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State Space Models 
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Abstract: - Particle filters and Rao Blackwellised particle filter have been widely used in solving  nonlinear filtering problems. The particle filter is fairly 
easy to implement and tune, its main drawback is that it is quite computer intensive, with the computational complexity increasing quickly with the state 
dimension. One solution to this problem is to marginalize out the states appearing linearly in the dynamics. The result is that one Kalman filter is associated 
with each particle. The main contribution in this paper is to analyse the performance of the marginalized particle filter and Rao Blackwellised Particle filter 
for a general nonlinear state-space model. In an extensive Monte Carlo simulation different computational aspects are studied and compared with the 
derived theoretical results. 
 
Index terms: - State estimation, particle filter, Kalman filter, marginalization, Nonlinear estimation, marginalization, complexity analysis, Rao 
Blackwellised particle filter. 
                      ----------------------------------------------------------   ♦    ---------------------------------------------------------------- 
 
 I. INTRODUCTION 
The nonlinear non Gaussian filtering problem considered 
here consists of recursively computing the posterior 
probability density function of the state vector in a general 
discrete time state- space model, given the observed 
measurements. Such a general model can be formulated as 
considered  here consists of recursively computing the 
posterior probability density function of the state vector in a 
general discrete time state-space model, given the observed  
measurements. Such a general model can be formulated as: 
                                 𝑥𝑡+1 = 𝑓(𝑥𝑡 ,𝑤𝑡)                                          (1a) 
                                 𝑦𝑡 = ℎ(𝑥𝑡,𝑒𝑡)                                          (1b)   
Here, 𝑦𝑡is the measurement at time t, 𝑥𝑡 is the state variable. 
𝑤𝑡is the process noise, 𝑒𝑡is the measurement noise and f, h 
are two arbitrary nonlinear functions. The two noise 
densities 𝑃𝑤𝑡and 𝑝𝑒𝑡  are independent and are assumed to be 
known.  
The posterior density p(𝑥𝑡⃓𝑌𝑡)where 𝑌𝑡= {𝑦𝑖}, i=0 to t is given 
by the following general measurement recursion: 
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           𝑝�𝑥𝑡׀𝑌𝑡� = 𝑝�𝑦𝑡׀𝑥𝑡�𝑝(𝑥𝑡׀𝑌𝑡−1)
𝑝(𝑦𝑡׀𝑌𝑡−1)

                                    (2a) 

            p(𝑦𝑡⃓𝑌𝑡−1) = ∫𝑝�𝑦𝑡׀𝑥𝑡� ∗ 𝑝( 𝑥𝑡⃓𝑌𝑡−1) 𝑑𝑥𝑡                (2b) 
           and the following time recursion                       
           p(𝑥𝑡+1⃓𝑌𝑡) = ∫𝑝�𝑥𝑡+1׀𝑥𝑡� ∗ 𝑝�𝑥𝑡׀𝑌𝑡�𝑑𝑥𝑡                    (2c)   
       is initiated by p(𝑥0⃓𝑌−1) = 𝑝(𝑥0) . For linear Gaussian 
models the integrals can be solved analytically with a finite 
dimensional representation. This leads to the Kalman filter 
recursions, where the mean and the covariance matrix of the 
state are propagated [1]. More generally, no finite 
dimensional representation of the posterior density exists. 
Thus, several numerical approximations of the integrals (2) 
have been proposed. A recent important contribution is to 
use simulation based methods from mathematical statistics, 
sequential Monte Carlo methods, commonly referred to as 
particle filters” [2], [3], [5]”. 
 
The state vector can be represented as: 
 

                              𝑥𝑡 = �𝑥𝑡
𝑙

𝑥𝑡𝑛
�                                                   (3) 

                     
         Where 𝑥𝑡𝑙 denotes the state variable with conditionally 
linear dynamics and 𝑥𝑡𝑛 denotes the nonlinear state variable 
[6],[10].Using Bayes’ theorem we can then marginalize out 
the linear state variables from (1) and estimate them using the 
Kalman filter [7], which is the optimal filter for this case. The 
nonlinear state variables are estimated using the particle 
filter. This technique is sometimes referred to as Rao-
Blackwellisation [6]. The marginalized particle filter has been 
successfully used in several applications, for instance in 
aircraft navigation [10], underwater navigation [9], 
communications [4], [11], nonlinear system identification [10]. 
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In order to make presentation easy to follow, here we have 
considered one model. To illustrate the use of the 
marginalized particle filter a synthetic example is given in 
Section V the simulation result is given in section VI and the 
conclusion are stated in section VII. 

II.PARTICLE FILTER 

Particle filtering is a general Monte Carlo (sampling) 
method for performing inference in State-space models 
where the state of a system evolves in time and information 
about the state is obtained via noisy measurements made at 
each time step. In a general discrete-time state-space model, 
the state of a system evolves according to: 

          𝑥𝑘 = 𝑓𝑘(𝑥𝑘−1,𝑣𝑘−1)                                                        (4a) 

Where 𝑥𝑘 is a vector representing the state of the system at 
time k, 𝑣𝑘−1 is the state noise vector, 𝑓𝑘is a possibly non-
linear and time-dependent function describing the evolution 
of the state vector. The state vector 𝑥𝑘 is assumed to be latent 
or unobservable. Information about 𝑥𝑘 is obtained only 
through noisy measurements of it, 𝑧𝑘, which are governed 
by the equation: 

          𝑧𝑘 = ℎ𝑘(𝑥𝑘 ,𝑛𝑘)                                                              (4b) 

Where ℎ𝑘 a possibly non-linear and time-dependent is is 
function describing the measurement process and 𝑛𝑘 is the 
measurement noise vector. 

Particle filtering essentially combines the particles at a 
particular position into a single particle, giving that particle 
a weight to reflect the number of particles that were 
combined to form it.  This eliminates the need to perform 
redundant computations without skewing the probability 
distribution.  Particle filtering accomplishes this by 
sampling the system to create N particles, then comparing 
the samples with each other to generate an importance 
weight.  After normalizing the weights, it resamples N 
particles from the system using these weights.  This process 
greatly reduces the number of particles that must be 
sampled, making the system much less computationally 
intensive. 

Particle filtering technique is used for filtering nonlinear 
dynamical systems driven by non-Gaussian noise processes. 
The purpose of particle filter is to estimate the states 
{𝑆1 … … … .𝑆𝑡} recursively using the sampling technique. 

To estimate the states, the particle filter approximates the 
posterior distribution 𝑝(𝑆𝑡|𝑍1: 𝑡) with a set of samples 
{𝑆1 … … …  𝑆𝑡} and a noisy observation {𝑍1 … … … .𝑍𝑡}. In 
particle filtering, the probability density distribution of the 

target state is represented by a set of particles. The posterior 
density of the target state for a given input image is 
calculated and represented as a set of particles. In other 
words, a particle is a hypothesis of the target state, and each 
hypothesis is evaluated by assessing how well the 
hypothesis fits the current input data. Depending on the 
scores of the hypotheses, the set of hypotheses is updated 
and regenerated in the next time step. The particle filter 
consists of two components, state transition model and 
observation model. They can be written as: 

           Translation Model:  St = Ft (St−1 , Nt ), 

           Observation Model: Zt = Ht (St , Wt).                        (4c) 

The transition function 𝐹𝑡 approximates the dynamics of the 
object being tracked using previous state 𝑆𝑡−1 and the system 
noise 𝑁𝑡 . The measurement Ht models a relationship among 
the noisy observation 𝑍𝑡 the hidden state 𝑆𝑡, the observation 
noise𝑊𝑡. We can characterize transition probability 
𝑃(𝑆𝑡|𝑆𝑡−1)with the state transition model, and likelihood 
𝑃(𝑍𝑡|𝑆𝑡) with the observation model. 

  III. RAO-BLACKWELLISED PARTICLE FILTER 
 
An additional way to improve our computational efficiency 
is to reduce the complexity of each sample.  If we sample 2 
variables instead of 3, then we will reduce the number of 
dimensions in the system.  RBPF reduces the number of 
variables that must be sampled by identifying variables that 
do not need to be sampled to be computed. The advantage of 
the Rao-Blackwellised particle filter is that it allows the state 
variables to be splitted into two sets, being of them 
analytically calculated from the posterior probability of the 
remaining ones. It has been applied to SLAM, non-linear 
regression, multi-target tracking, and appearance and 
position estimation. In the particle filter framework, if the 
dimension of the state space becomes higher, it would be 
inefficient sampling in high-dimensional spaces [12]. 
However, the state can be separated into tractable subspaces 
in some cases. If some of these subspaces can be analytically 
calculated, the size of the space over which particle filter 
samples will be drastically reduced. This kind of concept 
was first proposed in [12]. 
 

If we denote a state space model as 𝑠𝑡  and observation model 
as  𝑧𝑡   and   observations   are assumed to be   conditionally 
independent given the process  𝑠𝑡  of marginal distribution 
𝑝(𝑆𝑡|𝑍1: 𝑡).  The   aim is   to   estimate   the    joint posterior 
distribution   𝑝(𝑆0:𝑡|𝑍0:𝑡).  The pdf can be written in   the 
recursive way:                

p(𝑠0:𝑡⃓𝑧1:𝑡) = 𝑝�𝑧𝑡׀𝑠𝑡�𝑝�𝑠𝑡׀𝑠𝑡−1�𝑝(𝑠0:𝑡−1⃓𝑧1:𝑡−1)
𝑝(𝑧𝑡⃓𝑧1:𝑡−1)

         (5)             
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Where p (𝑧𝑡⃓𝑧1:𝑡−1) is a proportionality constant 

IV. MARGINALIZATION 
The variance of the estimates obtained from the standard 
particle filter can be decreased by exploiting linear sub-
structures in the model. The corresponding variables are 
marginalized out and estimated using an optimal linear filter. 
This is the main idea behind the marginalized particle filter. 

The particle filter is used to get an approximation of the 
posterior density 𝑝(𝑥𝑡|𝑦𝑡) in the general model (1). In the 
following the particle filter, as it was introduced in [5], will 
be referred to as the standard particle filter. The 
marginalized and the standard particle filter are closely 
related. The marginalized particle filter is given in 
Algorithm 1 and neglecting steps 4a and 4c results in the 
standard particle filter algorithm. 

It is interesting to consider which states to put in the 
nonlinear and the linear partition, respectively. Two 

relevant aspects with respect to this partitioning are how it 
will affect the computational complexity and the estimation 
performance. 
This will be discussed using the following model. 

 

 𝑥𝑡+1𝑛 = 𝑓𝑡
𝑛(𝑥𝑡𝑛) + 𝐴𝑡𝑛(𝑥𝑡𝑛)𝑥𝑡𝑙 + 𝐺𝑡𝑛(𝑥𝑡𝑛)𝑤𝑡

𝑛                     (6a) 

 

   𝑥𝑡+1𝑙 = 𝑓𝑡
𝑙(𝑥𝑡𝑛) + 𝐴𝑡𝑙(𝑥𝑡𝑛)𝑥𝑡𝑙 + 𝐺𝑡𝑙(𝑥𝑡𝑛)𝑤𝑡

𝑙                       (6b) 

 

   𝑦𝑡 = ℎ𝑡(𝑥𝑡𝑛) + 𝑐𝑡(𝑥𝑡𝑛)𝑥𝑡𝑙 + 𝑒𝑡                                               (6c) 

      Where the noise is assumed white and Gaussian 
distributed with 
 

  𝑤𝑡 = �𝑤𝑡
𝑙

𝑤𝑡
𝑛�~ 𝒩(0,𝑄𝑡),𝑄𝑡 = �

𝑄𝑡𝑙 𝑄𝑡𝑙𝑛

(𝑄𝑡𝑙𝑛)𝑇 𝑄𝑡𝑛
�                           (7a) 

 
The measurement noise is assumed white and Gaussian 
distributed according to   

                𝑒𝑡~𝒩(0,𝑅𝑡)                                                                 (7b) 

Furthermore,  

                𝑥0𝑙~𝒩(𝑥0,𝑃0)                                                               (7c) 

The density of 𝑥0𝑛 can be arbitrary, but it is assumed known. 
In [8] the marginalized particle filter was applied to 
underwater navigation using a model corresponding to (6), 
save the fact that 

𝐺𝑡𝑛 = 𝐼,  𝐺𝑡𝑙 = 𝐼,  𝑓𝑡𝑙 = 0, 𝐴𝑛 = 0. 

In [13] a model corresponding to linear state equations and a 
nonlinear measurement equation is applied to various 
problems, such as car positioning, terrain navigation. 
 

V. AN ILLUSTRATING EXAMPLE 
 In order to illustrate the estimation of particle filter and 
mar gi na l ized (Rao-Blackwellised) particle f i l t e r  w e     
h a v e  t a k e n  t h e  f o l l o w i n g  e x a m p l e s  
w h e r e    t h e  t w o  s t a t e s  X 1  a n d  X 2  h a s  t o  
b e  e s t i m a t e d  a s  d e s c r i b e d  i n  e q u a t i o n  
( 8 a ) a n d  ( 8 b ) .     
         
 xt+1n = arctan xtn + (1 0 0)xtl + wt

n         ( 8 a )        

 

 xt+1l = �
1 0.3 0
0 0.92 −0.3
0 0.3 0.92

�xtl + wt
l                  ( 8 b ) 

ALGORITHM 1: The marginalized particle filter 

1) Initialization: For I =1, … , N, initialize the   

      Particles, 𝑥01−׀
𝑛,(𝑖)~ 𝑝𝑥0𝑛(𝑥0𝑛) and set {𝑥01−׀

𝑙,(𝑖) 𝑃01−׀
(𝑖) } = {𝑥0

𝑙 ,𝑃0}. 

2) For i = 1, …. , N, evaluates the importance weights  

     𝑞𝑡
(𝑖) = 𝑝(�𝑦𝑡�𝑋𝑡

𝑛,(𝑖)�,𝑌𝑡−1) and normalizes   

                     𝑞�𝑡𝑖 =  𝑞𝑡𝑙

∑ 𝑞𝑡
(𝑗)𝑁

𝑗=1
 

3) Particle filter measurement update  

    (resampling):Resample N particles with replacement, 

                      Pr (𝑥𝑡׀𝑡
𝑛,(𝑖) = 𝑥𝑡׀𝑡−1

𝑛,(𝑗) = 𝑞�𝑡
(𝑗)) 

4) Particle filter time update and Kalman filter: 

      a) Kalman filter measurement update: 

          Model 1: (10) 

          Model 2: (10) 

          Model3: (22) 

      b) Particle filter time update (prediction): For i =    

          1, … , N, predict new particles. 

                        𝑥𝑡+1׀𝑡
𝑛,(𝑖)  ~ 𝑝(�𝑥𝑡+1׀𝑡

𝑛 �𝑋𝑡+1׀𝑡
𝑛 � ,𝑌𝑡) 

      c) Kalman filter time update: 

          Model1: (11) 
          Model2: (17) 
          Model 3: (23) 

5)   Set t: = t + 1 and iterate from step 2. 
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yt =  �0.1(xtn)2 sgn(xtn)
0

� + �0 0 0
1 1 1� xt1 + et (8c) 

𝑤𝑡 =  �𝑤𝑡
𝑛

𝑤𝑡𝑛
�~𝒩(0,0.01𝐼4∗4)                             ( 8 d )  

 
  𝑒𝑡~𝒩(0,0.01𝑒2∗2)                                          ( 8 e ) 

 
  𝑥0𝑛 = 𝒩(0,1)                                                  ( 8 f ) 

 
  𝑥01 = 𝒩(03∗3, 03∗3)                                         ( 8 g ) 

Looking at the notation used in the above Model that is 
the model specified in (6) and (7)    

  𝑓𝑡𝑛(𝑥𝑡𝑛) = 𝑎𝑟𝑐𝑡𝑎𝑛 𝑥𝑡𝑛                                          ( 9  a ) 

 

 𝐴𝑡𝑛(𝑥𝑡𝑛) = (1 0 0)                                     ( 9 b ) 

 

 𝐺𝑡𝑛(𝑥𝑡𝑛) = 1                                                                           ( 9 c ) 
 
 𝑓𝑡𝑛(𝑥𝑡𝑛) = (1 0 0)𝑇                                     ( 9 d ) 
 

 𝐴𝑡1(𝑥𝑡𝑛) = �
1 0.3 0
0 0.92 −0.3
0 0.3 0.92

�                           ( 9 e )  

 
𝐺𝑡1(𝑥𝑡𝑛) = 𝐼3∗3                                                  ( 9 f ) 
 

ℎ𝑡(𝑥𝑡𝑛) = �0.1(𝑥𝑡𝑛)2 𝑠𝑔𝑛(𝑥𝑡𝑛)
0

�                        ( 9 g ) 

 

𝐶𝑡(𝑥𝑡𝑛) = �0 0 0
1 1 1�                                        ( 9 h )  

 
𝑄𝑡 = 0.01𝐼4∗4                                                   ( 9 i )   
 
  𝑅𝑡 = 0.1𝐼2∗2                                                     ( 9 j )   
 
𝑥0 = (0 0 0)𝑇                                              ( 9 k ) 
 
𝑃�0 = 03∗3                                                              ( 9 l 
) 
            
 
     VI.SIMULATION RESULTS                                               

             In this section, we present the simulation result of 
the Rao Blackwellised particle filter and give a performance 

comparison between the Rao Blackwellised Particle filter and 
Particle filter based on RMSE. Here we have taken two states 
X1 and X2(Corresponding to equation 8(a) and 8(b).                                                                      

      

                FIG-1: RMSE Estimation of Particle Filter using 
10 Monte Carlo simulation with N = 200 particles     
                         
         In fig.1 the red line indicates the true state estimation 
and blue line indicates the state estimation using particle 
filters. In fig.2 the red line indicates true state estimation and 
blue line indicates the state estimation using Rao 
Blackwellised particle filters. .In Fig. 1, the result is shown 
for the particle Filter when using N = 200 particles and 10 
Monte Carlo Simulation. The performance is pretty bad, and 
it quickly deteriorates even more when the number of 
particles is decreased. The result from applying the Rao 
Blackwellised Particle filter using only N = 200 particles and 
10 Monte Carlo Simulation is also shown in Fig. 2 and the 
performance enhancement is significant. It is shown that the 
estimates of the particle filter and the RBPF deviate from the 
true states very small at some time steps. 
        Table 1 gives RMSE evaluation of particle filter and Rao 
Blackwellised Particle Filter. From the Root mean square 
error (RMSE), we can clearly see that the Rao Blackwellised 
Particle Filter gives the better performance than particle 
filter. 
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    FIG-2: RMSE Estimation of Rao-Blackwellised Particle 
Filter using 10 Monte Carlo simulation with N = 200 
particles. 

 
                                                                                                               
     Table1. RMSE of Particle Filter and Rao-Blackwellised 
Particle Filter over 10 Monte Carlo Iteration with 
N=200particles 

 

 

 VII.CONCLUSION                                            

              From Table no.1 shown above we conclude that The 
RMSE of RBPF is significantly lower in comparison to PF’s. 
The main contribution in this paper is to analyse the 
performance of the marginalized particle filter and Rao 
Blackwellised Particle filter for a general nonlinear state-
space model. The method is general and can be applied to a 
large class of problems. In an extensive Monte Carlo 
simulation different performance aspects are shown, and the 
theoretical results are illustrated and validated. Rao 
Blackwellised particle filter is used for Eigen Tracking, 
Multiple target tracking, INS/GPS Integration. 
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