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Abstract— Plasma can support a great variety of wave motion. Both high frequency and low frequency, electromagnetic and electrostatic 
waves may propagate in plasma. The primary emphasis has been placed on the study of electrostatic waves because the ease with which 
such waves may be excited and detected and because the collisionless damping of waves predicted by Landau can be conveniently 
studied.  In this paper we will discuss the propagation of ion sound waves in the collisionless thermal plasma by calculating the dispersion 
relation using fluid theory.  The kinetic treatment shows clear that these waves are subject of strong Landau damping for weak temperature 
of ions compared to the one of electrons. The interest of this study can be applied to some astrophysical phenomena more precisely in the 
study of the generation of these waves in the topside ionosphere at low latitude sunrise and sunset. 

Index Terms— Ion sound waves, thermal plasma, dispersion, fluid, kinetic, Landau, damping, temperature.   

——————————      —————————— 

1 INTRODUCTION                                                                     

 
 

 

N Plasmas, there are a variety of waves which propagate 
with a variety of nonlinear dispersion relations. We will ex-
amine one type of these waves and the approximations 

needed to find its dispersion relation. Ion sound wave is a lon-
gitudinal electrostatic wave in unmagnetized plasma arises 
from the motion of the ions by  assuming that the frequency is 
low enough that ion can participate in motion. For small wave 
number k, it has the linear form of a normal sound wave. In 
this study we will discuss the propagation of these waves in 
non-collisional plasma, taking into account thermal effects. 
Thermal changes in wave propagation are not well described 
by fluid equations. To do this we will use the kinetic descrip-
tion of plasma and the appropriate equation is the Vlasov equa-
tion. 
In hot plasma, the dispersion function and its derivatives have 
a wide range of applications in the descriptions of waves of 
small amplitude. It is also widely used in the description of 
polarization strongly inhomogeneous media. Accurate as-
sessment of this function is important in various fields of 
science. Fried and Conte (1961) have presented interesting work 
on the main properties of the dispersion function of hot plas-
ma. 

2 BASIC PROPERTIES OF HOT PLASMAS (THERMAL), 
IONISATION, SAHA LAW 

In thermal plasmas, collisions between particles can cause io-
nization if the energy difference between the particles is 
enough large (of the order of a few eV), or the recombination, 
if the energy difference is quite low. 
As in the same ionized gas, the two forms of collisions can 
occur, a balance can be established. Just to maintain this bal-
ance that the plasma is hot enough. It must even have a tem-
perature of several tens of thousands of degrees [1], [2] eg 
stars and nuclear explosions.  
 

The state of ionization of plasma is related to its temperature T 
and density n and the degree of ionization which is defined by 

                                                    (1) 
Where  is the electron density,   the ion density and neu-
tral density. Because of collisions, atoms, molecules, or ions in the 
plasma can be ionized if the temperature is such that 

                                                                       (2) 
 is the ionization potential. If plasma is in thermodynamic equi-

librium, the ionization is balanced by recombination. This balance 
is described by the Saha equation [3]. 

                                            (3) 
Where  is the neutral density,  the density of ions et   
is the balance between the ionization rate (depending on T) and 
the rate of recombination (depending on density)   is Planck's 
constant ( ) and corres-
pond to the thermal wavelength of an electron ). 

 
The term that contributes the most is  
- If  low ionisation,  (industrial plasmas and 
ionosphere). 
- If high ionisation,  (thermonuclear plasmas 
and stellar). 
Typically,  begins to be meaningful when   and 
allows distinguishing between weakly and strongly ionized plas-
mas. 
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Fig.1. (a) The ionization of a fraction of hydrogen ( ) in 
function of temperature and density (log scale).  

 
Fig. 1. (b) The ionization of a fraction of hydrogen ( ) for a 

constant density (Saha law). 

3 VLASOV MAXWELL SYSTEM 

The analysis of the behaviour of particles moving in a hot 
plasma is based on the Boltzmann equation of the function of 
distribution ), also known as the Vlasov equation [4], 
[5]. This equation characterizes the evolution in time and 
space distribution of particles of non-collisional plasma in ki-
netic description. For the species s, we can write a kinetic equ-
ation of Vlasov in the form 
 

  (4) 
 

 This latter which is coupled to the Maxwell equations al-
lows to describe the evolution of electric and magnetic 
fields. In the presence of electromagnetic field , 
Maxwell's equations are 
 

                                                         (5) 
 

                                                                            (6) 

                                                                       (7) 

                                          (8) 
The system consists of the Vlasov equations (4) and Max-
well (5) - (8) is closed and called Vlasov-Maxwell system. In 
the absence of magnetic field applied from outside, the 
field   will be zero (non relativistic case), the isotropic 
medium is called electrostatic and Lorentz force is reduced 
to an electrical force  ) and the system of Vlasov-
Poisson [6] and the equation is written  

                                                (9) 

4 DISPERSION FUNCTION IN A HOT PLASMA  
 

It is easy to see that, according to an appropriate scale vari-
able as the dispersion relation for electrostatic waves is ex-
pressed by the dispersion function Z: 

                                       (10) 
 
Moreover, Z ( ) is the Hilbert transform of a Gaussian 
[7],[8]. With    and   
and   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 2. Real (full curve) and imaginary (dashed curve) parts of plasma 
dispersion function  Z ( )  

 
As is shown on the figure 2, for Im( ) > 0, this function is 
defined in the upper half complex plane, the analytic con-
tinuation in the lower half-plane is obtained by writing    

                               
(11) 

 
and therefore the dispersion relation becomes  
 

                                                     (12) 
With [8] . And the expression of Landau 
damping is given by: 
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                                                     (13) 
 

5 STUDY OF ION SOUND WAVES PROPAGATION  

5.1 Kinetic theory  
The general kinetic dispersion relation for electrostatic waves 
takes the form 
   

   
(14) 
 
And the Landau Damping is given by: 

                                     (15) 
Where 

                  (16) 
The wave with a phase velocity, , is much less than the 
electron thermal velocity, but much greater than the ion ther-
mal velocity. We may assume that  for the ion term. It 
follows that, to lowest order, this term reduces to − . 
Conversely, we may assume that  for the electron 
term. Thus, to lowest order we may neglect  in the velocity 
space integral. Assuming  e to be a Maxwellian with tem-
perature , the electron term reduces to 
 

                                                                        (17) 
With λD is the Debye length [9] and ωpe the electron plasma 
frequency.  Thus, to a first approximation, the dispersion rela-
tion can be written 
 

                                                                (18) 
 

                                                     (19) 
For , we have  , a dispersion rela-
tion which is like that of an ordinary sound wave, with the 
pressure provided by the electrons, and the  inertia by the 
ions. As the wave-length is reduced towards the Debye length, 
the frequency levels off and approaches the ion plasma fre-
quency. 
In the long wave-length limit, we see that the wave phase velocity 

 is indeed much less than the electron thermal velocity 
[by a factor ], but that it is only much greater than the 
ion thermal velocity if the ion temperature, , is much less than 
the electron temperature, . 
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Fig. 3. Ion and electron distribution function f(v) with   

 
In fact, if  then the wave phase velocity can lie on almost 
flat portions of the ion and electron distribution functions, as 
shown in Fig. 2, implying that the wave is subject to very little 
Landau damping. Indeed, an ion sound wave can only propagate 
a distance of order its wave-length without being strongly 
damped provided that  is at least five to ten times greater than 

. 

5.2 Fluid theory  
Of course, it is possible to obtain the ion sound wave disper-
sion relation, ω2/k2 = T2/mi, using fluid theory. The kinetic 
treatment used here is an improvement on the fluid theory to 
the extent that no equation of state is assumed, and it makes it 
clear to us that ion sound waves are subject to strong Landau 
damping (i.e., they cannot be considered normal modes of the 
plasma) unless . 

A. Fluid sound waves  
If we perturb and linearize the momentum equation and the con-
tinuity equation for field free plasma [10], we get: 

                                                             (20) 
And 

                                                         (21) 
Dotting the first equation (23) with  and substituting into the 
second (24), we get: 
 

                                                       (22) 
and the dispersion relation is 

                                                                 (23) 
With  . This relation is shown on the Fig. 4. as a 
line which passed by the origin makes into account the pro-
portionality between ω and cs. 
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Fig. 4. The dispersion relation  

B. Ion sound waves  
Even if collisions are unimportant, sound waves, being longitu-
dinal waves, generate density fluctuations which in turn generate 
electric fields that can provide the necessary restoring force.  
When ion motion is involved, we know that the waves must be 
low frequency, so we can use the plasma approximation, ne ≈ ni≈ 
n0. We are still assuming that there is no magnetic field [9], [10].  

                                                       
(24) 
Thus if the ion and electron velocities differ, the densities will 
become different too. Thus the plasma approximation also 
requires  

                                                          (25) 
 
1. It is essentially identical to the result for fluid sound 

waves even though at a microscopic level there are pro-
found differences. The coupling here is electrostatic non 
collisional. 

2. The electrons move very rapidly, and the distribution may 
be assumed to be isothermal, γe = 1. 

3. The electron mass is negligible compared with the ion 
mass in the denominator. 

 
However, Vlasov theory (a detailed study of the effect of the par-
ticle velocity distributions) shows that the wave is strongly 
damped unless the electron temperature greatly exceeds the ion 
temperature. Thus the ion sound speed is determined by the elec-
tron temperature and the ion mass.    

                                           (26) 
We may now consider the electric field necessary to affect the 
coupling. Poisson’s equation is: 
     

                                              (27) 
 
Now we allow for small differences between the electron and ion 
densities. The ion density is given by the continuity equation: 

                                                             (28) 
while the electrons respond rapidly to the electric field, and so 
follow the Boltzman relation: 

                                               (29) 
 
Thus 
     

                                                   (30) 
Rearranging, we get: 
     

                                           (31) 
 
We should recognize the second term in the parentheses as  . 
Now we rewrite the momentum equation for the ions, substitut-
ing this expression for  in the electric field term 

. 

               (32) 
     

                                              (33) 
where pi is the ion plasma frequency. 
The numerator in the second term is: 
     

                                   (34) 
 
Thus the new result is identical to the previous one except for the 
denominator   . 
Thus the correction is necessary only when  is not small, that 
is when the wavelength is less than or equal to the Debye length. 
The full wavelength is within the region where we would expect 
the plasma approximation to fail. When  we find 

 and we have oscillations at the ion plasma frequency.  
 

 
Fig 5: Dispersion relation for ion sound 
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The wave reduces to plasma oscillations of the ions for which we 
obtain a graph of the dispersion relation as is shown on the Fig.5. 
similar to that of the Langmuir wave dispersion relation. 

5 CONCLUSION 
 
 
We have studied the ion-sound waves under the condition of 

,  in a hot, isotropic, and unmagnetized plasma 
modeled with the generalized distribution function. 
We have derived the dispersion relations for the ion-sound 
waves. It is possible to obtain the ion sound wave dispersion 
relation, , using fluid theory. The ki-
netic treatment used here is an improvement on the fluid 
theory to the extent that no equation of state is assumed, and it 
makes it clear to us that ion sound waves are subject to strong 
Landau damping unless . For this condition the elec-
trons are hot and an electrostatic wave in which ions do play a 
major role is found at lower frequencies. These waves are cha-
racterized by phase velocities lying between the thermal veloc-
ities of ions and that of the electrons and propagate only when 
ω  .  
The present work can extended to study the generation of ion 
sound waves in the topside low latitude ionosphere at sunrise 
and sunset. 
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