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Abstract— This  paper presents an active and challenging areas of research in the field of  Electronic Warfare(EW) and Pattern Recogni tion.Electronic 

intelligence (ELINT) is the result of observing the signals transmitted by radar systems to obtain information about  their capabilities: it is the remote 

sensing of remote sensors. ELINT also provides information about defensive systems, which is important in maintaining a credible deterrent force to 

penetrate those defenses. In this context estimation of the of radar Antenna Scan Period (ASP) and recognition of the Antenna Scan Type(AST) is im-

portant measure in analyzing level of threat from the radar. Usually estimation of radar ASP and recognition of the AST is performed by human operators 

in the EW world. In this paper a algorithm is synthesized for radar scan pattern. The characteristic parameters of antenna scanning includes AST, ASP 

with other such parameters like Radio frequency (RF),Pulse Width(PW),PulseAmplitude(PA),Pulse Repetition Interval (PRI),Direction Of Arrival (DOA) 

and The classification different scan types such as circular scan, sector scan, helical scan, raster scan, conical scan is done using features extracted 

from the generated antenna scan patterns. Classification of the Angle Of Arrival (AOA).AST’s is done using both parametric and non parametric tech-

niques of the pattern recognition synthesized in MATLAB. AST of radar is found using four unique features of antenna scanning  such as azimuth angle, 

elevation angle, degree of rotation and number of elevation bars. The verilog code for the recognition of antenna scan type is simulated in Xlinx ISE 14.3 

and implemented on the Spartan 3 FPGA. 

 

 

Index Terms— Antenna Scan Period (ASP) , Antenna Scan Type(AST) , Angle Of Arrival (AOA).Direction Of Arrival (DOA),Electronic 

Warfare(EW),Electronic Support(ES), Electronic intelligence (ELINT), Pulse Width(PW),PulseAmplitude(PA),Pulse Repetition Interval 

(PRI),Radio Detection And Ranging (RADAR), Radio frequency (RF). 

——————————      —————————— 

I. INTRODUCTION 
 

Military operations are executed in an information 

environment where the electromagnetic (EM )spectrum is be-

coming increasingly more complex.    

Different technologies and military doctrines have 

evolved as the use of the EM spectrum has expanded vastly in 

many different bands. Electronic warfare (EW) is an umbrella 

term used to define any activity that can control the spectrum, 

attack an enemy, or impede enemy assaults via the spectrum. 

The goal of EW is to deny the opponent the advantage of, and                     

ensure friendly unimpeded access to, the EM spectrum[2, 3]. 

Signal intelligence (SIGINT) missions are employed on a daily 

basis in peace time to support EW operations during war time. 

Such missions are responsible for recording, analyzing, and 

forming parameter databases of EM emissions of particular 

importance. 

This paper addresses the problem of radar antenna 

scan type (AST) recognition and propose an algorithm to es-

timate the radar antenna scan period(ASP) followed by AST 

classification. Both ASP and AST are vital for EW systems in 

emitter classification and for the timing of electronic counter 

measures [1].A change of AST is also crucial in determining 

threat levels from radar. Despite their importance, there is a  

paucity of studies in the open literature on automatic AST 

recognition because of the classified nature of EW work. The 

conventionalsolution to the problem in EW  is to employ  

human operator who listens to the radar tone generated by the 

received pulses. The operator guesses the AST and estimates 

its period with a stopwatch.  The main contribution of this 

paper is the automation of this process through the develop-

ment of a novel ASP estimation and AST classification tech-

nique based on signal warping (resampling) and pattern 

recognition. Automating the AST recognition process com-

pletely eliminates the need for a human EW operator.. 

The algorithm proposed in this paper for AST classifi-

cation is not based on correlation techniques but, rather, based 

on pattern recognition. It also takes into account and handles 

the variability of the ASP for different radars and warps 

(resamples) each signal so that each period is represented by a 

fixed number of samples.In present problem, both the signal 

length (period) and its shape change (because of the position 

of the radar and the EW receiver) within one class of data, the  

measures of similarity are based on autocorrelation functions, 

characteristic points, genetic algorithms, artificial neural net-

works (ANNs), Markov models, etc.  

The rest of this paper is organized as follows.Section II pro-

vides fundamental information about pulsed radar systems 

and their distinctive parameters.The primary focus is on AST 

and ASP. The basic ASTs are overviewed in Section III.  Sec-

tion IV explains the proposed algorithm in detail. The algo-

rithm is validated with synthetic and real data  and a compare
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between four AST classifiers is presented. Section V concludes 
the paper. 
 

II. PULSED RADAR PARAMETERS AND 
ELECTRONICWARFARE 

          The type of radar considered in this study is convention-

al pulsed radar widely used in military applications for 

searching, detecting, and tracking airborne targets [10]. Accu-

rate tracking is crucial for following a particular target (such 

as an aircraft) or an unresolved cluster of targets (such as an 

aircraft formation) as well as for efficient use of weapons 

against the target. Over the years, different types of volume 

search and target-tracking methods have evolved. These 

methods, usually periodic,are deployed in the various radar 

from different manufacturers with widely varying parameters 

[7]. 

The parameters that characterize a pulsed radar are its carrier 

frequency, bandwidth, pulsewidth(PW),pulse amplitude (PA), 

time and direction of arrival(ToA and DoA), pulse repetition 

interval (PRI), signal power, lobe duration, AST, and ASP [7]. 

Modern radars usually have multiple signal bandwidths.  

Antennas are the crucial and indispensable parts 

of radar systems as they radiate and receive EM waves. Radar 

systems use a wide variety of antenna types, specialized for 

different applications  and functionalities [9]. Since the cover-

age of the antenna beamwidth in azimuth and elevation is 

usually not sufficient for the radar’s requirements, the antenna 

is steered, either electronically or mechanically,to the desired 

part of the space . Considering a hemispherical volume to be 

covered, the number of distinct steering positions for a me-

chanically-steered antenna is given by        , where    

and    are the azimuth and elevation beamwidths, respective-

ly.This formula is not valid for electronically-scanned planar 

phased arrays since the beam broadens in angle(although it 

remains invariant in sine space).The EW receiver tries to ac-

quire information about radar in the environment (and possi-

bly jam them) to protect the platform on which it is located 

while the platform performs its mission. In systems that detect 

ToA, PA, and duration, many options for antenna scan analy-

sis are available.The approach we have taken in this work for 

scan analysisis based on measuring the PA and estimating the 

ASP in the time domain in order to determine the AST.PA is 

the received signal power of the pulse at the 

EW antenna and is given by 

𝑃𝑟(𝑡) =
𝑃 𝐺 𝜆

 

4𝜋𝑅 
 𝐺𝑡( (𝑡),  (𝑡))                                      (1)  

where Pr, and Ptare the transmitted and the received 

power, Gr is the receiver antenna gain¸ λ is the wavelength, R 

is the range between the radar and the EW receiver, and L is 

the loss factor. Atmospheric propagation losses are propor-

tional to range and frequency and can be significant for low 

elevation angles which are commonly encountered. Polariza-

tion mismatch between the two antennas is another factor that 

affects the PA. As  the antenna rotates to different parts of the 

volume, the received power changes according to the gain of 

the antenna at the angular position of the EW receiver. Hence, 

𝐺𝑡( (𝑡),  (𝑡)) is the radar transmitter antenna gain at the 

azimuth and elevation angles where the EW receiver is located 

at time t. The term 
𝑃 𝐺 𝜆

 

4𝜋𝑅 
  is assumed to be constant because 

the geometry (range and angle) between the radar and the EW 

receiver is assumed to be changing negligibly. This assump-

tion is valid for stationary engagement scenarios and scenarios 

where the scan rate of the antenna is much faster than the mo-

tion of the system platform, which is mostly the case in 

EW.When the relative motion between the radar and the EW 

receiver is significant, this assumption is no longer valid, the 

range R becomes time depe dent, and the received signal 

power in (1) becomes a function of the changing R. Assuming 

that it is possible to constantly update the positions of the ra-

dar and the EW receiver through the use of geolocation, the 

range R can be recalculated at each scan and used in (1). It is 

also possible to calibrate the radar system to measure velocity 

together with range to exploit Doppler information.If the re-

ceived power is above the sensitivity level of the EW receiver, 

radar pulses with different amplitudes are detected and ana-

lyzed. The sensitivity level of the receiver depends on its 

bandwidth and noise figure. The ASP is the shortest time in-

terval between the repetitive patterns observed in a PA re-

cording. Instead of the ASP, sometimes the antenna scan rate 

(ASR) is used, which is simply the reciprocal of the ASP. 

When the ASP is short so that the ASR is large (as is the case 

for conical scans for example), the latter is stated more often 

because of the convenience of numerical representation. 

 

III. BASIC ANTENNA SCAN TYPES 

Radars use different search-and-track strategies to cover the 

specific region they are directed to. These strategies determine 

the radar’s AST. The basic ASTs are described in [7], [9] and 

are summarized below. 

 

1) Circular Scan: The circular scan is widely used in search 

radars. The radar scans the complete azimuth plane (360±) at a 

constant angular speed (Fig. 1). The antenna typically has a 

large elevation beamwidth, called a fan beam, to cover the 

whole elevation space without having to scan it. The EW re-

ceiver samples the PA with a sampling period equal to the PRI  

since the pulses are received with PRI intervals in time. The 

ASP has quite a large range,on the order of 1—10 s. 
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                                                        (a) 

 

 
                                                    (b) 

Fig. 1. Circular scan. (a) Main beam positions. (b) PA versus 

ToA graph, where solid dots indicate measured PAs. 

 

2) Sector Scan: In the sector scan, the radar sweeps a specific 

angular sector back and forth at constant angular speed (Fig. 

2(a)). The EW antenna receives periodic and symmetric main 

beams, as shown in Fig. 2(b). Two main beams with equal 

peaks are expected for each full period. The ASP is on the or-

der of seconds. 

 

 
                                                    (a) 

  3) Raster Scan: The two scan types described above search 

only in azimuth, but the raster scan searches both in azimuth 

and elevation (Fig. 3). The radar scans a specific angular sector 

in azimuth and increments its elevation after completing the 

sector, similar to the raster scan on TV screens. There can be 

several elevation levels. Figure 3 shows the antenna motion 

and the received PA as a function of ToA.The period is  

             

 
 Fig. 2. Sector scan. (a) Main beam positions. (b) PA versus 

ToA graph. 

 

constant and in each full period, a main beam is intercepted 

for each bar of the raster scan.However, since the elevation is 

also changing in this scan type, the received PA varies with 

the elevation of the EW receiver. 
 

 
                                                  (a) 

 

 
                                                 (b) 

Fig. 3. Raster scan. (a) Main beam positions. (b) PA versus ToA 

graph. 

 

4) Helical Scan: In the helical scan, the radar revolves 360± 

several times while the elevation changes continuously so that 

the radar scans a specific sector in elevation. After a complete 

scan period, the elevation is set back to where the scan began. 

Theshape of the scan resembles a helix (Fig. 4). The received 

PAversus ToA signal (Fig. 4(b)), is similar to the circular scan 

except that the peaks of the pattern change because of the mo-

tion in the elevation plane. 
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                                                (a) 

 

 
Fig. 4. Helical scan. (a) Main beam positions. (b) PA versus 

ToA graph. 

 

5) Conical Scan: A critical piece of information in scanning is 

whether radar is tracking the platform the EW receiver is lo-

cated on. A conical scan indicates that radar is trying to lock 

onto the platform by scanning conically around it to place it 

on the 3 dB beamwidth. Figure 5(a) illustrates the movement 

of the antenna. The received signal, illustrated in Fig. 5(b), is 

initially a sinusoid because the beam travels closer to, then 

farther from the EW receiver.As the lock improves, the ampli-

tude of the sinusoid decreases. The period of the sinusoid is 

distinct for each type of radar. Eventually, when the radar 

islocked completely, the track process converges to a perfect 

track. In other words, when the platform is right on the 3 dB 

beamwidth, the received PA becomes constant. The complete 

lock of this scan type is sometimes called a fixed scan. The PA 

during the locking-on process is illustrated in Fig. 5(c).Other 

antenna scan types are bow tie scan and Archimedes spiral 

type scan, which are not as common as those described above. 

These are not considered in this study.Unlike radars that have 

basic preprogrammed scan types, as those considered in this 

paper, phased-array radars have very complex and dynamic 

beam management algorithms. A phased array may be used to 

generate a fixed radiation pattern,or to scan rapidly in azi-

muth or elevation. Modern phased-array radars rely on digital 

beamforming and employ track-while-scan algorithms that 

dynamically change the beam formation of the radar accord-

ing to the received pulses, threat location and speed, etc. 

Therefore, the beam shape of phased-array radars change with 

the steering angle. The beamwidth is approximately inversely 

proportional to the angle measured from the normal to the 

antenna [18]. In addition to the changing shape of the main 

beam,the sidelobes also change in appearance and position. 

Consequently, the antenna scan pattern received at the EW 

receiver keeps changing, complicating the ASP estimation and 

AST recognition problem. Instead of ASP and AST, one can 

use lobe duration (illumination time) as a distinctive feature of 

phased-array radars.However, one should consider that the 

lobe duration may also vary (probably small variations) be-

cause of the beam broadening nature of phased arrays when 

looking off the boresight of the array. 
 

 
                                                       (a) 

 

 
                                                     (b) 

Fig. 5. Conical scan. (a) Main beam positions. (b) PA versus 

ToA graph. 
 

IV. AST RECOGNITION ALGORITHM 

The AST recognition problem can be summarized as estimat-

ing the relative angular position of the EW receiver with re-

spect to the radar main beam as time passes, and classifying 

the radar AST into one of the most frequently encountered 

scan patterns. 

 

A. The Input Signal 

The input PA versus the ToA data is the real data acquired by 

the EW receiver. Figure 6 shows an example PA versus a ToA 

signal from a circular scan where each period is shown. Since 

the output from these source are in dBW (decibel relative to 

Watt), the signal is first transformed from dBW to Volt (V) 

scale using  

                           𝑣𝑜𝑙𝑡𝑎𝑔𝑒 =  10(
𝑝𝑜𝑤𝑒𝑟

20⁄ )                       ( ) 
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Fig .6.An example PA versus a ToA signal from a circular scan 

 

B. Period Estimation 

A continuous-time signal x(t) is called periodic if x(t) = x(t+T) 

8t and some period value T. The smallest value of T that satis-

fies this equality is called the fundamental period.Frequency-

domain methods estimate the period by detecting the peaks of 

the frequency spectrum. This approach possesses some prob-

lems when the signal is not a sinusoid, but has a wide band-

width. In this case, the peaks may be illusive when estimating 

the fundamental frequency. 

Time-domain methods are particularly useful for pe-

riod estmation of nonsinusoidal signals. These methods define 

some kind of similarity metric and try to maximize the simi-

larity with the lagged versions of the signal using this metric. 

For example, the average magnitude difference or the autocor-

relation between the signal and its lagged versions can be used 

as similarity metrics. The lag value where the similarity is 

maximized corresponds to the period estimate of the signal.  

The backbone of the algorithm is the ASP estimation, which 

affects the overall performance of AST classification signifi-

cantly.  In this study period estimation is performed by using 

the normalized autocorrelation. 

  
Fig. 7: Transformed signal ready for period estimation. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8.An overview of the proposed algorithm 
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C. Preprocessing (Normalization, Resampling, and Averaging) 

This part prepares the signal for the feature extraction phase 

by normalizing,averaging, and finally resampling the signal. 

The normalization process is quite simple where the signal is 

simply scaled by its maximum value so that the signal varies 

between 0 and 1: 

  𝑜𝑟 [ ] =  
 [ ]

    ( [ ])
            = 0,1,   ,   1                        ( )    

This process tries to remove the effects of propagation, since 

propagation results in a decay in pulse amplitude, proportion-

ate to the distance between the radar and the EW receiver. 

Here, we are not concerned with the distance and rather con-

cerned with the antenna scan type which is independent of 

constant decays. Fig. 9. shows the normalized autocorrelation 

coefficients calculated for the signal. 

 

 
Fig. 9: Normalized autocorrelation coefficients calculated for 

the signal. 

Next, we resample the signal so that the total number 

of samples from one cycle of a particular scan type is N where 

the value of N depends on the signal.This process transforms 

all of the recorded signals from different radars with different 

PRIs, different ASTs and different ASPs with      elements 

into a standard signal vector with N elements. Here, T is the 

estimated period and Ts is the sampling interval of the origi-

nal signal. The process also regularizes the different sampling 

periods of the signal to     . The value of N is chosen as 2000 

throughout the example signal. This resampling phase also 

reduces the amount of data because radars use much larger 

number of pulses per scan period to be aware of the environ-

ment, so it becomes a decimation operation. Since a high sam-

pling rate is available before the resampling phase, nearest 

point interpolation technique can be used with negligible dis-

tortion in the signal. This process was defined in Equation 

(3).Assuming M full cycles of signal are available to estimate 

the period of the signal, the signal can coherently be averaged 

using Equation (4.4) to decrease the effect of noise. Figure 4.7 

shows the signal with the periodic parts. 

 

D.Feature Extraction 

In this section, we describe the four features selected and used 

by the algorithm.Input to this part is the preprocessed N ele-

ment signal with sampling interval      . 

There are a total of 100 data points, 20 from each of the follow-

ing scan types in the following order: circular, sector, raster, 

helical, and conical. These signals are synthesized by using the 

ASPS described in the previous chapter. The parameters (azi-

muth and elevation beamwidths, sector width, number of bars 

in raster, scan period etc.) used while generating the signals 

are very important. The results of the classification phase 

could be very misleading if the parameters are not set appro-

priate with the real world examples. Therefore, we have used 

a classified database which the parameters of the radars are 

accountable on and have selected these parameters according-

ly.We have attempted to use a number of different features 

such as the mean,standard deviation, and skewness, but the 

best results were obtained with the four features described 

below: 

Kurtosis of the Signal 

Kurtosis is the normalized fourth-moment of a random varia-

ble X and is defined as: 

   𝑡𝑜   =  
 [   ]4

 4
                                                            ( ) 

where   is the mean and σ is the standard deviation of the 

random variable. 

 

Fig. 10: Full periods in the signal. 

Kurtosis is a statistical measure of how peaked or 

how flat the distribution of the random variable is. It can also 

be seen as a measure of how heavy the tails of the distribution 

are relative to the Gaussian distribution which has a kurtosis 

value of 3. Concentrated distributions such as the uniform 

distribution have kurtosis values less than 3. If the distribution 
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has heavier tails and is more outlier prone, its kurtosis value 

exceeds 3.In track modes, radars try to illuminate the threat as 

much as possible so that they can update the threat’s coordi-

nates finely and accurately for a possible attack. To perform 

this task, they have to steer the beam such that it is on the plat-

form all of the time. This in turn means that the EW receiver 

will get all thepulses of the radar with slight differences in 

amplitude (i.e., a narrow distribution of amplitude) depending 

on the track scanning type of the radar system. The amplitude 

variation is approximately uniform. A conical scan signal, 

which is a uniformly sampled sinusoid, has a kurtosis value of 

around 1.5. By looking at the signal’s kurtosis value, the sys-

tem will get an idea about its mode and scan.The kurtosis val-

ue will be small for conical scan and large otherwise. The kur-

tosis is selected as the first feature: 

          F1=kurtosis(x[k])                                                                  (5) 

 

Cross Correlation of the Signal with the Main Beam 

It can be observed by analyzing different scan types and their 

effect on the EW platform that the position of the main beam 

differentiates the scans from each other. The phenomenon be-

hind the data reveals this information very clearly. The radar 

is trying to search different volumes of space with different 

periodic strategies. So the relation of the time between the 

main beams and the amplitude variation of the main beams 

are the key parameters for a robust recognition system.First, 

the algorithm has to detect the main beam in the signal. This 

can be achieved quite easily by finding the maximum point in 

the signal. Assuming that there is a main beam in the signal, 

this has to be the maximum point. From the index of the max-

imum point, it starts to advance indices until the magnitude 

drops to 0.01. The process is repeated exactly in the same way 

for the pulses previous to the maximum point. By using these 

two points neighboring the maximum point where the ampli-

tude drops to 0.01, it extracts the main beam between these 

two points. Figure 4.10 illustrates the signal and the main 

beam detected in the signal. After finding one of the main 

beams in the signal, the algorithm detects all of the possible 

main beams in the signal by using the normalized cross corre-

lation between the signal and the main beam found. The nor-

malized cross correlation between two discrete sequences x[n] 

and y[n] is defined as follows: 

   [ ] =  
∑  [ ] [   ]   
  0

√∑  2   
  0 [ ]√∑  2[   ]   

  0

                                           ( ) 

where V is the length of the main beam vector. Setting a 

threshold (0.95 is used in this study) and finding the peaks in 

the cross correlation values gives all the possible main beams. 

One would expect the cross correlation value to be large since 

the patterns of different antennas are very similar near their 

bore sights. For scan types where no elevational action is in-

volved (circular and sector), the main beams will be exactly 

the same, ignoring the effect of noise. The threshold can be 

tuned according to the signal to be able to handle the possible 

variations in the azimuth pattern caused by the changing ele-

vation angle. After finding the possible main beams in the sig-

nal, some very important relations are calculated from the 

time position and the pulse amplitudes of the main beams.The 

 number of main beams is an important parameter that can 

differentiate some scan types from the others. In particular, 

the circular scan has only one beam in one period which is a 

valuable feature to discriminate it from the others.Circular and 

sector scan types are very visible in the figure by this parame-

ter. It can also be seen that no main beam is found in the coni-

cal signal since the pulse variation is not observed. There-

fore,we choose the second feature as the number of main 

beams: 

F2 = number of main beams in the signal                              (7)

  

Amplitude variation of the main beams can also be a 

very useful feature.The range of the main beam amplitudes is 

used as a measure of the variation by subtracting the mini-

mum amplitude from the maximum amplitude. This feature 

can differentiate between azimuthal and elevational scan 

types. More generally,this feature can differentiate the scan 

types that involve only one plane (azimuth) and the ones that 

scan both planes (azimuth and elevation). Therefore, the third 

feature becomes the amplitude variation of the main beams: 

 

                = max(main beam PAs) − min(main beam PAs)       (8) 

One can see that the variation could not be calculated for cir-

cular scan types since this type of scan produce only one main 

beam.Similarly, since the conical scan does not have any dis-

tinct main beam, variation of main beams is not calculated as 

well. However, it is observed that the sector scan type can be 

separated from the others with this feature. 

Time difference between the main beams is also a dis-

tinctive parameter between classes. Circular and helical scan 

types revolve the 360◦ sector continuously without going back 

and forth like sector and raster scans. In this case, one expects 

to see the time difference between the main beams to be very 

similar. However, in the raster scan, the time difference be-

tween the main beams should vary most of the time because 

of the nature of the scan. The only case where the time differ-

ence will be the same is when the EW receiver is in the middle 

of the scanned sector which is unlikely. 

 For this, max(time differences)/ min(time differences) 

is calculated and used as a parameter.We observe that this 

feature is only calculable for helical and raster scans since 

there should be at least three main beams to calculate the vari-

ation of time differences between the main beams. Therefore, 

the final feature is chosen as the variation of the time differ-

ences: 

 4 = 
   (                )

   (                )
                                                                         ( )                                    
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E.Classification 

The above features are used in the classification phase. For 

features that cannot be calculated for different scan types, 1000 

value is used as a numeric value for the classification algo-

rithm input as an indicator. For example, a main beam 

cannot be observed in a conical scan so its features other than 

the kurtosis cannot be calculated and set as 1000 to ease the 

calculations in the classification part. Four different classifica-

tion techniques are used: naive Bayes, decision tree,multilayer 

 perceptron neural network, and support vector machines. The 

classification rates according the N parameter of the algorithm 

is shown to see the effect of the number of samples per period. 

The classification methods and their results are presented be-

low. An open source machine learning software WEKA, de-

veloped by The University of Waikato, is used in the classifica-

tion process [16].We have used 4-fold cross-validation tech-

nique for training and testing the algorithm. In this cross-

validation technique, the data points from each class are ran-

domly partitioned into four groups. In the first run, first part 

is retained for testing and the remaining is used for training. 

In the second fold, the second part is retained for testing and 

the remaining is used for training. All of the data points are 

tested by this procedure by repeating this procedure four 

times. 

1) Naive Bayes 

Naive Bayes classifier classifies according to the Bayes’ 

therem. The classifier calculates the posterior probabilities 

according to the models of each class. The decision rule for 

classification is merely picking the hypothesis that is more 

probable. 

Assuming w1,w2, . . . ,wn are the classes, p(x|wj) is the 

state-conditional density function assuming that the given 

class is wj , then the posterior probability 

is calculated as follows: 

 (
  
 
) =  

 (
  
 
) (  )

 ( )
                                         (10) 

 

Where  ( ) =  ∑  (
𝑤 

 
)  (  )

 
     is the total probability. 

 

In the training phase, probability models for  (
 

𝑤 
) are calcu-

lated using the training signal for each   .The probability den-

sity function is assumed to be a normal distribution and the 

parameters of the distribution are calculated by maximum 

likelihood estimation. In naive Bayes method, each of the fea-

tures are assumed independent and the calculations of the 

parameters of the model are made accordingly. This assump-

tion greatly simplifies the calculations and the complexity of 

the model.The classification phase calculates the posterior 

probabilities according to Equation (10). The class of the signal 

is chosen as the most probable class according to the calculat-

ed posterior probabilities [13].It can be seen that for very small 

N, the signal is undersampled and the features are not correct-

ly extracted, causing errors in the classification. One can con-

clude from the figure that N = 1000 is a good choice in terms of 

the correct classification rate and computational complexity. 

 

 

Table 1: Confusion matrix for the naïve bayes classifier with  

correct classification rate. 

 

 

 

2)  Decision Tree 

Decision trees are the most intuitive and natural way of classi-

fication [13]. One finds a sequence of test questions starting 

from a main question and branches all the way to a terminat-

ing node where the class of the signal is found. The structure 

of our problem fits well into a decision tree like structure since 

each one of the selected features is discriminative for one or 

two of the scan types. That is, if one knows that the kurtosis 

value is low, than it is highly probable that it is a conical scan. 

There are quite a lot of different tree growing algorithms that 

use training signals and establish a tree which classifies the 

signal. The most popular ones are: Classification and regres-

sion trees (CART) and C4.5. More information about these 

algorithms can be found in [13] with an extensive explanation. 

Besides the algorithms mentioned above, a relatively newly 

proposed best first tree (BFTree) learning algorithm is also 

considered in this study. It is seen that this algorithm comes 

up with trees that can classify the scans more accurately.The 

following results are obtained by using the BFTree algorithm. 

More information about this algorithm can be found in [13]. 

The same undersampling effect seen in the previous classifier 

is also seen here with N = 1000 being a suitable choice. The 

confusion matrix for the decision tree when N = 1000 is used is 

given in Table 2. 

 

 

 

 

 

 

 

 

Classification results 

circular sector raster helical conical 

T
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e 
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s 

circular 10 3 0 0 0 

sector 3 0 0 0 0 

raster 1 0 0 0 0 

helical 1 0 0 0 0 

conical 2 0 0 0 0 
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Table 2: Confusion matrix for the decision tree classifier with 

correct classification rate. 

 

 

3)  Artificial Neural Networks 

Artificial neural networks (ANN) are classifiers that try to 

emulate the computational processes in the human brain. 

They consist of nodes similar to the neurons in the nervous 

system. The interconnection between nodes is only through-

weighted sums of the inputs of the neuron. In the neuron I 

self, a non-linearfunction called the activation function, is used 

to model the process in the neuron. There are usually three 

types of layers in an ANN: an input layer, one or more hidden 

layers, and an output layer. The input layer has sufficient 

number of nodes to cover the inputs; the output has also 

nodes to represent the outputs.The part where the patterns are 

learnt are the hidden layers of the system. The number of hid-

den layers and the number of nodes in each hidden layer can 

be chosen by the designer. Small number of neurons in the 

hidden layer may not satisfy the user in terms of classification 

accuracy because the ANN may not be able to learn the pat-

terns sufficiently. However, an excess of neurons in the hid-

den layer causes a lot of complexity in the training part and it 

also could lead to “memorization” of the signal instead of 

“learning” the dynamics of the signal.Due to the presence of 

distributed nonlinearity and a high degree of connectivity, 

theoretical analysis of ANNs is difficult. The performance of 

ANNs is affected by the choice of parameters related to the 

network structure, training algorithm, and input signals, as 

well as by parameter initialization [14].There is a variety of 

different networks, training methods, and activation functions 

for different types of applications [14]. A multi-layer (three 

layer) perceptron with a back-propagation algorithm is used 

in this study. This is a supervised method which uses a gradi-

ent-descent algorithm based on the error at the output.It tries 

to minimize the error by feeding back the error at the output 

to update the weights in each epoch.After the network is 

trained, classification is performed: the inputs are fed to the 

ANN with the already converged weights and the class of the 

signal is determined according to the output.The classification 

results with respect to N is depicted in Figure 4.20. The effect 

of undersampling and the saturation after a point is also seen 

in this figure as in the previous classifiers. The confusion ma-

trix for the ANN classifier when 

N = 1000 is given in Table 4.5. 

Table 4.5: Confusion matrix for the ANN classifier with correct 

classification rate. 

 

4) Support Vector Machines 

Support  Vector Machines (SVMs) is a binary classifier that 

tries to divide the space with hyperplanes where each volume 

represents a different class. The hyperplane that is expected to 

be found is a hyperplane that maximizes the margin of separa-

tion between the classes. The hyperplane is found by using the 

data points that are between the classes. These points are very 

valuable in separating the classes and are called the support 

vectors. By using these points and by the help of quadratic 

programming, the hyperplanes that separate the classes are 

found. If a hyperplane is not sufficient to divide the classes, 

i.e., the region dividing classes is not linear, one can use dif-

ferent kernels to transform the signal to different spaces [7]. 

In this study, a linear SVM is trained with the signal without 

any kernel and one-versus-the-rest classification is performed 

since there are more than two classes. The cases where N < 

1000 did not convergeThe confusion matrix for the support 

vector machine when N = 1000 is used is given in Table 2. 

Table 4: Confusion matrix for support vector machine classifi-

er with  correct classification rate. 

 

 

 

Comparison of the Computational Time of the Classifiers 

We have also analyzed the time it takes to train and test the 

classifiers used in the study as an indication of computational 

complexity of each classifierThe results obtained with WEKA, 

given in Table 5, shows us that the decision-tree classifier out-

performs the other classifiers in terms of computational com-

plexity as well. 

Classification results 
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circular 13 0 0 0 0 

Sector 3 0 0 0 0 

Raster 1 0 0 0 0 

helical 0 0 0 0 1 

conical 1 0 0 1 0 

Classification results 
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circular 10 3 0 0 0 

sector 3 0 0 0 0 

raster 1 2 0 0 0 

helical 0 0 0 0 1 

conical 0 0 1 0 1 
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Table 5: Amount of time needed for training and testing for 

each classifier. 

 

 

 

 

 

 

 

 

The robustness against noise presented in the previous sec-

tions and low computational complexity of the decision-tree 

classifier indicates that for this particular application, decision 

tree is the most suitable choice as a class. 

 
F)  Synthesis of estimated scan type parameters 

A design for the estimated parameters of the different 
scan types is synthesized in the Xilinx ISE design suite and 
simulated in the ISIM of Xilinx ISE 14.3. 
 
G) Implementation on FPGA. 

The simulated code is implemented on the SPARTAN 
3 FPGA kit. 
 

V. CONCLUSIONS 

Paper addressed the problem of radar ASP estimation 

and AST classification in EW signal processing on 

which no clear and accessible study is available in 

the open literature. The research for an automatized 

solution to the problem led to a sufficiently general 

algorithm that uses the conventional parameters of 

radar systems. The main contribution of this work 

is the design of a novel and robust algorithm for 

AST classification. 

Future work involves modifying the algorithm 

so that it can operate in real time as the radar signal 

is acquired by an EW receiver. The main difficulty 

here would be to differentiate the sidelobes from the 

mainlobe when only partial data is observed instead 

of the whole. 
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classifier Time(s) 

Naïve Bayes 0.03 

Decision tree 0.02 

ANN 0.19 

SVM 1.03 
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