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ABSTRACT 

 

Natural Equation or simply N-equation is nothing but the systematic arrangement of all Pythagorean triplets, 

details of which was first published in August edition 2013 of this journal. Further developments of this N-

equation took place intermittently with respect to its different properties and proof of different conjectures in 

Number Theory and were published in this journal in several bouts. Now this paper mainly contains the 

properties of four elements in an equality of two prime wings produced by the product of two prime wings 

and the analysis of Generalized Fermat Number to prove its composite nature with the help of N-equation. It 

also includes some special functions of composite nature and divisibility property of a prime number.    
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1. Introduction 

 

Once again we can recollect the definition and basic properties of a Natural equation or simply N-equation. 

a2 + b2 = c2 is said to be a N-equation when its comparable equation i.e. (α2 – β2)2 + (2αβ)2 = (α2 + β2)2 has the 

property that α, β are the combination of odd & even positive integers. It is nothing but the systematic 

arrangement of all Pythagorean triplets a, b, c known as elements of the N-equation. According to this 

arrangement the N-equation has been divided into two kinds i.e. 1st kind includes where k = c – b is in the form 

of 12, 32, 52,…….and 2nd kind includes where k = c – b is in the form of 2.12, 2.22, 2.32, ……..  assuming a < b < c in 

both the cases. (α2 ± β2) are said to be conjugate to each other and for gcd(α, β) = 1, they are known as positive 

or negative prime wings. If gcd(α, β) ≠ 1 they are composite wings. 

Any number, may be prime or composite if it fails to be expressed as (α2 + β2) is of 1st kind and if expressible it 

is of purely 2nd kind.  

For a N-equation nature of RH odd element ± LH odd element = 2(integer)2 and RH odd element ± LH even 

element = (odd integer)2  

The product & division rules of Ns operation are as follows.  

(e12 + o12).(e22 + o22) = (│e1e2 ± o1o2│)2 + (│e1o2 –/+ o1e2│)2 & 

(e12 + o12)/(e22 + o22) = {│e1e2 ± o1o2│/(e22 + o22)}2 + {│e1o2 –/+ o1e2│/(e22 + o22)}2 consider only one wing which has 

integer elements. 

The product & division rules of Nd operation are as follows.  
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(e12 – o12).(e22 – o22) = (│e1e2 ± o1o2│)2 + (│e1o2 ± o1e2│)2 & 

(e12 – o12)/(e22 – o22) = {│e1e2 ± o1o2│/(e22 – o22)}2 + {│e1o2 ± o1e2│/(e22 – o22)}2 consider only one wing which has 

integer elements. Here, e & o denotes even & odd integers respectively. 

For (a2 + b2)(c2 + d2) = v12 + d12 = v22 + d22, (a2 + b2) & (c2 + d2) can be said as Product wings whereas (v12 + d12 ) & 

(v22 + d22) can be said as Produced wings. a, b, c, d, v, d all are known to be elements. 

There exists following three kinds of N-equation in power form. 

an + b2 = c2, a2 + b2n = c2 & a2 + b2 = cn where n is any positive integer. 

When two elements are found to be in power form it is not due to N-equation. It is for Nir-equation where one 

of the zygote elements must be irrational. 

Based on the above theoretical background we can further discuss some other properties of N-equation and 

prove the generalized Fermat Number to be composite in nature for n ≥ m. 

 

2. A number of purely 2nd kind having n nos. of prime factors has exactly 2n – 1 nos. of positive prime 

wings & a number of 1st kind or 2nd kind having n nos. of prime factors has exactly 2n – 1 nos. of negative 

prime wings.  

 

If P is a prime of 2nd kind it has exactly one positive prime wing. 

Hence, Pm will also have exactly one positive prime wing as received by the formula in power form of c for a 

N-equation a2 + b2 = c2 [Ref: Aug edition 2013 of IJSER]  

Hence, P1m1.P2m2 will produce 21 prime wings & P1m1.P2m2. P3m3. will produce 23 – 1 prime wings & so on. 

Hence, a number having n nos. of prime factors has 2n – 1 nos. of positive prime wings. 

Similarly, for 1st kind or 2nd kind Pm has exactly one negative prime wing and on the same reason a number 

having n nos. of prime factors has 2n – 1 nos. of negative prime wings. 

If a number is a product of prime numbers only without any exponent of any prime then it has no composite 

wings. But if any prime is repeated twice or more then the number must have some composite wings [* in my 

paper published in Sept. edition 2015 it was written ‘is repeated thrice or more’ which is not correct. It may be 

ignored with example thereafter.] 

The number can be expressed as product of two prime wings in 2n – 2 ways. Because if we make two groups of r 

& n – r nos. of primes, the 1st group will produce 2r – 1 prime wings & 2nd group will produce 2n – r – 1  prime wings 

& total product of two prime wings = 2r – 1.2n – r – 1 = 2n – 2 nos.   

 

3.1 If gcd(p, q) = 1 then (p + q), (p – q), pq, (p2 + q2) all are prime to each other. 

 

We know, if gcd(a, b) = 1 then gcd(am, bn) = 1 & gcd(a + bq, b) = 1 for any integer value of q & for q = 1,  

gcd(a + b, b) = 1  for N-equation a2 + b2 = c2 if gcd(a, b) = 1 then gcd(a2, b2) = 1 i.e. gcd(a2 + b2, b2) = 1  

i.e. gcd(c2, b2) = 1 i.e. gcd(c, b) = 1 and similarly, gcd(c, a) = 1. Hence, a, b, c are prime to each other. 

Now the comparable equation of a2 + b2 = c2 is (p2 – q2)2 + (2pq)2 = (p2 + q2)2 where gcd(p, q) = 1 

Hence, (p + q), (p – q), pq, (p2 + q2) all are prime to each other. 

 

3.2  In a product of π (ei2 + oi2) = (e12 + o12) (e22 + o22)(e32 + o32)…….. (en2 + on2)  = E(vj2 + dj2) = (v12 + d12) =  

(v22 + d22) = (v32 + d32) = …… 2n–1 wings where the symbol π & E stand for continued product & equalities, e, v 

for even integers & o, d for odd integers if all (ei2 + oi2) are prime numbers i.e. gcd(ei, oi) =1 then gcd(vj, dj) = 1 

  

We have the product by NS operation (e12 + o12) (e22 + o22) = (e1e2 ± o1o2)2 + (e1o2 e2o1)2 = v12 + d12 = v22 + d22 

Given, gcd(e1, o1) = gcd(e2, o2) = 1  gcd(e1, o2) ≠ gcd(e2, o1) for > 1 & gcd(e1, e2) ≠ gcd(o1, o2) for > 1 

Now, if gcd(e1, o2) = k1 & gcd(e2, o1) = k2 where gcd(k1, k2) = 1 then obviously gcd(v1, d1) = gcd(v2, d2) = 1 

Again, if gcd(e1, e2) = k1 & gcd(d1, d2) = k2 where gcd(k1, k2) = 1 then also gcd(v1, d1) = gcd(v2, d2) = 1 

So, in general in a product of several primes all the produced wings will have the property gcd(vj, dj) = 1 & 

gcd(two or more or all d) = 1 and gcd(odd part of two or more or all v) = 1 

In a product of two wings i.e. (e12 + o12) (e22 + o22) = v12 + d12 = v22 + d22 it can be easily understood that if  
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gcd(o1, o2) = α then gcd(v1, v2) = α & if gcd(e1, e2) = β then gcd(d1, d2) = β 

 

3.3 Both the odd elements of produced wings are of opposite kind. 

 

The numbers which are of the form 4x – 1 & 4x + 1 can be defined as 1st kind & 2nd kind respectively. If the 2nd 

kind number is capable of producing a positive wing it is called ‘Purely 2nd kind’. The 1st kind numbers cannot 

produce any positive wing. 

If Pi & Qi be the respective prime numbers of 1st kind & 2nd kind then all the numbers π(Qimi) are of purely 2nd 

kind and π(PimiQini) are of 2nd kind nature only for ∑mi is even  & of 1st kind nature if ∑mi is odd. 

Now, in a product of two wings (e12 + o12) (e22 + o22) = (e1e2 ± o1o2)2 + (e1o2 e2o1)2 the produced odd elements are 

(e1e2 ± o1o2). Say o1o2 is of the form 4x + 1  e1e2 + o1o2 is of the form 4x + 1 but e1e2 – o1o2 is of the form 4x – 1  

Similarly, for o1o2 is of the form 4x – 1, e1e2 + o1o2 is of the form 4x – 1 but e1e2 – o1o2 is of the form 4x + 1. 

Hence, they are of opposite kind.  

Note:  

- All 1st kind numbers produce negative wings like (even)2 – (odd)2 & all 2nd kind numbers produce 

negative wings like (odd)2 – (even)2. 

- Among all the produced wings, the odd elements of 1st kind & 2nd kind occur in equal nos. of cases. 

- Sum of two same kind numbers or difference of two opposite kind numbers is always in the form of 

2(odd nos.) 

- Sum of two opposite kind or difference of two same kind is always in the form of 2p(odd nos.) where p 

> 1.  

 

4.1 In a product of (e12 + o12) (e22 + o22) if e1e2 > o1o2 both the odd elements of the produced wings cannot 

be in the power form. 

 

We have (e12 + o12) (e22 + o22) = (e1e2 ± o1o2)2 + (e1o2 e2o1)2 = v12 + d12 = v22 + d22 

For e1e2 > o1o2 say e1e2 + o1o2 = um & e1e2 – o1o2 = ωn  e1e2 = (um + ωn)/2. But for any two odd integers (um + ωn) is 

in the form of 2(2k + 1). Hence, e1e2 = in odd integer is an absurd result. 

Hence, both the odd elements cannot be in power form. 

 

4.2 Ina prime wing of odd-even combination if e2 + o2 is in power form (power > 2) then e2 ~ o2 cannot 

be in power form or vice-versa. 

 

As per earlier theorem for e > o, obviously e2 ~ o2 cannot be in power form. 

For o > e if we consider o2 + e2 = um & o2 – e2 = vn then o2 = (um + vn)/2 & e2 = (um – vn)/2 which seems to be 

accepted. But in view of the fact that Ns operation & Nd operation both cannot run simultaneously to produce 

power of LH odd element e2 ~ o2 and that of RH odd element e2 + o2 simultaneously in a N-equation, we can 

conclude that (e2 + o2) & (e2 ~ o2) cannot produce power (> 2) simultaneously.    

 

4.3 For a N-equation like a2 + (b1b2)2 = (c1c2)2 where b is even, (c12 + b12)(c22 + b22) will always produce a 

pair of prime wings where both the odd elements are in power form. 

 

As gcd(b1b2, c1c2) = 1, gcd(b1, c1) = gcd(b2, c2) = 1. Hence, produced wings are prime wings. 

Now, (c12 + b12)(c22 + b22) = (c1c2 ± b1b2)2 + (c1b2 c2b1)2 where c1c2 obviously > b1b2 & (c1c2 ± b1b2) are always in the 

form of (2k + 1)2, say I12m & I22n. Hence, (c12 + b12)(c22 + b22) = I14m + (c1b2 c2b1)2 = I24n + (c1b2 c2b1)2 

Example: we have 332 + 562 = 652 i.e. 332 + (4.14)2 = (5.13)2. Hence, (52 + 142)(132 + 42) = 114 + 1622 = 34 + 2022. 

We have 32 + 42 = 52. Hence, (12 + 22)(52 + 22) = 12 + 122 = 34 + 82. 

 

4.4 In a product of two positive prime wings like {(22p – 1o1)2 + (c2)2}{(22p – 1c1)2 + (o2)2} both the even 

elements will be in power form with respect to N-equation (o1o2)2 + b2 = (c1c2)2 where b is even. 
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Obviously, by properties of N-equation (c1c2 ± o1o2) are in the form of 2x2q & 2y2r.  

Hence, by Ns operation the even elements of the product are {22p – 1(c1c2 ± o1o2)} i.e. 22p – 1.2x2q & 22p – 1.2y2r  

i.e. (2pxq)2 & (2pyr)2 i.e. e12m & e22n where m = gcd(p, q) & n = gcd(p, r)  

Example: say, 332 + 562 = 652 i.e. (3.11)2 + 562 = (5.13)2  

Hence the required product = {(22p – 1.3)2 + 132}{(22p – 1.5)2 + 112} i.e. {22p – 1(13.5 ± 3.11)}2 + (24p – 2.15  13.11)2  

i.e. (22p – 1.2.72)2 + (15.24p – 2 – 143)2 & (22p – 1.2.42)2 + (15.24p – 2 + 143)2  

i.e. (7.2p)4 + (15.24p – 2 – 143)2 & 24(p + 2) + (15.24p – 2 + 143)2 where p = 1, 2, 3, ……. 

Say, p = 1 i.e. (62 + 132)(102 + 112) = 144 + 832 = 212 + 2032. For p = 2, (242 + 132)(402 112) = 284 + 8172 = 216 + 11032  

& so on. 

Corollary1. When both the odd elements are in power, even elements cannot be in power form or vice-versa  

Corollary2. All the four elements cannot be in power form i.e. a2p + b2q = c2r + d2s has no existence for p, q, r, s > 1 

Collary3. No element can be zero. Hence, a2n + b2n = c2n has no existence for n > 1 

 

4.5 If there exists a N-equation like (a1a2)2 + (22pd1d2)2 = (c1c2)n  where (a1d1)2 + b2r = (a2d2)2 then there must 

exist a Product wings having all the four elements in power form where both the elements of a particular 

Produced wing are also in power form. n = 2, 3, 4, ……..  

 

By Ns operation we have (e12 + o12)(e22 + o22) = (e1e2 + o1o2)2 + (e1o2 ~ e2o1)2 = (e1e2 ~ o1o2)2 + (e1o2 + e2o1)2 

Say, e1e2 + o1o2 = (22pd1d2)2 + (a1a2)2 where e1 = (2pd2)2 & e2 = (2pd1)2, o1 = a12 & o2 = a22 

 e1e2 + o1o2 = (c1c2)n & n = 2, 3, 4, …… & e1o2 – e2o1 = (2p)2{(a2d2)2 – (a1d1)2} = (2p.br)2 = v2m where gcd(p, r) = m 

Hence, both the elements are in power form & both powers can be equal also for which n must be even.  

Elements of other wing i.e. (o1o2 – e1e2) & (e1o2 + e2o1) fail to produce power simultaneously even when  

(o1o2 + e1e2) & (e1o2 – e2o1) remain silent as it cannot be equated with any N-equation. 

The existence of such type of N-equations cannot be ignored because very often we get the result of (a2m + b2n) 

composite nature. 

Note: any one of the elements (o1o2 ~ e1e2) & (e1o2 + e2o1) must be silent to produce power.  

The N-equation (a1a2)2 + (22pd1d2)2 = (c1c2)n can be said as Power-wing’s N-equation or simply Np-equation when 

it can produce another N-equation like (a1d1)2 + b2r = (a2d2)2.  

 

4.7 If all the four elements of a Product wing have equal power greater than two then all the four 

elements of its Produced wing must be power free. 

 

Let us consider the equality of Product wing & Produced wing:  

{(e1n)2 + (o1n)2}{(e2n)2 + (o2n)2} = {(o1o2)n ± (e1e2)n}2 + {(e1o2)n  (e2o1)n}2 

Obviously, all the four elements of Produced wings are powerless for n > 2 as per FLT. 

In more general way we can say that for GCD of all powers of 4 product elements > 2, all 4 produced elements 

are power free. 

It confirms that if NP-equation exists it will exist only for n = 2 as shown below. 

Say, e1 = 2pd1, e2 = 2qd2 & n = 2 to have a produced wings = {(o1o2)2 ± (2pd12qd2)2}2 + {(2pd1o2)2  (2qd2o1)2}2 

Now, if we consider the existence of a N-equation (o1o2)2 + (2p + qd1d2)2 = c1m so that (d1o2)2 – (2q – pd2o1)2 = c2t  

i.e. called NP-equation, we can have a produced wing c12m + c22t = α2 + β2 where α, β obviously powerless as  

g2 ± h2 both cannot be in power form.  

  

5. Proof of Fermat’s Last Theorem (FLT) 

 

Refer my paper published in May edition 2014 of this journal regarding Ramanujam Number of higher 

exponents. There the algebraic polynomial equation contains a free constant and produces pair of roots (a, b), 

(c, d), …… so as to form a relation a2n + 1 + b2n + 1 = c2n + 1 + d2n + 1 = …….. Due to presence of free constant we cannot 

have a root zero so that a relation likes a2n + 1 + b2n + 1 = c2n + 1 will exist. 
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Now, we have proved a2n + b2n = c2n has also no existence. 

Hence, follows the proof of FLT that an + bn = cn has no existence for n > 2. 

 

 Of course, N-equation clearly confirms that ax + by = cz has no existence for x, y, z > 2 & where a, b, c 

are prime to each other. It also covers the proof of FLT.  

 

6.1 (2x2)2(2r – 1) + d4q(2r – 1) where x, q, r all are of positive integers, always represents a composite number 

and divisible by the factors (2x2 ± 2dqx + d2q) 

 

By Ns operation we have the product of two symmetric factors with respect to x like 

{(x + d)2 + x2}{x2 + (x – d)2} = (2x2)2 + (d2)2 = (2dx)2 + (2x2 – d2)2  

 (2x2)2 + (d2)2 is always composite & (2x2)2 ≡ – d4 (mod 2x2 ± 2dx + d2) 

Now replacing d by dq & then raising power (2r – 1) on both sides (2x2)2(2r – 1) ≡ – d4q((2r – 1) (mod 2x2 ± 2dq x + d2q) 

These two factors with respect to a common element x can be said as ‘Product of symmetric factors’ (PSF) 

Two numbers are said to be symmetric to each other when their product produces two prime wings in the 

form of (2x2)2 + (d2)2 = (2dx)2 + (2x2 – d2)2  

Example: PSF for x = 4 & d = 1, = (32 + 42)(42 + 52) = (2.42)2 + 14 = (2.1.4) + (2.42 – 12)2  

i.e. (32 + 42)(42 + 52) = 322 + 12 = 82 + 312  

On the contrary, the wing 322 + 12 has the property 32 = 2.42 form & 1 = 14 form. So it must have PSF  

i.e. {(4 + 1)2 + 42}{42 + (4 – 1)2} = (52 + 42)(42 + 32)  

Find the symmetric numbers of 652: 

65 is the product of two primes i.e. 5.13  652 has two prime wings  

i.e. 652 = (32 + 42)(52 + 122) = 332 + 562 = 162 + 632.  

Hence, Sym(652) with respect to 33 = 332 + {33 – (56 – 33)}2 = 332 + 102 = 1189 

 652.1189 = (2.332)2 + 234 = (2.23.33)2 + (2.332 – 232 )2 i.e. 652.1189 = 21782 + 234 = 15182 + 16492  

Again, Sym(652) with respect to 56 = 562 + {56 + (56 – 33)}2 = 562 + 792 = 9377  

 652.9377 = (2.562)2 + 234 = (2.23.56)2 + (2.562 – 232 )2 i.e. 652.9377 = 62722 + 234 = 25762 + 57432  

Similarly, Sym(652) with respect to 16 = 162 + 312 = 1217 & with respect to 63 = 632 + 1102 = 16069 

So, if a number N of 2nd kind has n nos. of prime factors then the number of Sym(N) = 2n. 

Number of 1st kind has no symmetric numbers. 

 

6.2 With respect to N-equation a2 + b2 = cn, (cn ~ 4x2)2 + {4.(a or b).x}2 always represents a composite 

number for x, n are of any positive integer. 

 

The above product can be rightly said as ‘Product of symmetric factors internally’ (Posfi). 

‘Product of symmetric factors externally’ (Posfe) is with respect to y (y ≠ x) i.e. {(x + d)2 + y2}{(x – d)2 + y2} =  

(x2 + y2 – d2)2 + (2yd)2 = (x2 – y2 – d2)2 + (2xy)2.  

Replacing x, y by a, b & d by any even number ei, we have (cn ~ ei 2)2 + {2.(a or b). ei }2 

i.e. (cn ~ 4x2)2 + {4.(a or b).x}2 that always represents a composite number for x, n of any positive integer. 

Or, in general (cn ~ 4x2)2(2r – 1) + {4.(a or b).x}2(2r – 1) represents a composite number for x, n, r = 1, 2, 3, …….. 

* c can be any integer of 2nd kind which is always expressible in the form of a2 + b2 and corresponding factors 

are cn + 4x2 ± 4(a or b)x (can be said as ex-symmetrical factors) 

There can be three designated terms: In-symmetric product, Ex-symmetric product, Non-symmetric product. 

Non-symmetric product is the most general case. 

 

6.3     In an equality of two prime wings i.e. a12 + b12 = a22 + b22 maximum three elements can be in power form 

 

For double wings equality we can have maximum three elements in power form for a particular case of a 

product in between two In-symmetric factors.  

We have the In-symmetric pair of wings with respect to x, (2x2)2 + (d2)2 = (2xd)2 + (2x2 – d2)2 .  
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Put x = 2 & replace d by d2m i.e. 26 + d8m = (2dm)4 + (23 ~ d4m )2 where obviously 23 ~ d4m is a powerless number. 

d4m ± 4d2m + 8 i.e. (d2m ± 2)2 + 22 are the two in-symmetric factors with respect to 2, product of which (Posfi) 

produces two prime wings having three elements in power form where two exponents are fixed and one is 

variable i.e. 8m. All these numbers can be denoted by (Posfi)max & = 26 + 18, 26 + 38, 26 + 58, ………..  

Or = (2.1)4 + (23 – 14), (2.3)4 + (23 – 34), (2.5)4 + (23 – 54), ……… for m = 1 i.e. (Posfi)max = 65, 6625, 390689, ……….. 

(Posfi)max may have several wings. Because the in-symmetric factors of it may have again sub-factors. But out of 

all wings only one pair can show power form of maximum elements. If (Posfi)maxis multiplied by any factor of 

2nd kind its nature of ‘Maximum elements in power form’ is destroyed.  

Example: say d = 3 & m= 2. Hence, (Posfi)max = {(34 + 2)2 + 22}{(34 – 2)2 + 22}   

i.e. (832 + 22)(792 + 22) = 316 + 26 = 65532 + 184 by NS operation.  

In more generalized way we can put x = 2n & replace d by dm to receive (22n + 1)2 + (d2m)2 = (vp)2 + d02 where p = 

gcd(n + 1, m) & > 1 & d0 is powerless. 

Corollary: if (2p.d)2m + o2n is composite for odd factor d ≠ 1, then elements of all the produced wings are 

powerless. It once again confirms that all th elements of produced wings of a Generalized Fermat Number are 

powerless except the number-form itself. 

 

7.1 In a pair of produced positive prime wings (OE)max or min & (EE)max or min lie on opposite sides of 

equality & for produced negative prime wings they lie on the same side. If none of the product wings 

contains consecutive elements then in pair of produced wings (OE)max or min ± (EE)max 0r min are composite. 

[OE & EE denotes odd & even elements respectively] 

 

We have by Ns operation (e12 + o12)(e22 + o22) = (e1e2 + o1o2)2 + (e1o2 ~ e2o1)2 = (e1e2 ~ o1o2)2 + (e1o2 + e2o1)2 

 Max OE & Max EE or Min OE & Min EE lie opposite sides of equality. 

Now, (OE)max + (EE)max = (e1 + o1)(e2 + o2) = composite 

(OE)min + (EE)min = (e1 – o1)(e2 + o2) = composite if e1 & o1 are not consecutive. 

(OE)max ~ (EE)max = (e1 – o1)(e2 – o2) = composite if e1, o1 & e2, o2 are not consecutive. 

(OE)min ~ (EE)min = (e1 + o1)(e2 – o2) = composite if e2 & o2 are not consecutive. 

Similarly, for Nd operation i.e. (e12 ~ o12)(e22 ~ o22) = (e1e2 ± o1o2)2 – (e1o2 ± e2o1)2 where both (OE)max or min &  

(EE)max or min lie on same side we can observe the same phenomenon. 

  

Note: If all the elements of Product wings are in equal power form then its Produced wings must have all these 

composite properties as no two elements of Product wings are possible to be consecutive. It is true for different 

powers also excepting the case 23 & 32.  

In all In-symmetric pair of Produced wings all these composite properties exist. This implies that in a pair of 

Produced wings where maximum three elements are in power form all these composite properties exist. 

 

7.2 In an equality of two positive prime wings d12 + v12 = d22 + v22 where d, v are not consecutive & 

denote odd & even integers respectively we have 

 

7.2.1 │d12 ± v12│± 2d2v2 is composite (4 cases) & │d22 ± v22│± 2d1v1 is composite (4 cases) 

7.2.2 │d14 + v14 – 6d12v12│ + 4d2v2(d22 – v22) Є composite & │d24 + v24 – 6d22v22│ + 4d1v1(d12 – v12) Є composite   

 

We have d12 + v12 = d22 + v22 & squaring both sides (d12 ~ v12)2 + (2d1v1)2 = (d22 ~ v22)2 + (2d2v2)2  

  │d12 – v12│± 2d2v2 is composite and │d22 – v22│± 2d1v1 is composite 

Again, (d12 + v12)2 = (d22 ~ v22)2 + (2d2v2)2 = d32 – v32 + (2d2v2)2 [assuming at least 4 prime factors of (d22 ~ v22), Ref 8] 

i.e. (d12 + v12)2 + v32 = d32 + (2d2v2)2  (d12 + v12) ± 2d2v2 is composite & similarly, (d22 + v22) ± 2d1v1 is composite. 

Again, from {(d12 ~ v12)2 + (2d1v1)2}2 = {(d22 ~ v22)2 + (2d2v2)2}2 we get the relation 

{(d12 ~ v12)2 – (2d1v1)2}2 + {4d1v1(d12 ~ v12)}2 = {(d22 ~ v22)2 – (2d2v2)2}2 + {4d2v2(d22 ~ v22)}2 

 │d14 + v14 – 6d12v12│ + 4d2v2(d22 – v22) Є composite & │d24 + v24 – 6d22v22│ + 4d1v1(d12 – v12) Є composite   
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7.3 For α is odd & β is even where gcd(α, β) = 1 and α ~ β ≠ 1 

7.3.1 │α2n + 1 – 2n + 1c2α2n – 1β2 + 2n + 1c4α2n – 3β4 – ……..│ ± (α2 + β2)nβ Є composite 

7.3.2 │2n + 1c1α2nβ – 2n + 1c3α2n – 2β3 + ……….│± (α2 + β2)nα Є composite 

7.3.3 │α2n – 2nc2α2n – 2β2 + 2nc4α2n – 4β4 – ………..│± (α2 + β2)n – 1(2αβ) Є composite 

7.3.4 │2n c1α2n – 1β – 2nc3α2n – 3β3 + ……….│± (α2 + β2)n – 1 (α2 – β2) Є composite 

 

We know when c element of a N-equation produces power. 

(αn – nc2αn – 2β2 + nc4αn – 4β4 – …….)2 + (nc1αn – 1β – nc3αn - 3β3 + ……..)2 = (α2 + β2)n. 

If we replace n by 2n + 1 RHS = {(α2 + β2)nα}2 + {(α2 + β2)nβ}2 hence follows the proof. 

Similarly, If we replace n by 2n RHS = {(α2 + β2)n – 1(α2 – β2) }2 + {(α2 + β2)n – 1(2αβ}2 hence follows the proof. 

If α ~ β = 1 any one of 7.3.1 or 7.3.2 and of 7.3.3 or 7.3.4 must be composite. 
 

7.4 If a2 + b2 = α2 + β2 where a, b & α, β are non-consecutive odd even integers 

7.4.1 │an – nc2an – 2b2 + nc4an – 4b4 – …….│± │nc1αn – 1β – nc3αn – 3β3 + ……..│ Є composite 

7.4.2 │αn – nc2αn – 2β2 + nc4αn – 4β4 – …….│± │nc1an – 1b – nc3an – 3b3 + ……..│ Є composite 

 

Same as above and it is the general case of 7.2.1 & 7.2.2. 

Here all the formulae under 7.3 are applicable if in the 2nd part or in the 1st part α, β are replaced by a, b. 
 

8. How Generalized Fermat Number (GFn) is formed and its proof of composite nature for n ≥ m 

where GFm is composite. 

 

We have a ± b = c or a2 + b2 = c2 ± 2ab = d. or, a2^2 + b2^2 = d2 – 2a2b2 = d1  

& similarly, a2^3 + b2^3 = d12 – 2a2^2 b2^2 = d2 and so on. 

Here, (e1e2 + o1o2)2 + (e1o2 ~ e2o1)2 or (o1o2 ~ e1e2)2 + (e1o2 + e2o1)2 is being replaced element wise. In earlier theorem 

one element was replaced by a complete wing. 

Hence, in all the product wings of GFn only one wing can show full power form of elements. Elements of all the 

produced wings except (a2^n + b2^n) are power free. If a, b, c are prime to each other all the factors of GFn are 

prime numbers and gcd(any two GFn) = 1. For a common factor in between any two GFns there must be the 

same common factor in between b & c or a & c. 

Let us assume GFm  is composite for n = m & GFm = a2^m + b2^m = α2 + β2 = pq. 

Now, (a2^m)4 – (b2^m)4 = GFm + 1.(GFm). (a2^m – b2^m) = product of at least four prime factors which is always 

expressible in the form of (α12 – β12)(α22 – β22) where α1, β1 & α2, β2 are not consecutive. 

  (a2^m + 1)2 – (b2^m + 1)2 = α2 – β2. Hence, (a2^m + 1 + b2^m + 1) i.e. GFm + 1 is composite. 

So, once a Generalized Fermat Number is formed as composite for n = m it will be always composite for n ≥ m. 

Corollary:  

8.1 For a relation α12 + β12 = α22 + β22 = α32 + β32 = ……., α12^n + β12^n, α22^n + β22^n, α32^n + β32^n all are composite. 

8.2 For o-e combination where gcd(a, b) = 1 if a2 – b2 has at least 4 prime factors then a ± b Є composite. 

8.3 GFn is bound to be composite for n ≤ 5. 
 

9.1 If (2p + 1) is prime then pn ≢ xn (mod 2x + 1) and (p + 1)n ≢ (– x)n (mod 2x + 1) 

 

If any number (2p + 1) = (p + 1)2 – (p)2 is divisible by another number (x + 1)2 – (x)2 then by division rule of Nd 

operation we have the quotient = [{(p + 1)(x + 1) ± px}/{(x + 1)2 – (x)2}]2 – [{(p + 1)x ± p(x + 1)}/{(x + 1)2 – (x)2}]2  

= {(2px + x + p + 1)/(2x + 1)}2 – {(2px + x + p)/(2x + 1)}2 or {(x + p + 1) /(2x + 1)}2 – {(p – x) /(2x + 1)}2 

Obviously 1st one does not stand. It is true when x = 0 i.e. (2p + 1) is divisible by 1.  

But from 2nd one we can say p + 1 ≡ – x (mod 2x + 1) i.e. (p + 1)n ≡ (– x)n (mod 2x + 1) 

& p ≡ x (mod 2x + 1) i.e. pn ≡ xn (mod 2x + 1) where there exists at least one value of x which will satisfy both. 

Hence, it follows the proof when (2p + 1) is prime, there is no existence of x. 
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Note: the above two theorems are independently true. It will never happen that in one case it is integer & in 

other case it is fraction as because sum of the numerators is the number itself i.e. (2p + 1). This implies that if 

(2x + 1) divides (p – x) it will also divide (p + 1 + x) or vice-versa. 

 

9.2   Conversely, if pn ≢ xn (mod 2x + 1) or (p + 1)n ≢ (– x)n (mod 2x + 1) for x < (p – 1)/3 then (2p + 1) is a prime. 

 

Here obviously x + p + 1 > 2x + 1 and p – x > 2x + 1  x < (p – 1)/3 

 

9.3 If all (2pi + 1) are primes then (∑pin) ≢ rxn (mod 2x + 1) & ∑(pi + 1)n ≢ r(– x)n (mod 2x + 1) where  

i = 1, 2, 3, ……, r 

 

9.4 If all (2pi + 1) are primes then (∏pin) ≢ xrn (mod 2x + 1) & ∏(pi + 1)n ≢ (– x)rn (mod 2x + 1) where  

i = 1, 2, 3, ……, r 

 

The proof of the above two theorems 9.3 & 9.4 can be given below. 

If a1 ≡ b1 (mod m), a2 ≡ b2 (mod m), a3 ≡ b3 (mod m), …….. then a1 = b1 + mk1, a2 = b2 + mk2, a3 = b3 + mk3……. 

Adding all ∑ai ≡ ∑bi (mod m). Similarly multiply all ∏ai ≡ ∏bi (mod m).  

Now we can replace a by pn or (p + 1)n and b by xn or (– x)n and ≡ by ≡/ for prime number of (2p + 1) 

 

10.1    N-equation for generalized Fermat Number and its unit digit analysis. 

 

Generalized Fermat Number can be defined as Fn = α2^n + β2^n where α, β are the combination of odd and even 

integers with gcd(α, β) = 1 and N-equation of a generalized Fermat Number can be written as  

a2 + b2 = (α2^n + β2^n )2 = Fn2  where say, a is odd & b is even. 

In general for n > 1, unit digit(UD) of Fn = 7 i.e. Fn = (U4 or 6)2 + (U1 or 9)2   [Ux means a number with unit digit x] 

In all four cases UD of {(U4 or 6)2 ~ (U1 or 9)2} is 5  a = U5. 

Say, Fn/ denotes all other wings of Fn when Fn is composite. 

Now, Conj(Fn) = a = (α2^n – β2^n ) = Fn – 1.Conj(Fn – 1) = Fn – 1. Fn – 2. Conj(Fn – 2) = ……… and finally  Conj(Fn) = Fn – 1. Fn – 

2. Fn – 3…….F1.F0.Conj(F0). Here, any one of the last three factors must contain a sub-factor 5 depending upon the 

UD nature of (α, β) combination. 

Conj(Fn/) also contains a factor 5. 

 

10.2    If Fn is composite say Fn = (o12 + e12)(o22 + e22) then Conj(Fn) ± Conj(Fn/) = 2dd1d2 where d = (o1o2 + e1e2 + 

o1e2 + o2e1), d1 = │o1 – e1│, d2 = │o2 – e2│   

 

We have Fn = (o12 + e12)(o22 + e22) = (o1o2 ± e1e2)2 + (o1e2 –/+ o2e1)2 

Say, Fn = (o1o2 – e1e2)2 + (o1e2 + o2e1)2 & Fn/ = (o1o2 + e1e2)2 + (o1e2 – o2e1)2 

 Conj(Fn) = (o1e2 + o2e1)2 – (o1o2 – e1e2)2 = ± (d – 2e1e2)(d – 2o1o2)  

& Conj(Fn/) = (o1o2 + e1e2)2 – (o1e2 – o2e1)2 = ± (d – 2 o2e1)(d – 2o1e2)  

 ± Conj(Fn) = d2 – (ω1 + ω2)d + ω1ω2 & ± Conj(Fn/) = d2 – (ω3 + ω4)d + ω3ω4  (say) where ω1ω2 = ω3ω4 and 

subtracting both Conj(Fn) ± Conj(Fn/) = 2d│o1 – e1││o2 – e2│ 

Now, for Fn & Fn/ if the wing (odd)2 + (even)2 shows in both cases (odd) < (even) or (even) < (odd) then (+) sign 

is to be considered otherwise for opposite nature (–) sign is to be considered. It can be easily established by the 

following nature of integers. 

Conj(Fn) ± Conj(Fn/) must be of the form 2(odd no.).  

Now, if P & Q both are of the form 4x + 1 or 4x – 1 then P + Q is of the form 2(odd no.) & for opposite form P – 

Q is of the form 2(odd no.). Moreover, (odd)2 – (even)2 is always of the form 4x + 1 but (even)2 – (odd)2 is always 

4x – 1 form. 

If Fn has r nos. of factors, obviously all are primes, then there will exist (2r – 1 – 1) nos. of sets of (o1, o2, e1, e2) for 

which above theorem will be true. 
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10.3    Generalized Fermat Number (Fn) always represents a composite number for n > m from a different 

angle of view. 

 

We have {Conj(Fn + 1)}2 + (bn + 1)2 = (Fn + 1)2 and {Conj(Fn)}2 + (bn)2 = (Fn)2    

 {(Fn + 1)2 – (bn + 1)2} / {(Fn)2 – (bn)2} = {Conj(Fn + 1)}2 / {Conj(Fn)}2 = (Fn)2    

Or, {Conj(Fn + 1)}2 = (Fn)4 – (Fnbn)2 or, {Conj(Fn + 1)}2 + (Fnbn)2 = (Fn)4  

Now, Conj(Fn + 1) has several negative wings and with respect to any wing Conj(Fn + 1) & (Fn)2 cannot be 

conjugate to each other unless Fn is replaced by Fn/ for equivalent wing of (Fn)2 i.e. {Conj(Fn + 1)}2 + (Fn/ bn)2 = (Fn/ )4 

 this N-equation exists when Fn is composite. Similarly, the equation {Conj(Fn + 2)}2 + (Fn +1/ bn + 1)2 = (Fn + 1/ )4 will 

exist when Fn + 1 is composite and so on. 

So, once Fn is found to be composite for n = m, it will remain composite for any integer of n > m. 

                      

10.4    Generalized Fermat Number (Fn or Fn/) is always expressible in the form of  

{(15x ± 2y)/13}2 + {(10x –/+ 3y)/13}2  

 

As the left hand odd element of a N-equation for a generalized Fermat Number is always multiple of 5, let us 

consider the N-equation (p)2 + b12 = { a2^n + b2^n }2 = (Fn)2 where p = (α2 – β2)(32 – 22) = (3α ± 2β)2 – (2α ± 3β)2  

 (3α ± 2β)2 + (2α ± 3β)2 = Fn    

 13α2 + 13β2 ± 24αβ – Fn = 0  α = 1/13[ ± 12β ± √(13Fn – 25β2)] 13 Fn – 25β2 = I2  

Or, Fn = {I2 + (5 β)2}/(32 + 22) or, by division rule Fn = {(15β ± 2I)/13}2 + {(10β  3I)/13}2  

 Generalized Fermat Number is always expressible in the form of {(15x ± 2y)/13}2 + {(10x  3y)/13}2  

 

Conclusion:  

 

Like N-equation there also exists another equation i.e. N-equation with irrational zygote element and may be 

denoted by Nir-equation which produces two elements in power form. It was elaborately discussed in Aug-

publication 2013.  I believe that the existence of Nir-equation should not cast any reverse shadow to the proof 

& truthfulness of all the theorems that have been discussed here. But regarding fractional power formation (i.e. 

odd integer/2) of elements in an equality of two prime wings like ax + by = cz + dω, Nir-equation may also play a 

positive role. It needs further investigation. Regarding newly born Power-wing’s N-equation i.e. Np-equation 

question is whether it at all exists or not? If exists, it may also play a vital role to unveil so many properties of 

Generalized Fermat Number. Examples towards the fact that both the elements of one Product wing and one 

Produced wing are in power form can be frequently noticed. Fermat’s first composite number (F5) is an 

example of it i.e. (24 + 54)(25562 + 4092) = (22^4)2 + 12 = 204492 + 622642 = 4294967297. It seems that to form a 

Generalized Fermat number it does not matter whether Np-equation exists or not.  
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