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Abstract – In this paper an efficient unconditionally stable numerical scheme is proposed for solving one dimensional quasi 
linear Burgers’ equation. The proposed scheme comprises of semi discretization via method of lines for the space variable and 
backward differentiation formula of order two (BDF2) for the time variable. The method of lines reduces the quasi linear partial 
differential equation in to nonlinear ordinary differential equations at each node point. The resulting nonlinear system is solved 
by an efficient stiff solver known as BDF2. BDF2 is an implicit solver which leads to nonlinear algebraic system and the 
resulting nonlinear algebraic system is linearized via Taylor series. This linearization technique is easy to implement and the 
accuracy of the method will remain unchanged. The linearized system of algebraic equations is solved using MATLAB 8.0. The 
proposed scheme is implemented on test examples and it has been observed that the numerical solution lies very close to the 
exact solution. Various numerical experiments have been carried out to demonstrate the performance of the method. 

Index Terms – Burgers’ equation ; Kinematic viscosity; Method of lines; Backward Differentiation Formula; Taylor series. 

——————————      —————————— 

1 INTRODUCTION 

In this paper, we consider the quasilinear one 
dimensional Burgers’ equation  

[ ] [ ]Ttxvuuuu xxxt ,0and1,0, ∈∈=+                  

                                                (1.1a) 

with initial condition  

( ) ( ) ,10,0, 0 ≤≤= xxuxu  (1.1b) 

and boundary conditions 

( ) ,0,0,0 Tttu ≤≤=  (1.1c) 

( ) .0,0,1 Tttu ≤≤=  (1.1d) 

where v > 0 is the kinematic viscosity parameter 

and ( )xu0  is given sufficiently smooth function.  

This equation is known as Burgers’ equation 
which is named after J. M. Burgers [5], [6] due to 
his enormous contributions.  It was introduced 
by Bateman [2] in 1915.  The nonlinear physical 
phenomena “turbulence” is modelled by this 
equation. It’s structure is similar to Navier-
Stoke’s equation and hence precise analytic 

solution for this equation does not exist. Hence 
several scientists and mathematicians are 
interested in finding its numerical solution. So 
far, various numerical methods have been 
developed such as, finite element method 
method [15], Adomian's decomposition method 
[1], Petro-Galerkin method [10], explicit and 
exact-explicit finite difference method [13], a 
mixed finite difference and boundary element 
approach [3], B- spline finite element method 
[14], Crank-Nicolson scheme [12], Douglas finite 
difference scheme [16], meshless method of lines 
[9], pseudospectral method and Darvishi's 
preconditioning [7] , lattice Boltzmann method 
[8] and Haar wavelet quasilinearization 
approach  [11] . 

In this paper, quasi linear one-dimensional Burgers' 
equation is solved by Method of lines (MOL) in 
which the spatial derivatives are approximated by 
finite differences. The quasi linear partial 
differential equation gets converted into a nonlinear 
system of ordinary differential equations in time 
variable. This system is solved by Backward 
Differentiation Formula of order two (BDF-2) 
combined with Taylor series expansion.  Taylor 
series expansion is used for linearization and 
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linear algebraic equations are solved directly 
thereby increasing the efficiency of the proposed 
scheme.  The proposed method has accuracy of 
order two in space and time.  

2 Numerical Scheme 

The Numerical scheme proposed in this paper 
comprises of Method of Lines (MOL), Backward 
Differentiation Formula of order two (BDF2) and 
Linearization technique.  MOL is a semi-
discretization technique in which discretization 
is done only along the spatial direction.  We 
divide the spatial direction into N +1 equally 
spaced points with space interval ∆𝑥 = 1 𝑁⁄ .  
Spatial derivatives are approximated using 
central difference scheme as given below.  
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Substituting in Burgers’ equation Eq. (1.1), and 
taking into account that u0(t)=0 and uN(t)=0 we 
obtain a system of nonlinear ordinary differential 
equations with initial condition  
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( ) ( ) 1,2,1,0 0 −== Nixuu ii   

where, 𝑢𝑖(𝑡) = 𝑢(𝑥𝑖 , 𝑡), this system of (N-1) 
differential equations can be written in matrix 
form as  

( )UF
dt

dU
= , (2.2) 

( ) 00 UU =  

where, ( ) ( ) ( )[ ] .,, 11
T

N tututU −=   

F is a nonlinear function of U with elements fj given 
as follows. 

( ) ( ) ( ) ,11112121111 2,,, −−+− +−−−= uuuuutuuf iiiiNi λλλλλ

                                                            (2.3) 

where 1,...2,1 −= Ni  

( ) ( )xx
v

∆
=

∆
=

2
1, 221 λλ  

The system (2.2) is a nonlinear system of ordinary 
differential equations which can be solved by 
integrating in time variable. Divide the time 
interval into M+1 equally spaced points with time 
step ∆𝑡 = 1 𝑀⁄ .   For time integration we use 
Backward Differentiation Formula of order two 
given below. 

2.0.1 Backward Differentiation Formula of order 
two (BDF-2)  
 

( ) ( ) ( ) MntUFtUUU nnnnn ,...2,,
3
2

3
1

3
4 1111 =∆+−= ++−+

 (2.4) 
the solution at first time level i.e. U1 is obtained 
from BDF-1. 
Backward Differentiation Formula of order one 
(BDF-1) 
 

( ) ( ) 1,...1,0,, 111 −=∆+= +++ MntUFtUU nnnn

 
U0  is  the initial condition and U(n) = [u1(n),.... un-1(n) ]. 
 Since the system (2.3) is nonlinear, it require 
solving a nonlinear algebraic equation at each time 
level. This can be avoided by using the linearization 
technique. Linearize by Taylor series 
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 (2.5) 
where  
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is the Jacobian matrix at the nthtime level.  
Substituting Eq. (2.5) in Eq. (2.4) we get,  
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                                                                 (2.6) 
where ( )n

FJ  is the Jacobian matrix at the nth time 
level.  Hence the above scheme is linearized.  
Unlike Newton’s method at each time step we 
need only to solve linear algebraic equations Eq. 
(2.6) which take less computation time.  
 
3.NUMERICAL RESULTS AND DISCUSSION  
 
Several test experiments were carried out to 
show the efficiency and adaptability of the 
proposed numerical scheme. We have compared 
the computed solution with exact solution for 
different values of kinematic viscosity v and at 
different values of final time.  
 
Test Problem Consider the Burgers’ Equation  

[ ] [ ]Ttxvuuuu xxxt ,0and1,0, ∈∈=+  (3.7a) 
with the initial condition  

( ) ( ) ,10,sin0, ≤≤= xxxu π  (3.7b) 
and the homogeneous boundary conditions  

( ) ( ) .0,0,1,0 Tttutu ≤≤==  (3.7c) 

The exact solution of the problem is  
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TABLE 1 

Comparison of the numerical solution with the 
exact solution at different space points for test 
problem at T =0.01 for v = 0.1 and ∆t=0.0001. 

 
x Computed Solution Exact 

Solution  
Ν = 20 Ν = 40 Ν = 80  

0.1 0.29729 0.29727 0.29726 0.29726 
0.2 0.56784 0.56779 0.56780 0.56777 
0.3 0.78667 0.78661 0.78662 0.78659 
0.4 0.93251 0.93246 0.93246 0.93244 
0.5 0.98974 0.98972 0.98972 0.98971 
0.6 0.95034 0.95035 0.95035 0.95035 
0.7 0.81554 0.81557 0.81558 0.81558 
0.8 0.59673 0.59677 0.59679 0.59678 
0.9 0.31519 0.31519 0.31521 0.31520 
 
TABLE 2 

Comparison of the numerical solution with the exact 

solution at different space points for test problem at  

 v = 0.01, ∆x = 0.00833 and ∆t = 0.001. 

x T Computed 

Solution 

Exact Solution 

0.25 0.1 

0.3 

0.5 

0.56647 

0.39521 

0.30129 

0.56633 

0.39503 

0.30115 

0.5 0.1 

0.3 

0.5 

0.94749 

0.74798 

0.58897 

0.94741 

0.74771 

0.58870 

0.75 0.1 

0.3 

0.5 

0.86021 

0.96585 

0.83833 

0.86013 

0.96567 

0.83803 
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Fig a 

 

Fig b 

 

Fig. 1. Numerical solution of test problem for ∆x = 

0.0125 and different values of v and ∆t, (a) v = 0.1, ∆t = 

0.0001, T = 0.01 (b) v = 0.01, ∆t = 0.001, T = 0.1. 

Fig a 

 

 

 

 

Fig b  

 

Fig. 2. Physical behaviour of numerical solutions of 
test problem at different times in 3D for ∆x = 
0.0125, (a) v = 0.05, ∆t = 0.001, T = 0.01 (b) v = 
0.0005, ∆t = 0.001, T = 0.1. 

Fig. a 

 

Fig. b 

 

Fig.3. Physical behaviour of numerical solutions of test 
problem in contour plot for ∆x = 0.0125, (a) v = 0.1, ∆t = 
0.001,T = 2 (b) v = 0.01, ∆t = 0.001,T = 2. 
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The Burgers’ equation has been solved both 
analytically and numerically by the scheme 
proposed in this paper. Table 1 shows 
comparison between computed and exact 
solution with different number of partitions on 
X-axis for kinematic viscosity, v = 0.1. It is clear 
that as number of partition refines, the 
approximate solution lies closer to exact, 
indicating the consistency of the proposed 
scheme. In Table2, exact and computed solutions 
are compared at different time levels T = 
0.1,0.3,0.5 for kinematic viscosity, v = 0.01. Figure 
1 shows that numerical solution agrees exactly 
with analytic solution at each nodal points. The 
physical behaviour of computed solution is 
depicted in Figs. 2 and 3 through contour and 
surface plots for different values of kinematic 
viscosity v = 0.1,0.05,0.01,0.005. 
 
4 CONCLUSION 
In this paper, Burgers’ equation has been solved 
by semi discretization technique and backward 
differentiation formula of order two (BDF2). This 
scheme is tested on test example and numerical 
solution have been compared with exact at 
different times, for modest values of kinematic 
viscosity. The numerical results shows excellent 
agreement with exact which shows the accuracy 
of the proposed scheme. Linearization technique 
reduces the computational time as well as cost 
making the present numerical scheme efficient 
than the schemes in literature. 
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