
International Journal of Scientific & Engineering Research Volume 2, Issue 10, October-2011 1
ISSN 2229-5518

IJSER © 2011
http://www.ijser.org

Optimized Fuzzy Logic Training of Neural
Networks for Autonomous Robotics Applications

Ammar A. Alzaydi, Kartik Vamaraju, Prasenjit Mukherjee, Jeffrey Gorchynski

Abstract— Many different neural network and fuzzy logic related solutions have been proposed for the problem of autonomous vehicle
navigation in an unknow n environment. One central problem impacting the success of neural network based solutions is the problem of
properly training neural networks. In this paper, an autonomous vehicle controlled by a feed-forward neural network is trained in real time
using a fuzzy logic based trainer and the standard back-propagation learning algorithm. The experimental results presented demonstrate
the feasibility of real time training using a constrained hardware platform. They also show the impact of racetrack complexity on the training
process as well as the impact of the neural network size on the learning speed and error convergence during the training proc ess. The
results are then used to develop an optimization procedure that is used to determine the optimal neural netw ork size for the given problem
domain and experimental platform.

Index Terms— Autonomous, Autonomous navigation, Autonomous robotics, Fuzzy logic, Navigation, Neural network, Real-time training

——————————  ——————————

1 INTRODUCTION

esigning an autonomous vehicle for navigation in an un-
known environment is a challenging problem that en-
compasses many complex tasks such as obstacle avoid-

ance and path planning. The complex dynamics of vehicle
control and the unknown nature of the environment being
navigated limit the feasibility of many theoretical methods for
autonomous vehicle navigation. Many intelligent methods
have been developed involving fuzzy logic and neural net-
works to solve problems related to autonomous navigation.
Fuzzy logic based systems, such as [1], [2], utilize a semantic
rule base consisting of IF {antecedent} THEN {consequent}
rules that govern the actions of the vehicle based on fuzzified
sensory data. These systems do not necessarily require ad-
vanced modelling of vehicle dynamics yet can provide control
that is more tolerant to sensory error. Fuzzy logic based sys-
tems suffer from the inability to adapt to unforeseen scenarios
due to the static nature of their fuzzy rule base. Alternatively,
neural network based methods overcome this barrier through
the use of learning algorithms. Fuzzy-neural networks merge
the advantages of both fuzzy logic and neural networks to-
gether to create a potentially superior implementation [3], [4].
But while fuzzy-neural networks appear to represent an ideal
solution to the problem of autonomous navigation in an un-
known environment, there remain to be significant practical
barriers preventing widespread adoption.

All methods that involve neural networks suffer from the
problem of generating relevant, useful training data and im-
plementing viable learning algorithms for real-time usage.
Many different learning algorithms have been used to train
neural networks [5], [6], [7]. These methods however have li-
mited viability in training scenarios in which the vehicle must
learn fast to respond to unknown obstacles using a limited
supply of online training data. Regardless of the exact training

algorithm used, there is still the problem of constructing a via-
ble set of training data. It is highly difficult and impractical for
an expert to generate the potentially thousands of input-
output data vectors necessary to train the neural network, and
while methods exist for ensuring useful training data [8], [9],
these methods are difficult to apply to an arbitrary scenario.

One solution to the problem of providing viable training
data is to create a fuzzy logic trainer that supplies the neces-
sary data to train the neural network that is driving the vehicle
[10]. In this scenario, a vehicle is controlled by a neural net-
work with randomized weights and is placed within a race-
track. As the vehicle navigates the racetrack the fuzzy logic
trainer generates data that is used to train the neural network
using the standard back-propagation learning algorithm. The
neural network is trained in real time as it navigates through a
racetrack. Since the ideal output used to train the neural net-
work is provided entirely by the fuzzy logic trainer, the pat-
tern recognition behaviour of the neural network results in the
neural network approximating the fuzzy logic trainer perfor-
mance. The mathematical error between fuzzy logic trainer
and the neural network results in differences in the naviga-
tional performance that lead to competitive, if not superior
navigational performance by the neural network. The level of
noise in the training data also tends to reduce the probability
of the back-propagation algorithm converging to local mini-
ma. The problem of generating an optimal training data set is
therefore equivalent to creating a viable racetrack. The success
of training a neural network in this scenario is directly compa-
rable to training a neural network in any type of environment
in which the neural network must learn fast with a limited
amount of training data.

In this paper, this training process is investigated exper i-
mentally by implementing a fuzzy logic trainer on a robot ve-
hicle controlled by an untrained neural network. A feed-
forward neural network with a single hidden layer is used to
control the steering angle and speed of the vehicle. The goal of
this paper is to experimentally determine the feasibility of
real-time training of a neural network for autonomous naviga-

D

————————————————

 Ammar A. Alzaydi: B.Sc., M.A.Sc., Ph.D. Student, Mechanical and Me-
chatronics Engineering. University of Waterloo, Waterloo, On., Canada.
E-mail: aalzaydi@engmail.uwaterloo.ca

International Journal of Scientific & Engineering Research Volume 2, Issue 10, October-2011 2
ISSN 2229-5518

IJSER © 2011
http://www.ijser.org

tion, as well as to determine the optimal number of neurons
for the hidden layer for the given experimental design. The
process used to select the optimal number of neurons is mot i-
vated primarily by experimental results as opposed to other
theoretically based methods. This process is not specific to
autonomous navigation and can be applied to other applica-
tions as well. In addition, results are presented demonstrating
the effect of additional neurons in the hidden layer with r e-
spect to both training efficiency and overall driving speed. The
successful implementation of real time training using this ex-
perimental platform should scale easily as the complexity of
implemented systems increase, and therefore the experimental
results should be directly applicable to real time training sce-
narios involving different neural network topologies and
hardware implementations.

2 EXPERIMENTAL PLATFORM

A robot vehicle was built to navigate indoor racetracks. A
single Hokuyo URG-04LX laser range-finder (Lidar) was used
to supply sensory data to two Atmega1280 based microcon-
trollers. These microcontrollers communicated to a single
steering servo motor and to a Sabretooth 2x10 motor controller
to move the vehicle. The fuzzy logic and neural network im-
plementations were designed for real time autonomous navi-
gation even when constrained by the significant computation-
al limitations imposed by the 8-bit microcontrollers.

The fuzzy logic trainer and neural networks were imple-
mented on the two microcontrollers. One microcontroller was
used as an interface to the sensor, and used the fuzzy logic
trainer and neural networks to generate control packets for
steering angle and speed. The control packets from the first
microcontroller were sent to the second microcontroller, which
acted as an interface to the steering servo motor and the speed
motor. The purpose of using two different microcontrollers
was to allow for easy expansion with additional sensors, since
there would be a greater availability of processing power and
input/output ports. The fuzzy logic trainer and neural net-
works were implemented on the same microcontroller mainly
for simplicity in data transmission; there was a minimal per-
formance difference if the neural network was shifted to the
second microcontroller.
The main performance issue with the experimental platform
was reaction time. The Lidar used provided data at a maxi-
mum rate of 10 Hz, but the overall reaction time of the vehicle
taking into account computation time was about 5-7 Hz. In
order for real time navigation to be realistic, the vehicle must
have been able to detect and respond to obstacles at a fast rate
relative to its speed. The navigation speed used during the
subsequent experiments was therefore minimized so as to en-
sure that the vehicle could appropriately detect and respond
to obstacles. A quicker reaction time would have allowed for a
faster average speed as well as a faster speed during the neur-
al network training process.

3 FUZZY LOGIC TRAINER

The navigational logic for the fuzzy logic trainer was
loosely based on the potential fields based method of naviga-
tion. The potential fields’ method assumed that both the ve-
hicle and all nearby obstacles possess an electrostatic charge.
The negative gradient of the resulting electrostatic field
represents the direction that the vehicle should travel. Similar-
ly, the fuzzy logic trainer derived forces that were used to cha-
racterize the environment. A set of four forces were used as
the input to the fuzzy logic speed calculation and a single net
force was then calculated to be used as the input to the fuzzy
logic steering angle calculation. The only input to the fuzzy
logic trainer was the sensory data provided from the Lidar,
which resulted in a control strategy that was suitable for train-
ing a neural network. The kinematics of the vehicle being used
was taken into account partially through the design of the
fuzzy logic membership functions and fuzzy rule base. The
fuzzy logic navigational performance could have been im-
proved through the use of additional sensors and inputs to the
fuzzy logic trainer or with the use of additional filtering.
However, this would have required significant amounts of
processing power and increased the complexity of the imple-
mentation without necessarily improving the training process
of the neural network.

First, the sensory data provided by the Lidar was
processed. The Lidar provided a set of 256 data points
representing the distance at which an obstacle was detected
over its 180° field of view at about 0.70° angular intervals. This
set of data points was then filtered to remove data that was
considered out of range. A minimum range of about 10 cm
was selected to ensure that excessively low measurements
were ignored and a maximum range of about 70 cm was se-
lected to ensure that the vehicle was not reacting to obstacles
that were too far away.

The filtered set of data points was then converted into a
set of four forces that represent the proximity of an obstacle
within each of the 45° quadrants (Left-Extreme, Left, Right
and Right-Extreme). This was done by taking the sum of the
reciprocal of each filtered data point that falls within the re-
spective quadrant, using the equation:

(1)

The resulting four force values were then multiplied by an

experimentally chosen constant that represented the required
sensitivity of the Lidar to its surroundings. The force values
were scaled to be within 0 to 255. A value of 0 indicated that
there were no obstacles within range in the respective qua-
drant, whereas a value of 255 indicated the presence of an ob-
stacle that had an average position that was close to the ve-
hicle. This scaling simplified the design of later components
such as the fuzzy logic membership functions. These four
forces values were used as the input to the fuzzy speed calcu-
lations, and were further processed to produce a single force
that was used as the input to the fuzzy steering angle calcula-
tion.

The four forces (LE, L, R, and RE) were used as the inputs
to both the neural network and the fuzzy logic speed calcula-

1
 i

i i

Force whered isadata point
d



International Journal of Scientific & Engineering Research Volume 2, Issue 10, October-2011 3
ISSN 2229-5518

IJSER © 2011
http://www.ijser.org

tion. In order to perform the fuzzy logic steering angle calcula-
tion however, the four input forces were used to create a single
force that represented the direction of the most significant ob-
stacle. This was done by taking the difference of Left-Side (LS)
and Right-Side (RS) forces. The LS force was generated using
the logic:

(2)

Where α was a minimum threshold value. The RS force

was generated using the same logic, but using RE and R forces
instead of LE and L respectively. The result of the difference of
LS and RS forces was a net force that represented the net pres-
ence of obstacles. A strong positive force indicated that the
obstacle was more prevalently on the left, and a strong nega-
tive force indicated that the obstacle was more prevalently on
the right. The magnitude of the net force was a function of
both the proximity of the obstacle as well as whether the ob-
stacle was clearly on one side of the vehicle rather than direct-
ly in front. This was due to the averaging of data points to
produce the underlying forces and due to the usage of a single
differential force rather than multiple individual forces.
The various membership functions that were used for the sub-
sequent fuzzy logic calculations were all exponential curves.
Exponential curves tended to better match the nonlinear dy-
namics of the input forces than the more commonly used tri-
angular membership curves. For defuzzification, the centroid
method was used, since this method encompassed the entire
decision space more completely than alternative methods such
as the mean of maximum method. The centroid method how-
ever was a significant computational burden for the experi-
mental platform, and so the precision of the method was mi-
nimized so as to maximize speed while minimizing numerical
error. This was done by using fewer points to represent the
functions that were being used in the sums.

3.1 Fuzzy Steering Angle Controller

The fuzzy rule base for the steering angle is described as:

1) If (force) is NEGATIVE, go LEFT

2) If (force) is ZERO, go STRAIGHT

3) If (force) is POSITIVE, go RIGHT

Where NEGATIVE, ZERO and POSTIVE were fuzzy va-
riables in the input space, as shown in Fig. 1, and LEFT,
STRAIGHT and RIGHT were fuzzy variables in the output
space, as shown in Fig. 2. The number of required rules was
minimized by using a single net force as the input rather than
the four forces generated prior. Using the four forces to design
the fuzzy rule base did not result in any noticeable perfor-
mance improvements.

3.2 Fuzzy Speed Controller

The fuzzy rule base for the speed controller consisted of:

1) If (LE) AND (L) AND (RE) AND (R) are LOW, go

FAST

2) If (LE) AND (RE) are HIGH AND If (L) AND (R)

are LOW, go MEDIUM

3) If (LE) AND (L) AND (RE) AND (R) are HIGH,

go SLOW

Where LOW and HIGH were fuzzy variables in the input
space, as shown in Fig. 3, and FAST, MEDIUM and SLOW
were fuzzy variables in the output space, as shown in Fig. 4.
The minimum operator was used as the fuzzy AND operator.
The general logic was to move slower when more obstacles are
present in order to allow the vehicle the opportunity to react

 

2

max ,

LE L
if LE and L

LS Force
LE L if LE or L

 

 








 


 

Fig. 1. Steering Angle Input Membership Functions

Fig. 2. Steering Angle Output Membership Functions

International Journal of Scientific & Engineering Research Volume 2, Issue 10, October-2011 4
ISSN 2229-5518

IJSER © 2011
http://www.ijser.org

accordingly; that is to move more slowly during a sharper
turn or in the presence of more obstacles. The vehicle operated
within a minimum and maximum speed and the fuzzy speed
calculation was used to specify a speed within this range. The
design of the fuzzy logic trainer was such that the vehicle
could navigate racetracks with smooth curves and simple ob-
stacles. The fuzzy rule base was therefore designed according-
ly.

The kinematics of the vehicle and the current vehicle ve-
locity were being ignored when the speed was calculated. Ig-
noring these variables resulted in a significant simplification
that had minimal negative impact on the vehicle performance.
The maximum allowable speed was also reduced to compen-
sate for the slow reaction time of the vehicle. The minimum
allowable speed was increased to ensure that the vehicle could
reliably overcome the friction of the driving surface as well as
to ensure that speed could be maintained while turning. These
speed constraints caused the overall variation in speed to be
low, allowing simplified or suboptimal speed calculations to
have a relatively minimal impact on the vehicle performance.
Together, these restrictions allowed for effective performance
in the experimental racetracks even with a minimal set of
fuzzy rules.

4 NEURAL NETOWRK

Artificial neural networks are a type of non-linear statis-
tical model that are used to model patterns between inputs
and outputs. Through the use of learning algorithms, neural
networks possess the ability to learn patterns from a unique
set of input and output data points. Neural networks are typi-
cally represented as a set of neurons connected together using
with a set of weights. Each neuron generates an output be-
tween 0 and 1 based on its activation function. Each input to a
neuron is multiplied by an associated weight, and this vector
of input-weight pairs is used by the activation function to gen-
erate the neuron output. Learning is achieved through the sys-
tematic modification of the weights of the neural network. A
simple two-layer feed-forward neural network is used to con-
trol the autonomous vehicle in this case, as shown in Fig. 5.
This is among the simplest neural network topology that is
suitable for autonomous navigation.

A feed-forward neural network was implemented to con-
trol the vehicle. The network received the four force values
(LE, L, R and RE) as its input and produced the steering angle
and speed values as its output. The neural network consisted
of an output layer of two neurons and a hidden layer of 1-10
neurons. Only a single hidden layer was used since the pres-
ence of additional hidden layers was not necessary for success-
fully modeling the fuzzy logic trainer with an arbitrary level of
precision [11-12]. The sigmoid function was used for the act i-
vation of each neuron and the sum of the product of the
weights and inputs to each neuron was used to determine the
activation state of the neuron. The back-propagation algorithm
was used to train the neural network with no additional mod-
ifications such as a momentum term. The optimal global learn-
ing rate for the neural networks was determined in simulation
to be within the 0.5-1.5 range, and so a global learning rate of 1

Fig. 3. Speed Input Membership Functions

Fig. 4. Speed Output Membership Functions

Fig. 5. Sample Feedforward Neural Network for Vehicle

International Journal of Scientific & Engineering Research Volume 2, Issue 10, October-2011 5
ISSN 2229-5518

IJSER © 2011
http://www.ijser.org

was used for all tested neural networks. The process flow for
the fuzzy logic trainer and neural network was:

1. The set of 4 force values were sent to both the fuzzy

logic trainer and to the neural network as input. The

force values were normalized to improve the

efficiency of the neural network learning process.

2. The fuzzy logic trainer calculated the ideal steering

angle and speed based on the input. This output was

used to train the neural network.

3. The forward propagation algorithm was used to

determine the steering angle and speed calculated

from the neural network.

4. The outputs from both the neural network and the

fuzzy logic trainer were used as inputs to the error

back-propagation algorithm. The weights of the

neural network were modified to minimize the

calculated error:

(3)

5. Steps 3-4 were repeated twice, resulting in a total of 3

iterations of the back-propagation algorithm for a

given set of input force values. The number of

iterations was selected to be the smallest number that

would allow for feasible experimental performance.

Additional iterations would require more processing

power without necessarily improving the overall

training process during experiments or simulation.

6. The final corrected output from the neural network

was then used to control the vehicle. This was done to

ensure that the training of the neural network would

be relative to the performance of the neural network

itself rather than be dependent on the fuzzy logic

navigation. The control action of the neural network

effectively generated a feedback loop in which the

fuzzy logic trainer would train the neural network

based on the surroundings of vehicle as well as the

difference between the neural network and fuzzy

trainer outputs. The training behaviour could easily

be verified during experiment, since the navigational

behaviour changed in real time.

Sensory data was not provided fast enough to properly
train the neural network in real time. By repeating Steps 3-4
multiple times, the output produced from the neural network
was significantly more accurate than if Steps 3-4 had only been
run once. The training speed improvements that resulted from
using multiple iterations of the back-propagation algorithm

for a single input data vector outweighed the resulting compu-
tational penalties. While this was not the ideal method of
training the neural network, this method improved the feasi-
bility of real time training when insufficient training data was
available.

The output from the fuzzy logic trainer was scaled to be
within a range of 0.2 to 0.8. This was done to compensate for
the lack of bias terms within the neural network and was ver i-
fied in simulation to improve the overall training efficiency of
the neural network. An output of 0.2 corresponded to a maxi-
mum turn left at minimum speed and an output of 0.8 corres-
ponded to a maximum turn right at maximum speed. The
training process for the neural network was designed to train
the neural network in a manner that would ensure that the
initial neural network output would be as accurate as possible.

5 EXPERIMENTAL RESULTS AND ANALYSIS

Before experiments were performed using the racetracks,
a simulation was performed to determine the number of
epochs that the neural network would require to converge to a
minimum level of error and to determine the rough error rates
experienced during the learning process. An epoch was equiv-
alent to one lap around the racetrack. The simulation consisted
of a set of 10 neural networks, each with a different number of
neurons in its hidden layer, being trained using a set of 256
unique training vectors. The input training vectors that were
used were equally distributed over the entire range of possible
inputs (since each of the input forces was bounded from 0 to
255). Mean squared error was measured using the fuzzy logic
output and the neural network output over each epoch. Both
the training process and the error metric were the same in si-
mulation and in experiments, ensuring that simulation results
could effectively be used to generate viable hypotheses for
subsequent experiments.

The simulation demonstrated that the neural networks
would converge to a minimum error within 10 epochs, as
shown in Fig. 6. In addition, the larger neural networks ap-
peared to have lower initial error and to converge to a lower
error after training. However, while the larger neural net-
works appeared to more accurately model the fuzzy logic
trainer, the rate of convergence appeared to be faster with less
neurons in the hidden layer of the neural networks. The later
experiments were designed using the assumption that a max-
imum of 10 epochs would be necessary to train each neural
network.

Two separate racetracks were then designed to test the
learning capability of various neural networks. A simple race-
track, as shown in Fig. 7, was developed to prove that the
neural network can successfully be trained in real time. The
second, more challenging racetrack, as shown in Fig. 8, was
developed to demonstrate the repeatability of the experimen-
tal results in a different scenario. Each racetrack generated
about 200-300 unique training vectors during each epoch,
which was directly comparable to the number of training vec-
tors used during simulation.

 steering fuzzy steering neural networke e e 

 speed fuzzy speed neural networke e e 

International Journal of Scientific & Engineering Research Volume 2, Issue 10, October-2011 6
ISSN 2229-5518

IJSER © 2011
http://www.ijser.org

5.1 Experiment #1

The vehicle was placed in Racetrack #1 and navigated 10
epochs while being controlled by an untrained neural net-
work. Neural networks containing 2, 4, 6, 8 and 10 neurons
respectively in their hidden layers were tested. The goal of this
experiment was to determine if a neural network could suc-
cessfully be trained while attempting to navigate a racetrack. It
was also intended to determine if the observations made dur-
ing simulation were valid experimentally.

The experimental results demonstrated that the neural

networks could successfully learn to navigate the racetrack
when trained using a fuzzy logic trainer, as shown in Fig. 9.
All the neural networks appeared to converge to roughly
equivalent levels of minimum error and the rates of conver-
gence were directly comparable to what was demonstrated
during simulation.

Fig. 6. Error in Steering Angle During Simulation

450 cm

7
5
0
 c

m

Fig. 7. Race Track #1

475 cm

9
0

0
 c

m

Fig. 8. Race Track #2

Fig. 9. Error in Steering Angle Over 10 Epochs

International Journal of Scientific & Engineering Research Volume 2, Issue 10, October-2011 7
ISSN 2229-5518

IJSER © 2011
http://www.ijser.org

All the tested neural networks appeared to be fully
trained in about 5 epochs. Using this result, the experiment
was then repeated, but after 5 epochs the vehicle was allowed
to navigate the racetrack while being controlled exclusively by
the now trained neural network. This was done in order to
determine the performance of the trained neural network
without interaction with the fuzzy logic trainer.

The experimental results verified that the neural network
was successfully able to learn to navigate the racetrack after 5
epochs of training. The error rates of the tested neural net-
works after training were all relatively similar regardless of
the size after the neural networks were trained, as shown in
Fig. 10. When the trajectory of the vehicle while being con-
trolled by a neural network with 6 neurons in its hidden layer
was recorded, there was not a significant difference between
the fuzzy logic trainer and neural network trajectories, as
shown in Fig. 11. The neural network after training appeared
to have a smoother trajectory that was more consistently in the
centre of the racetrack than the less consistent trajectory before
training. The performance of the neural networks was directly
comparable to the performance using only the fuzzy logic
trainer.

Fig. 10. Error in Steering Angle Over 5 Epochs

Fig. 11. Approximate Trajectory of Vehicle During Experiment #2

Fig. 12. Error in Steering Angle During Experiment #2

Fig. 13. Error in Speed During Experiment #2

International Journal of Scientific & Engineering Research Volume 2, Issue 10, October-2011 8
ISSN 2229-5518

IJSER © 2011
http://www.ijser.org

5.2 Experiment #2
In order to select an optimal neural network size, it was

necessary to determine the impact of racetrack complexity on
the overall learning capability of the neural networks. The ve-
hicle was placed in Racetrack #2 and navigated 10 epochs
while being controlled by an untrained neural network. After
the neural network had completed the 10 training epochs, an
additional epoch was performed in which the trained neural
network navigated the racetrack without interaction with the
fuzzy logic controller. By comparing the observed results
against the previous experimental results, more generalized
conclusions could then be made neural network sizing.

The experimental results demonstrated that the general
training behaviour was not significantly impacted by racetrack
complexity, as shown in Fig. 12 and Fig. 13. As more neurons
were added to the hidden layer, the error during the initial
epoch reduced. The additional neurons also increased the
number of epochs required for the neural network to converge
to its minimum error. However, all the tested neural networks
had similar performance after training, and so increasing the
size of the neural network did not appear to have a significant
benefit as far as minimizing the error.

In this case, the steering angle error converged within
about 5 epoch cycles whereas the speed error converged with-
in the initial epoch cycle to a more accurate value. This was
due to the design of the fuzzy speed rules and the experimen-
tal racetracks. As a result, the back-propagation algorithm mi-
nimized the global error of both the speed and steering angle
outputs and so caused fluctuations in the speed error while
minimizing the steering angle error. Using separate neural
networks for each output would have removed a significant
amount of the fluctuations in the error of the outputs.

The vehicle speed during the training process was about

half of the vehicle speed using only the fuzzy logic trainer.
After training, the vehicle speed of the vehicle using the neural
network was roughly equivalent to the vehicle speed using the
fuzzy logic trainer. The neural network implementation was
computationally more efficient than the fuzzy logic trainer,
resulting in a slightly greater reaction time with the neural
network that would have allowed for increases in the average
vehicle speed.

6 SELECTION OF OPTIMAL NEURAL NETWORK SIZE

There are several criteria that impact the selection of the
optimal number of neurons in the hidden layer of the neural
network:

1. The hidden layer must be large enough to

approximate the fuzzy logic trainer with sufficient

accuracy. This criterion was demonstrated through

experimental results to not be a significant factor as a

wide range of tested hidden layer sizes converged to

roughly the same level of error.

2. The computational burden of the neural network

must not minimize its practicality during training or

autonomous driving. All the tested neural network

sizes met this criterion.

3. The initial error during the training process must be

low enough to allow the neural network to navigate

the unknown racetrack. While all tested neural

networks met this criterion, the probability of a

Perform

experiment

Is the initial

error too high?
Add a neuron

Is the final

error too high?

Repeat

experiment

Did the error

change?

Add a neuron

Is the neural

network fast

enough?

Did the error

change?

Repeat

experiment
No

Yes

Yes

NoYes

No

Yes

No

Yes

TERMINATE

START

No optimal size

exists

Select initial

feasible neural

network size

No optimal size

exists
No

TERMINATE

Use the neural

network

TERMINATE

No optimal size

exists

Fig. 14. Neural Netw ork Size Selection Process Flow

International Journal of Scientific & Engineering Research Volume 2, Issue 10, October-2011 9
ISSN 2229-5518

IJSER © 2011
http://www.ijser.org

successful test run increased as the hidden layer size

increased. The neural networks with less hidden layer

neurons were generally unreliable during the initial

test run.

4. The neural network must require a minimal number

of epochs to successfully ‘learn’ the given racetrack.

This requirement maximized the practicality of the

neural network, since the training process was such

that it was impractical to complete the hundreds of

epochs that are possible during simulation. The

experimental results effectively require the neural

network size to be minimized for this criterion to be

met.

Based on these criteria, a selection process was designed
to determine a neural network size that is within an optimal
range, as shown in Fig. 14. It was assumed that a neural net-
work would be trained in real time over a limited number of
epochs in an experimental environment. An initial neural net-
work size was assumed to exist and be chosen such that it was
as small as possible while still being large enough to be able to
solve the given problem. Adding an additional neuron was
assumed to reduce the initial and final error of the neural net-
work, similarly to the tested neural networks. If a neural net-
work existed that simultaneously met all of the criteria, then
the process would terminate with an optimal size. If there was
no solution that satisfied all the criteria, then the process
would terminate because no optimal solution was found. This
indicated that either the learning process must be modified,
that the error constraints were too stringent, or that the com-
putational limitations were too severe. Using the selection
process, a neural network consisting of about 4-6 neurons in
its hidden layer was determined to be optimal. The initial er-
ror rate was too high with less than 4 neurons and the compu-
tational penalty did not justify greater than 6 neurons. The
exact sizes were relative to the difficulty of the racetracks that
were being navigated and to the number of obstacles.

7 SUMMARY

It was clearly demonstrated that a fuzzy logic trainer
could be used to train a neural network in real time as the
neural network controlled a vehicle navigating an unknown
racetrack. It was also demonstrated that even with a minimal
fuzzy logic implementation and significant hardware con-
straints the neural networks were able to learn suitably to na-
vigate the tested. The experimental results demonstrated that
usable real time autonomous navigation could be imple-
mented without elaborate control strategies or significant
computational power.

In addition, it was observed that the number of neurons in
the hidden layer primarily impacted the initial accuracy of the
neural network and the rate of convergence to a minimum
level of error. While increasing the size of the neural network
appeared to improve performance in simulation, it did not
significantly improve performance during experiments. The

neural networks were also observed to perform competitively
when compared against the fuzzy logic trainer even with a
minimal number of training epochs. While the observations
were not necessary valid for all possible neural network or
fuzzy logic trainer implementations, the emphasis on initial
feasibility rather than final error reduction was a noteworthy
shift from traditional neural network size selection processes’.

Based on these observations a selection process was de-
veloped to determine the optimal number of neurons for the
given neural network. The process of optimizing the size of a
neural network was designed to be applied in experiment dri-
ven applications in which other, more theoretical optimization
methods would be unsuitable. The optimal number of neurons
in the hidden layer for the tested application was determined
to be about 4-6 based on this selection process. While the selec-
tion process may not produce feasible or optimal results in all
possible neural network topologies, in similar feed-forward
neural network applications the selection process should pro-
duce usable, near-optimal neural network sizes.

ACKNOWLEDGMENTS

The authors would like to acknowledge the financial sup-
port and encouragement of Yousef Awad Al-Ahmadi, Director,
Ideas Development Co. Ltd. Furthermore, the authors would
like to acknowledge the contributions of Arun Das, Byung
Yoon Kim and Sanjay Singh in hardware design, mechanical
design, and design of the experimental setup for the auto-
nomous vehicle.

REFERENCES

[1] Shigeki Ishikawa. "A Method of Indoor Mobile Robot Na-
vigation by Using Fuzzy Control." IEEE International
Workshop on Robots and Systems, pp 1013-1018, No-
vember 1991.

[2]iii Patrick Reignier. "Fuzzy logic techniques for mobile robot
obstacle avoidance." Elsevier - Robotics and Autonomous
Systems, vol. 12, pp 143-153, 1994.

[3] L.H. Tsoukalas, E. N. Houstis, G. V. Jones. "Neurofuzzy
Motion Planners for Intelligent Robots." Journal of Intel-
ligent and Robotic Systems vol. 19, pp 339-356, 1997.

[4] Jean Bosco Mbede, Pierre Ele, Chantal-Marguerite Mveh-
Abia, Youssoufi Toure, Volker Graefe, Shugen Ma. "Intel-
ligent mobile manipulator navigation using adaptive
neuro-fuzzy systems." Elesevier - Information Sciences,
vol. 171, pp 447-474, 2005.

[5] Shunming Li, Jianghui Xin, Weiyan Shang, Shen Huan,
Wenqing Xiu. "The algorithm of obstacle avoidance
based on improved fuzzy neural networks fusion for ex-
ploration vehicle." WSEAS Transactions on Systems and
Control, vol. 3, iss. 4, pp 140-150, March 2009.

[6]iii Terence D. Sanger. "Optimal Unsupervised Learning in a
Single-Layer Linear Feedforward Neural Network."
Neural Networks, vol. 2, pp 459-473, 1989.

[7] i Hieu Trung Huynh, Yonggwan Won. "Online training for
single hidden-layer feedforward neural networks using
RLS-ELM." IEEE International Symposium on Computa-
tional Intelligence in Robotics and Automation, pp 469-

International Journal of Scientific & Engineering Research Volume 2, Issue 10, October-2011 10
ISSN 2229-5518

IJSER © 2011
http://www.ijser.org

473, December 15-18 2009.
[8] Shumeet Baluja. "Evolution of an Artificial Neural Net-

work Based Autonomous Land Vehicle Controller." IEEE
Transactions on Systems, Man, and Cybernetics - Part B:
Cybernetics, vol. 26, iss. 3, pp 450-463, June 1996.

[9]iii Dean A. Pomerleau. "Efficient Training of Artificial Neur-
al Networks for Autonomous Navigation." Neural Com-
putation, vol.3, iss. 1, pp 88-97, Spring 1991.

[10] Kazuyuki Hara, Kenji Nakayama. "Selection of Minimum
Training Data for Generalization and On-line Training by
Multilayer Neural Networks." IEEE International Confe-
rence on Neural Networks, vol. 1, pp 436-441, June 3-6
1996.

[11]iiBernd Freisleben, Thomas Kunkelmann. "Combining
Fuzzy Logic and Neural Networks to Control an Auto-
nomous Vehicle." Second IEEE International Conference
on Fuzzy Systems, vol. 1, pp 321-326, 1993.

[12] G. Cybenko. ‚Approximation by Superpositions of a Sig-
moidal Function.‛ Mathematics of Control, Signals and
Systems, vol. 2, pp 303-314, 1989.

 

