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Quantum computing models for algebraic 
applications  

Nikolay Raychev 
 

Abstract - In our days the quantum computers may be used for a great number of algebraic applications 
exponentially faster in comparison to the classical computing equipment. In this article are considered key 
aspects of quantum models algebraic applications in terms of the application of the algorithms in a quantum 
circuit using only elementary quantum operations, which is important for determining the potential applicability of 
the models in the practice.   
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1. INTRODUCTION 

The quantum computers use the quantum 
mechanical phenomena such as superposition 
and quantum entanglement to perform 
computations. Since the computations are carried 
out in ways, which the classic computers can not 
apply for certain tasks such as decomposition of 
large numbers [1] and simulation of quantum 
systems [2- 16], the quantum algorithms provide 
exponential increase of the outputs compared to 
their classic counterparts. Recently Harrow, 
Hassidim and Lloyd [17] proposed a quantum 
algorithm for obtaining certain information for 
finding �⃗� of 𝐴�⃗� = 𝑏�⃗ . First we will set forth the 
algorithm and some comments about the key 
aspects relating to the efficient implementation of 
its quantum circuit. Then we will present an 
example for a quantum circuit, in order to 
encourage the experimental efforts for 
implementing the algorithm.  

2. BOOLEAN EXPRESSIONS 

Specification: There is an n variables Boolean 
expression given, the entire possible range of 
variables should be found within 2𝑛 possible 
combinations, by which the result of the 
expression will be TRUE.  

The Boolean expression consists of the AND-ing 
of a number of clauses, each clause consists of 
the OR-ing clauses of K Boolean variables, and 
each variable may be negated.  

There are two well-developed paradigms of 
Boolean logic.  

 The first uses operations of AND, OR and 
NOT and is called canonical Boolean logic.  

 The second uses the operations AND, 
XOR and NOT and is called Reed-Muller 
logic (RM) 

For constructing quantum circuits for Boolean 
functions, will be used one ancilla qubit, which 
initially is initialized to 0 and a Boolean function 
constructed by CNOT based transformations, 
which work as follows: 

CNOT (C|t) is an operator, whose target qubit is 
controlled by a set of qubits C, so that t ∉ C, the 
state of t will be changed by |0〉 → |1〉 or by 
|1〉 →  |0〉 only and solely if all qubits in C are 
with state |1〉; i.e. the new state of the target qubit 
t will be the result of the operation disjunction of 
the old state of t with the AND-ing of the states 
of the control qubits.   

Example 1:  

Boolean function:  f (𝑥0,𝑥1,𝑥2) = 𝑥0���⋁𝑥1𝑥2 

1. Transformation in positive RM polarity : 
f  =  𝑥0𝑥1𝑥2⊕ 𝑥0 ⊕ 1 

2. Design of quantum Boolean circuit 

 Initialization of the target qubit 
with a state |0〉 

 A CNOT gate is added to each 
product in this expansion, as the 
boolean variables in this product 
are implemented as control qubits, 
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the result is calculated and stored 
into the target qubit. 

 For the last product which contains 
only one unit is added a CNOT (t)  

 

Figure 1 Boolean function:  f (𝑥0,𝑥1,𝑥2) = 𝑥0���⋁𝑥1𝑥2 

 

Example 2:   

Boolean function  f (𝑥1,𝑥2,𝑥3) = (𝑥1⋁𝑥2⋁𝑥3) 
(𝑥1� ⋁𝑥2⋁𝑥3) (𝑥1⋁𝑥2���⋁𝑥3���) 

1. Transformation into positive RM polarity: f  
=  𝑥1𝑥2𝑥3⊕ 𝑥2 ⊕ 𝑥3 

2. Design of quantum Boolean circuit 

• Initialization of the target qubit with a 
state |0〉 

• A CNOT gate is added to each product in 
this expansion, as the boolean variables in 
this product are implemented as control 
qubits, the result is calculated and stored 
into the target qubit. 

 

Figure 2: Boolean function f (𝑥1,𝑥2,𝑥3) = (𝑥1⋁𝑥2⋁𝑥3) 
(𝑥1� ⋁𝑥2⋁𝑥3) (𝑥1⋁𝑥2���⋁𝑥3���) 

 

 

Figure 3 Quantum circuit for solving Boolean 
expressions 

Register preparation. A quantum register with n + 
1 qubits is prepared, for all n variables involved 
in the boolean expression, all qubits are 
initialized in state |0〉, the additional qubit will be 
used as workspace for evaluating the Boolean 
function 

Register initialization. Hadamard gates are 
applied on the first n qubits, thus was created a 
superposition of n qubits and in parallel are 
processed all 2𝑛 possible states of the boolean 
expression   

|𝑊1⟩ = (𝐻⨂𝑛⨂𝐼) |𝑊0⟩ =  � 1
√𝑁
∑ |𝑖⟩𝑁−1
𝑖=0 �  ⨂ |0⟩;𝑁 =

2𝑛  

Implementation of the Boolean function. An Oracle 
operator Uf is applied (by the described procedure in 
both shown examples), which in parallel will 
process all possible states and will retain the 
outcome in the battery 

|𝑊2⟩ = 𝑈𝑓|𝑊1⟩ =
1
√𝑁

 ��(|𝑖⟩
𝑁−1

𝑖=0

⨂ |0⨂𝑓(𝑖)⟩)�

=
1
√𝑁

 ��(|𝑖⟩
𝑁−1

𝑖=0

 ⨂ |𝑓(𝑖)⟩)� 

Completing the superposition and changing the sign. 
A Hadamard gate is applied on the working 
qubit. This will complete the superposition of 
n+1 qubits. The found states satisfying the 
function will be marked by negative amplitudes. 

 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 6, Issue 8, August-2015                                                             1283 
ISSN 2229-5518 

IJSER © 2015 
http://www.ijser.org 

|𝑊3⟩ = (𝐻⨂𝑛⨂𝐼) |𝑊2⟩  

=
1
√𝑁

 �� |𝑖⟩
𝑁−1

𝑖=0

 ⨂�
�0⟩+ (−1)𝑓(𝑖)�1⟩

√2
�� 

=
1
√𝑃

 ��(|𝑖⟩
𝑁−1

𝑖=0

⨂�0⟩+ (−1)𝑓(𝑖)�1⟩)� ;    𝑃 = 2𝑁

= 2𝑛+1 

If M is the number of the possible states of the 
variables at which the result of the Boolean 
function will be TRUE (solutions); so that 0 ≤ M ≤ 
N; (N = P/2).  |W3〉 there will be two possible 
forms: 

1. If in the superposition there is at least one 
open solution of the Boolean function. 
∑ (… )𝑖

′ is the sum of all i, which are 
solutions, and ∑ (… )𝑖

′′ is the sum of all i, 
which are not solutions 

|𝑊31� =
1
√𝑃

 ��|𝑖⟩⨂ (|0⟩ − |1⟩)�
𝑁−1

𝑖=0

′

+
1
√𝑃

 ��|𝑖⟩⨂ (|0⟩+ |1⟩)�
𝑁−1

𝑖=0

′′

 

=
1
√𝑃

 �(|𝑖⟩⨂|0⟩)
𝑁−1

𝑖=0

′

−�(|𝑖⟩⨂|1⟩)
𝑁−1

𝑖=0

′

+
1
√𝑃

 �(|𝑖⟩⨂|0⟩)
𝑁−1

𝑖=0

′′

+ �(|𝑖⟩⨂|1⟩)
𝑁−1

𝑖=0

′′

 

2. If in the superposition is not found a 
single solution of the Boolean function. 
The function will have the following 
form 

|𝑊32� =
1
√𝑃

 ��|𝑖⟩⨂ (|0⟩+ |1⟩)�
𝑁−1

𝑖=0

 

Application of a Diffusion operator, which 
increases the amplitudes with a negative sign 
(the solutions) and decreases the amplitudes 
with a positive sign 

𝐷 = 𝐻⨂𝑛+1(2|0⟩⟨0|− 𝐼)𝐻⨂𝑛+1 = 2|𝜓⟩⟨𝜓|− 𝐼 

 

Complexity of the algorithm:  
The proposed algorithm consists of a constant 

number of steps, f:(O(4)) 
1. Preparing the register for N qubits - O(n). 
2. Implementing the Boolean function - O(λ); (λ ≤ 
2n−1). 
3. Completing the superposition and changing 
the sign - O(1). 

4. Diffusion operator - inversion according to the 
importance - O(4n) 

 

3. ALGEBRAIC EQUATIONS 

Lets suppose that an operator A is presented as 
N × N Hermite matrix with spectral factorization 
of 𝐴 = ∑ λ𝑗𝑗 �u𝑗��u𝑗� (the non-Hermite cases can be 
explained by some simple modifications of the 
algorithm, see [17, sec. 4, annex A]). The number 
of conditioning is defined as 
𝜅 =  𝑚𝑎𝑥𝑗�𝜆𝑗� 𝑚𝑖𝑛𝑗�𝜆𝑗�� . Without the limitations 
of the community we accept κ−1 ≤ λ j ≤ 1 for all j.  

The main quantum circuit for the algorithm is 
shown on fig. 1. The right vector is encoded in 
the quantum state 𝑏�⃗ , which expands as |𝑏⟩ =
∑ 𝑏𝑗𝑗 |𝑢𝑗� into a basis of own vectors A. The 
algorithm starts with the known subroutine for 
the phase estimation, which involves applying 
the control unitary unit U = eiAt on |𝑏⟩ for a 
superposition of different t values. After the 
phase estimation we obtain a state, which is 
approximately ∑ 𝑏𝑗𝑗 |λ𝑗�|𝑢𝑗� (Fig. 1). Here |λ𝑗� is a 
state that encodes an approximation to the 
eigenvalue λ j  [18, sec. 5].   

The next step of the algorithm aims to make the 
system proportional to ∑ 𝑏𝑗𝑗 λ𝑗

−1|𝑢𝑗� ⊗ |𝐴𝑛𝑐. ⟩. 
Here |𝐴𝑛𝑐. ⟩ is a state of the ancilla qubits.  The 
ancilla qubits decouple from this subset of qubits 
in state ∑ 𝑏𝑗𝑗 λ𝑗

−1|𝑢𝑗� which is proportional to the 
solution |𝑥⟩ ∝ 𝐴−1|𝑏⟩. To achieve this 
transformation is introduced an ancilla qubit, 
initialized on |0⟩ and are used the states |λ𝑗� after 
the phase estimation (fig. 1) for performing a 
controlled Y - rotation 𝑅𝑦�θ𝑗� = 𝑒−𝑖θ𝑗𝑌 2⁄ (Y is a 
Pauli Y operator) of the ancilla qubit such that 
the state of the system is brought to 

∑ ��1− 𝐶2

λ𝑗
2  �0⟩+ 𝐶

λ𝑗
�1⟩�  𝑏𝑗λ𝑗|𝑢𝑗�𝑗    (1) 
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with the rotation angles θ𝑗 = 2arcsin(C / λ𝑗). Here 
the constant C ≤ 𝑚𝑖𝑛𝑗�λ𝑗� = 0(1 𝑘⁄ ) .  

Figure 4 Overview of the quantum circuit for solving 
the linear system A�⃗� =𝑏�⃗ . Each label Anc. represents 
an ancilla register. Reg. Means any register that 
stores (intermediate or final) computed results. W is a 
Walsh-Hadamard transform which applies the 
Hadamard transform on each qubit of the register. FT 
represents quantum Fourier transform (FT). The 
circuit for FT is well known [18]. Uλ is a subroutine, 
which computes the state |𝜃𝚥��  with 𝜃𝚥� , approximating 
θ j = 2arcsin(C / λ j) for the eigenvalues of A, encoded 
in states |λ𝑗�. U† represents the inverse of all the 
operations before the controlled Ry rotation. For small 
rotation angles in Ry the final state of the top ancilla 

bit is |a𝑗�, which approximates �1− 𝐶2 λ𝑗
2⁄ +

𝐶 λ𝑗⁄  |1⟩ with an fidelity up to ε.  

 

The final step of the algorithm is applying the 
inversion of a subroutine for phase estimation at 
the beginning and transforming the register |λ𝑗� 
back to |0›, thus transforming the system to 

∑ �(1− C2 λ𝑗
2⁄ |0⟩𝑗 + (C λ𝑗⁄ )|1⟩)β𝑗|0⟩|u𝑗�. The 

projective measurement of the first ancilla qubit, 
where it is |1⟩, will reduce the final state of Reg. 
B (fig. 1) to the desired state  

∑ 𝐶 𝑏𝑗
λ𝑗𝑗 |u𝑗�∞|𝑥⟩       (2) 

with probability of ∑ �𝑏𝑗�
2 ∙ �C λ𝑗⁄ �

2
𝑗 , which is 

estimated to O (1/κ2). 

Here we will examine some key aspects of the 
algorithm related to finding an efficient quantum 
circuit implementation when using only 
elementary operations.  

A detailed complex analysis in [17] shows that 
the algorithm runs in 𝑂 (log(N)κ2/ǫ) time, where 
ǫ is a total error in the output state |x›. It is 
proven that the complexity, or the cost scaling of 
the quantum algorithm values as κ and ǫ, is 
optimal [17, sec. 5, annex A], while in cases such 
as A, which are symmetrical positively defined, 
the best classic algorithm of the conjugate 
gradient has a scaling 𝑂 (N√κ log(1/ǫ)) [19]. 

Hence the most useful application of the 
algorithm is limited to situations where neither, 
nor 1/ǫ are large [20].  

The major strength of the algorithm is that at 
under certain conditions (which we will discuss 
later) it finds the solution |𝑥⟩ with O (logN) 
value, while any classical algorithm requires at 
least O(N) operations to record the answer �⃗�. 
Because the solution is encoded in the quantum 
state |𝑥⟩  =  ∑ 𝑥𝑖|𝑖⟩𝑁

i=1    and obtaining all the 
values of xi still requires operation O(N),  the 
application of the algorithm is further limited to 
cases where we are only interested in a certain 
solution that is represented by the expected 
value ‹x|M|x› for an operator М. 

At the above restrictions, in order to keep the 
scaling of the value O(logN), the algorithm 
assumes that all of the following subroutines are 
efficient (with scaling of value O (poly(logN,κ, 1/
ϵ))). 

Preparation of state |𝒃⟩. It is known that in order 
to prepare an arbitrary quantum state in an N-
dimensional Hilbert space are necessary O 
(poly(N)) elementary gates [18]. This is 
immediately related to decomposing an arbitrary 
unitary operation to elementary quantum gates 
(such as CNOT gates and single-qubit rotations), 
since preparing any state |b› requires a unitary 
unit U, such that (for example)  the 
transformation of U|0 · · · 0›= |b› serves as 
preparing |b' of |b› of |0 · · · 0›, a state that is 
easy to prepare. There are improved circuits for 
decomposition of the unitary gates, however, 
there is no general circuit that will break the poly 
(N) bound in the scaling of the values. 
Regardless of this fundamental limitation, there 
are specific types of states, which can be 
prepared efficiently. 

One important example is the case, considered 
independently by Zalka [24], Grover and 
Rudolph [25], Kaye and Mosca [26], where the 
state |b› = Σi b(i)|i›, corresponding efficiently to 
an integrable function b(x), can be prepared 
efficiently. The initial motivation in [24] is to 
encode a continuous wave function into a 
quantum state in preparation for quantum 
simulation. This idea is extended in [27] for 
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generating a numerous single- and multipart 
eigenstates for quantum simulation. 

While the circuits for state generation in [24 27] 
are presented in the standard model of a 
quantum computation gate, Aharonov and Ta-
Shma [28, 29] consider the quantum state 
generation by simulating Hamiltonians of 
adiabatic evolutions that correspond to slowly 
varying Markov chains. According to [28, Sec. 4], 
for a Markov chain described with a matrix M, 
acting on the distribution of probabilities that in 
the space of states Ω, for the limiting distribution 
π = limt→∞Mtp with p, which is an output 
distribution, if M is row computable and for each 
i, j ∈ Ω, Mijπi = Mjiπj and πi/πj can be efficiently 
approximated,  then the Hamiltonian 
corresponding to M, defined as HM = I − ΛMΛ−1, 
where Λ е is a diagonal operator with √πi at the 
ith diagonal position, has its own basic state Σi 
√πi|i›. Because we can efficiently simulate an 
adiabatic evolution starting at a Hamiltonian 
corresponding to a simple Markov chain and 
ending at a Hamiltonian corresponding to HM 
(See [28, Lemma 2 and 3]), thus the state Σi √πi|i› 
can be efficiently prepared. 

Hamiltonian simulation e−iAt. The task of the 
Hamiltonian simulation has been extensively 
studied. For a basic nondense N × N Hamiltonian 
H is shown in [30] that it is not possible to 
simulate e−iHt into poly (||Ht||, logN) time, 
which establishes the fundamental limitation for 
the currently known Hamiltonian simulation 
schemes. In general, however, it is of greater 
importance to efficiently simulate sparse 
Hamiltonian schemes. Especially if H is 1 (first) 
sparse (s- sparse means that each row and 
column of the Hamiltonian has at most s non-
null elements), e−iHt can be filled with O (1) 
elementary operations [28, 31]. In generally, an s-
sparse Hamiltonian can be decomposed 
efficiently as a sum of O (s2)  1-sparse 
Hamiltonians [28, 32]. Since the initial work by 
Lloyd [2] for cases of time-independent local 
Hamiltonians, there are several simulation 
algorithms using formulas [6, 32, 33] and 
improved, using linear combinations of unitary 
operators [34], with scaling of the values that is 
poly (logN, 1/ǫ) and almost linear in ||Ht||. 

Another option, algorithmic simulation, using 
quantum walks [35, 36], has scaling of the values 
O||Ht||/√є), which is strictly linear in в ||Ht||. 
None of the presented algorithms so far can not 
show O (log(1/є)) scaling in 1/є, except the 
special cases in which H has a specific structure 
such as being proportional to a discrete 
Laplacian in any finite dimension [37]. 

However, on the basis of prior works [32, 36, 38] 
was recently shown in [39] that in order to 
simulate e−iHt for an s-sparse Hamiltonian is 
required only O (s2||Ht||poly (logN, log(1/є))), 
breaching the limitation of the previous 
algorithms for scaling with a view of 1/є. The 
issue of Hamiltonian simulation in O(log(1/є)) is 
important, because the classical simulations of 
the quantum systems suffer from the exponential 
scaling in n = logN, but they have O (log(1/є)) 
scaling. The ability to achieve the same O 
(log(1/є)) scaling in the quantum regime could 
help answering open questions in numerical 
analysis [34]. 

Eigenvalue inversion Uλ. The exact 
transformation of the state of the system up to (1) 
requires a non-unitary operation. It is shown n 
[37] that using quantum circuits to simulate 
classic subroutines for finding the roots, the state 
|θj›, approximating θj up to error ε, can be 
prepared with O (polylog(1/ε)) value. 

Example: solving a 2 × 2 system 

Here we present a 4-qubit quantum circuit that 
solves the smallest significant example of the 
task: system 2 × 2. The purpose of the example is 
to illustrate the algorithm and the potential 
experimental implementation through the 
current available methods. Hence the 
simplification with respect to the general 
quantum circuit implementation discussed in the 
previous section is possible. In the example |b› is 
a  one-qubit state, which is easy to prepare. The 
quantum circuit for realizing Hamiltonian 
simulation e−iAt with elementary operations is 
found via a heuristic algorithm developed in 
some previous works [40, 41]. There is no 
guarantee for the efficiency of the heuristics for 
large matrices but for our purpose in this 
example they are sufficient. In order to simplify 
the eigenvalue inversion subroutine Uλ (Fig. 1), A 
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is chosen such that it has eigenvalues that are 
powers of 2, so that the phase estimation 
subroutine will generate states that exactly 
encode the eigenvalues, making it simple to find 
their reciprocals. 

As we showed before in the general case, the 
representation from Σj βj |λj›|uj› to Σj βjλ−1j 

|λj›|uj› ∝ |x› should in principle use controlled Y 
rotation with angle θj = 2arcsin(C/λj). Here we 
define C such that the small-angle approximation 
arcsin(C/λj ) ≈ C/λj to be retained. Although the 
inversion scheme presented in the example is 
purely ad hoc (special to the specific case - 
translator's note), with additional qubits in Reg.C 
(Fig. 1)  the implementation of Uλ, as described in 
[37] is possible.  

𝐴 = 1
2

 �3 1
1 3�  ;𝑏�⃗ = �𝑏1

𝑏2
�   (3). 

The circuit for solving the linear system is shown 
in Fig. 2. Assuming that |b1|2 + |b2|2 = 1, the 
vector 𝑏�⃗  can be encoded in the state |b› = b1|0›+ 
b2|1›. The eigenvalues of A are λ1 = 1 и λ2 = 2 
with corresponding eigenvectors |u1› and |u2›. 
Note that λ1 and λ2 can be accurately encoded by 
|x2x3› = |01› and |x2x3› = |10› respectively. 
Therefore, after the phase estimation stage of the 
3-qubit system |x2x3x4› reads 
β1|01›|u1›+β2|10›|u2›, where β1 and β2 are 
coefficients from the decomposition of |b›in the 
basis of eigenvectors of A.  

To obtain the state |θj› for the inversion of the 
eigenvalues (Fig. 5), we use a method special for 
the case, which does not require any ancilla 
qubits. We first apply a SWAP gate between |x2› 
and |x3›, so that the 3-qubit system  |x2x3x4› is 
transformed to the state β1|10›|u1› + β2|01›|u2›. 
We can now interpret |x2x3› = |10› as a state, 
encoding the inverse eigenvalue  2λ−1 1 = 2 and 
|x2x3›  = |01› as that encoding 2λ−12 = 1. In other 
words, after the SWAP gate following the phase 
estimation (Fig. 2), the state |x2x3x4› becomes 
Σ 2j=1 βj |2λ−1 j ›|uj›.  

Then we use the states |2λ−1 j › in |x2x3› as a 
control register to execute a Y rotation Ry(˜θj ) on 
qubit |x1› with ˜θj = 2 1−r π / λj = 2C / λj which 
approximates θj = 2arcsin(C / λj). We have 
previously assumed that C ≤ minj |λj |. Hence 
we allow r ≥ log2(2π) ≈ 2.65. In general r cannot 

be too small otherwise the approximation with 
small angles ˜θj of θj will become invalid. At the 
same time r can not be too large, because at the 
larger r is less likely to be obtained a solution and 
also the more acute angles will have to be solved 
in control rotation gates, which places greater 
challenges upon the implementation. Suppose 
the minimum angle realizable is ω, then r ≤ 
log2(π/ω). 

 

 

 

 

 

Phase estimation 

Figure 5 The example quantum circuit for solving the 
2×2 linear system A�⃗� =𝑏�⃗ . Here |x1›, |x2x3› и |x4› 
correspond respectively to the top ancilla qubit, 
register C and register B in Fig. 1. We assume t0 = 2π 
and that r is a parameter that varies between log2(2π) 
and log2(π/ω) with ω minimum angle that can be 
resolved. Here U† represents an inversion of all 
operations before the Ry rotations. r > 0 is a parameter 
that will determine the probability of the final state. 
Initially |x4› = |b› and | x1›, x2› и | x3› are all |0›.  

The numerical results simulating the circuit with 
different values of r, are shown in Fig.  7. When 
the value of r is sufficiently large, the fidelity 
‹x′|x› of the solution approximates to 1. Here 
|x′› is a state of |x3x4›, where |x1› is measured to 
be |1› in the final state. From the previous 
analysis we see that |x′› = cos ˜θ1|u1› + sin 
˜θ2|u2›. |x› corresponds to the analytical solution 
�⃗�= (3/8,−1/8)T . The numerical results in Fig. 3 also 
show that since r increases beyond a certain 
point (r ≈ 4), the probability of measuring the 
ancilla bit as |1› drops, which indicates that, 
since r increases, the solutions obtained in the 
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final state in a register b, become more accurate, 
although less likely to obtain. 

Figure 6 A numerical calculation of the fidelity ‹x′|x› 
of the quantum solution and the probability of 

obtaining |x′› as a function of r. |m› е is the state 
|x1› after measurement (Fig. 2). 

 

 

4. CONCLUSION 

In conclusion lets note that, in this work we have 
discussed the general and special cases of 
applying the quantum models for algebraic 
applications.  The quantum computers may be 
used to solve different normal algebraic 
equations and Boolean expressions. The 
proposed algorithmic models have a huge range 
of possible applications, because large systems of 
algebraic expressions are used anywhere in the 
field of science and technology. There is one 
interesting open question whether the scaling 
can be improved, since these results are for 
constant coefficients, because this allows for 
analytical analysis of the errors. This approach 
can be used to resolve algebraic equations with 
time-dependent coefficients, due to which the 
analysis for errors will be more difficult. Our 
results may motivate the experimenters to 
consider and perform basic quantum gates for 

applying the algorithm and verify the results of 
it. 
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