
International Journal of Scientific & Engineering Research, Volume 4, Issue 8, August-2013 1945
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Motion detection algorithm based on
Background Subtraction

Shivam Shah1, Vivek Adhikari2, Vineet Pokhriyal3

1Research Scholar, Uttaranchal Institute of Technology, UTU
2Research Scholar, Uttaranchal Institute of Technology, UTU
3Research Scholar, Uttaranchal Institute of Technology, UTU

Abstract: This paper presents an algorithm to detect moving objects within a scene captured by a stationary camera. This algorithm is based on
background subtraction, where we build a background model of the scene and compare each frame of the scene with the background model to
estimate the amount of motion i.e. difference between the background model and the frame. At each step we update our background model by
moving it closer to the current frame. This allows us to effectively estimate the regions of motion in the captured scene. This approach has huge
advantage in terms of effectiveness over previously used frame subtraction method. It runs with minimized cost in memory and relatively less
computational complexity.

Keywords: Background model, Background Subtraction, Background Updation, Computer Vision, Motion detection, Moving Object Detection, Motion Detection
Algorithm

1 INTRODUCTION

An important stream of research within Computer Vision
that has gained a lot of importance is Motion Detection.
Motion detection[1] is the process of detecting a change in
position of an object relative to its surroundings or the
change in the surroundings relative to an object. The
growing interest in detecting changes within a video,
understanding and interpreting human gestures in a
video is strongly motivated by recent improvements in
Computer Vision and the availability of low-cost
hardware such as video camera.

Detecting moving objects in an image sequence is a basic,
and fundamental task for many computer vision
applications such as video surveillance, traffic
monitoring, human gesture recognition. At present
method used in moving object detection are mainly the
frame subtraction method (brief working of which is
presented in a later section), background subtraction
method (later discussed in detail), background
estimation[2] method and the optical flow method.

Any motion detection system that is based on the above
mentioned techniques needs to handle a number of
critical situations. These situations induce motion in
irrelevant areas inside the scene. Proper handling and
management of these situations is required if we want to
accomplish a near exact motion detection system. These
critical situations arise in many different forms such as:

1. Noise in the image, due to poor quality
image\video source.

2. Small movements of non-static objects such as
tree branches and bushes blowing in the wind.

3. Variations in lighting conditions in different
parts of the same object.

4. Gradual and sudden changes in the light
conditions.

5. Objects moving so fast that they are captured in
only a single frame of the whole scene.

Some of these situations require pre-processing of the
frame, such as reduction of noise and lighting
adjustment. However it adds up to the computation that
needs to be done to detect moving objects.

The system designed for detecting motion must also keep
working without any human interference for a long
amount of time. In order to achieve it, the system should
adapt to gradual and sudden illumination or light
changes and also new objects settling in the scene e.g. A
new car (new object) being parked in a parking area
(scene). This means that the background should be
temporally adaptive.

Additionally, the system should also discard irrelevant
motion and slight oscillations of the camera e.g. the
camera mount shakes due to turbulence caused by the
wind. This means that there must be a local estimation for
the confidence in the background value.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 8, August-2013 1946
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

A video[3]\scene is made up of a sequence of images
called frames. These frames capture the static view that is
being observed by the camera. Viewing these frames at
high speed gives the illusion of motion. Frame rate, the
number of frames per unit of time of video, ranges from 6
frames per second (frame/s) to 120 or more frame/s. The
minimum frame rate to achieve a comfortable illusion of a
moving image is about 16 frames per second. The device
used here for motion detection take 30 frames/s.

Since a video consists of a sequence of images, an in-
depth knowledge of image is required to successfully
manipulate it. An image[4] is a pictorial representation of a
physical object. An image, or more precisely a Raster
Image, have a finite set of digital values, called picture
elements or pixels. It contains a fixed number of rows and
columns of pixels. Pixels are the smallest individual
element in an image, holding quantized values that
represent the brightness of a given color at any specific
point. The size of a pixel, that represents the amount of
color that can be displayed, may vary from 8 bits to 64
bits. Therefore, a 24 bits per pixel (bpp) image consists a
pixel size of 24 bits. Presently, 32 bpp images are used
widely where a pixel is of 32 bits (8 bit each for alpha,
red, green and blue). The device being used generates 24
bpp (8 bit each for red, green and blue) images. There is
no alpha channel since it presents some problems in
manipulation which is discussed later.

2 FRAME SUBTRACTION APPROACH

As mentioned earlier, the Frame Subtraction method is
the most used easy approach for motion detection. In this
method, the presence of moving objects is determined by
comparing 2 successive frames. The previous frame is
compared and then subtracted with the current frame.
This allows us to obtain only those areas in the scene
where motion is detected. The calculation is simple and it
has a wide adaptability.

2.1 Algorithm

We have 2 images:-

currentFrame – A grayscale image of the current frame of
the scene,
previousFrame – A grayscale image of the previous frame
of the scene, and
threshold – The threshold that determine whether the
movement is motion or not.

1. Calculate the Difference between the currentFrame
and previousFrame

2. Using the threshold value as a Threshold for the image
calculated in (1), we calculate the areas which have
changed in the currentFrame from the previousFrame.

3. Resulting image from (2) is then highlighted in the
currentFrame to indicate areas of motion.

The above algorithm forms a basis of background
subtraction method. We modify the above algorithm for
space and time to achieve a more complex but efficient
motion detection algorithm.

3 BACKGROUND SUBTRACTION APPROACH

This approach builds up on the foundation set by the
frame subtraction approach. The principle of this method
is to build a model of the static scene (i.e. without moving
objects) called background, and then compare every
frame of the sequence to this background in order to
discriminate the regions of motion, called foreground (the
moving objects). A procedural view of how this method
works is shown in Fig. 1

This approach requires image manipulation to
differentiate the foreground from the background. In
general, the following manipulations are required.
Assuming we have 2 images X and Y, we are
manipulating these images to obtain image Z.

3.1 Difference

The difference] of two images of the same size and pixel
format, produces an image, where each pixel equals to
absolute difference between corresponding pixels from
provided images.

For each pixel (x) in Image Z:
red = │ X.getPixel(x).R - Y.getPixel(x).R │
green = │ X.getPixel(x).G - Y.getPixel(x).G │
blue = │ X.getPixel(x).B - Y.getPixel(x).B │

Z.setPixel(x) = Color(red, green, blue)

The reason why 32bpp images are not used is because if
images with alpha channel are used, visualization of the
result image may seem a bit unexpected – perhaps
nothing will be seen (in the case if image is displayed
according to its alpha channel)., the reason being the fact
that after differencing the entire alpha channel will be
zeroed (zero difference between alpha channels), what
means that the resulting image will be 100% transparent.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 8, August-2013 1947
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

3.2 Threshold

It does image binarization using specified threshold
value. All pixels with intensities equal or higher than
threshold value are converted to white pixels. All other
pixels with intensities below threshold value are
converted to black pixels.

For each pixel (x) in Image Z:
If X.getPixel(x).Intensity > threshold

Z.setPixel(x) = White
Else

Z.setPixel(x) = Black

3.3 Algorithm

We have the following images:-

backgroundFrame – A grayscale image of the first image of
the scene\video.
currentFrame – A grayscale image of the current frame of
the scene.
threshold – The threshold that determine whether the
movement is motion or not.

1. We Calculate the Difference between the
backgroundFrame and the currentFrame. The
resulting image is shown in Fig. 2.a

For each pixel (x)
I(x) -> │ backgroundFrame(x)

– currentFrame(x) │

The image that we obtain is the one where all the pixels
having same values (i.e. pixels that don’t change) are
zeroed out, and all the pixels that change (i.e. regions of
motion) are highlighted. The work doesn’t ends here, the
resulting image will contain both relevant and irrelevant
areas of motion. Now we have to filter those out.

2. Using the threshold value as a Threshold for the image
calculated in (1), we filter the areas of motion to
obtain Fig. 2.b
For each pixel(x)
 If I(x) > threshold
 I(x) -> White
 Else
 I(x) -> Black

By using an appropriate threshold value, we can filter out
and neglect irrelevant areas i.e. movement of tree leaves
in wind etc.

3. Resulting image from (2) is then highlighted in the
currentFrame to indicate areas of motion as shown in
Fig. 2.c

4. The last step is updating the background. This is done
by moving the background to the current frame by a
specified amount. If we replace our background with
the currentFrame, this method becomes frame
subtraction.

Updating the background is usually achieved by
morphing the background slightly toward the
currentFrame. The easiest form of morphing can be
achieved by combining the two images by taking
specified percent of pixels' intensities from the first image
and the rest from second image. The value background
percent value is set to 0.75.

For each pixel(x) in Image Z
Z.setPixel(x) =
 0.75 * background.getPixel(x) +

(1 - .75) * currentFrame.getPixel(x)

FIG 1. BACKGROUND SUBTRACTION PROCESS

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 8, August-2013 1948
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

FIG 2.A DIFFERENCE BETWEEN BACKGROUND AND THE
CURRENT FRAME

FIG 2.B RESULTING IMAGE AFTER APPLYING THRESHOLD FOR
MOTION

FIG 2.C AREAS OF MOTION BEING HIGHLIGHTED BY RED EDGES

4 CONCLUSIONS

The above algorithm was able to find near exact places of
motion. It worked effectively on many environments both
indoors and outdoors. The threshold value played an
important part in categorizing relevant and irrelevant
motion. Keeping the threshold value high allowed us to
neglect various irrelevant moving objects such as leaves
in the tree. However, if we kept it value too high, the
algorithm was not able to detect the blink of an eye also.
If we kept the threshold value low, we were able to detect

very slowly moving objects such as the movement of a
tie. Thus finding the critical threshold value satisfying the
requirement is also necessary.

The background initialization process used in this
algorithm is pretty straight forward and easy. This
required almost no initial computation (a little bit of noise
reduction, gamma and color correction was required).
Most background subtraction methods differ on how they
initialize the background model. Some methods are too
complex and require factoring the image into objects
using cascade classifiers and the determining which of
these objects are moveable and which are not. By
identifying these objects, the computation required in
subsequent phases may speed up but it requires the
algorithm to predict where the object can move to in the
next frame. As the scene proceeds, the prediction get
narrowed down and hence the foreground object and its
motion is detected.

Another approach is using background estimation to
generate a near exact background and then find areas of
motion.

There are various places where this algorithm can be
optimized for computation. One instance of optimisation
is the fact that the pixels are repeated inside the image,
e.g. if we encounter a blue pixel, it can be assumed that
its’ neighbours will also be blue (to some extent). Hence
we can replace the value of the neighbouring pixels with
the one we just manipulated. This will reduce each pixel
computation and speed up processing. The source code of
the project is available online[5] for review and further
optimizations.

5 REFERENCES

1. From Wikipedia,
http://en.wikipedia.org/wiki/Motion_detection

2. A robust and computationally efficient motion detection
algorithm based on ∑-∆ background estimation by A.
Manzanera and J. C. Richefeu. http://www.ensta-
paristech.fr/~manzaner/Publis/icvgip04.pdf

3. From Wikipedia, https://en.wikipedia.org/wiki/Video
4. From Wikipedia,

http://en.wikipedia.org/wiki/Digital_image
5. Github project, Motionizer,

https://github.com/raze1392/Motionizer

IJSER

http://www.ijser.org/
http://en.wikipedia.org/wiki/Motion_detection
http://www.ensta-paristech.fr/~manzaner/Publis/icvgip04.pdf
http://www.ensta-paristech.fr/~manzaner/Publis/icvgip04.pdf
https://en.wikipedia.org/wiki/Video
http://en.wikipedia.org/wiki/Digital_image
https://github.com/raze1392/Motionizer

	1 Introduction
	2 Frame Subtraction Approach
	3 Background Subtraction Approach
	3.1 Difference

	4 Conclusions
	5 References

