
International Journal of Scientific & Engineering Research, Volume 6, Issue 11, November-2015 792
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

Review on Leveraging Techniques on Bug
Repository to form Accurate Bug Triage

Aparna S. Murtadak, Prof. S. R. Durugkar

Abstract— Software organizations spend huge amount of cost on managing programming bugs. An unavoidable stride of fixing bugs is
bug triage, which expects to effectively allocate a developer to a new bug. To diminish the time cost in manual work, text classification
techniques are applied to perform automatic bug triage. In this paper, we address the problem of information decrease for bug triage, i.e.,
how to diminish the scale and enhance the nature of bug data. We use instance selection with feature selection at the same time to
decrease information scale on the bug dimension and the word dimension. To focus the request of applying instance selection and feature
selection, we extract properties from historical bug information sets and construct a predictive model for new bug information set.
Outcomes demonstrate that our data reduction can adequately decrease the data scale and enhance the precision of bug triage. Our work
gives a way to deal with leveraging techniques on data processing to form decreased and high-quality bug information in programming
advancement and upkeep.

Index Terms—Bug data reduction, Bug triage, Data Mining, Feature selection, Instance selection

—————————— ——————————

1 INTRODUCTION

Bug fixing is a significant and lengthy process in software
maintenance. For a major software project, the number of
daily bugs is so large that it is not possible to handle them
without delaying. In recent software development, software
repositories are extensive databases for storing the outcomes
of software development. Conventional software analysis is
not completely appropriate for the large-scale and complex
information in software repositories. By using data mining
techniques, mining software repositories can discover
interesting information in programming repositories and solve
real world programming problems. A bug repository (a
typical software repository used for storing bug reports), plays
an important role in handling software bugs. In a bug
repository, a bug is retained as a bug report, which records the
textual description of reproducing the bug and updates the
status of bug fixing. The two difficult tasks related to bug data

that may affect the efficient use of bug repositories in
programming development, that is the large scale and the low
quality bug data. In this paper, the problem of data reduction

for efficient bug triage that means how to reduce the scale and
improve the quality of bug data is addressed.

2 LITERATURE SURVEY

Bug repositories are widely used for handling software bugs.
A time-consuming stride of handling software bugs is bug
triage, which expects to assign a correct developer to fix a new
bug [1]. Because of the substantial number of every day bugs
and the absence of skill of the considerable number of bugs,
manual bug triage is costly in time cost and low in exactness.
Cubranic and Murphy first propose the problem of automatic
bug triage to diminish the cost of manual bug triage [3]. They
apply text categorization method to forecast specific developer
that should work on the bug based on the bug’s explanation.
Jeong et al find out that over 37 percent of bugs have been
reassigned in manual bug triage [7]. They recommend a
tossing graph method to diminish reassignment in bug triage.

Anvik et al examine various techniques on bug triage,
including information preparation and classic classifiers [2].
Open source development projects commonly support an
open bug storehouse to which both developers and clients can
report bugs. The reports that show up in this repository must
be triaged to figure out whether the report is one which
requires consideration and if it is, which developer will be
assigned the obligation of resolving the report. Extensive open
source advancements are troubled by the rate at which new
bug reports show up in the bug store. In paper displays a
semi-automated approach expected to simplicity one piece of
this procedure, the task of reports to a developer [2].

To examine the interrelations in bug data, Sandusky
et al. create a bug report network to evaluate the
interdependency between bug reports [14]. Also examine
relationships among bug reports, Hong et al. construct a

————————————————

• Aparna S. Murtadak is currently pursuing masters degree program in
Computer Engineering from S.N.D.C.O.E.R.C. college Yeola, Dist-
Nasik, in Savitribai Phule University of Pune, Maharashtra,
India E-mail: murtadakaparna@gmail.com

• Prof. S. R. Durugkar HOD at S.N.D.C.O.E.R.C. college Yeola,
Dist-Nasik, in Savitribai Phule University of Pune,
Maharashtra, India E-mail: santoshdurugkar@gmail.com

IJSER

http://www.ijser.org/
mailto:murtadakaparna@gmail.com
mailto:santoshdurugkar@gmail.com

International Journal of Scientific & Engineering Research, Volume 6, Issue 11, November-2015 793
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

developer public network to examine the association among
developers based on the bug information in Mozilla project
[6]. This developer public network is cooperative to
understand the developer society and the project
advancement. By drafting bug priorities to developers, Xuan
et al. recognize the developer prioritization in open source bug
repositories [9]. The developer prioritization can differentiate
developers and aid tasks in software upkeep. To inspect the
quality of bug information, Zimmermann et al. prepare
questionnaires to developers and clients in three open source
projects [23]. Based on the analysis of questionnaires, they
distinguish what makes a good bug report and guide a
classifier to recognize whether the quality of a bug report
should be enhanced. Duplicate bug reports weaken the quality
of bug information by delaying the cost of managing bugs.

Instance selection and feature selection are commonly
used techniques in data processing. For a given data set,
instance selection is to obtain a subset of relevant instances
(i.e., bug reports in bug data) [4] while feature selection
expects to obtain a subset of relevant features (i.e., words in
bug data) [5]. In this paper join instance selection with feature
selection at the same time to decrease information scale on the
bug dimension and the word dimension.

3 PROPOSED SYSTEM

The objective of paper is to address the problem of data
reduction for effective bug triage, i.e., how to reduce the bug
information to save the work cost of developers and improve
the quality to facilitate the process of bug triage. Data
reduction for bug triage expects to build a small-scale and
high-quality set of bug data by removing bug reports and
words, which are not informative and redundant. In proposed
system, we join existing techniques of instance selection and
feature selection at the same time to decrease the bug
dimension and the word dimension. The reduced bug data
contain less bug reports and fewer words than the original
bug data and also provides similar information over the
original bug data. After that applying clustering technique on
resulted reduce bug data set to generate different domain wise
clusters. Text classification is used in bugs data set to classify
all bugs into different classes. Proposed system is evaluating
the reduced bug data by two criteria which are size of a data
set and the correctness of bug triage.

3.1 Architecture of Proposed System

Fig. 1 Block diagram of system architecture

Figure shows illustration of reducing bug data for bug triage.
In this figure input is bug data set. Bug data set views as a text
matrix. Each row of text matrix indicates one bug report and
each column of text matrix indicates one word. Instance
selection and Feature selection techniques are applying on bug
data set to reduce the scale of bug data. Instance selection
technique is used to remove bug reports and Feature selection
technique is used to remove non-informative words. After that
applying clustering on resulted reduced bug data set to make
different domain wise clusters. In next step Naïve Bayes
classifier is used to make classification of bugs data set in to
different classes. Finally bugs are assigned to specific
developers.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 11, November-2015 794
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

3.2 Flow of Proposed System

1. Take input dataset
2. Apply Data reduction
3. Apply clustering
4. Extract Features-Stored into training set
5. New bug reported
6. Classifier will take two inputs, new bug and training

set
7. Output of classifier is predicted set of developers

3.3 Feature Selection

Feature selection is a standard technology to decrease the
features of huge data sets in machine learning. The number of
variables (or features) gathered in a dataset is typically
relatively large and some of these features are not informative
or can’t provide high differentiating power. The objective of
feature selection algorithm is to remove the irrelevant and
redundant words from the selected dataset, thus optimising
the performance of the classification and/or clustering
algorithms. In addition, for a particular dataset, feature
selection can aid to realize which features are important as
well as how they are associated. Feature selection can be
defined as the procedure of choosing a smallest subset of m
features from the original dataset of n features (m is less than
n), so that the feature space (i.e. the dimensionality) is
optimally reduced according to the evaluation criteria: The
classification accuracy does not significantly reduce and The
resulting class distribution, given only the values for the
selected features, is as similar as possible to the original. A
feature selection algorithm generally consists of four steps
which are subset generation, subset evaluation, stopping
criterion, and result validation. Subset generation is a search
procedure which creates subsets of features for evaluation.
Each subset generated is verified by some particular
evaluation criterion and evaluated with the earlier best one
with respect to this criterion. If a new subset is found to be
better, then the earlier best subset is replaced with the new
subset. In this paper, Feature selection technique is used to
remove the words in bug reports which are redundant and
non-informative.

3.4 Instance Selection:

As data increases the requirement for data reduction also
increases for effective data mining. Instance selection is one of
effective means to data reduction. The objective of Instance
Selection algorithm is to diminish the size of a dataset while
still sustaining the integrity of the actual dataset. In many
cases, generalization correctness can raise when noisy

instances are eliminated and when decision borders are
smoothed to more closely equal the true core function. These
instances can also be considered as outliers (or bad data).
Specifically, outliers are those data points which are extremely
unlikely to arise given a model of the data. In this paper,
Instance selection technique is used to reduce the number of
instances means bug reports by removing noisy and
redundant bug reports. Due to removing a set of instances
from a dataset the response time of classification decisions
decreases, as some instances are examined when a query
instance is presented. This purpose is primary when working
with huge database and has limited storage.

4 CONCLUSION

Bug triage is a costly stride of programming upkeep in
both work cost and time cost. In this paper, we join
feature selection with instance selection to decrease
the size of bug data sets and also enhance the data
quality. To decide the request of applying instance
selection and feature selection for a new bug data set,
we extract attributes of each bug information set and
prepare a predictive model based on recorded
information sets. Our work gives a way to deal with
utilizing systems on information handling to shape
reduced and high-quality bug information in
programming improvement and support.

REFERENCES

[1] J. Xuan, He Jiang, Yan Hu, Zhilei Ren, Weiqin Zou, Zhongxuan Luo,
and Xindong Wu,” Towards Effective Bug Triage with Software Data
Reduction Techniques” IEEE transactions on knowledge and data
engineering, vol. 27, no. 1, january 2015.

[2] J. Anvik, L. Hiew, and G. C. Murphy, “Who should fix this bug?” in Proc.
28th Int. Conf. Softw. Eng., May 2006, pp. 361–370.

[3] D. _Cubrani_c and G. C. Murphy, “Automatic bug triage using text
categorization,” in Proc. 16th Int. Conf. Softw. Eng. Knowl. Eng., Jun. 2004, pp.
92–97.

[4] Y. Fu, X. Zhu, and B. Li, “A survey on instance selection for active learning,”
Knowl. Inform. Syst., vol. 35, no. 2, pp. 249–283, 2013.

[5] I. Guyon and A. Elisseeff, “An introduction to variable and feature selection,”
J. Mach. Learn. Res., vol. 3, pp. 1157–1182, 2003.

[6] Q. Hong, S. Kim, S. C. Cheung, and C. Bird, “Understanding a developer
social network and its evolution,” in Proc. 27th IEEE Int. Conf. Softw.
Maintenance, Sep. 2011, pp. 323–332.

[7] G. Jeong, S. Kim, and T. Zimmermann, “Improving bug triage with tossing
graphs,” in Proc. Joint Meeting 12th Eur. Softw. Eng. Conf. 17th ACM
SIGSOFT Symp. Found. Softw. Eng., Aug. 2009, pp. 111–120.

[8] J. Xuan, H. Jiang, Z. Ren, and W. Zou, “Developer prioritization in bug
repositories,” in Proc. 34th Int. Conf. Softw. Eng., 2012, pp. 25–35.

[9] S. Artzi, A. Kie_zun, J. Dolby, F. Tip, D. Dig, A. Paradkar, and M. D. Ernst,
“Finding bugs in web applications using dynamic test generation and
explicit-state model checking,” IEEE Softw., vol. 36, no. 4, pp. 474–494,
Jul./Aug. 2010.

[10] J. Anvik and G. C. Murphy, “Reducing the effort of bug report triage:
Recommenders for development-oriented decisions,” ACM Trans. Soft. Eng.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 11, November-2015 795
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

Methodol., vol. 20, no. 3, article 10, Aug. 2011.
[11] C. C. Aggarwal and P. Zhao, “Towards graphical models for text processing,”

Knowl. Inform. Syst., vol. 36, no. 1, pp. 1 21, 2013.
[12] K. Balog, L. Azzopardi, and M. de Rijke, “Formal models for expert finding in

enterprise corpora,” in Proc. 29th Annu. Int. ACM SIGIR Conf. Res. Develop.
Inform. Retrieval, Aug. 2006, pp. 43–50.

[13] P. S. Bishnu and V. Bhattacherjee, “Software fault prediction using quad tree-
based k-means clustering algorithm,” IEEE Trans. Knowl. Data Eng., vol. 24,
no. 6, pp. 1146–1150, Jun. 2012.

[14] R. J. Sandusky, L. Gasser, and G. Ripoche, “Bug report networks: Varieties,
strategies, and impacts in an F/OSS development community,” in Proc. 1st
Intl. Workshop Mining Softw. Repositories, May 2004, pp. 80–84.

[15] H. Brighton and C. Mellish, “Advances in instance selection for instance-
based learning algorithms,” Data Mining Knowl. Discovery, vol. 6, no. 2, pp.
153–172, Apr. 2002.

[16] S. Breu, R. Premraj, J. Sillito, and T. Zimmermann, “Information needs in bug
reports: Improving cooperation between developers and users,” in Proc.
ACM Conf. Comput. Supported Cooperative Work, Feb. 2010, pp. 301–310.

[17] V. Bol_on-Canedo, N. S_anchez-Maro~no, and A. Alonso-Betanzos, “A
review of feature selection methods on synthetic data,” Knowl. Inform. Syst.,
vol. 34, no. 3, pp. 483–519, 2013.

[18] V. Cerver_on and F. J. Ferri, “Another move toward the minimum consistent
subset: A tabu search approach to the condensed nearest neighbor rule,” IEEE
Trans. Syst., Man, Cybern., Part B, Cybern., vol. 31, no. 3, pp. 408–413, Jun.
2001.

[19] B. Fitzgerald, “The transformation of open source software,” MIS Quart., vol.
30, no. 3, pp. 587–598, Sep. 2006.

[20] M. Grochowski and N. Jankowski, “Comparison of instance selection
algorithms ii, results and comments,” in Proc. 7th Int. Conf. Artif. Intell. Softw.
Comput., Jun. 2004, pp. 580–585.

[21] A. E. Hassan, “The road ahead for mining software repositories,” in Proc.
Front. Softw. Maintenance, Sep. 2008, pp. 48–57.

[22] S. Kim, K. Pan, E. J. Whitehead, Jr., “Memories of bug fixes,” in Proc. ACM
SIGSOFT Int. Symp. Found. Softw. Eng., 2006, pp. 35–45.

[23] T. Zimmermann, R. Premraj, N. Bettenburg, S. Just, A. Schr€oter, and C.
Weiss, “What makes a good bug report?” IEEE Trans. Softw. Eng., vol. 36, no.
5, pp. 618–643, Oct. 2010.

[24] S. Kim, H. Zhang, R. Wu, and L. Gong, “Dealing with noise in defect
prediction,” in Proc. 32nd ACM/IEEE Int. Conf. Softw. Eng., May 2010, pp.
481–490.

[25] A. Lamkanfi, S. Demeyer, E. Giger, and B. Goethals, “Predicting the severity
of a reported bug,” in Proc. 7th IEEE Working Conf. Mining Softw.
Repositories, May 2010, pp. 1–10.

IJSER

http://www.ijser.org/

	1 Introduction
	3 Proposed System
	3.1 Architecture of Proposed System

	4 Conclusion
	References

