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Abstract — In this paper an efficient unconditionally stable numerical scheme is proposed for solving one dimensional quasi
linear Burgers’ equation. The proposed scheme comprises of semi discretization via method of lines for the space variable and
backward differentiation formula of order two (BDF2) for the time variable. The method of lines reduces the quasi linear partial
differential equation in to nonlinear ordinary differential equations at each node point. The resulting nonlinear system is solved
by an efficient stiff solver known as BDF2. BDF2 is an implicit solver which leads to nonlinear algebraic system and the
resulting nonlinear algebraic system is linearized via Taylor series. This linearization technique is easy to implement and the
accuracy of the method will remain unchanged. The linearized system of algebraic equations is solved using MATLAB 8.0. The
proposed scheme is implemented on test examples and it has been observed that the numerical solution lies very close to the
exact solution. Various numerical experiments have been carried out to demonstrate the performance of the method.

Index Terms — Burgers’ equation ; Kinematic viscosity; Method of lines; Backward Differentiation Formula; Taylor series.

__________ ¢ ————————
1 INTRODUCTION solution for this equation does not exist. Hence
several scientists and mathematicians are
In this paper, we ciisider the BRiasilgggar one interested in finding its numerical solution. So
dimensional Burgers’ equation far, various numerical methods have been
developed such as, finite element method

u, +uu, =vu,,x €|01jandt €|0, T
t X X [ ] [ ] method [15], Adomian's decomposition method
(1.1a) [1], Petro-Galerkin method [10], explicit and
' exact-explicit finite difference method [13], a
with initial condition mixed finite difference and boundary element
approach [3], B- spline finite element method
U(X,O)z UO(X), 0<x<l1, (1.1b) [14], Crank-Nicolson scheme [12], Douglas finite
difference scheme [16], meshless method of lines
and boundary conditions [9], pseudospectral method and Darvishi's
preconditioning [7] , lattice Boltzmann method
u(O,t): 0,0<t<T, (1'1C) [8] and Haar wavelet quasilinearization

approach [11].
u(L,t)=0, 0<t<T. (1.1d)

In this paper, quasi linear one-dimensional Burgers'
where v > 0 is the kinematic viscosity parameter equation is solved by Method of lines (MOL) in
and U, (X) is given sufficiently smooth function. which the spatial derivatives are approximated by
This equation is known as Burgers’ equation fizifte cliifference.s. The quasi .linear pfirtial
which is named after J. M. Burgers [5], [6] due to differential equ.atlon gefts Conv.erted mt(.) a no.nhrTear

. . . system of ordinary differential equations in time
his enormous contributions. It was introduced ble. Thi . ] ived bv Backward
by Bateman [2] in 1915. The nonlinear physical va.rla ¢ . .1s System 15 solved by Backwar

Y . . Differentiation Formula of order two (BDEF-2)
phenomena “turbulence” is modelled by this . . ] .
. , L . combined with Taylor series expansion. Taylor
equation. It's structure is similar to Navier- . o : .
, . . . series expansion is used for linearization and
Stoke’s equation and hence precise analytic
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linear algebraic equations are solved directly
thereby increasing the efficiency of the proposed
scheme. The proposed method has accuracy of

order two in space and time.
2 Numerical Scheme

The Numerical scheme proposed in this paper
comprises of Method of Lines (MOL), Backward
Differentiation Formula of order two (BDF2) and
Linearization technique. @ MOL is a semi-
discretization technique in which discretization
is done only along the spatial direction. We
divide the spatial direction into N +1 equally
spaced points with space interval Ax = 1/N.
Spatial derivatives are approximated using
central difference scheme as given below.

oUW g g
OX 2AX

52y (10.0)= Ui, 1 (t)— 2 (t)+ ui_4 (t) 12

2 (Ax)2

Substituting in Burgers’ equation Eq. (1.1), and
taking into account that uo(t)=0 and un~(t)=0 we
obtain a system of nonlinear ordinary differential
equations with initial condition

duit) _ (g (t)-20;(t)+ ui,l(t))—ui—(t)(um(t)— Ui4 (t))

dt h2 2h

ui(O): uo(xi),i =12,...N-1

where, u;(t) = u(x;t), this system of (N-1)
differential equations can be written in matrix

form as

(L—LtJ=F(u), (2.2)

where U (t)=[uy(t).....un_ (0] -

F is a nonlinear function of U with elements f;j given

as follows.

f; (ul""’uN—Dt) = Ui+1(11 — AU )_ U; (211 - /12Ui71)+ Ay,

2.3)

where i =1,2,..N -1

The system (2.2) is a nonlinear system of ordinary
differential equations which can be solved by
integrating in time variable. Divide the time
interval into M+1 equally spaced points with time
step At =1/M.
Backward Differentiation Formula of order two

For time integration we use

given below.

2.0.1 Backward Differentiation Formula of order
two (BDF-2)

oo = Ay Lyr 2aFUn ) n=2,..
3 3 3
(2.4)
the solution at first time level ie. U! is obtained
from BDF-1.

Backward Differentiation Formula of order one
(BDE-1)

U™ =U"+(AFU™t" ) n=04,..M —1

U0 is the initial condition and U®™ = [ui™,.... un1®™ ].
Since the system (2.3) is nonlinear, it require
solving a nonlinear algebraic equation at each time
level. This can be avoided by using the linearization
technique. Linearize by Taylor series

F(U (n+1)): F(U n)+ J'(:n)(U n+1 | (n))+ O(Atz),

(2.5)
where
ifl (n) ﬁ (n) o, (n)
ou, au, ouy
J'(:n): :

NG (n) (n)
Ny Ny Ny
ou, ou, ouy 4

is the Jacobian matrix at the nthtime level.
Substituting Eq. (2.5) in Eq. (2.4) we get,

U () Z%Um)_%u(nmr

2At[FU™)+ 30U D —y®)]
3
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( ZAthJ nﬂ{i ZAtJ'(:j

2aFU™) 1y

u (1) :[| _ﬂ‘] I(:”)J_l(i| _ﬂjl(:”)ju (n) 4

(,AJ()]WFU“ @ﬂw} 1y
3 3 3 3
(2.6)

is the Jacobian matrix at the nt time

(n)

where J¢

level. Hence the above scheme is linearized.
Unlike Newton’s method at each time step we
need only to solve linear algebraic equations Eq.
(2.6) which take less computation time.

3.NUMERICAL RESULTS AND DISCUSSION

Several test experiments were carried out to
show the efficiency and adaptability of the
proposed numerical scheme. We have compared
the computed solution with exact solution for
different values of kinematic viscosity v and at
different values of final time.

Test Problem Consider the Burgers’ Equation

u +uu, =vu,xe[01]andt€[0,T] (3.72)
with the initial condition

u(x,0)=sin(zx), 0<x<1, (3.7b)

and the homogeneous boundary conditions

u(0,t)=u(Lt)=0,0<t<T. (3.7¢)
The exact solution of the problem is

¥2,C, exp(— nzﬁzvt%sin(nnx)
Co+Y24C, exp(— nzﬂ'ZVt)COS(nﬂX)
(3.8a)

u(x,t)= 27y

where, C, = Eexp{—i[l—cos(m)]}dx,

(3.8b)

C, = Zjolexp{— % [1- cos(zzx)]} cos(nzx)dx,

(3.8¢)

TABLE 1
Comparison of the numerical solution with the
exact solution at different space points for test
problem at T =0.01 for v = 0.1 and At=0.0001.

X | Computed Solution Exact
Solution

N=20 N=40 N =280

0.1 10.29729 | 0.29727 | 0.29726 | 0.29726

0.2 10.56784 | 0.56779 | 0.56780 | 0.56777

0.3 |0.78667 | 0.78661 | 0.78662 | 0.78659

0.4 |0.93251 | 0.93246 | 0.93246 | 0.93244

0.5 1098974 | 0.98972 | 0.98972 | 0.98971

0.6 | 0.95034 | 0.95035 | 0.95035 | 0.95035

0.7 |0.81554 | 0.81557 | 0.81558 | 0.81558

0.8 |0.59673 | 0.59677 | 0.59679 | 0.59678

0.9 [ 031519 | 0.31519 | 0.31521 | 0.31520

TABLE 2
Comparison of the numerical solution with the exact
solution at different space points for test problem at

Ax =0.00833 and At =0.001.

v=0.00
X T Computed Exact Solution
Solution

0.25 01 0.56647 0.56633
0.3 0.39521 0.39503
0.5 0.30129 0.30115
05 01 0.94749 0.94741
0.3 0.74798 0.74771
0.5 0.58897 0.58870
0.75 01 0.86021 0.86013
0.3 0.96585 0.96567
0.5 0.83833 0.83803
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The Burgers’ equation has been solved both
analytically and numerically by the scheme
proposed in this paper. Table 1 shows
comparison between computed and exact
solution with different number of partitions on
X-axis for kinematic viscosity, v = 0.1. It is clear
that as number of partition refines, the
approximate solution lies closer to exact,
indicating the consistency of the proposed
scheme. In Table2, exact and computed solutions
are compared at different time levels T =
0.1,0.3,0.5 for kinematic viscosity, v = 0.01. Figure
1 shows that numerical solution agrees exactly
with analytic solution at each nodal points. The
physical behaviour of computed solution is
depicted in Figs. 2 and 3 through contour and
surface plots for different values of kinematic
viscosity v =0.1,0.05,0.01,0.005.

4 CONCLUSION

In this paper, Burgers’ equation has been solved
by semi discretization technique and backward
differentiation formula of order two (BDF2). This
scheme is tested on test example and numerical
solution have been compared with exact at
different times, for modest values of kinematic
viscosity. The numerical results shows excellent
agreement with exact which shows the accuracy
of the proposed scheme. Linearization technique
reduces the computational time as well as cost
making the present numerical scheme efficient
than the schemes in literature.
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