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Abstract: The main objective of this research is to improve on the standard tree- matching approach of textual entailment by introducing inference 
engine for every standard sentence which is more efficient in doing inferencing than the textual entailment approach and the logical approach. The 
previous approaches have some limitation ranging from lack of background knowledge and inadequate representation of natural language. To overcome 
the present challenges a compromise is made on both logical and textual entailment approaches. The compromise is referred to as the Normalisation 
approach, where the inference is achieved by transforming the dependency tree generated from the parser in order to generate a simple version which 
can be easily handled by the inference engine. The approach involves goal inference; that is, inference from a goal to a set of known facts, which help 
control the search space by enforcing conditions that will help prove the current goal. The approach can be used in solving ontological problems and 
challenges that come with inferencing in natural language. 
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——————————      —————————— 
1 Introduction 

Natural language inference (NLI) describes the problem of 
determining whether a natural language hypothesis H can 
reasonably be deduced from a natural language text T. 
Inference has been one of the major topics in Artificial 
Intelligence from the start, researchers have made 
remarkable attempts to develop automatic methods for 
several formal deductions. The challenges in NLI are 
different from those of formal deduction: the emphasis is 
on informal reasoning, lexical semantic knowledge and 
variability of linguistic expression, rather than on long 
chains of formal reasoning (MacCartney 2009). Example 1 
may help illustrate the difference: 

(1) T: Several railways polled saw costs grow more than 
expected, even after adjusting for inflation. 

H: Some of the companies in the poll announced cost 
increases. 

In the NLI domain, (1) is regarded as valid inference, 
because if an ordinary person hears T, then he or she is 
likely to accept that H follows. However, it should be noted 
that H is not a completely logical consequence of T, for the 
reason that seeing a cost increase does not actually entail 
announcing the cost increase - it is possible that every 
organisation polled kept quiet about its increasing costs, 
perhaps for business policy reasons. That the inference is 

nevertheless regarded valid in an NLI setting is an 
indication of the informality of the task definition. 

 One of the intrinsic features of NLI task definition 
is that the problem inputs are expressed in a natural 
language. By contrast, an automated deduction generally 
assumes that a problem input is always expressed in a 
formal, meaningful representation, such as the language of 
first-order logic (FOL). From this, it is apparent that an NLI 
task is different from previous work in logical inference, 
and NLI can be positioned within the field of natural 
language processing (NLP) (MacCartney, 2009). The NLI 
applications include the following: 

 
a) Question answering (QA): In open domain QA, the 

greatest challenge lies in the ability to return a text-
based expression that is extracted from a huge 
document collection, and provide a reliable answer to 
the question in a natural language. One of the goals of 
QA (Harabagiu and Hickl, 2006) is to achieve the 
ability to evaluate whether the target question can be 
inferred from the candidate answers that are extracted 
from the source document. 

b) Automatic Summarization: This is an area of NLI that 
includes applications that can take a collection of 
documents or e-mails and produce a consistent 
summary of their contents. The main goal of automatic 
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summarization is correctness; that is, the summary 
should reflect the ideas in the source document(s). 

c) Evaluating Machine Translation System: A relatively 
new application for NLI is the promotion of automatic 
evaluations of the machine translation (MT) output of a 
system. This was born out of the need to have 
reliability in evaluations (Padó, Galley et al. 2009), and 
the rapid interactive development of MT basically 
depends on automatic estimation measures. 

d) Semantic Search: The main goal of the semantic search 
is to offer the ability to retrieve a document from a 
collection of several documents (for example, from the 
internet), based on the semantic query (MacCartney 
2009). 

Over the years, many NLI challenges have been formulated 
in different ways, where each task has different goal 
depending on different researcher’s formulation. 
Accordingly, a number of different NLI problem sets have 
been developed, with various characteristics.In order to 
explain the current study, the two main existing 
approaches will be explored. 

 
1.1 Translation to logic approach 

This strategy involves the transformation of English 
sentences into the FOL form of representation and includes 
the use of a functional dependency parser. In order to 
examine whether an entailment holds using this strategy, 
several steps must be carried out which involve the 
interpretation of a sentence; the first thing includes 
identifying the logical form of the sentence (Hobbs, Stickel 
et al. 1993).  

 
1.2 Textual Entailment approach 

The task involved in textual entailment is such that it 
promotes an abstract generic task, which includes 
capturing major semantic inference across applications 
(Glickman 2006). In a perfect scenario, the task requires the 
recognition of an entailment given two text fragments; 
whether the meaning of a text fragment H can be inferred 
from another text T, therefore, needs to be investigated 
(Glickman 2006). More accurately, the idea of textual 
entailment is defined as a directional relationship between 
pairs of text expressions, an entailing text and entailed 
textual hypothesis (Glickman 2006).  

                   

 
Figure 1: Relationship between Translation to logical 
form and Textual Entailment 

2 The Problem Definition 

When sentences are fed into the parser, in most cases it 
gives incorrect output. It is quite difficult to use those 
dependency trees in the system, and there is little or 
nothing to be done regarding the output from the parser. 
The research scope includes investigating sentences (rules) 
where the parser gives the right representation. 

In this research, we present an improvement on the 
standard tree-matching approach of textual entailment by 
introducing inference engine for every standard sentence 
which is more efficient in doing inferencing than the textual 
entailment approach and the logical approach. 

 

3 Proposed System 

It is clearly observed that both logical form and textual 
entailment approaches to NLI have a similar sturctures but 
the different approach in making an inference, therefore, a 
compromise is made between the translation to the logical 
form approach and the textual entailment approach of 
conducting inference. The compromise on both previous 
approaches is what brings about the normalisation 
approach, where an entailment is achieved by normalising 
the dependency parse tree in order to obtain a simpler 
version of the parsed tree. Figure 2 below shows some 
common features, such as text tagging, dependency tree 
parsing and dependency tree extraction from a known 
dependency parser. These features are the commonality 
that exist between the translation to the logical form 
approach and the textual entailment approach. Based on 
this commonality, the normalised inference form is 
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developed, for which there exists an inference engine. The 
normalisation approach (middle of the diagram) is the basis 
on which this research is built, where the inference engine 
is a simple backward-chaining PROLOG-like engine. This 
approach basically uses a dependency tree structure that is 
generated from a dependency parser, rather than using 
FOL as it was in the translation to a logical form.  

        

 
Figure 2: System Architecture. 

The aim of Normalization approach to NLI as shown in 
figure 2 is to set the background knowledge to a set of facts 
and rules, and it is necessary to prove a goal in the 
inference engine based on the known facts and set of rules. 
The way to achieve this is to follow what is obtainable in 
the system architecture of the Normalisation approach. 

The three major tasks required in the Normalisation 
approach are: 

i. Parsing the input text (facts, rules and goal) into 
dependency trees. 

ii. Normalising the dependency tree, so that they are in a 
suitable format for the inference engine. 

iii. Doing proof via the inference engine. 
1.3 First Stage: Dependency Parsing 

The task of a dependency parser is to take an input text and 
impose on the text an appropriate set of dependency links; 

that is, to tokenize each input text; on each token, the tagger 
assigns part of speech (POS) tags (Covington 2001). The 
parser generates a tree based on the relationships that exist 
between tokens or words in the input text. The following 
are some of the basic characteristics expected of a 
dependency tree generated from the Stanford parser: 

i. Unity: At the end of the parsing process, a 
dependency tree is produced (with a unique root), 
with all words in the input text constituents of the 
tree. 

ii. Uniqueness: For every word in the tree, there 
exists a head per word; that is, the dependency 
relations between words in the input text make a 
tree rather than some form of a graph. 

iii. Projectivity (adjacency): Given some words in 
the input text, for every word that depends on 
word X, say word Y, then all words between X and 
Y are called subordinate words of Y. This is drawn 
from the fact that crossing of branches is not 
allowed in dependency trees. 

iv. Word-at-a-time operation: During the parsing 
process, words in the input text are examined by 
the parser one after the other; they are then 
attached to the tree rather than waiting for the 
complete phrase. 

 
1.4 Second Stage: Normalising Dependency Trees 

The parser is likely to generate a dependency tree and often 
time the trees generated are not quite suitable to represent a 
set of rules in the inference engine. In order to obtain a set 
of rules that a PROLOG-like inference engine can handle, 
an approach is required to transform the dependency tree. 
It is necessary to normalise the single dependency tree 
produced by the parser. The Normalisation approach 
employs the use of hand coded rules, which is an indication 
that it is rich in background knowledge. 

The normalisation of a dependency tree is the process of 
removing or replacing some nodes as well as relations in 
the tree. This process requires a detailed understanding of 
the dependency structure, in order to generate a tree that 
does not contain nodes and relations that are irrelevant to 
the inference procedure. In order to achieve this, the 
dependency trees are transformed by applying some 
rewrite rules to the dependency tree.  
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1.5 Third Stage: Inference Framework 

Generally, most inference representations are built by 
applying some kind of transformation to the trees 
representing the set of rules. Such transformations are 
viewed as the main inference rules, which capture semantic 
information, lexical relations, syntactic variations etc. Like 
the PROLOG system, the inference framework is composed 
of rules. The propositions include facts (the antecedent), 
goals (consequent) and the intermediate premises inferred 
during the proof (set of rules). The task of the inference rule 
is to define the way propositions are derived from 
previously established ones (Bar-Haim, Dagan et al. 2007). 

 

4 The Normalization Approach 

 In the normalization approach input sentence(s) which are 
in the form of a natural language are translated into a 
restricted subset of the same natural language. 

In this case, the first stage is to generate a dependency tree, 
obtained from a dependency parser. In most cases such a 
tree is not always ideal for use with the inference engine in 
the third stage. A normalization procedure is applied to 
such tree so as to adapt to one that an inference engine can 
handle. The type of normalization that will be required is 
dependent on the structure of the tree generated from the 
dependency parser. For example 

i. X buys Y if X has money and X wants Y. 
ii. X buys Y if X wants Y and X has money. 

iii. X loves Y if X likes Y and Y is pretty. 

Figure 3 shows the dependency tree representation of the 
parser for each of the sentences above: 

 

 
Figure 3: The dependency trees for examples (i), (ii) and 
(iii), where the root of the tree is the context word 

Figure 3 shows the dependency trees of (i), (ii) and (iii), 
where the root of the dependency tree conveys significant 
information between the rest of the words. It is expected 
that the dependency trees for both sentences (i) and (ii) 
would have the same structure, based on the fact that the 
input sentences on both occasions have almost the same 
semantic interpretations. The dependency tree in Figure 3(i) 
shows the kind of dependency structures required for the 
natural language inference based on the research goal; it is 
not perfect, but there are mechanisms in the 
implementation that  address such challenges. Regarding 
the dependency tree in Figures 3(ii) and 3(iii), the parser 
has the wrong representation for both sentences. In both 
figures, the relation conj (Y, Y) is an instance where the 
parser gave the wrong representation by assuming a noun 
phrase rather than a verb phrase for both (ii) and (iii). On 
the other hand, the representation was expected to be nsubj 
(has, Y) in (ii) and a cop (is, Y) in (iii). In addition, a wrong 
representation of the parser has made the coordinate node 
‘and’ a dependent of noun phrase Y, which  according to the 
parser manual, was supposed to be a “relation between an 
element of a conjunct and the coordinating conjunction 
word of the conjunct” (De- Marneffe and Manning 2008). 

The dependency tree in Figure 3(i) is amongst the few 
instances where the parser got it right. The adverbial clause 
modified the verb phrase. The root of the sentence is buys, 
and every other word is linked to it, and in the case of the 
coordinating conjunction, a good representation was given 
between conj (has, wants), as shown in Figure 3(i) above. 
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In the context of the present research, normalization is all 
about modifying the set of rules that the inference engine 
will be able to handle. The purpose of the transformation 
procedure is to create a simple version of the tree. Figure 4 
shows the tree that represents the set of rules in the 
inference engine that needs to be transformed. 

        

 
Figure 4: Showing the set of rules that needs to be 
transformed 

The set of rules r is made up of two parts, the consequent 
part and the antecedent part. 

Considering Figure 4 above, the normalization process 
starts with the removal of the adverbial clause alongside its 
marker, which is the word that introduces the conditional 
part of the antecedent in r. Figure 5 shows the structure of r 
after applying the normalization rule: 

 
Figure 5: Application of normalization rule on adverbial 
component 

It is somewhat obvious that the tree has been divided into 
its constituent part of antecedent and consequent. The 
transform tree, which is also a rule, is one of the inputs in 
the inference engine on which the inference engine 
attempts to prove a given goal. The consequent part of r is 

made up of relations and nodes that have the same pattern 
as the goal, as shown in Figure 6(a): 

           

 

Figure 6: The goal and set of facts that needs to be proved. 

The normalization approach is based on consequent 
inference; that is, inference from goal to known facts. It is a 
very good method of controlling a search, and is a simple 
mechanism for enforcing a certain form of relevance in 
action towards deciding the current goal and ensuring the 
use of rules that are present in the inference, which mention 
the current goal in conclusion. It is quite important to note 
that anything deducible via consequent inference is also 
deducible by antecedent inference, where the consequent 
acts as a way of controlling the antecedent. The inference 
engine exhibits backward chaining (consequent-driven, 
goal-driven and hypothesis-driven), and supports the goal 
state by checking the known facts in the set of rules, and if 
these facts do not support the goal, then the preconditions 
needed for the goal are set to sub-goals. The backward 
chaining involves the use of rules. Each rule is associated 
with a pattern by which the inference engine accesses it. 
The inference engine maintains a data structure that 
describes important aspects of the situation, and it is 
represented in a PROLOG-style which uses predicate 
names (head) to represent a relation, and constants or 
variables to represent the values. The data structure is of 
the form relation [value1, value2]. The attribute–value pairs 
are referred to as conditions to be tested by the set of rules. 
Rules are matched against a goal, and those parts (patterns) 
of the rule that match the goal patterns are unified via 
variable binding from the rules. Figure 7 shows a typical 
design of an inference engine where known facts and the 
goal are matched against a set of rules in order to infer a 
conclusion based on the dependency structure of the rules. 
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Figure 7: Inference engine architecture 

1.6 4.1 Backward Chaining Algorithm 

Among the core functions of the inference engine is 
determining how a set of rules is applied in order to infer a 
goal. The inference engine role, as captioned above, is to 
use a set of predetermined rules to define different 
strategies that are required in the inference process, the 
inference strategy of interest is the backward chaining 
inference strategy (algorithm). 

The backward chaining algorithm is a goal-driven 
algorithm, which is a type of algorithm that works 
backwards from goals, chaining through sets of rules in 
order to find known facts that support a proof. The 
backward chaining algorithm is essentially a selection 
process which is primarily applicable when there is a small 
number of goals and a large number of facts. If a set of facts 
is derivable with the application of the backward chaining 
strategy in the inference engine, such facts can be used to 
prove a corresponding initial goal, as shown in the pseudo-
code in Figure 8.   

                      

 

Figure 8: The Backward chaining algorithm 

If the antecedent part of the rule has a conjunction in its 
constituent, there is a mechanism in the inference engine 
that checks whether there is a conjunctive clause. If found, 
the inference engine splits the conjunctive antecedent into 
its conjuncts and proves each conjunct based on the known 
facts and sets of rules. 

1.7  4.2 Unification Procedure 

In order to apply the inference rule over dependency trees, 
an inference engine should have the capacity to determine 
when two trees match. The procedure that is used to 
determine the substitutions needed to make two patterns 
match is called a unification algorithm. The description of 
the algorithm is based on the one used by the PROLOG 
language. In order to use unification and the inference rule 
in a system such as the Normalisation approach to NLI, the 
inputs must be expressed in a suitable format. The 
following are the assumptions that are associated with the 
unification algorithm in PROLOG: 

i. All variables must be universally quantified. 
Whenever a variable appears in a dependency tree, 
the assumption is that such a variable is 
universally quantified, which enables substitutions 
to be made with ease. 

ii. Variables that are existentially quantified are 
eliminated and replaced with constants that 
maintain the dependency tree in the right format. 
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Figure 9 shows an instance in the implementation of the 
Normalisation approach where the terms in the goal found 
a match in the head of the rules, and the variables in the 
head of the rules were unified with the terms in the goal via 
binding. 

          

 

Figure 9: Showing the matching of the goal with the head 
of the rules 

Because a match is found between the goal and the head of 
the rule, the inference engine then examines the conjunctive 
antecedent of the rule, splits them into the first and second 
conjuncts and attempts to unify the two conjuncts with the 
known facts. Figure 10 shows how the inference engine 
finds a proof for the first conjunct and matches the first 
conjunct with the known facts and returns the binding of 
the variable, based on unification. 

    

 

Figure 10: Output from the inference engine. 

 

5 Related Works 

1. The Shallow Inference: Most effective NLI systems 
have relied on simple surface representations and 
estimated measures of lexical-syntactic similarity so as to 
determine whether the meaning of H is subsumed by the 
meaning of T(MacCartney 2009). The systems that are 
based on the lexical or semantic overlap, pattern-based 
relation extraction, as well as approximate matching of 
the predicate argument structure are classified as being 
shallow approaches (Dagan and Glickman, 2004). Among 
the challenges of the shallow approaches are: 

a) The inability of taking semantic 
representations into consideration. 

b) They lack the ability to take into account 
complex background knowledge. 

c) They are not always sound. 

2. Textual Entailment and Syntactic Graph Distance: 
Graphs are one of the most powerful data structures, and 
can be used in a wide range of applications. They are 
most often used to represent known models, which are 
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stored in databases as unknown objects and are yet to be 
recognised (Bunke and Shearer 1998). Because it is 
possible to represent hypothesis H and text T as syntactic 
graphs, by implication, this means that the textual 
entailment recognition problem can be viewed as a graph 
in terms of its similar measure of estimation. However, 
(Pazienza, Pennacchiotti et al. 2005) outlined the 
properties of textual entailment as: 

a) It is not symmetric. 
b) Similarities that exist between nodes 

cannot be reduced to label level. 
c) Similarity should be estimated on the 

basis of linguistically motivated graph 
transformation. 

6 Conclusions and Future Work 

A lot has been said about approaches to natural language 
inference (NLI). The first point of call was textual 
entailment, where inference is performed over the 
dependency trees of the text T and hypothesis H by 
applying text representation, which is often seen as 
entailment rules but carries out little or no quantification. 
Next, the translation to logical form requires the application 
of a theorem prover on the dependency trees of T and H; 
where an inference is possible between T and H; the 
theorem prover indicates this with a YES output but 
requires a lot of background knowledge, which is not 
readily available.The Normalisation approach has been 
used to solve some of the notable challenges of the shallow 
approaches by giving consideration to the semantic details 
of every sentence that represent set of rules in the inference 
engine. This approach takes into account the background 
knowledge of every instance of sentences by studying the 
structure of every tree generated by the parser. 

Our approach to natural language inference is symmetric in 
the sense that every tree structure that is inferred from the 
goal (antecedent) to known facts (consequent) has the same 
structure.  The rule is made up of relations and node labels 
for every instance of a tree structure that is fed into the 
inference engine. With this, one can easily prove a goal 
from a set of known facts because of its richness in 
linguistical structures  

An important aspect of the inference engine that is not 
captured in the implemented system is the ability to deal 
with rules that contain quantifications. When the quantifier 
feature is incorporated into the inference engine, it is hoped 
that it will make the inference engine more robust, and be 
able to handle trivial rules. The hope is that the system will 
not be limited to sentences alone, but will be able to solve 
real-world problems, such as ontological problems, 

numerical problems and challenges that come with dates 
and times. 
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