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Quantum circuit for spatial optimization 
Nikolay Raychev 

 
Abstract – This paper present a divide based simultable quantum circuit for spatial optimized coding, which is using only elementary 
quantum gates. The proposed approach provides the techniques for spatial optimized quantum algorithms. This approach might be useful 
only as a tool for spatial optimization of quantum algorithms, it is not particularly valuable for saving bandwidth.  

Index Terms— boolen function, circuit, composition, encoding, gate, quantum.   

——————————      —————————— 

1 INTRODUCTION                                                                     

One of the ways to understand how the quantum spatial optimi-
zation is possible is to look at how many unique amplitudes are 
obtained by the revealing of a state with n identical qubits 
(𝑎|0⟩ + 𝑏|1⟩)𝑁.  
 
If the convention is used, that �n𝑘� means "all the ways of obtain-
ing k out of n qubits can be ON", for example �32� = |110⟩+
|101⟩+ |011⟩, then the revealed form is ∑ �n𝑘�

𝑛
𝑘=0 𝑎𝑘𝑏𝑛−𝑘. It 

should be noted that, although there are 2𝑛 states, there are only 
n + 1 different weights being used. Because all quantum opera-
tions are linear, and the different weights, which we encounter, 
are not linear combinations of each other, there is no way the 
weights to be excluded. But they can be moved around. In partic-
ular, the things can be re-arranged in such a way, that weights, 
which can not be moved, eventually end up on states, where all 
except the first log(n + 1) qubits are OFF. This is possible, as the 
biggest obstacle is to figure out the way to achieve it. Or, more 
practically, how to do it efficiently and elegantly. 
 
Fortunately the report shows exactly how the displacement of 
the amplitudes to be approached: the Schur-Weyl transformation 
must be used. It, roughly speaking, separates the space of the 
qubits into parts, related with a permutation, and of parts, unre-
lated with a permutation. Which is exactly the result sought, 
since the input data are invariant upon permutation. 

  

2    SIMULATION 
The report includes also an example circuit which encodes 3 
identity qubits in 2 qubits: 
 

 
Figure 1 Circuit that encodes 3 identical qubits 

The circuit uses several controlled gates. Two are standard (the 
NOT gate "X" and the Hadamard gate "H") and two are not stand-
ard. The nonstandard gates, the gate ∠(-1/3) and the gate ∠(-
2/3) are rotary gates, set to rotate by an amplitude, where the 
qubit has a particular probability of being ON, to an amplitude, 
where the qubit definitely is OFF. The form of the matrix with ∠(-

1/3) gate is 
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; a rotation matrix with angle of rotation 

𝜃 = 𝑠𝑠𝑠−1 − �1
3
≈ −35.264  

 
 degrees. Similarly, the ∠(-2/3) gate rotates at   

 𝜃 = 𝑠𝑠𝑠−1 − �2
3
≈ −54.736 degrees. (It must be noted that the 

symbol ∠ is not standard, and is selected to look like a rotation). 
 
The report explains how the circuit is experimentally imple-
mented as an optical system. 
 
 
With the help of the developed by the author of the report simu-
lator of quantum circuits[15] are fed different invariant upon 
permutation states through the circuit, given in the report. For 
example, below is presented an animation of what is happening, 
when all qubits are gradually rotated around the X axis of the 
Block sphere: 

 
Figure 2 Simulation of circuit that encodes 3 identical qubits 

 
(Attention must be paid, that the collation rotation to quantum 
operation is used, which is already discussed. For example, each 
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pre-encoded state of the qubit follows the curve 𝜓(𝑡) =
1
2

(1 + 𝑒𝑖𝑡)|0⟩+ 1
2

(1− 𝑒𝑖𝑡)|1⟩ 
 
In the above diagram the changing percentage indicators show 
the probability the covered line to be ON, if you measure the said 
line at this point (but the simulator does not actually perform 
simulated measurement, since that would mess up the final re-
sults). Before the spatial optimization all three lines vary, but 
after it - only the first two are changing. The three qubit states 
are compared to only two qubits. 
 
In addition, it is interesting how the first result is lowered to 
50%, then it slows down, while the second is lowered to 100%, 
then itself is lowered to 100%. This seems appropriate. 
 
Lots of other cases can be tried. rotation around the Y-axis, com-
binations of X and Y and Z, entangled states, etc. The output 
probabilities descend differently when things are entangled, but 
otherwise the different cases act similarly. 
 
The behavior of the output amplitudes makes an impression, 
when the input qubits are rotated. Below is presented an anima-
tion of the output amplitudes from the above circuit: 

 
Figure 3 Output amplitudes 

 
Since the probability of each input line to be ON varies, the dis-
tribution of the amplitudes appears that tracks the probability of 
obtaining k times head of a coin with 3 predefined coin flips. 
 

 
Figure 4 The distribution of the amplitudes 

 
The same thing happens for all other input data, as long as they 
are invariant upon permutation. The entangled states can even 

be skipped directly from 0 times head of a coin to 3 times head of 
a coin without passing through 1 and 2! It seems that the circuit 
of the spatial optimization tests the qubits and counts how many 
of them are ON, although it does not break the superposition! It 
may not be particularly useful, but it is definitely interesting. 
 
Once it is seen that the quantum spatial optimization works, then 
for what it can be used? 
 
Applications 
 
When it comes to possible applications of the quantum spatial 
optimization, the first thought is for "saving the bandwidth". But 
on second reading, this does not seem particularly appropriate. 
The quantum communications have mainly two advantages: 
better coordination and better secrecy ... but the spatial optimi-
zation doesn't seem to work in either case. Other possible appli-
cations are saving of space and pedagogical. 
 
Coordination 
 
In a quantum coordination protocol, such as the symmetry 
breaking protocol, as discussed recently[8], the goal is to be sent 
several entangled qubits, which are "identical". The problem is 
that this is wrong type of "identity": the sent qubits must be 
entangled with different kept qubits, and this violates the re-
striction for invariance upon permutation. In order the quantum 
spatial optimization to work, all sent qubits must be entangled in 
the same way with the same kept qubits. 
 
For example, there is no way to use quantum spatial optimization 
on Bell pairs (i.e. the things, used by any protocol for coordina-
tion). The ability for encoding n parts of Bell pairs in n qubits 
would have been amazing. Too amazing. This would allow recur-
sive incorporation of superdense encoding in quantum teleporta-
tion and vice versa. Each level of incorporation would increase 
slowly, but exponentially, the quantity of the sent information, 
when the entire process is put into action. With one bit can be 
sent ten bits. With those ten - a hundred. And so increasing the 
classical capacity, assisted by an entanglement, at practically any 
quantum channel to infinity. In other words: obviously impossi-
ble. 
 
Even when a certain entangled state can be spatially optimized 
and sent, it seems to be more efficient to send it in another way. 
For example, let's assume that half of the qubits of a Ghz (Green-
berger Horne--Zeilinger) state must be sent as 1

√2
(|00000000⟩+

|11111111⟩). If only one of these qubits is given, the recipient 
can easily find more with a controlled NOT form from the said 
qubit on a freshly initialized to OFF qubit. Then why should be 
sent log n encoded qubits instead of a single unencoded? 
 
Another type of entangled state, which can be sent, it is W state 
as 1

2
(|0001⟩+ |0010⟩ + |0100⟩+ |1000⟩). This case can also be 

simplified by sending only one qubit and relying, that the recipi-
ent will develop it into as many as needed. 
 
It may be assumed that the recipient wasn't able to find or devel-
op these complex entangled states, but this is a very strange 
assumption, given the fact that the recipient can implement the 
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complex gates, included in the process of decoding! 
 
There might be protocols for quantum coordination that would 
benefit from the quantum spatial optimization, but they would 
have been rather an exception. 
 
Cryptography 
 
Can the spatial optimization be used, in order to make the proto-
cols for quantum cryptography more effective? The problem here 
is that the cryptography does not use models with redundancy. 
Even classically a care must be taken for the dangers of combin-
ing the spatial optimization with encryption. 
 
The quantum cryptography relies mainly on the restrictions 
associated with the measurement of quantum states. The send-
ing of numerous copies removes this restriction: the recipient or 
the listener can understand the secret state by measuring a sub-
set of the copies and start making good enough copies himself. 
 
In other words, the quantum spatial optimization sounds like a 
great way to break a given cryptography, other than to be made 
more effective. 
 
Space 
 
The quantum spatial optimization might be useful to reduce the 
space requirements of a quantum algorithm. Some algorithms 
may have unused at the moment qubits that are identical, allow-
ing the algorithm to encode them temporarily, in order to fit 
other qubits in the computer (great achievement, considering 
how slowly the number of qubits is increased, with which can be 
worked). In some cases can be operated also with the encoded 
representation. 
 
Pedagogical 
 
The quantum spatial optimization is surprising, enlightening and 
engaging... It demonstrates extreme cases of several theories of 
impossibility, computes in a superposition and reveals useful 
parts from the theory of the quantum information (as the Schur-
Weyl transformation). This makes it valuable for teaching and 
learning.. 

3 CONCLUSION 
When there exists n qubits, whose combined state is invariant 
upon permutation, the Schur-Weyl transformation can re-
arrange the state so that only the first log(n + 1) qubits are used. 
This is similar to how the Fourier transformation of only the 
suitable low frequency data would also require the first few bits, 
with the exception that the Schur-Weyl transformation works in 
a more surprising situation. 
 
The quantum spatial optimization can be useful as a tool for 
spatial optimization of quantum algorithms. It is not particularly 
valuable for saving bandwidth, because the cryptography does 
not use models with redundant information, and the quantum 
coordination requires entanglement, which varies upon permu-
tation. 
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