
International Journal of Scientific & Engineering Research, Volume 7, Issue 2, February-2016 96
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

Surpassing the Challenges of Inferencing for
Natural Language

Aleshinloye Abass Yusuf

Department of Computer Science
Nigerian-Turkish Nile University,

Abuja, Nigeria
yusuf.abass@ntnu.edu.ng

Abstract: The main objective of this research is to improve on the standard tree- matching approach of textual entailment by introducing inference
engine for every standard sentence which is more efficient in doing inferencing than the textual entailment approach and the logical approach. The
previous approaches have some limitation ranging from lack of background knowledge and inadequate representation of natural language. To overcome
the present challenges a compromise is made on both logical and textual entailment approaches. The compromise is referred to as the Normalisation
approach, where the inference is achieved by transforming the dependency tree generated from the parser in order to generate a simple version which
can be easily handled by the inference engine. The approach involves goal inference; that is, inference from a goal to a set of known facts, which help
control the search space by enforcing conditions that will help prove the current goal. The approach can be used in solving ontological problems and
challenges that come with inferencing in natural language.

Keywords— entailment; normalisation; inference ; dependency;

—————————— ——————————
1 Introduction

Natural language inference (NLI) describes the problem of
determining whether a natural language hypothesis H can
reasonably be deduced from a natural language text T.
Inference has been one of the major topics in Artificial
Intelligence from the start, researchers have made
remarkable attempts to develop automatic methods for
several formal deductions. The challenges in NLI are
different from those of formal deduction: the emphasis is
on informal reasoning, lexical semantic knowledge and
variability of linguistic expression, rather than on long
chains of formal reasoning (MacCartney 2009). Example 1
may help illustrate the difference:

(1) T: Several railways polled saw costs grow more than
expected, even after adjusting for inflation.

H: Some of the companies in the poll announced cost
increases.

In the NLI domain, (1) is regarded as valid inference,
because if an ordinary person hears T, then he or she is
likely to accept that H follows. However, it should be noted
that H is not a completely logical consequence of T, for the
reason that seeing a cost increase does not actually entail
announcing the cost increase - it is possible that every
organisation polled kept quiet about its increasing costs,
perhaps for business policy reasons. That the inference is

nevertheless regarded valid in an NLI setting is an
indication of the informality of the task definition.

 One of the intrinsic features of NLI task definition
is that the problem inputs are expressed in a natural
language. By contrast, an automated deduction generally
assumes that a problem input is always expressed in a
formal, meaningful representation, such as the language of
first-order logic (FOL). From this, it is apparent that an NLI
task is different from previous work in logical inference,
and NLI can be positioned within the field of natural
language processing (NLP) (MacCartney, 2009). The NLI
applications include the following:

a) Question answering (QA): In open domain QA, the

greatest challenge lies in the ability to return a text-
based expression that is extracted from a huge
document collection, and provide a reliable answer to
the question in a natural language. One of the goals of
QA (Harabagiu and Hickl, 2006) is to achieve the
ability to evaluate whether the target question can be
inferred from the candidate answers that are extracted
from the source document.

b) Automatic Summarization: This is an area of NLI that
includes applications that can take a collection of
documents or e-mails and produce a consistent
summary of their contents. The main goal of automatic

Nwojo Nnanna Agwu
Department of Computer Science
Nigerian-Turkish Nile University,

Abuja, Nigeria
nnagwu@gmail.com

IJSER

http://www.ijser.org/
mailto:yusuf.abass@ntnu.edu.ng
mailto:nnagwu@gmail.com

International Journal of Scientific & Engineering Research, Volume 7, Issue 2, February-2016 97
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

summarization is correctness; that is, the summary
should reflect the ideas in the source document(s).

c) Evaluating Machine Translation System: A relatively
new application for NLI is the promotion of automatic
evaluations of the machine translation (MT) output of a
system. This was born out of the need to have
reliability in evaluations (Padó, Galley et al. 2009), and
the rapid interactive development of MT basically
depends on automatic estimation measures.

d) Semantic Search: The main goal of the semantic search
is to offer the ability to retrieve a document from a
collection of several documents (for example, from the
internet), based on the semantic query (MacCartney
2009).

Over the years, many NLI challenges have been formulated
in different ways, where each task has different goal
depending on different researcher’s formulation.
Accordingly, a number of different NLI problem sets have
been developed, with various characteristics.In order to
explain the current study, the two main existing
approaches will be explored.

1.1 Translation to logic approach

This strategy involves the transformation of English
sentences into the FOL form of representation and includes
the use of a functional dependency parser. In order to
examine whether an entailment holds using this strategy,
several steps must be carried out which involve the
interpretation of a sentence; the first thing includes
identifying the logical form of the sentence (Hobbs, Stickel
et al. 1993).

1.2 Textual Entailment approach

The task involved in textual entailment is such that it
promotes an abstract generic task, which includes
capturing major semantic inference across applications
(Glickman 2006). In a perfect scenario, the task requires the
recognition of an entailment given two text fragments;
whether the meaning of a text fragment H can be inferred
from another text T, therefore, needs to be investigated
(Glickman 2006). More accurately, the idea of textual
entailment is defined as a directional relationship between
pairs of text expressions, an entailing text and entailed
textual hypothesis (Glickman 2006).

Figure 1: Relationship between Translation to logical
form and Textual Entailment

2 The Problem Definition

When sentences are fed into the parser, in most cases it
gives incorrect output. It is quite difficult to use those
dependency trees in the system, and there is little or
nothing to be done regarding the output from the parser.
The research scope includes investigating sentences (rules)
where the parser gives the right representation.

In this research, we present an improvement on the
standard tree-matching approach of textual entailment by
introducing inference engine for every standard sentence
which is more efficient in doing inferencing than the textual
entailment approach and the logical approach.

3 Proposed System

It is clearly observed that both logical form and textual
entailment approaches to NLI have a similar sturctures but
the different approach in making an inference, therefore, a
compromise is made between the translation to the logical
form approach and the textual entailment approach of
conducting inference. The compromise on both previous
approaches is what brings about the normalisation
approach, where an entailment is achieved by normalising
the dependency parse tree in order to obtain a simpler
version of the parsed tree. Figure 2 below shows some
common features, such as text tagging, dependency tree
parsing and dependency tree extraction from a known
dependency parser. These features are the commonality
that exist between the translation to the logical form
approach and the textual entailment approach. Based on
this commonality, the normalised inference form is

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 7, Issue 2, February-2016 98
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

developed, for which there exists an inference engine. The
normalisation approach (middle of the diagram) is the basis
on which this research is built, where the inference engine
is a simple backward-chaining PROLOG-like engine. This
approach basically uses a dependency tree structure that is
generated from a dependency parser, rather than using
FOL as it was in the translation to a logical form.

Figure 2: System Architecture.

The aim of Normalization approach to NLI as shown in
figure 2 is to set the background knowledge to a set of facts
and rules, and it is necessary to prove a goal in the
inference engine based on the known facts and set of rules.
The way to achieve this is to follow what is obtainable in
the system architecture of the Normalisation approach.

The three major tasks required in the Normalisation
approach are:

i. Parsing the input text (facts, rules and goal) into
dependency trees.

ii. Normalising the dependency tree, so that they are in a
suitable format for the inference engine.

iii. Doing proof via the inference engine.
1.3 First Stage: Dependency Parsing

The task of a dependency parser is to take an input text and
impose on the text an appropriate set of dependency links;

that is, to tokenize each input text; on each token, the tagger
assigns part of speech (POS) tags (Covington 2001). The
parser generates a tree based on the relationships that exist
between tokens or words in the input text. The following
are some of the basic characteristics expected of a
dependency tree generated from the Stanford parser:

i. Unity: At the end of the parsing process, a
dependency tree is produced (with a unique root),
with all words in the input text constituents of the
tree.

ii. Uniqueness: For every word in the tree, there
exists a head per word; that is, the dependency
relations between words in the input text make a
tree rather than some form of a graph.

iii. Projectivity (adjacency): Given some words in
the input text, for every word that depends on
word X, say word Y, then all words between X and
Y are called subordinate words of Y. This is drawn
from the fact that crossing of branches is not
allowed in dependency trees.

iv. Word-at-a-time operation: During the parsing
process, words in the input text are examined by
the parser one after the other; they are then
attached to the tree rather than waiting for the
complete phrase.

1.4 Second Stage: Normalising Dependency Trees

The parser is likely to generate a dependency tree and often
time the trees generated are not quite suitable to represent a
set of rules in the inference engine. In order to obtain a set
of rules that a PROLOG-like inference engine can handle,
an approach is required to transform the dependency tree.
It is necessary to normalise the single dependency tree
produced by the parser. The Normalisation approach
employs the use of hand coded rules, which is an indication
that it is rich in background knowledge.

The normalisation of a dependency tree is the process of
removing or replacing some nodes as well as relations in
the tree. This process requires a detailed understanding of
the dependency structure, in order to generate a tree that
does not contain nodes and relations that are irrelevant to
the inference procedure. In order to achieve this, the
dependency trees are transformed by applying some
rewrite rules to the dependency tree.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 7, Issue 2, February-2016 99
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

1.5 Third Stage: Inference Framework

Generally, most inference representations are built by
applying some kind of transformation to the trees
representing the set of rules. Such transformations are
viewed as the main inference rules, which capture semantic
information, lexical relations, syntactic variations etc. Like
the PROLOG system, the inference framework is composed
of rules. The propositions include facts (the antecedent),
goals (consequent) and the intermediate premises inferred
during the proof (set of rules). The task of the inference rule
is to define the way propositions are derived from
previously established ones (Bar-Haim, Dagan et al. 2007).

4 The Normalization Approach

 In the normalization approach input sentence(s) which are
in the form of a natural language are translated into a
restricted subset of the same natural language.

In this case, the first stage is to generate a dependency tree,
obtained from a dependency parser. In most cases such a
tree is not always ideal for use with the inference engine in
the third stage. A normalization procedure is applied to
such tree so as to adapt to one that an inference engine can
handle. The type of normalization that will be required is
dependent on the structure of the tree generated from the
dependency parser. For example

i. X buys Y if X has money and X wants Y.
ii. X buys Y if X wants Y and X has money.

iii. X loves Y if X likes Y and Y is pretty.

Figure 3 shows the dependency tree representation of the
parser for each of the sentences above:

Figure 3: The dependency trees for examples (i), (ii) and
(iii), where the root of the tree is the context word

Figure 3 shows the dependency trees of (i), (ii) and (iii),
where the root of the dependency tree conveys significant
information between the rest of the words. It is expected
that the dependency trees for both sentences (i) and (ii)
would have the same structure, based on the fact that the
input sentences on both occasions have almost the same
semantic interpretations. The dependency tree in Figure 3(i)
shows the kind of dependency structures required for the
natural language inference based on the research goal; it is
not perfect, but there are mechanisms in the
implementation that address such challenges. Regarding
the dependency tree in Figures 3(ii) and 3(iii), the parser
has the wrong representation for both sentences. In both
figures, the relation conj (Y, Y) is an instance where the
parser gave the wrong representation by assuming a noun
phrase rather than a verb phrase for both (ii) and (iii). On
the other hand, the representation was expected to be nsubj
(has, Y) in (ii) and a cop (is, Y) in (iii). In addition, a wrong
representation of the parser has made the coordinate node
‘and’ a dependent of noun phrase Y, which according to the
parser manual, was supposed to be a “relation between an
element of a conjunct and the coordinating conjunction
word of the conjunct” (De- Marneffe and Manning 2008).

The dependency tree in Figure 3(i) is amongst the few
instances where the parser got it right. The adverbial clause
modified the verb phrase. The root of the sentence is buys,
and every other word is linked to it, and in the case of the
coordinating conjunction, a good representation was given
between conj (has, wants), as shown in Figure 3(i) above.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 7, Issue 2, February-2016 100
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

In the context of the present research, normalization is all
about modifying the set of rules that the inference engine
will be able to handle. The purpose of the transformation
procedure is to create a simple version of the tree. Figure 4
shows the tree that represents the set of rules in the
inference engine that needs to be transformed.

Figure 4: Showing the set of rules that needs to be
transformed

The set of rules r is made up of two parts, the consequent
part and the antecedent part.

Considering Figure 4 above, the normalization process
starts with the removal of the adverbial clause alongside its
marker, which is the word that introduces the conditional
part of the antecedent in r. Figure 5 shows the structure of r
after applying the normalization rule:

Figure 5: Application of normalization rule on adverbial
component

It is somewhat obvious that the tree has been divided into
its constituent part of antecedent and consequent. The
transform tree, which is also a rule, is one of the inputs in
the inference engine on which the inference engine
attempts to prove a given goal. The consequent part of r is

made up of relations and nodes that have the same pattern
as the goal, as shown in Figure 6(a):

Figure 6: The goal and set of facts that needs to be proved.

The normalization approach is based on consequent
inference; that is, inference from goal to known facts. It is a
very good method of controlling a search, and is a simple
mechanism for enforcing a certain form of relevance in
action towards deciding the current goal and ensuring the
use of rules that are present in the inference, which mention
the current goal in conclusion. It is quite important to note
that anything deducible via consequent inference is also
deducible by antecedent inference, where the consequent
acts as a way of controlling the antecedent. The inference
engine exhibits backward chaining (consequent-driven,
goal-driven and hypothesis-driven), and supports the goal
state by checking the known facts in the set of rules, and if
these facts do not support the goal, then the preconditions
needed for the goal are set to sub-goals. The backward
chaining involves the use of rules. Each rule is associated
with a pattern by which the inference engine accesses it.
The inference engine maintains a data structure that
describes important aspects of the situation, and it is
represented in a PROLOG-style which uses predicate
names (head) to represent a relation, and constants or
variables to represent the values. The data structure is of
the form relation [value1, value2]. The attribute–value pairs
are referred to as conditions to be tested by the set of rules.
Rules are matched against a goal, and those parts (patterns)
of the rule that match the goal patterns are unified via
variable binding from the rules. Figure 7 shows a typical
design of an inference engine where known facts and the
goal are matched against a set of rules in order to infer a
conclusion based on the dependency structure of the rules.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 7, Issue 2, February-2016 101
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

Figure 7: Inference engine architecture

1.6 4.1 Backward Chaining Algorithm

Among the core functions of the inference engine is
determining how a set of rules is applied in order to infer a
goal. The inference engine role, as captioned above, is to
use a set of predetermined rules to define different
strategies that are required in the inference process, the
inference strategy of interest is the backward chaining
inference strategy (algorithm).

The backward chaining algorithm is a goal-driven
algorithm, which is a type of algorithm that works
backwards from goals, chaining through sets of rules in
order to find known facts that support a proof. The
backward chaining algorithm is essentially a selection
process which is primarily applicable when there is a small
number of goals and a large number of facts. If a set of facts
is derivable with the application of the backward chaining
strategy in the inference engine, such facts can be used to
prove a corresponding initial goal, as shown in the pseudo-
code in Figure 8.

Figure 8: The Backward chaining algorithm

If the antecedent part of the rule has a conjunction in its
constituent, there is a mechanism in the inference engine
that checks whether there is a conjunctive clause. If found,
the inference engine splits the conjunctive antecedent into
its conjuncts and proves each conjunct based on the known
facts and sets of rules.

1.7 4.2 Unification Procedure

In order to apply the inference rule over dependency trees,
an inference engine should have the capacity to determine
when two trees match. The procedure that is used to
determine the substitutions needed to make two patterns
match is called a unification algorithm. The description of
the algorithm is based on the one used by the PROLOG
language. In order to use unification and the inference rule
in a system such as the Normalisation approach to NLI, the
inputs must be expressed in a suitable format. The
following are the assumptions that are associated with the
unification algorithm in PROLOG:

i. All variables must be universally quantified.
Whenever a variable appears in a dependency tree,
the assumption is that such a variable is
universally quantified, which enables substitutions
to be made with ease.

ii. Variables that are existentially quantified are
eliminated and replaced with constants that
maintain the dependency tree in the right format.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 7, Issue 2, February-2016 102
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

Figure 9 shows an instance in the implementation of the
Normalisation approach where the terms in the goal found
a match in the head of the rules, and the variables in the
head of the rules were unified with the terms in the goal via
binding.

Figure 9: Showing the matching of the goal with the head
of the rules

Because a match is found between the goal and the head of
the rule, the inference engine then examines the conjunctive
antecedent of the rule, splits them into the first and second
conjuncts and attempts to unify the two conjuncts with the
known facts. Figure 10 shows how the inference engine
finds a proof for the first conjunct and matches the first
conjunct with the known facts and returns the binding of
the variable, based on unification.

Figure 10: Output from the inference engine.

5 Related Works

1. The Shallow Inference: Most effective NLI systems
have relied on simple surface representations and
estimated measures of lexical-syntactic similarity so as to
determine whether the meaning of H is subsumed by the
meaning of T(MacCartney 2009). The systems that are
based on the lexical or semantic overlap, pattern-based
relation extraction, as well as approximate matching of
the predicate argument structure are classified as being
shallow approaches (Dagan and Glickman, 2004). Among
the challenges of the shallow approaches are:

a) The inability of taking semantic
representations into consideration.

b) They lack the ability to take into account
complex background knowledge.

c) They are not always sound.

2. Textual Entailment and Syntactic Graph Distance:
Graphs are one of the most powerful data structures, and
can be used in a wide range of applications. They are
most often used to represent known models, which are

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 7, Issue 2, February-2016 103
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

stored in databases as unknown objects and are yet to be
recognised (Bunke and Shearer 1998). Because it is
possible to represent hypothesis H and text T as syntactic
graphs, by implication, this means that the textual
entailment recognition problem can be viewed as a graph
in terms of its similar measure of estimation. However,
(Pazienza, Pennacchiotti et al. 2005) outlined the
properties of textual entailment as:

a) It is not symmetric.
b) Similarities that exist between nodes

cannot be reduced to label level.
c) Similarity should be estimated on the

basis of linguistically motivated graph
transformation.

6 Conclusions and Future Work

A lot has been said about approaches to natural language
inference (NLI). The first point of call was textual
entailment, where inference is performed over the
dependency trees of the text T and hypothesis H by
applying text representation, which is often seen as
entailment rules but carries out little or no quantification.
Next, the translation to logical form requires the application
of a theorem prover on the dependency trees of T and H;
where an inference is possible between T and H; the
theorem prover indicates this with a YES output but
requires a lot of background knowledge, which is not
readily available.The Normalisation approach has been
used to solve some of the notable challenges of the shallow
approaches by giving consideration to the semantic details
of every sentence that represent set of rules in the inference
engine. This approach takes into account the background
knowledge of every instance of sentences by studying the
structure of every tree generated by the parser.

Our approach to natural language inference is symmetric in
the sense that every tree structure that is inferred from the
goal (antecedent) to known facts (consequent) has the same
structure. The rule is made up of relations and node labels
for every instance of a tree structure that is fed into the
inference engine. With this, one can easily prove a goal
from a set of known facts because of its richness in
linguistical structures

An important aspect of the inference engine that is not
captured in the implemented system is the ability to deal
with rules that contain quantifications. When the quantifier
feature is incorporated into the inference engine, it is hoped
that it will make the inference engine more robust, and be
able to handle trivial rules. The hope is that the system will
not be limited to sentences alone, but will be able to solve
real-world problems, such as ontological problems,

numerical problems and challenges that come with dates
and times.

References

Androutsopoulos, I. and P. Malakasiotis (2009). "A survey
of paraphrasing and textual entailment methods." Journal
of Artificial Intelligence Research: page 135-187.

Bar-Haim, R., I. Dagan, et al. (2007). Semantic inference at
the lexical-syntactic level. PROCEEDINGS OF THE
NATIONAL CONFERENCE ON ARTIFICIAL
INTELLIGENCE, Menlo Park, CA; Cambridge, MA;
London; AAAI Press; MIT Press; 1999.

Bunke, H. and K. Shearer (1998). "A graph distance metric
based on the maximal common subgraph." Pattern
recognition letters vol. 19: page 255-259.

Covington, M. A. (2001). A fundamental algorithm for
dependency parsing. Proceedings of the 39th annual ACM
southeast conference, Citeseer

De- Marneffe, M. C. and C. D. Manning (2008). "Stanford
typed dependencies manual." URL http://nlp. stanford.
edu/software/dependencies_manual.

Degan, I. and Glickman, O. (2004). Probabilitic textual
entailment: genetic applied modeling of language variability. In
Proceeding of the PASCAL Workshop on Learning
Methods for Text Understanding and Mining, page 26-29,
Grenoble, France.

Glickman, O. (2006). Applied textual entailment. Computer
Science, Ilan University.

Harabagiu, S. and A. Hickl (2006). Method for using textual
entailment in open-domain question answering. Annual
Meeting-Association for Computational Linguistics

Hobbs, J. R., M. E. Stickel, et al. (1993). "Interpretation as
Abduction. Artificial Intelligence, , pages 69-142." Artificial
Intelligence vol. 63: page 69-142.

Iftene, A. (2009). Textual Entailment. Computer Science,
University of Iasi.

MacCartney, B. (2009). Natural language
inference. Computer Science, Stanford University.
Miller, G. A. (1995). "WordNet: a lexical database for
English." Communications of the ACM vol. 38(ACM): page
39-41.

Padó, S., M. Galley, et al. (2009). Robust machine translation
evaluation with entailment features. Proceedings of the

IJSER

http://www.ijser.org/
http://nlp/

International Journal of Scientific & Engineering Research, Volume 7, Issue 2, February-2016 104
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

Joint Conference of the 47th Annual Meeting of the ACL
and the 4th International Joint Conference on Natural
Language Processing of the AFNLP.

Pazienza, M. T., M. Pennacchiotti, et al. (2005). Textual
entailment as syntactic graph distance: a rule based and a
SVM based approach. Proceedings of the recognizing
textual entaime

IJSER

http://www.ijser.org/

	1 Introduction
	1.1 Translation to logic approach
	1.2 Textual Entailment approach

	2 The Problem Definition
	3 Proposed System
	1.3 First Stage: Dependency Parsing
	1.4 Second Stage: Normalising Dependency Trees
	1.5 Third Stage: Inference Framework

	4 The Normalization Approach
	1.6 4.1 Backward Chaining Algorithm
	1.7 4.2 Unification Procedure

	5 Related Works
	6 Conclusions and Future Work

