
 1024
 1024
 1024
 1024
 1024
 1024
 ack
 ack
 ack
 ack
 ack
 ack
 ack
 ack

15360

14336

1024

65535

iter No: 5 Number of duplicateACK Received:3
 5 1024 1 15360 7680
Round 5:
 1024
 ack

6
Round 6:
(1-byte)
ack

2048

1

7168

7680

7
Round 7:
(1-byte)
Ack

2048

1

7169

7680

iter = 8 ********************Timeout occured! *******************************
8 1024 1 7170 2048
Round 8:
 1024
 Ack

9
Round 9:
(1-byte)
Ack

2048

1

6146

2048

10
Round 10:
 (1-byte)
 Ack

2048

1

6147

2048

iter = 11 *********************Timeout occured!*****************************
11 1024 1 6148 2048
Round 11:
 1024
 ack

12

International Journal of Scientific & Engineering Research
ISSN 2229-5518 79

IJSER © 2020
http://www.ijser.org

IJSER

Publication Partner:

International Journal of Scientific & Engineering Research-IJSER (ISSN: 2229-5518)

http://dx.doi.org/ 10.14299/ijser.01.12.2008 71

Round 12:
(1-byte)
ack

2048

1

5124

2048

13
Round 13:
(1-byte)
ack

2048

1

5125

2048

iter = 14 ***********************Timeout occured!***************************
14 1024 1 5126 2048
Round 14:
 1024
 ack

15
Round 15:
(1-byte)
Ack

2048

1

4102

2048

16
Round 16:
(1-byte)
ack

2048

1

4103

2048

iter = 17 ***************************Timeout occured!***********************
 17 1024 1 4104 2048
Round 17:
 1024
 ack

18
Round 18:
(1-byte)
ack

2048

1

2056

2048

19
Round 19:
(1-byte)
ack

2048

1

2057

2048

iter = 20 **********************Timeout occured!****************************
20 1024 1 2058 2048
Round 20:
 1024
 ack

21
Round 21:
(1-byte)
Ack

2048

1014

1034

2048

22
Round 22:
(1-byte)
ack

2048

1013

1035

2048

iter = 23 ************************Timeout occured!*************************
23 1024 1 1036 2048

Round 23:
 1024
 ack

24

International Journal of Scientific & Engineering Research
ISSN 2229-5518 80

IJSER © 2020
http://www.ijser.org

IJSER

Publication Partner:

International Journal of Scientific & Engineering Research-IJSER (ISSN: 2229-5518)

http://dx.doi.org/ 10.14299/ijser.01.12.2008 72

Round 24:
 1024
 1024
 ack
 ack

2048

2048

0

2048

##################Sender entering congestion avoidance#############
25 3541 3541 0 2048
Round 25:
 1024
 1024
 1024
 ack
 ack
 ack

26
Round 26:
 1024
 1024
 1024
 1024
 ack
 ack
 ack
 ack

4725

4725

0

2048

27
Round 27:
 1024
 1024
 1024
 1024
 1024
 ack
 ack
 ack
 ack
 ack

6040

6040

0

2048

28

Round 28:
 1024
 1024
 1024
 1024
 1024
 1024
 1024
 ack
 ack
 ack
 ack
 ack
 ack
 ack

7472

7472

0

2048

International Journal of Scientific & Engineering Research
ISSN 2229-5518 81

IJSER © 2020
http://www.ijser.org

IJSER

Publication Partner:

International Journal of Scientific & Engineering Research-IJSER (ISSN: 2229-5518)

http://dx.doi.org/ 10.14299/ijser.01.12.2008 73

29
Round 29:
 1024
 1024
 1024
 1024
 1024
 1024
 1024
 1024
 1024
 ack
 ack
 ack
 ack
 ack
 ack
 ack

9258

9258

0

2048

 Sender utilization: 21 %

Table 4.4: The following mentioned result is for sender performance of 50 second simulation run.

Iteration No CongWindow EffctWindow FlightSize SSThresh

0
Round 0:
 1024
 ack

1024

1024

0

65535

1
Round 1:
 1024
 1024
 ack
 ack

2048

2048

0

65535

2
Round 2:
 1024
 1024
 1024
 1024
 ack
 ack
 ack
 ack

4096

4096

0

65535

3
Round 3:
 1024
 1024
 1024
 1024
 1024
 1024
 1024

8192

8192

0

65535

International Journal of Scientific & Engineering Research
ISSN 2229-5518 82

IJSER © 2020
http://www.ijser.org

IJSER

Publication Partner:

International Journal of Scientific & Engineering Research-IJSER (ISSN: 2229-5518)

http://dx.doi.org/ 10.14299/ijser.01.12.2008 74

 1024
 ack
 ack
 ack
 ack
 ack
 ack
 ack

4
Round 4:
 1024
 1024
 1024
 1024
 1024
 1024
 1024
 1024
 1024
 1024
 1024
 1024
 1024
 1024
 ack
 ack
 ack
 ack
 ack
 ack
 ack
 ack

15360

14336

1024

65535

iter No: 5 Number of duplicate ACK Received:3
5 1024 1 15360 7680
Round 5:
 1024
 Ack

6
Round 6:
(1-byte)
ack

2048

1

7168

7680

7

Round 7:
(1-byte)
ack

2048

1

7169

7680

iter = 8 ************************Timeout occurred!****************************
8 1024 1 7170 2048
Round 8:
 1024
 Ack

9

Round 9:

2048

1

6146

2048

International Journal of Scientific & Engineering Research
ISSN 2229-5518 83

IJSER © 2020
http://www.ijser.org

IJSER

Publication Partner:

International Journal of Scientific & Engineering Research-IJSER (ISSN: 2229-5518)

http://dx.doi.org/ 10.14299/ijser.01.12.2008 75

(1-byte)
ack

10
Round 10:
(1-byte)
ack

2048

1

6147

2048

iter = 11 ***********************Timeout occurred!***************************
11 1024 1 6148 2048
Round 11:
 1024
 Ack

12
Round 12:
(1-byte)
ack

2048

1

5124

2048

13
Round 13:
(1-byte)
ack

2048

1

5125

2048

iter = 14 **********************Timeout occurred!*********************************
14 1024 1 5126 2048
Round 14:
 1024
 Ack

15
Round 15:
(1-byte)
ack

2048

1

4102

2048

16

Round 16:
(1-byte)
ack

2048

1

4103

2048

iter = 17 **************************Timeout occurred!************************
17 1024 1 4104 2048
Round 17:
 1024
 Ack

18
Round 18:
(1-byte)
ack

2048

1

2056

2048

19
Round 19:
(1-byte)
ack

2048

1

2057

2048

iter = 20 **************************Timeout occured!*****************************
20 1024 1 2058 2048
Round 20:
 1024
 Ack

21
Round 21:
(1-byte)
ack

2048

1014

1034

2048

International Journal of Scientific & Engineering Research
ISSN 2229-5518 84

IJSER © 2020
http://www.ijser.org

IJSER

Publication Partner:

International Journal of Scientific & Engineering Research-IJSER (ISSN: 2229-5518)

http://dx.doi.org/ 10.14299/ijser.01.12.2008 76

22

Round 22:
(1-byte)
ack

2048

1013

1035

2048

iter = 23 **********************Timeout occurred!*****************************
23 1024 1 1036 2048
Round 23:
 1024
 Ack

24
Round 24:
 1024
 1024
 ack
 ack

2048

2048

0

2048

####################### Sender entering congestion avoidance############
25 3541 3541 0 2048
Round 25:
 1024
 1024
 1024
 ack
 ack
 ack

26
Round 26:
 1024
 1024
 1024
 1024
 ack
 ack
 ack
 ack

4725

4725

0

2048

27
Round 27:
 1024
 1024
 1024
 1024
 1024
 ack
 ack
 ack
 ack
 ack

6040

6040

0

2048

28
Round 28:
 1024
 1024
 1024
 1024
 1024
 1024

International Journal of Scientific & Engineering Research
ISSN 2229-5518 85

IJSER © 2020
http://www.ijser.org

IJSER

Publication Partner:

International Journal of Scientific & Engineering Research-IJSER (ISSN: 2229-5518)

http://dx.doi.org/ 10.14299/ijser.01.12.2008 77

 1024
 ack
 ack
 ack
 ack
 ack
 ack
 ack

7472 7472 0 2048

29
Round 29:
 1024
 1024
 1024
 1024
 1024
 1024
 1024
 1024
 1024
 ack
 ack
 ack
 ack
 ack
 ack
 ack

9258

9258

0

2048

30
Round 30:
 1024
 1024
 1024
 1024
 1024
 1024
 1024
 1024
 ack
 ack
 ack
 ack
 ack
 ack
 ack

10889

8841

2048

2048

iter No: 31 Number of duplicate ACK Received:4
31 1024 1 10240 5444
Round 31:
 1024
 Ack

32
Round 32:
(1-byte)
ack

2048

1

9216

5444

33
Round 33:
(1-byte)

2048

1

9217

5444

International Journal of Scientific & Engineering Research
ISSN 2229-5518 86

IJSER © 2020
http://www.ijser.org

IJSER

Publication Partner:

International Journal of Scientific & Engineering Research-IJSER (ISSN: 2229-5518)

http://dx.doi.org/ 10.14299/ijser.01.12.2008 78

ack

iter = 34 *********************Timeout occurred!*****************************
34 1024 1 9218 2048
Round 34:
 1024
 Ack

35
Round 35:
(1-byte)
ack

2048

1022

1026

2048

36
Round 36:
(1-byte)
ack

2048

1021

1027

2048

iter = 37 *************************Timeout occurred!*************************
37 1024 1 1028 2048
Round 37:
 1024
 Ack

38
Round 38:
 1024
 1024
 ack

ack

2048

2048

0

2048

################### Sender entering congestion avoidance###############
39 3541 3541 0 2048
Round 39:
 1024
 1024
 1024
 ack
 ack
 ack

40

Round 40:
 1024
 1024
 1024
 1024
 ack
 ack
 ack
 ack

4725

4725

0

2048

41
Round 41:
 1024
 1024
 1024
 1024
 1024
 ack
 ack
 ack

6040

6040

0

2048

International Journal of Scientific & Engineering Research
ISSN 2229-5518 87

IJSER © 2020
http://www.ijser.org

IJSER

Publication Partner:

International Journal of Scientific & Engineering Research-IJSER (ISSN: 2229-5518)

http://dx.doi.org/ 10.14299/ijser.01.12.2008 79

 ack
 ack

42
Round 42:
 1024
 1024
 1024
 1024
 1024
 1024
 1024
 ack
 ack
 ack
 ack
 ack
 ack
 ack

7472

7472

0

2048

43
Round 43:
 1024
 1024
 1024
 1024
 1024
 1024
 1024
 1024
 1024
 ack
 ack
 ack
 ack
 ack
 ack
 ack

9258

9258

0

2048

44
Round 44:
 1024
 1024
 1024
 1024
 1024
 1024
 1024
 1024
 ack
 ack
 ack
 ack
 ack
 ack
 ack

10889

8841

2048

2048

iter No: 45 Number of duplicateACK Received:5

International Journal of Scientific & Engineering Research
ISSN 2229-5518 88

IJSER © 2020
http://www.ijser.org

IJSER

Publication Partner:

International Journal of Scientific & Engineering Research-IJSER (ISSN: 2229-5518)

http://dx.doi.org/ 10.14299/ijser.01.12.2008 80

45 1024 1 10240 5444
Round 45:
 1024
 Ack

46
Round 46:
(1-byte)
Ack

2048

1

9216

5444

47
Round 47:
(1-byte)
Ack

2048

1

9217

5444

iter = 48 **********************Timeout occurred!*****************************
48 1024 1 9218 2048
Round 48:
 1024
 Ack

49
Round 49:
 (1-byte)
 ack

2048

1022

1026

2048

 Sender utilization: 26 %

Analysis Result

Table1 is the result of 5 second simulation on run. We have gotten five output results in each iteration

number. In each output, we have printed iteration number, Congestion window, Effective window,

and Flight Size and Slow start threshold values. Among those; for each iteration number, a sender has

transmitted number of segments to receiver and also receives number of acknowledgements from

receiver. As we have given five input iteration number, we have gotten five outputs pattern from

sender. We have shown output result only for Sender performance. In first iteration, sender sends one

segment to receiver and receiver also sends an acknowledgement to sender after receiving a segment.

In this situation we can see that there is no change in congestion window (1024), effective window

(1024), flight size (0) and SSThresh(65536). Because of this, there is no change will occur in first

iteration. The value of these four parameter will change depend on number of transmission round. In

second iteration, sender sends two segments to receiver and receiver has also received that two

arrival segments successfully, then receiver sends two acknowledgement segments to sender.

Consequently, Congestion window increases with one maximum segment size (2048). Sender will

increase Congestion window after getting an acknowledgement segment. Effective window also

increases (2048). Effective window is such window that sender and receiver both can use flexibly.

Effective window will increase depend on minimum value between congestion window and receiver

window minas flight size. In second iteration, we can see that flight size zero because there is no

segment in outstanding. Flight size means some segments have been sent but acknowledgement isn‟t

International Journal of Scientific & Engineering Research
ISSN 2229-5518 89

IJSER © 2020
http://www.ijser.org

IJSER

Publication Partner:

International Journal of Scientific & Engineering Research-IJSER (ISSN: 2229-5518)

http://dx.doi.org/ 10.14299/ijser.01.12.2008 81

gotten yet. SSThresh value will be changed depend on timeout or duplicate acknowledgement. In

second iteration, since there is no timeout and duplicate acknowledgement, SSThresh value remains

unchanged. In third iteration, there is no change. In Forth iteration, we can see that an

acknowledgement has been lost. Because, sender has sent eight segment to receiver but receiver has

sent 7 acknowledgements to sender. So flight size should have been changed in forth iteration. But

simulation has shown it in next iteration that means in fifth iteration, simulation has shown

outstanding segment (1024) what is the loss of iteration number 4. In fifth iteration, Sender has sent 14

segments to receiver and receiver has transmitted 8 acknowledgements to sender. Others 6

acknowledgement doesn‟t go to sender. So, 6 segments have been lost. Due to loss, simulation doesn‟t

show the result of flight size of iteration number 5. Simulation has terminated before reporting of

flight size value. Even though, sender doesn‟t take any initiatives. Because of this, when sender gets

three or more duplicate acknowledgment only then sender takes some initiatives to control or to

recover loss. On the other hand, sender also takes some initiatives when time out occurs. This is issue

of our simulation. Here we can see that simulation doesn‟t control congestion. Because, simulation

run time has terminated before control congestion and recover loss. So, we should give much

transmission round or iteration before running simulation. Sender utilization has been shown after

completing 5 second simulation run. Sender utilization means actual use of sender or actual

performance. Sender utilization will increase depend on its actual transmission. In 5 second

simulation run, we have gotten sender utilization 35%. This is the at most utilization in our

simulation. The reasons to get such utilization, there is no timeout or duplicate acknowledgement

reception. These are all about 5 second simulation run summary.

Table 2 is the result of 10 second simulation on run. We have gotten ten output results with 10 input

iteration numbers. First 5 output results are same as Table1‟s output results. Our objective to

understand other 5 output result. In iteration number 6, we have seen that there are three duplicate

acknowledgement received by sender. After that congestion window has changed with maximum

segment size1024, SSThresh value has been half of the pervious congestion window. Previous

congestion window was 15360. Due to duplicate acknowledgement report, SSThresh has been half

(7680). Effective window has been 1 because effective window won‟t be 0 or less. If the value of

effective window is equal to zero or less, it will be converted to 1. Flight size has been 15360. Because

of this, an ACKs was lost in fourth iteration. In 5th iteration, 6 ACKs was lost. So number of ACKs was

lost 7 before 6th iteration. In iteration 6th, sender has shown three duplicate ACKs although there was

lost another 8 ACKs that hasn‟t shown. So total lost segment is 15.The calculation has been made in

back end side as (15*1024=15360). Sender has shown the result after counting 6th iteration. That‟s why

we are seeing the flight size as 15360. In iteration 7th, sender hasn‟t sent any data segment. Because,

during iteration 7th, Receiver didn‟t have enough capacity that‟s why sender has sent only single 1

byte segment for retaining connection. In iteration 8th, sender also has sent single 1 byte segment. In

International Journal of Scientific & Engineering Research
ISSN 2229-5518 90

IJSER © 2020
http://www.ijser.org

IJSER

Publication Partner:

International Journal of Scientific & Engineering Research-IJSER (ISSN: 2229-5518)

http://dx.doi.org/ 10.14299/ijser.01.12.2008 82

iteration 9th, a timeout has occurred. Due to timeout, Congestion window„s value has been changed

with maximum segment size 1024. SSThresh value has also been changed by half of congestion

window. So here question may be raised that congestion window was 2048 in that case due to timeout

SSThresh value should have supposed to 1024 but without being it has been 2048. Because of this,

SSThresh value must be double than congestion window when new transmission has made or

timeout occurred or duplicate acknowledgement received by sender. Due to timeout, sender has sent

a segment to the receiver and receiver has also sent an acknowledgement after receiving a segment. In

transmission round 10th, Sender hasn‟t sent data segment to receiver because during iteration 10th

receiver didn‟t have capacity to receive a data segment. That‟s why sender has sent a single 1 byte

segment for retaining connection to receiver and receiver has also received it. After that, receiver has

sent an acknowledgment to sender to retain connection. We can see that sender has not entered into

the congestion avoidance in 10 second simulation run. We should justify this simulation by setting

more iteration number before running simulation. So that, we can see that whether simulation can

control congestion or no? Sender utilization has been reported after 10 second transmission between

sender and receiver. Here we can see that, sender utilization is 29% which is lower than First 5 second

simulation run. Because of this, number of Actual transmission between sender and receiver has been

lower compare to potential transmission. These are all about 10 second simulation run summary.

Table 3 is the result of 30 second simulation on run. We have gotten thirty output results with 30

input iteration numbers. First 24 outputs are same as Table2. Our objective is to understand another

26 output results. In iteration number 25th, Sender enters into the congestion avoidance. When sender

enters into the congestion avoidance, the value of flight size is zero because in this situation no packet

is outstanding. When the value of congestion window exceeds the value of SSThresh, only then

sender enters into the congestion avoidance. Sender last in congestion avoidance until it again gets

three or more duplicate acknowledgement. When it will get again three or more duplicate

acknowledgement, sender again starts its activities with slow start mode. In 30 seconds simulation,

we get only 21% utilization. Table 4 is the result of 50 second simulation on run. We have gotten fifty

output results with 50 iteration number. These results are all about same as Table 3‟s output result.

We have shown these results only for utilization comparison. We have gotten 26% utilization. On the

contrary, in 30 second simulation run, we have gotten 21% utilization. We have gotten much

utilization in 5th second simulation run because there was no problem.

4.6 Simulation Result of Forward Error Correction

A snapshot of forward error correction result has been taken on receiver side that has been mentioned
bellow.

packet's header length is 160

International Journal of Scientific & Engineering Research
ISSN 2229-5518 91

IJSER © 2020
http://www.ijser.org

IJSER

Publication Partner:

International Journal of Scientific & Engineering Research-IJSER (ISSN: 2229-5518)

http://dx.doi.org/ 10.14299/ijser.01.12.2008 83

packet length is 215

The Trsamission round up to 5

1s 2s 3s 4s 5s

total no of send packet 455

total no of error packet is 45

total no of time out packet is 3

 Table 4.5: The following result is for Forward error correction of receiver side performance

Reciver ACK.doc file Receiver OUT.doc file Receiver Info.doc file

For seq no 1 Ack received Sequence no 1 successfully
received

Window size 2

Sequence no 1
6096
6096
6096
6096
6096

For seq no 2 Ack received

Sequence no 2 successfully
received

Window size 4

Sequence no 2
6096
6096
6096
6096
6096

.

.

.

.

.

.

.

.

.

.

.

.

For seq no 9 Ack received

Sequence no 9 successfully
received

Window size 512

Sequence no 9
6096
6096
6096
6096
6096

For seq no 10 Ack received

Sequence no 10 is lost for an
error

Window size 256

10
6096
6096
6096
6096
6096

For seq no 11 Ack received

Sequence no 11 is lost for an
error

Window size 257

11
6096
6096
6096

International Journal of Scientific & Engineering Research
ISSN 2229-5518 92

IJSER © 2020
http://www.ijser.org

IJSER

Publication Partner:

International Journal of Scientific & Engineering Research-IJSER (ISSN: 2229-5518)

http://dx.doi.org/ 10.14299/ijser.01.12.2008 84

6096
6096

.

.

.

.

.

.

.

.

.

For seq no 19 Ack received

Sequence no 19 is lost for an
error

Window size 265

19
6096
6096
6096
6096
6096

For seq no 20 Ack received

Sequence no 20 is lost for an
error

Window size 132

20
6096
6096
6096
6096
6096

For seq no 21 Ack received

Sequence no 21 is lost for an
error

Window size 133

21
6096
6096
6096
6096
6096

.

.

.

.

.

.

.

.

.

.

.

.

For seq no 29 Ack received

Sequence no 29 is lost for an
error

Window size 141

29
6096
6096
6096
6096
6096

For seq no 30 Ack received

Sequence no 30 is lost for an
error

Window size 70

30
6096
6096
6096
6096
6096

For seq no 31 Ack received

Sequence no 31 is lost for an
error

Window size 71

31
6096
6096
6096
6096
6096

.

.

.

.

.

.

.

.

.

.

.

.

For seq no 50 Ack received

Sequence no 50 is lost for an
error

Window size 24

50
6096
6096
6096

International Journal of Scientific & Engineering Research
ISSN 2229-5518 93

IJSER © 2020
http://www.ijser.org

IJSER

Publication Partner:

International Journal of Scientific & Engineering Research-IJSER (ISSN: 2229-5518)

http://dx.doi.org/ 10.14299/ijser.01.12.2008 85

6096
5712

For seq no 51 Ack received

Sequence no 51 is lost for an
error

Window size 25

51
6096
6096
6096
6096
5712

.

.

.

.

.

.

.

.

.

.

.

.

For seq no 74 Ack received

Sequence no 74 is lost for an
error

Window size 16
error at position 171
error at position 182
error at position 193

74
5904
5904
5900
6096
5712

.

.

.

.

.

.

.

.

.

For seq no 100 Ack received

Sequence no 100 is lost for
time out

Window size 9
error at position 160
error at position 182
error at position 193

100
5900
5904
5900
6096
5712

For seq no 101 Ack received

Sequence no 101 is lost for
an error

Window size 10
error at position 160
error at position 171
error at position 193

101
5900
5904
5904
6096
5712

For seq no 102 Ack received

Sequence no 102 is lost for
an error

Window size 11
error at position 171
error at position 182
error at position 193

102
5904
5904
5900
6096
5712

For seq no 103 Ack received

Sequence no 103 is lost for
an error

Window size 12
error at position 160
error at position 193

103
5900
5904
5904
6096
5712

For seq no 104 Ack received Sequence no 104 is lost for
an error

Window size 13
error at position 160
error at position 182
error at position 193

104
5900
5904
5900
6096
5712

.

.
.
.

.

.

International Journal of Scientific & Engineering Research
ISSN 2229-5518 94

IJSER © 2020
http://www.ijser.org

IJSER

Publication Partner:

International Journal of Scientific & Engineering Research-IJSER (ISSN: 2229-5518)

http://dx.doi.org/ 10.14299/ijser.01.12.2008 86

.

.

.

.

.

.

.

.

.

For seq no 200 Ack received

Sequence no 200 is lost for
time out

Window size 7
error at position 160
error at position 182
error at position 204

200
5900
5904
5900
6096
5712

For seq no 201 Ack received

Sequence no 201 is lost for
an error

Window size 8
error at position 160
error at position 171
error at position 182
error at position 204

201
5900
5904
5900
3024
5712

For seq no 202 Ack received

Sequence no 202 is lost for
an error

Window size 9
error at position 182
error at position 193
error at position 204

202
5904
5904
5900
2960
5712

For seq no 203 Ack received

Sequence no 203 is lost for
an error

Window size 10
error at position 171
error at position 182
error at position 204

103
5904
5904
5900
3024
5712

.

.

.

.

.

.

.

.

.

For seq no 284 Ack received

Sequence no 284 is lost for
an error

Window size 12
error at position 160
error at position 171
error at position 182
error at position 193
error at position 204

284
2764
5808
5900
2960
4176

For seq no 285 Ack received

Sequence no 285 is lost for
an error

Window size 13
error at position 160
error at position 171
error at position 182
error at position 204

285
2768
5806
5900
3024
4176

For seq no 286 Ack received

Sequence no 286 is lost for
an error

Window size 14
error at position 171
error at position 182
error at position 193

286
2832
5806
5900
2960
4176

International Journal of Scientific & Engineering Research
ISSN 2229-5518 95

IJSER © 2020
http://www.ijser.org

IJSER

Publication Partner:

International Journal of Scientific & Engineering Research-IJSER (ISSN: 2229-5518)

http://dx.doi.org/ 10.14299/ijser.01.12.2008 87

error at position 204

Analysis Result:

We have gotten aforesaid results by 5 second simulation on run. At first header length has been

printed out then packet length. Total number of packets has been sent 455 and error packets 45 and

timeout packets are 3 that we can see at beginning level. Then receiver has used three files for

reporting purposes. One is ACK.doc file where receiver will generate acknowledgement segment

after receiving a segment. One is OUT.doc file where receiver will write a message if receiver can

receive a segment successfully or los for timeout or los for any other error. Another is info.doc file;

where receiver will generate possible logical window for all fames. Obviously, after detecting and

correcting error. That information will be written in aforesaid file by receiver that has been elucidated

bellow. In Table Forward error correction result the header length is in fixed format. Packet length is

215 bits including header. After that our simulation transmission round was 5 second what has been

printed. Then simulation has show total number of send packet(455) and error packet is 45.After that,

the information what has been written in ACK.doc file those have been gotten from receiving

function called. Whenever, receive function has been called, receive function has return an ack that

value is 1. In file ack.doc, we can see that Receiver has given an ACK for each calling and that

information has Witten in ack.doc file including sequence number. Whenever, receive function has

been called of receiver, at first receive function has checked out that whether any error or timeout has

or not? If there is no error, receive function writes information in OUT.doc file and also if receive

function gets any error or timeout packet those information has written in OUT.doc file where

window size has increased for each reception. In file OUT.doc, we see that Receiver has received 9

sequence number means 9 packets successfully. But in sequence number 10, an error has reported.

Even though, window size is not decrease. But it was supposed to half of previous window size.

Without being window size increases. Because of this, compiler still into receive function of receiver.

Window size will decrease when again medium function will be called. Medium function will be

called after completing receives function of receiver. In sequence no 20, we can see that window size

has been half of previous window because medium function has called. After completing the

checksum, receiver will detect error and correct it by hamming code. Receiver will detect error

position by Hamming (11, 7) code and also write in OUT.doc file. Such as, we can see that sequence

no 74 three error position has been detected by Hamming (11, 7) code. In sequence no 103, three error

positions has been detected. Although, after detecting error receiver has corrected that error by

Hamming (11, 7) code, we can‟t see this result. No message is printout in OUT.doc file for error

correction. In info.doc file, the number of congestion windows size has been printed. The new

International Journal of Scientific & Engineering Research
ISSN 2229-5518 96

IJSER © 2020
http://www.ijser.org

IJSER

Publication Partner:

International Journal of Scientific & Engineering Research-IJSER (ISSN: 2229-5518)

http://dx.doi.org/ 10.14299/ijser.01.12.2008 88

possible logical Congestion window size has been printed after error detection and correction by

hamming (11, 7) code. In info.doc file, we can see that five window has been printed for each

sequence number. Because of this, we have taken 5 input frames. 5 fames have been created by

Hamming code. In Each frame has 11 bit code; where 7 data bit and 4 redundant bit. A window has

made for each frame. In info.doc file, we can see the sequence number 50 where an error occurred at

5th fame that‟s why window size has decreased because when an error occur congestion window

becomes half of previous window which is actually single window. In sequence no 286, we can also

that in each fames among 5 frames error has been detected that‟s why window size of each frame has

been decreased. Each window of info.doc file has been made calculating all window of transmission.

Such as in initial stage window size was 64KB after that timeout occurs and due to this SSThreh point

to 32KB that means congestion size 32KB. In this way, during second timeout congestion window will

be 16KB, then 8KB, then 4KB, then 2KB, then 1KB. It is actually difficult to understand but it is easy

seeing following graphical view.

Figure 5.1: Logical Congestion window view

International Journal of Scientific & Engineering Research
ISSN 2229-5518 97

IJSER © 2020
http://www.ijser.org

IJSER

Publication Partner:

International Journal of Scientific & Engineering Research-IJSER (ISSN: 2229-5518)

http://dx.doi.org/ 10.14299/ijser.01.12.2008 89

CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 Conclusion

We had a topic that how can we control congestion in network level. We have studied about TCP

Congestion Control and also have written our simulation study thesis taking Congestion Control

concept we have studied five congestion control technique (e.g. Tahoe, Reno, New Reno, SACK,

Vegas) and also been able to simulate two techniques especially one is Tahoe TCP and another is

Reno TCP. Tahoe TCP takes responsibility of manipulation data at sender level. If any error or

timeout occurs during transmission in network level, Tahoe retransmits that segment with restarting

timer. If three or more duplicate acknowledgement received by sender, the Reno TCP is called for

recovering loss in network level. In result analysis part, we have done analysis taking different

simulation result which is for Congestion Control and forward error correction simulation on run. We

can‟t recover any error during transmission in Congestion control simulation. If there was any error

generated, those error packets were retransmitted. For this reasons, we have developed an error

correction simulation which can detect an error and also can correct error. Although, there are many

error correction mechanism what we have also studied but we have simulated only one error

correction mechanism due to shortage of time and also for simplicity. We do believe that if anyone

want can do but there is no sufficient materials to visualize real world work in our country. We have

successfully been able to complete our simulation studies with Java Programming Language. After

completing congestion analysis of TCP/IP and its simulation study, we can understand how to

control congestion in network level. We also have known how to detect error in network level during

International Journal of Scientific & Engineering Research
ISSN 2229-5518 98

IJSER © 2020
http://www.ijser.org

IJSER

Publication Partner:

International Journal of Scientific & Engineering Research-IJSER (ISSN: 2229-5518)

http://dx.doi.org/ 10.14299/ijser.01.12.2008 90

transmission and how to correct error in network level. We have known how to analysis simulation

for thesis and Research work. We have been confident enough after completing our research work on

TCP. Our English language skills and scientific literature understanding skills enhanced to great

extent while preparation this documents.

5.2 Author Contribution

I have simulated congestion control system in network level using JAVA Eclipse Framework in order

to see how we can control congestion. I have shown that our proposed congestion control system

work fine.

5.3 Recommendation for Further Study

We have seen that all congestion control mechanisms are used in sender side and sometimes receiver

side. Again if any error occurs what may be single error or burst errors, these errors are recovered

with error correction mechanism. But it is a matter of great sorrow that, these error correction

mechanisms are used only sender side or receiver side or both sides. It‟s time consuming and cost

effective. For this reasons, client or user may victim or lose patience. So we are proposing new

technique what can save clients‟ time and also get pleasure. If we can develop an algorithm or

procedure of congestion control and error correction, that will be bound in each transmitting

segment. If each segment including congestion control and error correction algorithm can be sent in

network level, that congestion control and error correction algorithm takes care about sending

segment. When any error will be generated due to congestion control or error or timeout in network

level, our suggested undeveloped algorithm will recover those problems simultaneously in network

level. This is our recommendation of proposing thesis and also some idea has been generated by

following way……..

 At first comparison between various TCP versions for Two Congestion Control technique

especially TCP Tahoe and Reno are implemented, but for wireless handoff is a major issue. To

implement handoff more than one base stations is necessary. If handoff is implemented to

compare between various TCP versions then their relative performance for wireless link will

be clearer.

 Hamming code is used for forward error correction but hamming code can only recover

single bit error. Other forward error correction algorithm can also be implemented and their

relative performance can be evaluated.

International Journal of Scientific & Engineering Research
ISSN 2229-5518 99

IJSER © 2020
http://www.ijser.org

IJSER

Publication Partner:

International Journal of Scientific & Engineering Research-IJSER (ISSN: 2229-5518)

http://dx.doi.org/ 10.14299/ijser.01.12.2008 91

 In this thesis Congestion Control and forward error correction has been implemented using

java so all the parameters of wireless network can not implemented here, if forward error

correction can be implemented using particular network simulation visual software, then the

necessity of Congestion Control and FEC for wireless network will be clearer

REFERENCES

[1] Tanja Lang, “Evaluation of different TCP versions in non-wireline environments”, The University

 of South Australia, Institute for Telecommunications Research, 31 August 2002.

[2] http:// www.pdamd.com/vertical/features/wireless_3.xml (Accessed: July, 2008)

[3] Ling-Jyh Chen, Tony Sun, M. Y. Sanadidi, Mario Gerla, “Improving Wireless Link Throughput via

 Interleaved FEC”, UCLA Computer Science Department, Los Angeles, CA 90095, USA

[4] Henrik Lundqvist and Gunnar Karlsson, “TCP with end-to-end FEC”, In Proceedings of

 International Zürich Seminar on Communications, pages 152 – 155, Zürich, Switzerland,

 February 2004.

[5] Nayama Islam, Sumyea Helal, “Performance Analysis of TCP Tahoe, Reno, New Reno and SACK

 over Cellular Mobile System”, 8th ICCIT 2005,page 786 to 790, Department of Information and

 Communication Technology, University of Rajshahi, Rajshahi-6205, Bangladesh

[6] Computer Networks, Andrew S. Tanenbaum 4th edition, Pearson Education Publication.

[7] Data communication and Networking, Behrouz A. Forouzan, 4th edition, Tata McGraw-Hill
 Publishing Company Limited.

[8]http://www.comp.leeds.ac.uk/roger/HiddenMarkovModels/html_dev/viterbi_algorithm/

 s1_pg 1.html

International Journal of Scientific & Engineering Research
ISSN 2229-5518 100

IJSER © 2020
http://www.ijser.org

IJSER

http://www.pdamd.com/vertical/features/wireless_3.xml
http://www.comp.leeds.ac.uk/roger/HiddenMarkovModels/html_dev/viterbi_algorithm/%20%20%20%20%20%20%20%20%20%20%20s1_pg
http://www.comp.leeds.ac.uk/roger/HiddenMarkovModels/html_dev/viterbi_algorithm/%20%20%20%20%20%20%20%20%20%20%20s1_pg

Publication Partner:

International Journal of Scientific & Engineering Research-IJSER (ISSN: 2229-5518)

http://dx.doi.org/ 10.14299/ijser.01.12.2008 92

[9] V. Jacobson. “Congestion avoidance and control” In Proceedings of ACM SIGCOMM '88, pages

 314-329, August 1988. Stanford, CA

[10] M. Allman, V. Paxson, W. Stevens “TCP Congestion Control” RFC 2581 April 1999

[11] http://www.faqs.org/rfcs/rfc2581.html, October-10-2008.

[12] K. Fall and S. Floyd, "Simulation–based Comparisons of Tahoe, Reno, and SACK TCP", Computer

 Communications Review, 26(3), pp. 5–21, July 1996

[13] S. Floyd. TCP and successive fast retransmits. ftp://ftp.ee.lbl.gov/papers/fastretrans.ps, 1995

[14] M. Mathis, J. Mahdavi, S. Floyd, A. Romanov, “TCP Selective Acknowledgement Options” RFC

 2018 October 1996

[15] McDonald, C.S. "Network Simulation Using User–level Context Switching,", Proc. of the

 Australian UNIX Users' Group Conference '93 , Sydney, Sept 1993, pp1–10

[16] E. L. Yan, X. Yan “Empirical Analyses of SACK TCP Reno and Modified TCP Vegas”,

 http://citeseer.nj.nec.com/246505.html , November 20, 2008

[17] J. Hoe, "Startup Dynamics of TCP's Congestion Control and Avoidance Schemes", Master's

 Thesis, MIT, 199, November 21,2008

[18] S. Floyd, T. Henderson, “The NewReno Modification to TCP's Fast Recovery Algorithm”

 RFC2582 April 1999

[19] Changhee Joo and Saewoong Bahk, "Analysis of Start–up Transition Dynamics of TCP

 NewReno", Computer Networks, Vol. 36, No. 2, pp. 237–250, 2001

[20] L. Brakmo, S. O'Malley, and L. Peterson, “TCP Vegas: New techniques for congestion detection

 and avoidance” In Proceedings of the SIGCOMM '94 Symposium (Aug. 1994) pages 24–35

[21] J.–S. Ahn, P. Danzig, Z. Liu, and L. Yan. “An evaluation of TCP Vegas: Emulation and

 experiment” Computer Communications Review, 25(4):185–195, Oct. 1995

International Journal of Scientific & Engineering Research
ISSN 2229-5518 101

IJSER © 2020
http://www.ijser.org

IJSER

http://www.faqs.org/rfcs/rfc2581.html
http://citeseer.nj.nec.com/246505.html

Publication Partner:

International Journal of Scientific & Engineering Research-IJSER (ISSN: 2229-5518)

http://dx.doi.org/ 10.14299/ijser.01.12.2008 93

[22] L. Brakmo and L. Peterson. “TCP Vegas: End to End Congestion Avoidance on a Global
Internet” IEEE Journal on Selected Areas in Communication, Vol 13, No. 8 (October 1995) pages
1465–1480

[23] U. Hengartner, J. Bolliger, and T. Gross. “TCP Vegas revisited” In Proceedings of IEEE Infocom,
March 2000

[24] Steven Low, Larry Peterson, and Limin Wang. “Understanding TCP Vegas: theory and practice.
Submitted for publication”, Feb. 2000, http://www.ee.mu.oz.au/staff/slow/research/

[25] O. Ait–Hellal, and E. Altman, "Analysis of TCP Vegas and TCP Reno," Proc. IEEE ICC'97, 1997

[26] http://www.iaeng.org/IJCS/issues_v34/issue_1/IJCS_34_1_7.pdf

Appendix A

This section contains simple TCP Sender and TCP Receiver program. We have done this using Java
socket programming language. We have not included any error-checking or error handling
mechanism. For the shake of simplicity,

package receiver.test.expected;
import java.net.*;
import java.io.*;

public class Receiver
{
 ServerSocket ss;
 Socket sc;
 PrintWriter pr;
 BufferedReader br, sout;
 String sendersay;

 public Receiver()
 {
 try {
 ss = new ServerSocket(2000);
 sc = ss.accept();
 br=newBufferedReader(new InputStreamReader(sc.getInputStream()));
 sout = new BufferedReader(new InputStreamReader(System.in));
 pr = new PrintWriter(sc.getOutputStream());
 System.out.println("THIS IS Receiver");

 while(true)
 {
 String str = br.readLine();
 System.out.println("Sender >> " + str);
 pr.flush();
 System.out.print("Receiver >> ");

International Journal of Scientific & Engineering Research
ISSN 2229-5518 102

IJSER © 2020
http://www.ijser.org

IJSER

http://www.ee.mu.oz.au/staff/slow/research/
http://www.iaeng.org/IJCS/issues_v34/issue_1/IJCS_34_1_7.pdf

Publication Partner:

International Journal of Scientific & Engineering Research-IJSER (ISSN: 2229-5518)

http://dx.doi.org/ 10.14299/ijser.01.12.2008 94

 sendersay = sout.readLine();
 pr.println(sendersay);
 pr.flush();
 }
 }
 catch (IOException ex){System.err.print(ex);}}

 public static void main(String[] args)
 {
 Receiver r= new Receiver();
 }}

package sender.expected;
import java.net.*;
import java.io.*;

public class Sender {
 BufferedReader br, input;
 String cinput;
 PrintWriter pr;

 public Sender()
 {
 try {
 Socket s = new Socket("127.0.0.1", 2000);
 br = new BufferedReader(new InputStreamReader(s.getInputStream()));
 input = new BufferedReader(new InputStreamReader(System.in));
 pr = new PrintWriter(s.getOutputStream());
 System.out.println("THIS IS Senderr");
 while (true)
 {
 System.out.print("Sender >> ");
 cinput = input.readLine();
 pr.println(cinput);
 pr.flush();
 String str = br.readLine();
 System.out.println("Receiver>> " + str);
 }

 }
 catch (Exception ex) { }
 }

 public static void main(String[] args)
 {
 Sender sn = new Sender();
 }

}

International Journal of Scientific & Engineering Research
ISSN 2229-5518 103

IJSER © 2020
http://www.ijser.org

IJSER

Publication Partner:

International Journal of Scientific & Engineering Research-IJSER (ISSN: 2229-5518)

http://dx.doi.org/ 10.14299/ijser.01.12.2008 95

Appendix B

This section contains a TCP Congestion Control simulator. We have done this using Java
Programming Language; where three components are used. TCP Sender, TCP Router, and TCP
Receiver have been used. Although there are five techniques for congestion control, we have used
only two techniques especially Tahoe TCP and Reno TCP to control congestion in our simulation for
simplicity.

package simulator.congestionControl.TCP;

public class Router

{

 private int mismatchRatio;

 private int bufferSize;

 public Router(int mismatchRatio_, int bufferSize_)

 {

 mismatchRatio = mismatchRatio_;

 bufferSize = bufferSize_;

 if (bufferSize >= mismatchRatio)

 {

 bufferSize = mismatchRatio - 1;

 }

 }

 public int getBottleneckCapacity()

 {

 return (bufferSize + 1) * TCPSimulator.MSS;

 }

 public void relay(TCPSegment[] packets_)

 {

 for (int i = bufferSize; i < mismatchRatio; i++)

International Journal of Scientific & Engineering Research
ISSN 2229-5518 104

IJSER © 2020
http://www.ijser.org

IJSER

Publication Partner:

International Journal of Scientific & Engineering Research-IJSER (ISSN: 2229-5518)

http://dx.doi.org/ 10.14299/ijser.01.12.2008 96

 {

 packets_[i] = null;

 }

 int idx_let_pass_ = 1;

 for (int i = mismatchRatio; i < packets_.length; i++)

 {

 if ((i % mismatchRatio) != idx_let_pass_)

 {

 packets_[i] = null;

 }

 }

 }

 }

package simulator.congestionControl.TCP;

public class TCPReceiver{

protected TCPSegment[] rcvBuffer =new TCPSegment[TCPSimulator.MAX_WIN];

protected int lastByteRecvd = -1;

protected int nextByteExpected = 0;

protected int rcvWindow = 65536;

protected int lastBufferedIdx = -1;

public TCPReceiver()

{

 for (int i_ = 0; i_ < rcvBuffer.length; i_++)

 {

 rcvBuffer[i_]= null;

 }

 lastBufferedIdx = -1;

}

public int getRcvWindow()

{

 return rcvWindow;

}

public int receive(TCPSegment[] segments_, TCPSegment[] acks_)

{

 for (int i_ = 0; i_ < acks_.length; i_++)

 {

 acks_[i_] = null;

 }

 for (int i_ = 0; i_ < segments_.length; i_++)

 {

 if (segments_[i_] != null)

 {

 if (segments_[i_].seqNum == nextByteExpected)

 {

International Journal of Scientific & Engineering Research
ISSN 2229-5518 105

IJSER © 2020
http://www.ijser.org

IJSER

Publication Partner:

International Journal of Scientific & Engineering Research-IJSER (ISSN: 2229-5518)

http://dx.doi.org/ 10.14299/ijser.01.12.2008 97

 nextByteExpected = segments_[i_].seqNum + segments_[i_].length;

 if(lastBufferedIdx == -1)

 {

 lastByteRecvd =segments_[i_].seqNum + segments_[i_].length - 1;

 }

 else

 {

 checkBufferedSegments();

 }

 acks_[i_] = new TCPSegment(nextByteExpected, 1, true);

 }

 else

 {

 acks_[i_] = outOfSequenceSegment(segments_[i_]);

 }

 }

 }

 return rcvWindow; }

protected TCPSegment outOfSequenceSegment(TCPSegment segment_)

{

 lastBufferedIdx++;

 rcvBuffer[lastBufferedIdx] = segment_;

 lastByteRecvd = segment_.seqNum + segment_.length - 1;

 rcvWindow -= segment_.length;

 int ackSeqNum_ = nextByteExpected;

 return new TCPSegment(ackSeqNum_, 1, true);

}

protected void checkBufferedSegments()

{

 while (lastBufferedIdx >= 0)

 {

 if (rcvBuffer[0].seqNum == nextByteExpected)

 {

 nextByteExpected = rcvBuffer[0].seqNum + rcvBuffer[0].length;

 rcvWindow += rcvBuffer[0].length;

 rcvBuffer[0] = null;

 lastBufferedIdx--;

 if (lastBufferedIdx == -1){break;}

 TCPSegment[] temp_ = new TCPSegment[lastBufferedIdx + 1];

 System.arraycopy(rcvBuffer, 1, temp_, 0, lastBufferedIdx + 1);

 System.arraycopy(temp_, 0, rcvBuffer, 0, lastBufferedIdx + 1);

 rcvBuffer[lastBufferedIdx + 1] = null;

 }

else

 {

 break;

 }

 }

 }

International Journal of Scientific & Engineering Research
ISSN 2229-5518 106

IJSER © 2020
http://www.ijser.org

IJSER

Publication Partner:

International Journal of Scientific & Engineering Research-IJSER (ISSN: 2229-5518)

http://dx.doi.org/ 10.14299/ijser.01.12.2008 98

}

package simulator.congestionControl.TCP;

public class TCPSegment {

 public int seqNum = 0;

 public int length = 0;

 public boolean ack;

 public boolean inError = false;

 public TCPSegment(int seqNum_, int length_)

 {

 this(seqNum_, length_, false);

 }

 public TCPSegment(int seqNum_, int length_, boolean ack_)

 {

 this.seqNum = seqNum_;

 this.length = length_;

 this.ack = ack_;

if((TCPSimulator.currentReportingLevel&TCPSimulator.REPORTING_LEVEL_2)!= 0)

 {

System.out.println((ack?"\tack":((length==1)?"(1-byte)":"\t"+Integer.

toString(length))));

 }

 }

}

package simulator.congestionControl.TCP;

public abstract class TCPSender {

 protected int lastByteSent = -1;

 protected int lastByteAcked = -1;

 protected int congWindow = TCPSimulator.MSS;

 protected int SSThresh = 65535;

 protected static final int SLOW_START = 0;

 protected static final int CONG_AVOID = 1;

 protected int sendMode = SLOW_START;

 protected static final int TIMER_DEFAULT = 3;

 protected int timer = TIMER_DEFAULT;

 protected int dupACKsGlobal = 0;

 public int getTotalBytesTransmitted()

 {

 return (lastByteAcked + 1);

 }

 public abstract int processAcks(TCPSegment[] acks_);

 public abstract void send(TCPSegment[] segments_, int rcvWindow_,

 boolean lostPacket_);

}

International Journal of Scientific & Engineering Research
ISSN 2229-5518 107

IJSER © 2020
http://www.ijser.org

IJSER

Publication Partner:

International Journal of Scientific & Engineering Research-IJSER (ISSN: 2229-5518)

http://dx.doi.org/ 10.14299/ijser.01.12.2008 99

package simulator.congestionControl.TCP;

public class TCPSenderTahoe extends TCPSender

{

 int f=0;

 public int processAcks(TCPSegment[] acks_)

 {

 int retVal_ = TCPSimulator.SUCCESS;

 for (int i_ = 0; i_ < acks_.length; i_++)

 {

 if (acks_[i_] == null)

 {

 break;

 }

 boolean dupACKlocal_ = false;

 if (sendMode == SLOW_START)

 {

 dupACKlocal_ = processAcksSlowStart(acks_[i_]);

 }

 else if (sendMode == CONG_AVOID)

 {

 dupACKlocal_ = processAcksCongestionAvoidance(acks_[i_]);

 }

 else

 {

System.out.println("TCPSenderTahoe.processAcks(): Wrong sending mode.");

 }

 dupACKsGlobal += dupACKlocal_ ? 1 : 0;

 if (dupACKsGlobal > 2)

 {

 onThreeDuplicateACKs();

 retVal_ = TCPSimulator.DUP_ACKx3;

 break;

 }

 }

 if (lastByteSent == lastByteAcked)

 {

 resetMonitoringVariables();

 }

 else

 {

 timer--;

International Journal of Scientific & Engineering Research
ISSN 2229-5518 108

IJSER © 2020
http://www.ijser.org

IJSER

Publication Partner:

International Journal of Scientific & Engineering Research-IJSER (ISSN: 2229-5518)

http://dx.doi.org/ 10.14299/ijser.01.12.2008 100

 if (timer <=0)

 {

 onExpiredTimeoutTimer();

 retVal_ = TCPSimulator.TIMEOUT;

 }

 }

 return retVal_;

 }

 protected boolean processAcksSlowStart(TCPSegment ack_)

 {

 if (ack_.seqNum > (lastByteAcked + 1))

 {

 lastByteAcked = ack_.seqNum - 1;

 congWindow += TCPSimulator.MSS;

 if ((sendMode == SLOW_START)&&(congWindow > SSThresh))

 {

 sendMode = CONG_AVOID;

 if ((TCPSimulator.currentReportingLevel &

TCPSimulator.REPORTING_LEVEL_1) != 0)

 {

System.out.println("\##nSender entering congestion avoidance ##"+"\n");

 }

 }

 resetMonitoringVariables();

 return false;

 }

 else

 {

 return true;

 }

 }

 protected boolean processAcksCongestionAvoidance(TCPSegment ack_)

 {

 if (ack_.seqNum > (lastByteAcked + 1))

 {

 lastByteAcked = ack_.seqNum - 1;

 congWindow +=(TCPSimulator.MSS * TCPSimulator.MSS) /

congWindow + TCPSimulator.MSS / 8;

 resetMonitoringVariables();

 return false;}

 else

 {

 return true;

 }

 }

International Journal of Scientific & Engineering Research
ISSN 2229-5518 109

IJSER © 2020
http://www.ijser.org

IJSER

Publication Partner:

International Journal of Scientific & Engineering Research-IJSER (ISSN: 2229-5518)

http://dx.doi.org/ 10.14299/ijser.01.12.2008 101

 protected void onThreeDuplicateACKs()

 {

 if (dupACKsGlobal > 2)

 {

 SSThresh = congWindow / 2;

 SSThresh = Math.max(SSThresh, 2*TCPSimulator.MSS);

 congWindow = TCPSimulator.MSS;

 sendMode = SLOW_START;

 resetMonitoringVariables();

 }

 }

 protected void onExpiredTimeoutTimer()

 {

 if (timer <= 0)

 {

 SSThresh = congWindow / 2;

 SSThresh = Math.max(SSThresh, 2*TCPSimulator.MSS);

 congWindow = TCPSimulator.MSS;

 sendMode = SLOW_START;

 resetMonitoringVariables();

 }

 }

 protected void resetMonitoringVariables()

 {

 dupACKsGlobal = 0;

 timer = TIMER_DEFAULT;

 }

 public void send(TCPSegment[] segments_, int rcvWindow_, boolean

lostPacket_)

 {

 for (int i_ = 0; i_ < segments_.length; i_++)

 {

 segments_[i_] = null;

 }

 int flightSize_ = lastByteSent - lastByteAcked;

 f=flightSize_;

 int effectiveWindow_ =Math.min(congWindow, rcvWindow_) -

flightSize_;

 if (effectiveWindow_ <= 0)

 {

 effectiveWindow_ = 1;

 }

System.out.println("\t\t" +congWindow + "\t\t\t " + effectiveWindow_ +

 "\t\t\t" + flightSize_ + "\t\t\t" + SSThresh);

 System.out.println("\nRound " +TCPSimulator.r+":");

International Journal of Scientific & Engineering Research
ISSN 2229-5518 110

IJSER © 2020
http://www.ijser.org

IJSER

Publication Partner:

International Journal of Scientific & Engineering Research-IJSER (ISSN: 2229-5518)

http://dx.doi.org/ 10.14299/ijser.01.12.2008 102

 if (lostPacket_)

 {

 segments_[0] =new TCPSegment(lastByteAcked + 1,

TCPSimulator.MSS);

 return;

 }

 int burst_size_ = effectiveWindow_ / TCPSimulator.MSS;

 if (burst_size_ > 0)

 {

 for (int seg_ = 0; seg_ < burst_size_; seg_++)

 {

 segments_[seg_] = new TCPSegment(lastByteSent + 1,

TCPSimulator.MSS);

 lastByteSent += segments_[seg_].length;

 }

 }

 else

 {

 segments_[0] = new TCPSegment(lastByteSent + 1, 1);

 lastByteSent += segments_[0].length;

 }}}

package simulator.congestionControl.TCP;

public class TCPSenderReno extends TCPSenderTahoe

{

 public int uad;

 public int s,m;

public void Recover(TCPSegment[] segments_, int rcvWindow_, boolean

lostPacket_)

 {

 uad=f/2;

 s=2*TCPSimulator.MSS;

 m=Math.max(uad,s);

 if(SSThresh<=m)

 {

 if(lostPacket_)

segments_[0]=new

TCPSegment(lastByteAcked+1,TCPSimulator.MSS);

 congWindow=congWindow+3*TCPSimulator.MSS;

 }}}

package simulator.congestionControl.TCP;

public class TCPSimulator {

public static final int REPORTING_LEVEL_1 = 1<<1;

public static final int REPORTING_LEVEL_2 = 1 << 2;

public static int currentReportingLevel =(REPORTING_LEVEL_1 |

REPORTING_LEVEL_2);

 public static final int MSS = 1024;

International Journal of Scientific & Engineering Research
ISSN 2229-5518 111

IJSER © 2020
http://www.ijser.org

IJSER

Publication Partner:

International Journal of Scientific & Engineering Research-IJSER (ISSN: 2229-5518)

http://dx.doi.org/ 10.14299/ijser.01.12.2008 103

 public static final int MAX_WIN = 100;

 public static final int SUCCESS = 0;

 public static final int DUP_ACKx3 = SUCCESS + 1;

 public static final int TIMEOUT = DUP_ACKx3 + 1;

 private TCPSender sender=null;

 private TCPSenderReno sender1=null;

 private TCPReceiver receiver = null;

 private Router router = null;

 private int c=2;

 public static int r=0;

 public TCPSimulator(int mismatchRatio_, int bufferSize_)

 {

 sender1=new TCPSenderReno();

 sender = new TCPSenderTahoe();

 receiver = new TCPReceiver();

 router = new Router(mismatchRatio_, bufferSize_);

 }

 public void run(int num_iter_)

 {

 TCPSegment[] segments_ = new TCPSegment[MAX_WIN];

 TCPSegment[] acks_ = new TCPSegment[MAX_WIN];

 for (int i_ = 0; i_ < MAX_WIN; i_++)

 {

 segments_[i_] = null;

 acks_[i_] = null;

 }

System.out.println("Iter\t\t\t CongWindow\t\t"

+"EffctWindow\t\tFlightSize\t\tSSThresh");

System.out.println("=======================================");

 int rcvWindow = receiver.getRcvWindow();

 for (int i_ = 1; i_ <= num_iter_; i_++)

 {

 int outcome_ = SUCCESS;

 if (i_ != 1)

 {

 outcome_ = sender.processAcks(acks_);

 }

 if((outcome_ == DUP_ACKx3) &&((currentReportingLevel &

REPORTING_LEVEL_1) != 0))

 {

 c++;

System.out.println("iter No: " + (i_-1)+ " "+"Number of duplicateACK

Received:"+c);

 sender1.Recover(segments_, rcvWindow, outcome_ != SUCCESS);

 }

 else if((outcome_ == TIMEOUT)&&((currentReportingLevel &

REPORTING_LEVEL_1) != 0))

 {

System.out.println("iter = " + (i_-1) + "** Timeout occured! ");

 }

International Journal of Scientific & Engineering Research
ISSN 2229-5518 112

IJSER © 2020
http://www.ijser.org

IJSER

Publication Partner:

International Journal of Scientific & Engineering Research-IJSER (ISSN: 2229-5518)

http://dx.doi.org/ 10.14299/ijser.01.12.2008 104

 System.out.print((i_-1) + "\t");

 sender.send(segments_, rcvWindow, outcome_ != SUCCESS);

 router.relay(segments_);

 rcvWindow = receiver.receive(segments_, acks_);

 System.out.print("\n");

 r++;

 }

System.out.println===");

 int actualTotalTransmitted_ =

sender.getTotalBytesTransmitted();

 int potentialTotalTransmitted_ =router.getBottleneckCapacity()

* num_iter_;

 float utilization_ =(float) actualTotalTransmitted_ / (float)

potentialTotalTransmitted_;

 System.out.println("Sender utilization: " +

Math.round(utilization_*100.0f) + " %");

 }

 public static void main(String[] args)

 {

 int x=args.length;

 if(x< 1)

 x=100;

 if (x< 1) {

System.err.println("Please enter the number of iterations!");

 System.exit(1);

 }

 int mismatch_ratio_ = 10;

 int buffer_size_ = 7;

 TCPSimulator simulator =

 new TCPSimulator(mismatch_ratio_, buffer_size_);

 Integer numIter_ = new Integer(x);

 simulator.run(numIter_.intValue());

 }

}

International Journal of Scientific & Engineering Research
ISSN 2229-5518 113

IJSER © 2020
http://www.ijser.org

IJSER

Publication Partner:

International Journal of Scientific & Engineering Research-IJSER (ISSN: 2229-5518)

http://dx.doi.org/ 10.14299/ijser.01.12.2008 105

Appendix C

This section contains simple TCP Sender and TCP Receiver program. We have done this using Java
Programming Language; Where Forward Error Correction has been done. There are many Error
Correction mechanisms. But, we have included only Hamming code [H (11, 7)] for Forward Error
correction in our simulation study.

package forward.error.correction.test;

import java.io.*;

import java.util.Random;

public class FORWARDERRORCORRECTION

{

 int l,cwnd=1,n=5,flag=0,t_o=0;

 int ack=1,i=0;

 int err=0;

 int[] pack = new int[220];

 int n_out=0,n_err=0;

 FileReader in ;

 FileWriter out,out_pkt;

 public FORWARDERRORCORRECTION()

 {

 try

 {

 in = new FileReader("E:\\Thesis\\code\\CHAR_OUT.txt");

 out= new FileWriter("E:\\Thesis\\code\\OUT.doc");

 out_pkt=new FileWriter("E:\\Thesis\\code\\info.doc");

 }

 catch(java.io.FileNotFoundException ss)

 {}

 catch(java.io.IOException ss1)

 {}

 }

International Journal of Scientific & Engineering Research
ISSN 2229-5518 114

IJSER © 2020
http://www.ijser.org

IJSER

Publication Partner:

International Journal of Scientific & Engineering Research-IJSER (ISSN: 2229-5518)

http://dx.doi.org/ 10.14299/ijser.01.12.2008 106

 void header()

 {

 for(l=0;l<16;l++) pack[l]=0; //for sp[16]

 for(l=16;l<32;l++) pack[l]=1; //for dp[16]

 for(l=32;l<64;l++) pack[l]=0; //for sn[32]

 for(l=64;l<96;l++) pack[l]=1; //for an[32]

 for(l=96;l<100;l++) pack[l]=0; //tcp_h_l[4]

 for(l=100;l<106;l++) pack[l]=1; //un_use[6]

 for(l=106;l<112;l++) pack[l]=0; //for b6[6]

 for(l=112;l<128;l++) pack[l]=1; //for ws[16]

 for(l=128;l<144;l++) pack[l]=0;//check_sum[16]

 for(l=144;l<160;l++) pack[l]=1; // for up[16]

 }

void packet()

 {

 System.out.println("\npacket's header length is "+l);

 int j=0; int[]d=new int[8];

 String input="abcdefg";

 try

 {

 for(int ig=1;ig<=n;ig++)

 {

 char c[] = new char[(char)input.length()];

 in.read(c);

 for(j=0;j<7;j++)

 d[j]=c[j]-48; //finding the data

 for(j=1;j<12;j++)

 {

 i=0;

 if(j==1)

 {

 i=d[0]+d[1]+d[3]+d[4]+d[6];

 if(i%2==0)

 pack[l+j-1]=0;

 else pack[l+j-1]=1;

 }

 else if(j==2)

 {

 i=d[0]+d[2]+d[3]+d[5]+d[6];

 if(i%2==0)

 pack[l+j-1]=0;

 else pack[l+j-1]=1;

 }

 else if(j==3)

 {

 pack[l+j-1]=d[0];

 }

 else if(j==4)

 {

 i=d[1]+d[2]+d[3];

 if(i%2==0)

 pack[l+j-1]=0;

 else

 pack[l+j-1]=1;

International Journal of Scientific & Engineering Research
ISSN 2229-5518 115

IJSER © 2020
http://www.ijser.org

IJSER

Publication Partner:

International Journal of Scientific & Engineering Research-IJSER (ISSN: 2229-5518)

http://dx.doi.org/ 10.14299/ijser.01.12.2008 107

 }

 else if(j==5)

 {

 pack[l+j-1]=d[1];

 }

 else if(j==6)

 {

 pack[l+j-1]=d[2];

 }

 else if(j==7)

 {

 pack[l+j-1]=d[3];

 }

 else if(j==8)

 {

 i=d[4]+d[5]+d[6];

 if(i%2==0)

 pack[l+j-1]=0;

 else pack[l+j-1]=1;

 }

 else if(j==9)

 {

 pack[l+j-1]=d[4];

 }

 else if(j==10)

 {

 pack[l+j-1]=d[5];

 }

 else if(j==11)

 {

 pack[l+j-1]=d[6];

 }

 }

 l=l+11;

 }

 in.close();

 }

 catch(java.io.IOException e)

 {

 System.out.println("Cannot access the input file");

 }

 System.out.println();

 System.out.println("packet length is "+l);

 System.out.print("\nThe Trsamission round up to 5\n\n");

}

void checksum()

 { for(int u=0;u<16;u++)

 {

 int c=0,l=u;

 for(int v=1;v<=pack.length/16;v++)

 {

 if(l>126 && l<144)

 c=c+0;

International Journal of Scientific & Engineering Research
ISSN 2229-5518 116

IJSER © 2020
http://www.ijser.org

IJSER

Publication Partner:

International Journal of Scientific & Engineering Research-IJSER (ISSN: 2229-5518)

http://dx.doi.org/ 10.14299/ijser.01.12.2008 108

 else

 c=c+pack[l];

 l=l+16;

 }

 pack[u+127]=c%2;

 }

 }

void medium(int u,long t2)

 {

 int rtt=10; //set the round trip time here

 try{Thread.sleep(rtt);

 }

 catch(java.lang.InterruptedException gg)

 { }

Random r=new Random();

 err=0;

 if (u%10==0)

 {

 err=r.nextInt(215);

 if(pack[err]==0)

 pack[err]=1;

 else pack[err]=0;

 err=1;

 n_err=n_err+1;

 }

 t_o=0;

 if(u%100==0)

 try

 {

 Thread.sleep(rtt);

 }

 catch(java.lang.InterruptedException gg)

 { }

 long t3 = System.currentTimeMillis();

 if(t3-t2>=20)

 {

 err =1; t_o=1; }

 if (cwnd==0)

 cwnd=1;

 if (err==1)

 {

 cwnd=cwnd/2;

 flag=1;

 }

else if(err==0 && flag==0)

 cwnd=cwnd*2;

else if(err==0 && flag==1)

 cwnd=cwnd+1;

}

int receive(int u)

International Journal of Scientific & Engineering Research
ISSN 2229-5518 117

IJSER © 2020
http://www.ijser.org

IJSER

Publication Partner:

International Journal of Scientific & Engineering Research-IJSER (ISSN: 2229-5518)

http://dx.doi.org/ 10.14299/ijser.01.12.2008 109

 {

 int[] check = new int[20];

 int err=0;

 for(int b=0;b<16;b++)

 {

 int c=0,l=b;

 for(int v=1;v<=pack.length/16;v++)

 {

 if(l>126&&l<144)

 c=c+0;

 else

 c=c+pack[l];

 l=l+16;

 }

 check[b]=c%2;}

 for(int b=0;b<16;b++)

 if(check[b]!=pack[b+127])

 err=1;

 if (err==1 && t_o==1)

 {

 try

 {

out.write("\n\nSequence no "+u+" is lost for time out"+"\nWindow size

"+cwnd);

 }

 catch(java.io.IOException ss1)

 {}

 n_out=n_out+1;

 }

 else if (err==1)

 {

 try

 {

out.write("\n\nSequence no "+u+" is lost for an error"+"\nWindow size

"+cwnd);

 }

 catch(java.io.IOException ss1)

 {}

 }

 else

 {

 try

 {

out.write("\n\nSequence no "+u+" successfully received"+"\nWindow size

"+cwnd);

 }

 catch(java.io.IOException ss3)

 {}

 }

 err=0;

 try

 {

 out_pkt.write("\n"+u);

 }

 catch(java.io.IOException ss)

 {}

International Journal of Scientific & Engineering Research
ISSN 2229-5518 118

IJSER © 2020
http://www.ijser.org

IJSER

Publication Partner:

International Journal of Scientific & Engineering Research-IJSER (ISSN: 2229-5518)

http://dx.doi.org/ 10.14299/ijser.01.12.2008 110

 int l1=160;

 int []e = new int[5];

 for(int j1=1;j1<=n;j1++)

 {

 int

e1=((pack[l1+0])+(pack[l1+2])+(pack[l1+4])+(pack[l1+6])+(pack[l1+8])+(pack[

l1+10]))%2;

 int

e2=((pack[l1+1])+(pack[l1+2])+(pack[l1+5])+(pack[l1+6])+(pack[l1+10])+(pack

[l1+9]))%2;

 int e3=((pack[l1+3])+(pack[l1+4])+(pack[l1+5])+(pack[l1+6]))%2;

 int e4=((pack[l1+7])+(pack[l1+8])+(pack[l1+9])+(pack[l1+10]))%2;

 e[1]=e1;e[2]=e2;e[3]=e3;e[4]=e4;

 int b=0,y;

if(e1==0&&e2==0&&e3==0&&e4==0)

 b=0;

else

 {

 b=e4*8+e3*4+e2*2+e1*1;

if(pack[l1+b-1]==0)

 pack[l1+b-1]=1;

 else pack[l1+b-1]=0;

 try

 {

 out.write("\nerror at position "+l1);

 }

 catch(java.io.IOException ss1)

 {}

 }

 int b1=((pack[l1+2]))*64;

 b1=b1+(pack[l1+4])*32;

 b1=b1+(pack[l1+5])*16;

 b1=b1+(pack[l1+6])*8;

 b1=b1+(pack[l1+8])*4;

 b1=b1+(pack[l1+9])*2;

 b1=b1+(pack[l1+10])*1;

 try

 {

 if(b1<0)

 b1=b1*-1;

 out_pkt.write("\n"+b1);

 }

 catch(java.io.IOException ss)

 {}

 l1=l1+11;

 }

 ack=1;

 return (ack);

 }

int ft_out()

 {

 return n_out;

 }

int ft_err()

 {

 return n_err;

International Journal of Scientific & Engineering Research
ISSN 2229-5518 119

IJSER © 2020
http://www.ijser.org

IJSER

Publication Partner:

International Journal of Scientific & Engineering Research-IJSER (ISSN: 2229-5518)

http://dx.doi.org/ 10.14299/ijser.01.12.2008 111

 }

 public static void main(String[] args)

 {

 try

 {

 FileWriter out_ak = null;

 try {

 out_ak = new FileWriter("E:\\Thesis\\code\\Ack.doc");

 }

 catch (IOException ex) {

 }

 int simu_t = 5; //set the simulation time here

 int seq, s = 1;

FORWARDERRORCORRECTION ob = new FORWARDERRORCORRECTION();

 ob.header();

 ob.packet();

 ob.checksum();

 long time = System.currentTimeMillis(),time1,t1,t2;//t3;

 t1 = time;

 System.out.print(s + "s ");

 s = 2;

 for (seq = 1; ; seq++) {

 try {

 t2 = System.currentTimeMillis();

 ob.medium(seq, t2);

 if (ob.receive(seq) == 1)

 try {

 out_ak.write("\nFor seq no " + seq + " Ack received");

 }

 catch (IOException ex1) {

 }

 else

 try {

 out_ak.write("\nFor seq no " + seq +

 " Ack not received");

 }

 catch (IOException ex2) {

 }

 }

 catch (java.lang.NullPointerException xx) {

 System.out.println("EXception");

 }

 time1 = System.currentTimeMillis();

 if (time1 - time >= (simu_t + 0) * 1000)

 break;

 if (t1 + 1000 == time1) {

 System.out.print(s + "s ");

 t1 = time1;

International Journal of Scientific & Engineering Research
ISSN 2229-5518 120

IJSER © 2020
http://www.ijser.org

IJSER

Publication Partner:

International Journal of Scientific & Engineering Research-IJSER (ISSN: 2229-5518)

http://dx.doi.org/ 10.14299/ijser.01.12.2008 112

 s = s + 1;

 }

 }

 System.out.println("\n\ntotal no of send packet " + seq);

 System.out.println("\ntotal no of error packet is " +

ob.ft_err());

 System.out.println("\ntotal no of time out packet is " +

ob.ft_out());

 }

 catch (java.lang.NullPointerException fxgf)

 {System.out.print("Exception");}

 System.out.print("\nThe End of the simulation");

 }

}

International Journal of Scientific & Engineering Research
ISSN 2229-5518 121

IJSER © 2020
http://www.ijser.org

IJSER

