Physiological screening of Pakistani wheat germplasms using Relative water content (RWC) water loss rate (WLR) and water use efficiency (WUE)

Ikram Muhammad, Inamullah, Habib Ahmad, *Israr Ahmad, Badshah Alam, Sahib Gul Afridi

> Department of Genetics, Hazara University Mansehra, Pakistan *Corresponding author: iabotany32@gmail.com

Abstract

A number of physiological traits such as Relative water content (RWC), water use efficiency (WUE), Leaf water loss rate (LWLR) etc. have been recognized to discuss drought resistance in crop plants. These traits are encouraged to be used as screening criteria and have been suggested to manipulate in crop plants to breed for drought resistance. The present research was designed to screen out the one hundred and three germplasm for drought tolerance. The results showed that RWCN was found in 10824 (98.69), 10730 (95.67), 10848 (94.44), 10818 (94.44), 11877 (94.02) while RWCS in stress conditions the estimated germplasms were 10809 (87.80), 10780 (87.35), Saleem-2000 (87.02), 10819 (86.07), 10814 (85.05). The cultivars 10755 (67.14), PS-85 (67.07), 11867 (67) were showed moderately resistance to drought stress. The lowest WLR in normal condition was observed in 11866 (-1.58), 10808 (0.11), 11867 (0.39), PS-08 (0.41) and Hashim (0.43) while 10803 (-8.71), 11877 (-1.3), 10718 (-1.3), 10740 (0.27), 11876 (0.3) showed the lowest WLR in stress conditions. The highest WUE was observed in 10831 (2.046667), 10825 (2.03333), 10820 (2.03333), 10847 (1.86), 10833 (1.84).

Introduction

Water is the most important abiotic factor for wheat distribution in water deficit areas. Water may affect the distribution and production of wheat (Mastrangelo *et al.*, 2000). The drought tolerance is measured as an effective breeding target in the maintenance of crop performance, Breeders and molecular biologists, at the instant there is a lack of valid facts to be able to measure with accuracy the plant resistance under drought tolerant wheat globally (Moustafa *et al.*, 1996). A physiological approach would be the most striking approach to develop new varieties (Araus *et al.*, 2008), but breeding for definite, environments involves a deeper understanding of yield-determining process. Water-use-efficiency (WUE), relative water content (RWC) and water loss rate (WLR) has been related to drought tolerance (Johnson *et al.*, 1995). Adequate genetic variation happens for these physiological traits. The techniques for measuring these traits are now easy and fairly

standardised. Hence it may be possible to manipulate this variation (Hubick *et al.,* 1988) for developing drought resistant cultivars. Drought being the principle stress, crops has its own specific critical period to affect greatly by water i.e filling of grain (Ashry and Kholy, 2005). The present study was mainly focus to conduct different drought experiments as Relative Water Content (RWC), Water Loss Rate (WLR) and Water Use efficiency (WUE) for determination of moisture content.

Materials and methods

The experiment was conducted in greenhouse (2011-2012) at department of Genetics Hazara University Mansehra Pakistan (Latitude 34° 19′ N, Longitude 73° 45′ E). The seeds of 103 Pakistani germplasm were grown in petri plates for 72 hrs at 27 °C in Incubator. The seedlings were then transplanted to pots (pot 20 cm high and 10 cm in diameter). Each pot was filled of sand, soil and organic fertilizer in ratio of 2:1:1. The three experiments (water loss rate, relative water content and water use efficiency) was carried out following RCBD in replication of three. The pots used for water use efficiency were covered with polythene sheets. Each pot was watered with 140 ml water. A small pore was made in sheet for evapotranspiration. Three control pots without plants were also made for determination of water loss. The water use efficiency was calculated by the following formula:

Total plant water use = total weight of each pot after no more plant extractable water left – total weight of each pot + harvest shoots and record the fresh shoot wt – (water loss in control pots with no plant $\times 0.7^*$).

The Water loss rate was calculated by the formula of (Clarke, 1987) WLR = (Fresh weight – weight after 24 h / Fresh weight – Dry weight x 100

The Relative Water Content was noted using the formula (Malik, 1995). RWC % = (FW-DW)/ (TW-DW) x 100

	S.NO	Germplasm	S.NO	Germpl	S.NO	Germplasm	S.No	Germplasm
				asm				
	1	11868	27	11865	53	10771	79	Noshera-96
	2	10854	28	10826	54	10803	80	Khyber-87

Table 1: chart of wheat germplasm included in the present study

3	10853	29	10822	55	10726	81	Wafaq
4	10850	30	11881	56	10772	82	Hashim
5	10849	31	10828	57	10727	83	PS-08
6	10825	32	10824	58	10718	84	ZAM
7	10845	33	10874	59	10732	85	Saleem-2000
8	10847	34	10827	60	10801	86	PS-05
9	11862	35	11864	61	11876	87	Janbaaz
10	11860	36	10820	62	10808	88	Haider-2000
11	11861	37	11867	63	10809	89	ARE-10
12	11866	38	11882	64	11863	90	Lasani-08
13	11809	39	10818	65	10717	91	Faisalabad-08
14	11873	40	10821	66	10735	92	Uqaab-2000
15	10842	41	10819	67	10810	93	Gomal
16	10841	42	11879	68	10759	94	Suleman-96
17	10833	43	11878	69	10725	95	NARC-2009
18	10843	44	10814	70	10755	96	Sahar
19	10848	45	11875	71	10733	97	Dera-98
20	10832	46	10730	72	10719	98	Atta habib
21	10829	47	10815	73	10780	99	KT-2000
22	10852	48	10816	74	10740	100	Kaghan-93
23	10834	49	10813	75	10743	101	PAK-81
					Shafaq-		
24	10831	50	11877	76	2006	102	PS-85
25	10835	51	10738	77	PS-2004	103	Tatara
26	10830	52	10817	78	Siran-2010		

Results

The Relative Water Content (RWC), Water Use efficiency (WUE) and Water loss rate (WLR) were calculated for all germplasms both in normal (RWCN) and water stress (RWNS) conditions (Table 1). The highest RWCN was estimated for germplasm,10824 (98.69), 10730 (95.67), 10848 (94.44), 10818 (94.44), 11877 (94.02), Shafaq-2006 (93.83), 10814 (92.37), 10738 (91.54), 11875 (90.72) and 11878 (89.95) while RWCS in stress conditions the estimated germplasms were 10809 (87.80), 10780 (87.35), Saleem-2000 (87.02), 10819 (86.07), 10814

(85.05), 10833 (84.78), 10818 (84.66667), 10730 (84.33333), 10743 (84) and 10841 (83.45) while the cultivars 10755 (67.14), PS-85 (67.07), 11867 (67) were showed moderately resistance to drought stress (table 3). The ANOVA analysis of all the germplasms under stress condition showed they are highly significant at (P < 0.01) level as shown in table 4. So on the base of above results the germplasm 10809 (87.80), 10780 (87.35), Saleem-2000 (87.02), 10819 (86.07), 10814 (85.05), 10833 (84.78), 10818 (84.66667), 10730 (84.33333), 10743 (84) and 10841 (83.45) are more resistant to drought and the germplasm 10853 (40.48), 10820 (40.48), 10842 (39.32) are sensitive to drought while the 10755 (67.14), PS-85 (67.07), 11867 (67) germplasm were showed moderate resistance to drought stress.

The water loss rate (WLR) was also measured for all the 103 germplasm and the statistical analysis showed that the germplasm, 11866 (-1.58), 10808 (0.11), 11867 (0.39), PS-08 (0.41), Hashim (0.43), 10738 (0.45), Dera-98 (0.45), ARE-10 (0.46), 10740 (0.47) and 11876 (0.47) have lowest WLR rate in normal conditions (table 2) while 10803 (-8.71), 11877 (-1.3), 10718 (-1.3), 10740 (0.27), 11876 (0.3), 10808 (0.31), 11862 (0.31), 10735 (0.31), 10853 (0.33) and Khyber-87 (0.34) showed the lowest WLR in stress conditions (table 2). The germplasm Atta Habib (0.8), 010801 (0.79) and 010743 (0.75) have showed moderate WLR in stress condition while K.T 2000 (0.9) , 010814 (0.88), Saleem 2000 (0.86) showed moderate WLR in normal condition. The ANOVA result showed that WLR is highly significant (p< 0.000) under drought stress (table 4). The water use efficiency (WUE) also showed that all the germplasms are highly significant (p<0.01) and the germplasm 10831 (2.046667), 10825 (2.033333), 10820 (2.033333), 10847 (1.86), 10833 (1.84), 10842 (1.796667), 11809 (1.773333), 10771 (1.763333), 10772 (1.74) and 10810 (1.716667) have observed highest WUE (table 2) and are considered more resistant to drought while Tatara (1.093333), 10755 (1.056667), 11868 (0.98) were showed lesser resistance to drought on the base of WUE.

Table 2: comparative performance of wheat germplasm on the base of physiological parameters

Germplas								
m		Germplasm		Germplasm		Germplasm		Germplasm
/Accession	RWCS	/Accession	RWCN	/Accession	WLRS	/Accession	WLRN	/Accession
10809	87.80	10824	98.69	10803	-8.71	11866	-1.58	10831
10780	87.35	10730	95.67	11877	-1.3	10808	0.11	10825

International Journal of Scientific & Engineering Research, Volume 6, Issue 1, January-2015 ISSN 2229-5518

Saleem-				10718	-1.3	11867	0.39	
2000	87.02	10848	94.44	10,10	1.0	11007	0.07	10820
10819	86.07	10818	94.44	10740	0.27	PS-08	0.41	10847
10814	85.05	11877	94.02	11876	0.3	Hashim	0.43	10833
10833	84.78	Shafaq-2006	93.83	10808	0.31	10738	0.45	10842
10818	84.66667	10814	92.37	11862	0.31	Dera-98	0.45	11809
10730	84.33333	10738	91.54	10735	0.31	ARE-10	0.46	10771
10743	84	11875	90.72	10853	0.33	10740	0.47	10772
10841	83.45	11878	89.95	Khyber-87	0.34	11876	0.47	10810

Table 3: comparative performance of moderate wheat germplasm on the base of physiological parameters

Germplas		Germplas		Germplas		Germplas		Germplas
m	RWC	m	RWC	m	WLR	m	WLR	m
/Accession	S	/Accession	Ν	/Accession	S	/Accession	Ν	/Accession
10755	67.14	11809	70.53	Atta habib	0.8	KT-2000	0.9	10874
PS-85	67.07	PS-85	70.37	10801	0.79	10814	0.88	10801
						Saleem-		
11867	67	10853	70.27	10743	0.75	2000	0.86	11867

Table 4: analysis of variance of physiological traits (normal and stress) of wheat germplasm

ANOVA						
		Sum of	df	Mean	F	Sig.
		Squares		Square		
relative water	Between	108211 833	102	1060.900	1060.900	.000
content stress	Groups		102	1000.900	1000.900	.000
relative water	Between	07406 668	102	906.830	906.830	.000
content normal	Groups	92490.000	102	900.830	900.030	.000
water loss rate stress	Between	217 740	102	3.115	3.115	.000
water 1055 fate stress	Groups	517.747	102	5.115	5.115	.000
water loss rate	Between	278 348	102	2.729	2.729	.000
normal	Groups	270.340	102	2.129	2.729	
water use efficiency	Between	11 588	102	.114	1.724	.001
water use enterency	Groups	Squares 108211.833 92496.668 317.749 278.348	104			.001
yield per plant	Between	2/13/1 115	102	23.864	5.589	.000
yield per plain	Groups	2404.110	102	23.004	0.009	.000

The correlation analysis revealed that yield per plant is negatively correlated with relative water content (stress), relative water content (normal) and water loss rate (normal) while positively correlated with water loss rate (stress) and water use efficiency.

Table 5: statistical analysis of physiological traits on the base of correlation

Correlations

	relative water	relative water	water loss	water	water	yield				
	content stress	content normal	rate stress	loss rate	use	per				
				normal	efficien	plant				
					cy					
relative water content	1									
stress	L									
relative water content	.442**	1								
normal	.112	1								
water loss rate stress	.002	073	1							
water loss rate normal	015	072	.864**	1						
water use efficiency	020	.067	.111	.145*	1					
yield per plant	200**	159**	.025	005	.088	1				
**. Correlation is signific	**. Correlation is significant at the 0.01 level (2-tailed).									
*. Correlation is signification	ant at the 0.05 lev	el (2-tailed).								

Discussion: The relative water content (RWC) and leaf water potential decreased with the increase of leaf temperature on exposure to drought stress (Siddique *et al.*, 2000). The seedlings of *Triticum* and *Aegilops* showed different response to drought stress at the physiological as well as molecular level and this may suggest that resistant and susceptible genotypes may firstly base on their relative water content (Rampino *et al.*, 2006). The physiological parameters related with drought in plants should be identified for screening of drought genotypes (Malik, 1995). The reduction in yield and yield related parameters due to decrease of water supply may be recognised as reduction in the growth parameters (Naceur *et al.*, 1999). Our results support the previous research (Clark and Townley, 1986) that low rate of water loss and high relative water content is associated with high grain yield potential under drought stress. Clark and Romagosa (1989) reported the association of low rate of excised leaf water loss with improved yields under very dry environments in wheat. Our results also agree that on increase of water loss rate will decrease the yield of wheat in drought stress. Our results also support that the varieties with high water use efficiency produced high yield (Sing *et al.*, 1990).

References

- Araus JL, Salfer MP, Royo C, Serett MD. 2008. Breeding for yield potential and stress adaptation in cereals. *Critical Reviews in Plant Sciences* 27, 377-412.
- Ashry, M. S. E. and M.A. E. Kholy.2005. Response of Wheat Cultivars to Chemical Desiccants under Water Stress Conditions. J. App. Sci. Res. 1(2): 253-262.
- Blum, A. (1996). Crop response to drought and the interpretation of adaptation. *Plant Growth Regulation*, 20: 135-148.
- Clark, J.M and I. Romagosa. S. Jana. J.P. srivastava and T.N. Mccaig. 1989. Relationship of excised leaf water loss rate and yield of Durum wheat in diverse environment. *Can.J. plant.Sci.*69: 1075-1081.
- Clark, J.M and T. F. S. Townley.1986. Heritability and Relationship to Yield of Excised-Leaf Water Retention in Durum Wheat. *American society of Agronomy*.26: 289.292.
- Clarke, J.M., 1987. Use of physiological and morphological traits in breeding programmes to improve drought resistance of cereals. In: J.P. Srivastava, E. Porcedo, E. Acevedo & S. Varma (Eds.), Drought Tolerance in Winter Cereals, pp 171–190.
- Hubick, K.T., R. Shorter and G.D. Farquhar. 1988. Heritability and genotype x environment interaction of carbon isotope discrimination and transpiration efficiency in peanut (Arachis hypogea L.). *Aust. J, Plant Physiol.*, 15: 799-813.
- Johnson, R.e., E.J. Muehllbauer and e.J.F. Simon. 1995. Genetic variation in wateruse-efficiency and its relation to photosynthesis and productivity in lentil germplasm. *Crop Sci.* 35: 457-463.
- Malik, T.A., 1995. Genetics and Breeding for Drought Resistance in Wheat: physiomolecular Approaches. Ph.D thesis, University of Wales, UK.
- Mastrangelo, A.M, Rscio, A., Mazzucco, L., Russo, M., Cattivelli, L. and Di Fonzo, N. (2000). Molecular aspects of abiotic stress resistance in durum wheat. *Options Méditerranéennes*, Series A, 40: 207-213.
- Moustafa, M.A., L. Boersma, and W. E. kronstad (1996): Response of four spring wheat cultivars to drought stress. *Crop Science*, 36, 982-986.
- Naceur, M. B., M.Naily and M.Selmi, 1999. Effect of water deficiency during different growth stages of wheat on soil humidity, plant physiology and yield components. *Medit.* 10: 63-60.
- Rampino, P., S. Pataleo, C. Gerardi, G. Mita and C. Perrotta .2006. Drought stress response in wheat: physiological and molecular analysis of resistant and sensitive genotypes. *Plant Cell Environ*. 29: 2143-2152.

Siddique, M. R. B., A. Hamid and M. S. Islam (2000). Drought stress effects on water relations of wheat. *Bot. Bull. Acad. Sin.*, 41: 35-39.

IJSER