Quasi-Hadamard product of certain starlike and convex functions with respect to symmetric point

H. E. DARWISH , A. Y. LASHIN , A .N. ALNAYYEF

Abstract- In this paper, we introduce establish certain results concerning the quasi-Hadmard product for two classes related to starlike and convex univalent functions with respect to symmetric points..

AMS (2010) Subject Classification: 30C45.-
Key words: Starlike and convex functions with respect to symmetric points, quasi-Hadamard product..

1 Introduction

Throughout this paper, let S denote of the functions of the form :

$$
\begin{gathered}
f(z)=a_{1} z-\sum_{k=2}^{\infty} a_{k} z^{k} \quad\left(a_{1}>0, a_{k} \geq 0\right), \\
f_{r}(z)=a_{1, r} z-\sum_{k=2}^{\infty} a_{k, r} z^{k} \quad\left(r \in \mathrm{~N}, a_{1, r}>0, a_{k, r} \geq 0\right), \\
\breve{g}(z)=b_{1} z-\sum_{k=2}^{\infty} b_{k} z^{k} \quad\left(b_{1}>0, b_{k} \geq 0\right)
\end{gathered}
$$

and

$$
\widetilde{g}_{j}(z)=b_{1, j} z-\sum_{k=2}^{\infty} b_{k, j} z^{k} \quad\left(j \in \mathrm{~N}, b_{j}>0, b_{k, j} \geq 0\right)
$$

which are analytic in the unit disc $U=\{z:|z|<1\}$. For a function $f(z)\left(\right.$ with $\left.a_{1}=0\right)$, we defined by (ref: 1.1),

$$
\begin{gathered}
D^{0} f(z)=f(z), \\
D^{1} f(z)=D f(z)=z f^{\prime}(z)
\end{gathered}
$$

and

$$
D^{n} f(z)=D\left[D^{n-1} f(z)\right] \quad(n \in \mathrm{~N}=[1,2, \ldots]),
$$

where

$$
D^{n} f(z)=z-\sum_{k=2}^{\infty} k^{n} a_{k} z^{k}
$$

The differential operator D^{n} was introduced by Salagean [11]. With the help of Salagean D^{n} define the classes $S_{s, n}^{*}(\alpha, \beta)$ and $S_{c, n}^{*}(\alpha, \beta)$ as follows: Denote by $S_{s, n}^{*}(\alpha, \beta)$, the class of functions $f(z)$ which satisfy the condition

$$
\left|\frac{\frac{D^{n+1} f(z)}{D^{n} f(z)-D^{n} f(-z)}-1}{\alpha \frac{D^{n+1} f(z)}{D^{n} f(z)-D^{n} f(-z)}+1}\right|<\beta
$$

where

$$
n \in \mathrm{~N}_{0}=\mathrm{N} \cup\{0\}, 0 \leq \alpha \leq 1,0<\beta \leq 1,0 \leq \frac{2(1-\beta)}{1+\alpha \beta}<1
$$

Let $S_{c, n}^{*}(\alpha, \beta)$ be the class of function $f(z)$ for

$$
\text { which } \quad z f^{\prime}(z) \in S_{s, n}^{*}(\alpha, \beta) \text {. }
$$

We note that:
(i) $S_{s, 0}^{*}(\alpha, \beta)=S_{s}^{*}(\alpha, \beta)$ and $S_{c, o}^{*}(\alpha, \beta)=S_{c}^{*}(\alpha, \beta)$ introduced by Sudharsan [15] (see also [14]).
(ii) $S_{s, 0}^{*}(\alpha, 0)=S_{s}^{*}(\alpha)$, these functions are called starlike with respect to symmetric points and were introduced by Sakaguchi [12] (see also Robertson [10] , Stankiewics [13] Wu [16] and Owa et al. [6]).
(iii) $S_{c, 0}^{*}(\alpha, 0)=S_{c}^{*}(\alpha)$ introduced by El-Ashwah and Thomas [2].
Aouf et al. [1], stales that $f(z) \in S_{s, n}^{*}(\alpha, \beta)$ if and only if
$\sum_{k=2}^{\infty} k^{n}\left[(1+\alpha \beta) k+(\beta-1)\left[1-(-1)^{k}\right] a_{k, r}\right] \leq[\beta(2+\alpha)-1] a_{1, r}$
where $0 \leq \alpha \leq 1, \quad 0<\beta \leq 1, \quad 0 \leq \frac{2(1-\beta)}{1+\alpha \beta}<1 \quad$ and $z \in U$.
And $f(z) \in S_{c, n}^{*}(\alpha, \beta)$ if and only if

$$
\sum_{k=2}^{\infty} k^{n+1}\left[(1+\alpha \beta) k+(\beta-1)\left[1-(-1)^{k}\right] a_{k, r}\right] \leq[\beta(2+\alpha)-1] a_{1, r}
$$

where $0 \leq \alpha \leq 1, \quad 0<\beta \leq 1, \quad 0 \leq \frac{2(1-\beta)}{1+\alpha \beta}<1 \quad$ and
$z \in U$.
We now introduce the following class of analytic function which plays an important role in the discusstion that follows:
Afunction $f(z) \in S_{h, n}^{*}(\alpha, \beta)$ if and only if
$\sum_{k=2}^{\infty} k^{h}\left[(1+\alpha \beta) k+(\beta-1)\left[1-(-1)^{k}\right] a_{k, r}\right] \leq[\beta(2+\alpha)-1] a_{1, r}$,
where $0 \leq \alpha \leq 1, \quad 0<\beta \leq 1, \quad 0 \leq \frac{2(1-\beta)}{1+\alpha \beta}<1$ and $z \in U$. Where h is an nonnegative real number.
It is evident that $S_{s, k}^{*}(\alpha, \beta) \equiv S_{s, n}^{*}(\alpha, \beta)$ and,
$S_{s, k+1}^{*}(\alpha, \beta)=S_{c, n}^{*}(\alpha, \beta)$. Further,
$S_{s, h}^{*}(\alpha, \beta) \subset S_{k}^{*}(\alpha, \beta)$ if $h>k \geq 0$ the con-
tainment being proper. Hence, for any positive integer $h>k+1$, we have the inclusion relation

$$
\begin{gathered}
S_{s, h}^{*}(\alpha, \beta) \subset S_{s, h-1}^{*}(\alpha, \beta) \subset \cdots \\
\subset S_{s, k+2}^{*}(\alpha, \beta) \subset S_{c, n}^{*}(\alpha, \beta) \subset S_{s, n}^{*}(\alpha, \beta)
\end{gathered}
$$

We note that for every nonnegative real number h, the class $S_{s, n}^{?}(\alpha, \beta)$ is nonempty as the functions of the from

$$
\left.f(z)=a_{1} z-\sum_{k=2}^{\infty} \frac{\beta(2+\alpha)-1}{k^{h}\left[(1+\alpha \beta) k+(\beta-1)\left[1-(-1)^{k}\right.\right.}\right]^{a_{1} \lambda_{k} z^{k},}
$$

where $a_{1}>0, \lambda_{k} \geq 0$, and $\sum_{k=1}^{\infty} \lambda_{k} \leq 0$, satisfy the inequality (ref: 1.14).
The quasi-Hadamard product of two or more functions has recently been defined and used by Owa [7,8,9],
Kumar [3,4,5] and others. Accordingly, the quasiHadamard product of two functions $f(z)$ and $\breve{g}(z)$ is given by

$$
f * \breve{g}(z)=a_{1} b_{1} z-\sum_{k=2}^{\infty} a_{k} b_{k} z^{k} .
$$

2 The main theorem

Theorem A functions $f_{r}(z)$ defined by (ref: 1.2) in the class $S_{c, n}^{*}(\alpha, \beta)$ for each $r=1,2, \ldots, u$; and the functions $\breve{g}_{j}(z)$ in the class $S_{s, n}^{*}(\alpha, \beta)$ for each $j=1,2, \ldots, q$. Then we get the quasi-Hadamard prod-
$S_{u(n+2)+q(n+1)-1}^{*}(\alpha, \beta)$.
Proof We denote the quasi-Hadamard product $f_{1} * f_{2} * \ldots * f_{u} * \breve{g}_{1} * \breve{g}_{2} * \ldots * \breve{g}_{q}(z)$ by the function $h(z)$, for the sake of the convenience.
Clearly,

$$
h(z)=\left[\Pi_{r=1}^{u} a_{1, r} . \Pi_{j=1}^{q} b_{1, j}\right] z-\sum_{k=2}^{\infty}\left[\Pi_{r=1}^{u} a_{k, r} . \Pi_{j=1}^{q} b_{k, j}\right] z^{k} .
$$

To prove the theorem, we need to show that

$$
\sum_{k=2}^{\infty}\left\{(k)^{u(n+2)+q(n+1)-1}\left[(1+\alpha \beta) k+(\beta-1)\left(1-(-1)^{k}\right)\right]\left[\prod_{r=1}^{u} a_{k, r} \cdot \Pi_{j=1}^{q} b_{k, j}\right]\right\}
$$

$$
\leq[\beta(2+\alpha)-1]\left(\Pi_{r=1}^{u} a_{1, r} . \Pi_{j=1}^{q} b_{1, j}\right)
$$

Since $f_{r}(z) \in S_{c, n}^{*}(\alpha, \beta)$, we have
$\sum_{k=2}^{\infty} k^{n+1}\left[(1+\alpha \beta) k+(\beta-1)\left[1-(-1)^{k}\right] \leq[\beta(2+\alpha)-1] a_{1, r}\right.$,
for each $r=1,2, \ldots, u$. Therefore

$$
k^{n+1}\left[(1+\alpha \beta) k+(\beta-1)\left[1-(-1)^{k}\right] a_{k, r}\right] \leq[\beta(2+\alpha)-1] a_{1, r}
$$

or

$$
a_{k, r} \leq\left\{\frac{\beta(2+\alpha)-1}{\left.k^{n+1}\left[(1+\alpha \beta) k+(\beta-1)\left[1-(-1)^{k}\right]\right]\right\} a_{1, r}}\right.
$$

for each $r=1,2, \ldots, u$. The right-hand expression of this last inequality is not greater then $k^{-(n+1)} a_{0, r}$.
Hence

$$
a_{n, r} \leq k^{-(n+2)} a_{1, r} .
$$

for each $r=1,2, \ldots, u$. Similarly, for $\breve{g}_{j}(z) \in S_{s, n}^{*}(\alpha, \beta)$, we have
$\sum_{k=2}^{\infty} k^{n}\left[(1+\alpha \beta) k+(\beta-1)\left[1-(-1)^{k}\right] b_{k, j}\right] \leq[\beta(2+\alpha)-1] b_{1, j}$
for each $j=1,2, \ldots, q$. Hence we get

$$
b_{k, j} \leq k^{-(n+1)} b_{1, j} .
$$

By (ref: 2.3) for $r=1,2, \ldots, u$, (ref: 2.5) for

$$
j=1,2, \ldots, q-1, \text { and }(\text { ref: } 2.4) \text { for } j=q \text {, we get }
$$ uct $f_{1} * f_{2} * \ldots * f_{u} * \breve{g}_{1} * \breve{g}_{2} * \ldots * \breve{g}_{q}(z)$ 圆

$$
\sum_{k=2}^{\infty}\left\{(k)^{u(n+2)+q(n+1)-1}[(1+\alpha \beta) k+(\beta-1)]\left[1-(-1)^{k}\right]\left[\prod_{r=1}^{u} a_{k, r} \cdot \Pi_{j=1}^{q} b_{k, j}\right]\right\}
$$

References

$$
\begin{aligned}
& \leq \\
& \sum_{k=2}^{\infty}\left\{(k)^{u(n+2)+q(n+1)-1}\left[(1+\alpha \beta) k+(\beta-1)\left(1-(-1)^{k}\right)\right]\right\} \\
& \times k^{-u(n+2)} \cdot k^{-(n+1)(q-1)}\left(\prod_{r=1}^{u} a_{1, r} \cdot \prod_{j=1}^{q-1} b_{1, j}\right) b_{q, k} \\
& \sum_{k=2}^{\infty}\left\{k^{n}(1+\alpha \beta) k+(\beta-1)\left[1-(-1)^{k}\right]\right\}\left(\prod_{r=1}^{u} a_{1, r} \cdot \prod_{j=1}^{q} b_{1, j}\right) b_{q, k} \\
& \leq {[\beta(2+\alpha)-1]\left(\prod_{r=1}^{u} a_{1, r} \cdot \prod_{j=1}^{q} b_{1, j}\right) . }
\end{aligned}
$$

Hence $h(z) \in S_{u(n+2)+q(n+1)-1}^{*}(\alpha, \beta)$. This completes the proof of Theorem th2.
[1] M. K. Aouf, R. M. El-Ashwah and S. M. El-Deeb, Certain classes of univalent functions with negative coefficients and n-starlike with respect to certain points; Math. Vesnik. 62 (3) (2010), 215-226.
[2] R. M. El-Ashwah and D. K. Thomas, Some subclass of close-toconvex functions, J. Ramanujan Math. Soc. 2(1987), 86-100.
[3] V. Kumar, Hadamard product of certain starlike functions, J. Math. Anal. Appl. 110 (1985), 425-428.
[4] V. Kumar, Hadamard product of certain starlike functions II, J. Math. Anal. Appl. 113 (1986) 230-234.
[5] V. Kumar,Quasi-Hadamard product of certain univalent function, J. Math. Anal. Appl. 126 (1987) 70-77.
[6] S. Owa, Z. Wu and F. Ren, A note on certain subclass of Sakaguchin functions, Bull. Soc. Roy. Liege 57 (1988), 143-150.
[7] S. Owa, On the classes of univalent functions with negative coefficients, Math. Japon. 27(4) (1982) 409-416.
[8] S. Owa, On the starlike functions of order and type, Math. Japon. 27 (6) (1982)723-735.
[9] S. Owa, On the Hadamard product of univalent functions, Tamkang J. Math. 14 (1983)15-21.
[10] M. S. Robertson, Applications of the subordination principle to univalent functions, Pacific J. Math. 11(1961), 315-324.
[11] G. S. Salagean, Subclass of univalent functions, Lecture Notes Math. 1013, Springer Verlag, Berlin, (1983), 362-372.
[12] K. Sakaguchi, On certain univalent mapping, J. Math. Soc. Japen. 11 (1959),72-75.
[13] J. Stankiewicz, Some remarks on functions starlike with respect to symmetric points, Ann. Univ. Marie Curie Sklodowska 19 (1965), 53-59.
[14] J. Stankiewicz, Some remarks on function starlike with respect to symmetric points, Folia Scient. Univ. Tech. Resoviensis 37 (1990), 79-89.
[15] T. V. Sudharsan, P. Balasubrahmmanayam and K. G. Subramanian, On functions starlike with respect to symmetric and conjugate points, Taiwanese J. Math. 2 (1998), 57-68.
[16] Z. Wu, On class of Sakaguchi functions and Hadamard products, Sci. Sinica Ser. A 30 (1987), 128-135.

