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Abstract— Artificial neural networks are massively paralleled distributed computation and fast convergence and can be considered as an 
efficient method to solve real-time optimization problems. In this paper, we propose reference point based neural network algorithm for 
solving fuzzy multiobjective optimization  problems MOOP. The target is to identify the Pareto-optimal region closest to the reference 
points.  Our approach has two characteristic features. Firstly, fuzzy multiobjective optimization problem (F-MOOP) has been transformed to 
crisp multiobjective optimization problem (C-MOOP) by means of Alpha-cut. Secondly a neural networks based reference point algorithm is 
implemented to solve C-MOOP in such a way that they integrate the decision maker DM early in the optimization process instead of 
leaving him/her alone with the final choice of one solution among the whole Pareto optimal set. Such procedures will provide the DM with a 
set of solutions near her/his preference so that a better and a more reliable decision can be made. Simulation runs on engineering 
application problems demonstrate their usefulness in practice and show another use of a neural network methodology in allowing the DM 
to solve multiobjective optimization problems better and with more confidence. 

Index Terms— Neural network; Reference point; Fuzzy numbers. 

——————————      —————————— 

1 INTRODUCTION                                                                     
 ulti-objective optimization is the process of simultane-
ously optimizing two or more conflicting objectives 
subject to certain constraints. In many real world prob-

lems, there are situations where multiple objectives may be 
more appropriate rather than considering single objective. 
However, in such cases emphasis is on efficient solutions, 
which are optimal in a certain multiobjective sense[1-11].  The 
classical interactive multiobjective optimization methods de-
mand the decision-makers to suggest a reference direction or 
reference points or other clues which result in a preferred set 
of solutions on the Pareto-optimal front. In these classical ap-
proaches, based on such clues, a single objective optimization 
problem is usually formed and a single solution is found. A 
single solution does not provide a good idea of the properties 
of solutions near the desired region of the front. By providing 
a clue, the DM is not usually looking for a single solution, ra 
ther she/he is interested in knowing the properties of solu-
tions which correspond to the optimum and near-optimum 
solutions respecting the clue[1,12]. We here argue that instead 
of finding a single solution near the region of interest, if a 
number of solutions in the region of interest are found, the 

decision-maker will be able to make a better and more reliable 
decision. Moreover, if multiple such regions of interest can be 
found simultaneously, decision-makers can make a more ef-
fective and parallel search towards finding an ultimate pre-
ferred solution.  

The classical reference point approaches will find a solu-
tion depending on the chosen weight vector and is therefore 
subjective. Moreover, the single solution is specific to the cho-
sen weight vector and does not provide any information about 
how the solution would change with a slight change in the 
weight vector. To find a solution for another weight vector, a 
new achievement scalarizing problem needs to be formed 
again and solved. Moreover, despite some modifications [1], 
the reference point approach works with only one reference 
point at a time. However, the decision maker may be interest-
ed in exploring the preferred regions of Pareto-optimality for 
multiple reference points simultaneously. In the context of 
finding a preferred set of solutions, instead of the entire Pare-
to-optimal set, quite a few studies have been made in the past. 
The approach by Deb [13] was motivated by the goal pro-
gramming idea, and required the DM to specify a goal or an 
aspiration level for each objective. Based on that information, 
Deb modified his NSGA approach to find a set of solutions 
which are closest to the supplied goal point, if the goal point is 
an infeasible solution and find the solutions which correspond 
to the supplied goal objective vector, if it is a feasible one. The 
method did not care finding the Pareto optimal solutions cor-
responding to the multiobjective optimization problem, rather 
attempted to find solutions satisfying the supplied goals. 
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Recently, neural networks (NNs) have become widely used 

tools in many fields such as decision support tool, pattern 
recognition and secure communication [14-18]. Neural Net-
works is well-known as one of powerful computing systems to 
solve complex optimization problems. Due to the massive 
computing unit-neurons and parallel mechanism of neural 
network, large-scale optimization problem  can be solved effi-
ciently. Many neural network for solving constraint optimiza-
tion problems can be found in [19-21]. With the above princi-
ples of reference point approaches and difficulties with the 
classical methods, we propose a reference point based on neu-
ral networks, by which a set of Pareto-optimal solutions near a 
supplied set of reference points will be found, thereby elimi-
nating the need of any weight vector and the need of applying 
the method again and again. Instead of finding a single solu-
tion corresponding to a particular weight vector, the proposed 
procedure will attempt to a find a set of solutions in the 
neighborhood of the corresponding Pareto-optimal solution, 
so that the DM can have a better idea of the region rather than 
a single solution.  

In this paper, an attempt is made to solve Fuzzy Multi-
objective optimization with fuzzy parameters.  Based on Al-
pha concept [22,23], F-MOOP can be transformed to crisp mul-
tiobjective optimization problem (C-MOOP) at certain degree 
of α (α-cut level). Also, we combine one such preference-based 
strategy with a neural network methodology and demonstrate 
how, instead of one solution, a preferred set of solutions near 
the reference points can be found parallel. Such procedures 
will provide the decision-maker with a set of solutions near 
her/his preference so that a better and a more reliable decision 
can be made.  

2- FUZZY MULTIOBJECTIVE OPTIMIZATION 
 

Detailed A Multi-objective Optimization Problem (MOP) can 
be defined as determining a vector of variables within a feasi-
ble region to minimize a vector of objective functions that 
usually conflict with each other. The following fuzzy vector 
minimization problem (FVMP) involving fuzzy parameters in 
the objective functions and constraints such a problem takes 
the form: 

{ }1 2  f ( , ), ( , ),....., ( , )
 to g( , ) 0

mMin X a f X a f X a
subject X a ≤

  


 

where 1f ( , )X a  is the ith objective function; and g( , )X a is con-
straint vector, X is vector of decision variables;  and 

1 2( , ,.... )na a a a=     represented a vector of fuzzy parameters in the 
problem. Fuzzy parameters are assumed to be characterized as 
the fuzzy numbers. The real fuzzy numbers a form a convex 
continuous fuzzy subset of the real line whose membership 
function ( )a aµ  is defined by: 

1) a continuous mapping from 1R to the closed interval 
[0,1]; 

2) ( ) 0a aµ =  for all 1( , ];a a∈ −∞  
3) strictly increasing on 1 2[ , ]a a ; 
4) ( ) 1a aµ = for all 2 3[ , ]a a a∈ ; 

5) strictly decreasing on 3 4[ , ]a a ; 
6) ( ) 0a aµ =  for all 4[ , );a a∈ +∞  

Assume that a in the FM-RAP are fuzzy numbers whose 
membership functions are ( )a aµ  . 
Definition 1. (α-level set). The α-level set or α-cut of the fuzzy 
numbers a is defined as the ordinary set ( )L aa  for which the 
degree of their membership functions exceeds the lev-
el [ ]0,1a ∈ : 

( ) { | ( ) }.aL a a aa µ a= ≥  
For a certain degree α, the (FM-RAP) can be represented as a 
nonfuzzy a -VMP as follows:  

{ }1 2

1 2 1 2

  ( , ), ( , ),....., ( , )
  ( , ) 0

( , ,... ),  ( , ,...., )

                                                                         

m

n n

i i i

Min f X a f X a f X a
subject to g X a
X x x x a a a a

L a Ua a

≤
= =

≤≤

 

Where constraint i i iL a Ua a≤≤ gives the lower and upper 
bound for the parameters ia  
Definition 2. (α–Pareto optimal solution). *x X∈ is said to be 
an α–Pareto optimal solution to the (α-VMP), if and only if 
there does not exist another  x X∈ , ( )a L aa∈  such that 

* *( , ) ( , ), 1,2,.., ,i if x a f x a i k≥ =  with strictly inequality holding for 
at least one i, where the corresponding values of parameters 

*
ia are called α-level optimal parameters. 

3- REFERENCE POINT BASED NEURAL NETWORK 
ALGORITHM 

For papers In this section, a framework for the proposed ap-
proach that involves two phases was presented. The first one 
transforms the fuzzy multiobjective optimization problem (F-
MOOP) to the crisp multiobjective optimization (C-MOOP)  
by means of Alpha-cut, while the other phase employs a refer-
ence point based on neural networks algorithm to solve the 
crisp optimization problem.  
Phase I: 
Step0: Formulate fuzzy multiobjective optimization problem 

{ }1 2  ( , ), ( , ),....., ( , )
  ( , ) 0

mMin f X a f X a f X a
subject to g X a ≤

  


 

where 1f ( , )X a  is the ith objective function; and g( , )X a is con-
straint vector, X is vector of decision variables;  and 

1 2( , ,.... )na a a a=     represented a vector of fuzzy parameters in the 
problem 
Step1: Transform fuzzy multiobjective optimization problem 
into crisp multiobjective optimization problem using Alpha-
Level cut. 

{ }1 2

1 2 1 2

  ( , ), ( , ),....., ( , )
  ( , ) 0

( , ,... ),  ( , ,...., )

                                    

m

n n

i i i

Min f X a f X a f X a
subject to g X a
X x x x a a a a

L a Ua a

≤
= =

≤≤

 

Phase2: 
Step2: Creating an achievement scalarizing  problem using 
preferred reference point: Minimize and maximize the objec-
tive functions individually in the feasible region, and these 
information must given to the DM, the DM suggest preferred 
reference point, the reference point is a feasible or infeasible 
point in the objective space.  When decision making is empha-
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sized, the objective of solving a multi-objective optimization 
problem is referred to supporting a decision maker in finding 
the most preferred Pareto optimal solution according to 
his/her subjective preferences.  The underlying assumption is 
that one solution to the problem must be identified to be im-
plemented in practice. Here, a human decision maker (DM) 
plays an important role. The DM is expected to be an expert in 
the problem domain. The reference point is used to derive 
achievement scalarizing functions as follows:  
 Given a reference point z  for an M-objective optimization 
problem of minimizing 1 2( ), ( ),....., ( )mf X f X f X with X S∈  S, the 
following single-objective optimization problem is solved for 
this purpose: 

( )
1/m

i
i=1

  w ( )

 to X S

p
p

i iMinimize f x z

subject

 
− 

 
∈

∑  

If p = 1, the sum of weighted deviations is minimized (and the 
problem to be solved is equal to the weighting method  except 
a constant). If p = 2, we have a method of least squares. The 
proposed reference point approach discussed above, will find 
a solution depending on the chosen weight vector and is 
therefore subjective. Moreover, the single solution is specific to 
the chosen weight vector. To find a solution for another 
weight vector, a new achievement scalarizing problem needs 
to be formed again and solved. To make the procedure inter-
active and useful in practice, Wierzbicki [24] suggested a pro-
cedure in which the obtained solution z′ is used to create M 
new reference points, as follows: 

( ) ( )( ).j jz z z z e′= + − , 
              where ( )je is the j-th coordinate direction vector.  
 
Step3: This step is a neural network phase [25] for solving 
convex nonlinear programming which formulated in the pre-
vious step. The distinguishing features of the proposed net-
work are that the primal and dual problems can be solved 
simultaneously. The interested reader is referred to [25] 
where, all necessary and sufficient optimality conditions are 
incorporated, and no penalty parameter is involved. Also, 
based on Lyapunov, LaSalle and set stability theories,  Chen K. 
z. [25] prove strictly an important theoretical result that, for an 
arbitrary initial point, the trajectory of the proposed network 
does converge to the set of its equilibrium points, regardless of 
whether a convex nonlinear programming problem has 
unique or infinitely many optimal solutions.  
I- Let the following be a general convex Nonlinear Program-
ming (CNLP) problem: 

i

CNLP
          ( ) ,  
         s.t     g ( ) 0, 1,2,.....,

          , 1,2,...., ( )

n

T
i j j

Min f x x R
x i m

h a x b j p p n

∈
≥ =

= − = <

 

      where ( )f x  and ( )ig x , (i=1,2,…, m ) are convex functions. 
II-  According to the result in Mangasarian [26], the dual prob-
lem DNLP of CNLP is as follows:  

, ,

x

max  > ( , , ) ,  

DNLP s.t     ( , , ) 0
       0

n

x
L x x R

L x
λ µ

λ µ

λ µ
λ

 ∈
 ∇ =
 ≥

 

Where  1 2( , ,..., )T
mλ λ λ λ= , 1 2( , ,..., )T

pµ µ µ µ=  

1 1

x
1 1

( , , ) ( ) ( ) ( ) ( ),

( , , ) ( ) ( ) ( )

pm

i i j j
i j

pm

i i j j
i j

L x f x g x h x L z

L x f x g x h x

λ µ λ µ

λ µ λ µ

= =

= =

= − − ≡

∇ = ∇ − ∇ − ∇

∑ ∑

∑ ∑
 

III- Parameter Initialization, Let t=0. Arbitrary choose initial 
vector n( ) Rx t ∈ , m(t) Rλ ∈ , p(t) Rµ ∈ , 0t∆ > ( )0.0001t∆ =   and 
error 

910ε −= . 
IV-  Computation of gradient: 

2

( ) ( ) ( ). ( ) ( ) [ ( ) ( ) ]

( ) ( ) ( )

( ) ( ) ( ). ( ) ( ) ( ) [ ]
( ) ( ) ( )

T T T
x

T
xx x

T
x

x

u t E z g x g x g x g x g x

L z L z A Ax b

v t E z g x g x g x L z
w t E z A L z

λ

µ

λ λ

λ λ λ

= ∇ = +∇ −

+∇ ∇ + −

= ∇ = −∇ ∇ + −

= ∇ = − ∇

 

V- States Updating : 
( ) ( ) . ( )x t t x t t u t+ ∆ = − ∆ , ( ) ( ) . ( )t t t t v tλ λ+ ∆ = − ∆ , 
( ) ( ) . ( )t t t t w tµ µ+ ∆ = − ∆  

VI- Calculation: 2 2 2

1 1 1
( ), ( ), ( ).

pn m

i j j
i j j

s u t r v t q w t
= = =

= = =∑ ∑ ∑  

VII- Stopping Rule: 
if ,s rε ε< <  and q ε< , then output ( ), ( ), ( )x t t t t t tλ µ+ ∆ + ∆ + ∆  
and draw the point 1 2( ), ( )x t t x t t+ ∆ + ∆  otherwise let t t t= + ∆  
and go to step IV. 

New Pareto optimal solutions are then found by forming 
new achievement scalarizing problems. If the decision-maker 
is not satisfied with any of these Pareto-optimal solutions, a 
new reference point is suggested and the above procedure is 
repeated. It is interesting to note that the reference point may 
be a feasible one or an infeasible point. If a reference point is 
feasible and is not a Pareto-optimal solution, the decision-
maker may then be interested in knowing solutions which are 
Pareto-optimal and close to the reference point. On the other 
hand, if the reference point is an infeasible one, the decision-
maker would be interested in finding Pareto-optimal solutions 
which are close to the supplied reference point. 

4- IMPLEMENTATION OF THE PROPOSED APPROACH   
A case study of engineering application (The Environmen-
tal/Economic Dispatch EED multiobjective problem) , was 
carried out to verify the feasibility and efficiency of the pro-
posed approach. EED seeks to simultaneously minimize both 
fuel cost and the emissions produced by power plants. Envi-
ronmental concerns on the effect of SO2 and NOX emissions 
produced by the fossil-fueled power plants led to the inclusion 
of minimization of emissions as an objective in the OPF formu-
lation. The economic emission load dispatch involves the sim-
ultaneous optimization of fuel cost and emission objec-
tives[4,5,8]. The deterministic problem is formulated as de-
scribed below. 
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2
1

1

2 2
2

1

1

min max

   ( ) ( ) $ /

  ( ) [10 ( ) exp( )] /

           . .        0,  

                                     1,

n

i i Gi i Gi
i

n

i i Gi i Gi i i Gi
i

n

Gi D Loss
i

Gi Gi Gi

Min f x a b P c P hr

Min f P P P ton hr

s t P P P

P P P i

a b γ x λ

=

−

=

=

= + +

⋅ = + + +

− − =

≤ ≤ =

∑

∑

∑

min max

min max

max

......,             
                                   1,......,
                                          1,......,
                       ,                 

Gi Gi Gi

i i i

n
Q Q Q i n
V V V i n
S S

≤ ≤ =
≤ ≤ =

≤            1,...., ,Linen=

 

Where  
1( )f x is The classical economic dispatch problem of finding the 

optimal combination of power generation, which minimizes 
the total fuel cost while satisfying the total required demand 

2 ( )f ⋅ is  The emission function can be presented as the sum of 
all types of emission considered, such as xNO , 2SO , thermal 
emission, etc., with suitable pricing or weighting on each pol-
lutant emitted. 

i

i i i

C: total fuel cost ($/hr),  C : is fuel cost of generator i
a ,b ,c : fuel cost coefficients of generator i,  

GiP : power generated (p.u)by generator i,
n: number of generator.  
Constraints: The optimization problem is bounded by the fol-
lowing constraints:  
Power balance constraint. The total power generated must 
supply the total load demand and the transmission losses. 

1
0

n

Gi D Loss
i

P P P
=

− − =∑
                                                          

Where DP : total load demand (p.u.), and  lossP : transmission 
losses (p.u.). 
The transmission losses are given by[27]: 

1 1
[ ( ) ( ]

n n

Loss ij i j i j ij i j i j
i i

P A P P Q Q B Q P P Q
= =

= + + −∑∑
                                     

Where ,    Q ,i Gi Di i Gi DiP P P Q Q= − = −

ij ijA cos( ),   B sin( )ij ij
i j i j

i j i j

R R
VV VV

δ δ δ δ= − = −  

n : number of buses 
ijR : series resistance 

connecting buses i and j 
iV  : voltage magnitude 

at bus i 

iδ  : voltage angle at bus i 
iP  : real power injection 

at bus i 
iQ  : reactive power injec-

tion at bus i 
Maximum and Minimum Limits Of Power Generation. The 
power generated GiP  by each generator is constrained be-
tween its minimum and maximum limits, i.e., 

min max min max

min max

,    ,  
   ,              1,......,

Gi Gi Gi Gi Gi Gi

i i i

P P P Q Q Q
V V V i n

≤ ≤ ≤ ≤
≤ ≤ =

 

where minGiP : minimum power generated, and    maxGiP : maxi-
mum power generated. 
• Security Constraints. For secure operation, the transmis-

sion line loading lS is restricted by its upper limit as 
max , 1,....,S S n≤ =    

Where n is the number of transmission line. 
For comparison purposes with the reported results, the system 
is considered as losses and the security constraint is released. 

The proposed approach has been applied to the standard IEEE 
30-bus 6-generator test system. The single-line diagram of this 
system is shown in figure 1 and the detailed data are given in 
[28-30].  

Table 1: Generator cost and emission coefficients 
  G1 G2 G3 G4 G5 G6 

Cost  a 10 10 20 10 20 10 
b 200 150 180 100 180 150 
c 100 120 40 60 40 100 
a  4.091 2.543 4.258 5.426 4.258 6.131 

Emission b  -5.554 -6.047 -5.094 -3.550 -5.094 -5.555 
γ  6.490 4.638 4.586 3.380 4.586 5.151 

ζ  2.0E-4 5.0E-4 1.0E-6 2.0E-3 1.0E-6 1.0E-5 

λ  2.857 3.333 8.000 2.000 8.000 6.667 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1: Single line diagram of IEEE 30-bus 6-generator test system 
The values of fuel cost and emission coefficients are given in 
Table 1. Naturally, these data (cost and emission) involve 
many controlled parameters whose possible values are vague 
and uncertain. Consequently each numerical value in the do-
main can be assigned a specific "grade of membership" where 
0 represents the smallest possible grade of membership, and 1 
is the largest possible grade of membership.  Thus fuzzy pa-
rameters can be represented by its membership grade ranging 
between 0 and 1. 
The fuzzy numbers shown in figure 2 have been obtained 
from interviewing DMs or from observing the instabilities in 
the global market and rate of prices fluctuations. The idea is to 
transform a problem with these fuzzy parameters to a crisp 
version using a -cut level. This membership function can re-
write as follows: 

 
1,

20 19 0.95

( )
2021 1.05

0        0.95   1.05

ij

jk ij
ij

ij

ij ij
ij

ij ij

a a
a a a a

a
a

a a a a
a

a a or a a

µ

=

 − ≤ ≤
= 
 − ≤ ≤



< >  
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Fig.2. Fuzzy numbers of the effectiveness of resource 

So, every fuzzy parameter ija
can be represented using the 

membership function. By using a -cut level, these fuzzy pa-
rameters can be transformed to a crisp one having upper and 

lower bounds
[ , ]L U

ij ija a
, which declared in figure 2. Conse-

quently, each a -cut level can be represented by the two end 
points of the alpha level. 

5- RESULTS AND DISCUSSION 
Here, the problem is how to determine the optimal power 

flow for considering the minimum cost and the minimum 
emission objectives simultaneously. In order to efficiently and 
effectively obtain the solution, the search for the optimal solu-
tion is carried out in two steps. Firstly transforming the fuzzy 
multiobjective optimization problem (F-MOOP) to the crisp 
multiobjective optimization (C-MOOP) by means of Alpha-
cut, In order to study the influence of fuzzy parameters on the 
obtained Pareto optimal solutions, all the range of the parame-
ter fluctuation were scanned, two bounds of Alpha value have 
been considered 0,1a = , and also we take some values be-
tween these bounds 0.2,0.4,0.6,0.8a = .  While the other phase 
employs a neural networks based reference point algorithm to 
solve C-MOOP, where the decision maker (DM) plays an im-
portant role. The DM is expected to be an expert in the prob-
lem domain and provide us with different preferred reference 
point for each case as in figures(3-8) .  A partial set of nondom-
inated solutions is obtained by exploring the optimal Pareto 
frontier using differenta cut level and certain preferred refer-
ence point. Graphical presentations of the experimental results 
are presented in figures (3-8) for six cases with different three 
preferred reference point. It is obvious from figures (3-8) that 
the results maintain the diversity and convergence for all a  
cut level. On the basis of the application, we can conclude that 
the proposed method can provide a sound optimal power 
flow by simultaneously considering multiobjective problem. 
On the basis of the application, we can conclude that the pro-
posed method can provide a sound optimal power flow by 
simultaneously considering multiobjective problem. 
 
6- CONCLUSIONS 
In this paper, we have addressed an important task of combin-
ing neural network methodologies with a classical reference 
point  approach to not find a single optimal solution, but to 
find a set of solutions near the desired region of decision-
maker’s interest. With a number of trade-off solutions in the 
region of interests we have argued that the decision-maker 

would be able to make a better and more reliable decision than 
with a single solution.  An attempt is made to solve Fuzzy 
Multiobjective optimization with fuzzy parameters.  Based on 
Alpha concept, F-MOOP can be transformed to crisp multi-
objective optimization problem (C-MOOP) at certain degree of 
α (α-cut level). Also, we combine one such preference-based 
strategy with a neural network methodology and demonstrate 
how, instead of one solution, a preferred set of solutions near 
the reference points can be found parallel. Such procedures 
will provide the decision-maker with a set of solutions near 
her/his preference so that a better and a more reliable decision 
can be made.  
The main features of the proposed algorithm could be summa-
rized as follows: 
 (a) The main crux of this paper is exploitation of  reference 
point base neural network procedure in finding more than one 
solutions not on the entire Pareto-optimal frontier, but in the 
regions of Pareto-optimality which are of interest to the DM. 
(b) With a number of trade-off solutions in the region of inter-
ests we have argued that the decision-maker would be able to 
make a better and more reliable decision than with a single 
solution 
(c)  Such methodology allows the DM to first make a higher-
level search of monitoring a region of interest on the Pareto-
optimal front, rather than using a single solution to focus on a 
particular solution. 
(d) Since there is instabilities in the global market, implications 
of global financial crisis and the rapid fluctuations of prices, 
for this reasons a fuzzy representation of economic emission 
load dispatch problem has been defined. 
(e)Eliminating the need of any weight vector and the need of 
applying the method again and again. 
(f)The trade-off  solutions in the obtained Pareto-optimal set 
are well distributed and have satisfactory diversity character-
istics. This is useful in giving a reasonable freedom in choos-
ing operating point  from the available finite alternative. 
(g) If a reference point is feasible and is not a Pareto-optimal 
solution, the decision-maker may then be interested in know-
ing solutions which are Pareto-optimal and close to the refer-
ence point. On the other hand, if the reference point is an in-
feasible one, the decision-maker would be interested in find-
ing Pareto-optimal solutions which are close to the supplied 
reference point. 
(h) On the basis of the application, we can conclude that the 
proposed method can provide a sound optimal power flow by 
simultaneously considering multiobjective problem. 
 
For future work, we intend to test the algorithm on more 
complex real-world applications. Also, conduct research on 
the parallel mechanism of multi-reference point algorithms 
and multi-criteria decision group problems so that it improves 
the efficiency of such approaches which are very relevant for 
real- world scenarios. 
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Fig. 3. Pareto optimal set for a  cut level =0 
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Fig. 4. Pareto optimal set for a  cut level =0.2 
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Fig. 5. Pareto optimal set for a  cut level =0.4 
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Fig. 6. Pareto optimal set for a  cut level =0.6 
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Fig. 7. Pareto optimal set for a  cut level =0.8 
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Fig. 8. Pareto optimal set for a  cut level =1.0 
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