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Modelling the performance of two-channeled 
haemodialyser with single rectangular membrane 

– Asymptotics and numerical approximation 
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Abstract— The efficiency of a two channeled haemodialyser with a rectangular membrane have been investigated; with blood 

flow considered incompressible, unidirectionally constant and assumed to be flowing in counter-clockwise direction with the 
dialysate. The smallest dimensionless parameter   was identified and technique of asymptotic expansions used to consider a 

problem for the resulting 2D-convection-diffusion system (CDs) in the limit of 0  . The CDs was solved numerically using 

MATLAB’s pdepe while eigenvalues found in transcendental equation were obtained using MATLAB’s fsolve. Comparison 

between the numerical and analytic solutions were considered with sensitivity analysis of diffusion coefficient b  and membrane 

coefficient b  studied. 
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——————————      —————————— 
                                                               

1. Introduction 

 

Dialysis is an artificial process of removing excess waste from 
the body due to kidney dysfunction. This dysfunction results 
in an imbalance of body’s water and minerals leading to 
accumulation of waste which could have been excreted 
through the kidney. The frequenting of dialysis could be a 
temporal or permanent measure depending on the severity of 
the kidney disease. 
Though there are two main types of dialysis; haemodialysis 
and peritoneal dialysis [1]. However, in this study, we have 
focused on haemodialysis which involves the removal of 
excess waste such as urea and creatinine by physical (external) 
processes of blood circulation though a haemodialyser. For the 
purpose of this discuss, the haemodialyser could be envisaged 
as a two-channeled device with single rectangular membrane. 
Here, blood is pumped extracorporeally through a channel of 
the haemodialyser partitioned into two-halves by a semi-
permeable membrane. This membrane has a known pore size 
distribution allowing molecules (such as urea and creatinine) 
below a certain size to pass through to the other half of the 
channel containing the dialysate by diffusion. 
The dialysate (probably an ionic salt solution) is used to 
provide the required large enough concentration difference to 
ensure mass transfer driven by differences in concentration on 
either side of the membrane. They are discarded alongside the 

removed toxic waste after leaving the haemodialyser. 
It is pertinent to note that blood and dialysate has been 
considered to be flowing in opposite sides of the channel in a 
counter-clockwise direction. This incredible choice was base 
on the fact that counter current design maximizes 

haemodialyser performance than concurrent design [2]. 
 

 
Fig. 1: Cross-section of a haemodialysis set up in a counter-

clockwise direction obtained from [1]. 
 
Though haemodialysis depends heavily on the processes of 
diffusion and convection, the amount of waste molecules 
removed depends on the magnitude of the concentration 
gradient, the distance traveled by the molecules along the 
channel and the area through which diffusion takes place [2]. 
It suffices to say that the performance of the haemodialyser 
depends heavily on these factors. 
Our objective is to develop a mathematical model capable of 
determining the efficiency of the haemodialyser i.e. to 
understand how best to maximize haemodialyser for optimal 
performance. It suffices to say that, we want to use a detailed 
asymptotic and numerical analysis to determine the efficiency 
of our device. 
 

2. Model Formulation 
 

Earlier we mentioned that for the purpose of this study, we 

have restricted to a case of two channeled device analogous to 
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the dialyser in Figure 1 with a single rectangular membrane 

between the channels. The device considered to be operating 

in a counter-clockwise direction with blood and dialysate on 

the opposite sides of the membrane. 

 
2.1 Model Assumptions 

1.0 The flow field is unidirectionally constant along the x -

axis. 

2.0 There is large enough concentration difference on both 

sides of the channel to allow for mass flux from blood to 

dialysate region only. 

3.0 The semi-permeable membrane made thin enough to allow 

for diffusion of molecules (such urea and creatinine) of a 

particular size pores. This is consistent with Fick’s law on 

diffusion. 

4.0 No significant diffusion taking place along the z - 

direction. 

5.0 The dialysate is far away from the membrane. This follows 

from the fact that the closer the concentration between the two 

regions, the longer the transit time [3]. 

6.0 Blood considered as an incompressible fluid.  

Now, consider two distinct regions b  and d  called the 

blood and dialysate domain respectively as can be envisaged 

from Fig. 1. Let  

= {( , , ) : 0 < < , 0 < < , 0 < < }b x y z x l y H z W R  

                  (2.1) 

= {( , , ) : 0 < < , < < 0, 0 < < }d x y z x l H y z W  R

                  (2.2) 

where l , H  and W  are length, height and width of the 

channel respectively. 
To address our objective, we introduce a basic reaction-
diffusion model to describe the convection along the channel 
and diffusion across the membrane. In other words, the 
working of a haemodialyser is governed by convection on 
both sides of the channel and diffusion involving mass 
transfer from region of higher concentration (2.1) to the region 
of lower concentration (2.2). 

Let = ( , , ) :C C x y t  concentration of waste in blood and 

= ( , , ) :F F x y t  concentration of waste in the dialysate. It is 

noteworthy that the above assumptions, in particular (4.0) 

simplifies the dependence of C  and F  on the parameters 

, ,x y z  and t  to ,x y  and t  only. 

Hence, the governing convection-diffusion equation that hold 
within each region (2.1) and (2.2) is given by 

:b   

2 2

2 2
= ( ), 0 < <1, 0 < <1b b

C C C C
V D x y

t x x y

   
 

   
 

                  (2.3) 

 Initial Conditions (ICs):   

 = 0 : = 0; = 0 : = ( = 0)i

C
t C x C C

x




          (2.4) 

 Boundary Conditions (BCs):   

= 0 : = ( )b

C
y D h C F

y





                           (2.5a) 

= : = 0
C

y H
y




              (2.5b) 

:d    

2 2

2 2
= ( ), 0 < <1, 1< < 0d d

F F F F
V D x y

t x x y

   
  

   
                  (2.6) 

 ICs:   

= 0 : = 0; = 0 : = 0 ( = 0)
F

t F x F
x




             (2.7) 

 BCs:   

= 0 : = ( );d

F
y D h C F

y





             (2.8a) 

= : = 0
F

y H
y





              (2.8b) 

 
TABLE 1:  Typical values of the dimensional variables.  

 
Source: The Third Mathematics-in-Medicine Study Group held 
at the University of Nottingham 1-13 Sept. 2002. 
 

 where iC  is the inlet concentration of blood, h  is the mass 

transfer coefficient, ( )h C F  is the mass transfer rate per 

unit membrane area from blood to water (dialysate), bV  is the 

speed of blood and bD  is the diffusivity coefficient in blood. 

dV  is the speed of the dialysate and dD  is the diffusivity 

coefficient in dialysate. bQ  is the blood flow rate and  dQ  is 

the dialysate flow rate.  
It is pertinent to note that (2.5a) and (2.8a) follows from the 
fact the concentration profile of the membrane boundary has 
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an associated discontinuities. The consequence is to ensure 
continuous flux from (2.1) into (2.2). Also to be noted is the 
uniformity in height of both channels. 

 
3. Mathematical Analysis 

    
3.1   Nondimensionalisation 

To solve (2.3)-(2.8), we nondimensionalise by introducing the 
following scaling, where a bar is used to denote a 
nondimensional variable.   

= , = , = , = , = , =i i

b d

lt lt
x lx y Hy t C C C F C F t

V V
 

                  (3.1) 
Differentiating (3.1) and substituting accordingly into (2.3)-
(2.8), we obtain 

:b    

 

2 2

2 2
= ( )b

C C C C

t x x y
 

   
 

   
              (3.2) 

ICs:   

 = 0 : = 0; = 0 : =1( = 0)
C

t C x C
x




            (3.3) 

BCs:   

 = 0: = ( ); =1: = 0b

C C
y C F y

y y


 


 
      (3.4) 

:d    

 

2 2

2 2
= ( )d

F F F F

t x x y
 

   
 

   
              (3.5) 

ICs:   

 = 0: = 0; = 0 : = 0 ( = 0)
F

t F x F
x




          (3.6) 

BCs:   

 = 1: = 0; = 0 : = ( )b

F F
y y C F

y y


 
 

 
  (3.7) 

 where   
 

2

2 2 2
= ; = ; = ; = ;

=

b d
b b d

b b d

d

d

D l D lhH H

H V D l H V

hH

D

   



      (3.8) 

Equations (3.2)-(3.7) give the dimensionless form of 

convection-diffusion equation in the domain b  and d . 

, , ,b b d     and   are the dimensionless parameters. 

From here on, we drop the bars from our variables and 
assume that every variable is dimensionless; focus more on the 

domain b  with little inclination to the membrane since 

coupled with assumption (5.0), it has more physical realistic 

contribution to the performance of haemodialyser. This we 
hope to see in a sequel. 
 
TABLE 2: Estimated nondimensional variables using values of 
Table 1. 

 
 

3.2 Asymptotic Analysis 

 
In this section we investigate extensively the behaviour of 

(3.2)-(3.4) since as shown in Table 2, 1   
6( ~ 10 ) 

. 

Now, observe that since the system must be well-posed, we 

require that as 0  , = (1)b O  and = (1)b O  so that 

(3.2) becomes:   

 

2

2
= b

C C C

t x y


  


  
               (3.9) 

ICs:   

 = 0 : = 0; = 0 : = 1t C x C             (3.10) 

BCs:   

 = 0 : = ( ); =1: = 0b

C C
y C F y

y y


 


 
     (3.11) 

It is pertinent to note that = 0
C

x




 (no diffusive flux 

condition in x -direction) in (3.3) has been neglected in (3.10) 

since 

2

2

C

x




 varnished as 0   . 

Pose:   
2 2

0 1 2 0 1 2= ...; = ...C C C C F F F F           (3.12) 

Differentiating (3.12) and substituting accordingly into (3.9)-

(3.11) we obtain the leading order coefficients 
0 : 

  

2

0 0 0

2
= b

C C C

t x y


  


  
             (3.13) 

ICs:   

 0 0= 0: = 0; = 0 : =1t C x C             (3.14) 

BCs:   

0 0
0 0= 0 : = ( ); = 1: = 0b

C C
y C F y

y y


 


 
           (3.15) 

Notice that (3.13)-(3.15) are coupled and since 0 0F C  by 

assumption (5.0), (3.15) becomes 

BCs:   

0 0
0= 0 : = ; =1: = 0.b

C C
y C y

y y


 

 
                    (3.16) 
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Thus giving rise to the decoupled system (3.13), (3.14) and 

(3.16). It can be justified asymptotically that 0F   ( F is 

identically zero) on the membrane. 
 

3.3 Steady Solution 

In this section, we seek an analytic solution to the decoupled 
system above assuming the flow is steady. i.e. 

 

2

0 0

2
= b

C C

x y


 

 
             (3.17) 

IC:   

 0= 0: =1x C               (3.18) 

BCs:   

 0 0
0= 0 : = ; =1: = 0b

C C
y C y

y y


 

 
      (3.19) 

The system (3.17)-(3.19) have been solved by method of 
separation of variables shown in Appendix A to obtaining the 
fundamental solution   

 
  2

0

=0

(1 )
( , ) =

xn b n
n

n n

cos y
C x y A e

cos

 




 

 
 

          

(3.20) 

 where 
2 (2 )

=
2 (2 )

n
n

n n

sin
A

sin



 
. 

 
Fig. 2:  Plots of analytic solution and the end column of the 
numerical solution matrix. 

 
Fig. 3: Shows selected columns of the numerical solution 
matrix with the analytic solution. Notice that the numerical 
and analytic solutions do not coincide. Thus, leading to 
expected solution error. 

 
TABLE 3: Set of eigenvalues obtained numerically using 

MATLAB's fsolve with 8b  . 

 
 

The eigenvalues n  were obtained numerically using 

MATLAB’s fsolve with tolerance, 
610tol  . It is immediate 

from Table 3 that ( )ntan n correction     and can be 

justified asymptotically that tan ~n n   as n  (see 

Appendix A). 
 

3.4 Unsteady State Solution 
 

Again, consider the decoupled system (3.13), (3.14) and (3.16). 
To illustrate the transient behaviour, we define the Laplace 

transform of 0 ( , , )C x y t  as 

 0
0

( , ; ) = ( , , )stc x y s e C x y t dt




                                 (3.21) 

Taking Laplace transform of the decoupled system and 
applying (3.21) gives  

 

2

2
= b

v v

x y


 

 
              (3.22) 

IC:   

 
1

= 0 : =x v
s

              (3.23) 

 

BCs:   

 = 0 : = ; =1: = 0b

v v
y v y

y y


 

 
               (3.24) 

 where   

 ( , ) = ( , ; )sxv x y e c x y s              (3.25) 

 

Solve (3.22)-(3.24) by method of separation of variables and 
substitute into (3.25) to obtain 

  2

=0

(1 )
( , ; ) = ( )

xn sxb n
n

n n

cos y
c x y s A s e e

cos

 




 

 
 
 

     (3.26) 

Imposing (3.23) on (3.26) gives 
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 

=0

(1 ) 1
( , ; ) = ( ) =

n

n

n n

cos y
c x y s A s

cos s





  
 
 

                 (3.27) 

 where 
1 ˆ( ) =n nA s A
s

. 

Next we take Laplace inverse of (3.26)-(3.27) to obtain that 

  2

0

=0

(1 )ˆ( , , ) = ( )
xn b n

n

n n

cos y
C x y t u t x A e

cos

 




 

  
 

  (3.28) 

 
 

=0

(1 )ˆ =1
n

n

n n

cos y
A

cos





  
 
 

                           (3.29) 

 

u  is a step function defined as  

 

1

( ) =

0

t x

u t x

t x




 
 

 

and 0 < <1x  as before. Notice that it will only take 1 time 

unit to attain steady state. 
 

4. Discussion of Results 

 

Here we present a detailed discussion of our results as an 
insight towards drawing a sensible conclusion regarding the 
efficiency of our device - haemodialyser. 
It is evident our model equation truly describes the behaviour 
of blood concentration as it flows down the channel. This is 
immediate from Fig. 4 and 5 where the concentration of blood 
moves in layers having its maximum close to the base of the 
membrane. In fact, this suggests that different molecules travel 
at different convection and diffusion rates. However, this 
maximum concentration decreases as it gets to the end of the 
channel with large chunk of waste already diffused out of the 
channel. Interestingly, this maximum concentration at the base 
of the membrane could be attributed to waste molecules (such 
as creatinine and urea) being pulled closer and closer by the 
dialysate concentration on the other side of the channel. 

 
Fig. 4: superimposition of surface surf(y, x, C) on the plane (x, 
C).  

 
Fig. 5: Shows a contour plot of the numerical solution with 
height 1000 with difference layers of blood concentration as it 
flows down the concentration gradient diffusing through the 
membrane. 
 
Of course, this is expected since by assumption 2.0, we 
provided a large enough concentration difference to allow for 

mass transfer only from b  to d . With high optimism from 

Fig. 2 and 3, we would anticipate that at some point in the 
flow regime, the waste concentration out of the channel would 
probably be zero and that initially; it took quite some time for 
the membrane to completely absorb the waste before attaining 
steady state. 
In light of the above, we see from the unsteady state solution 
(3.28) that within this interval of time, there are discontinuities 
on the membrane as blood get past the channel. Pertinently, 
(3.28) informs that it only took a unit time to attain steady 
state i.e. concentration reaches steady state in 1 time unit. 
 

 
Fig. 6: 3D Surface plot of the numerical solution to steady state 
problem.  
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Fig. 7: Shows how concentration decreases as it get past the 
membrane. 
 
Along the distance y of Fig. 7 conforms to our earlier assertion 
on accumulation of waste close to the base of the membrane. It 
is noteworthy that concentration tends towards zero at the 
base of the membrane due to diffusion but it’s never zero. This 
is quickly shown by ’zooming in’ Fig. 7 above. 

 
Fig. 8: A 'zoom in' in Fig. 7 to justifying 'non-zeroness' of 
concentration on the membrane over time during the 
haemodialysis.  

 
(b) Further illustration of numerical solution using MATLAB's 
mesh command. This magnifcently represents different range 

of values assumed by C as it moves down the concentration 
gradient. 
 

Though we have demystified the main features of our model 
solution, the fact that we are yet to understand the efficiency 
of our model is of great concern. However, a critical look in 

Appendix C  Tables 4 and 5 informs that the two most 

sensitive model parameters are b  and b  since slight 

changes in them would lead to a significant variance in the 
efficiency of our model. 
These overwhelming changes shown in Tables 4 and 5 of 

Appendix C  for selected values of the parameters unravel 

how deficient the estimated values of b  and b  in Table 2 

could be since a decrease in these parameters could probably 
lead to decrease in efficiency and vice-versa. In particular, to 

achieve an efficiency of 100%  with a fixed = 7 , a choice 

of =19.7  is sufficient though with minute proportion of 

waste undiffused out while = 392.1  gives a total waste 

clearance with the same efficiency as the former. 

Similarly, for a fixed = 3.2b , = 20280b  gives a total 

waste clearance with 100%  efficiency while = 55000b  

gives the same efficiency but with minute traces of waste 
leaving with the blood. It is worthy of note from Table 5 that 

as b  , the concentration out of the haemodialyser 

behaves erratic resulting in regimes of minute traces of waste 
in blood and total waste clearance with efficiency maintained 

at 100% . This is expected since from [2] different waste 

molecules diffuse at different rates. 

Hence, to achieve 100%  efficiency with total waste clearance, 

one would expect that values of b  ranges as in Table 2 while 

b  is allowed to grow as large as sensibly possible. 

Earlier, we observed from Figures 2 and 3 that the analytic 
solution and numerical solutions did not coincide, thus 
leading to an expected relative error. Their Relative Percentage 

Error (RPE) have been shown in Table 6 and 7 of Appendix C  

for variations in b  and b  . Observe that for a fixed 

= 7,b variations in b  is inversely proportional to RPEs. In 

particular, as b  grows larger and larger away from 

= 3.2b , RPE found to decrease upto powers of 
48 10  

approx. In other words, as b  , RPE converges to 

48 10  approx. while for a fixed = 3.2b , RPE ‘fluctuates’ 

as one cannot emphatically conclude whether an increase or 

decrease in values of b  would lead to an increase or 

decrease in RPE which further supports our earlier assertion 

on the choices for b  and b . 

These large RPEs associated with the model solution could be 
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attributed to the error in the eigenvalues n  as shown in 

Appendix A . Here we have used 101n   eigenvalues which 

is less accurate compared to best approximation obtained 

when 
31010n   . One may also suggest that even though the 

numerical solution may have converged and looked stable; it 
might be of great interest to investigate our problem using 
other numerical scheme. 
      

5. Conclusions 

 

This research has investigated a mathematical model on 
haemodialysis which is the process by which excess waste in 
the blood are removed by physical passage of blood through a 
haemodialyser to remove waste by the processes of convection 
and diffusion. This alternative to waste removal is due to 
kidney dysfunction. 
Haemodialysis is affected heavily by the concentration 
gradient, surface area of the membrane and distance travelled 
along the haemodialyser. For our purpose, we envisaged that 
the haemodialyser is a two-channeled device partitioned into 
two halves by a rectangular semi permeable membrane with 
blood and the dialysate flowing in a counter-clockwise 
direction on both sides of the channel. 
We also saw that our objective was to develop a mathematical 
model capable of determining the efficiency of our device. 
This we have done using asymptotic and numerical 
approaches to obtaining the solution of the governing 
convection-diffusion equation coupled with suitable initial 
and boundary conditions. 
Sensible assumptions were also imposed on the model for 
simplicity by assuming the flow field is unidirectionally 
constant in the x -direction; no influx from the dialysate 

region into the blood region; and the dialysate made to be zero 
on the membrane. Furthermore, we also used the fact that 
blood is an incompressible fluid and that no reasonable 
diffusion takes place along the z -direction. These 

assumptions simplified the concentrations in b  and d  to 

only functions of ,x y  and t . 

Our governing equations were nondimensionalised by 
introducing scaling after which the six dimensional variables 
reduced to five dimensionless parameters. The values of the 
dimensionless parameter were calculated from values of the 
dimensional parameters. In particular, we used the fact that 
the speed on both sides of the channel is the ratio of mass flow 
rate to the area of the channel. 
Asymptotic analysis was also considered in the limit of the 

smallest dimensionless parameter 0   which further 

reduced our governing equation and the prescribed boundary 
conditions on x . Thus informing us that there is no significant 

diffusion taking place along the x - direction. 

The reduced problem from asymptotic analysis were solved 
for both steady and unsteady state solution analytically - 
separation of variables and Laplace transform accordingly; 

and numerically - MATLAB’s pdepe . In particular, analytic 

solution to unsteady state was solved first by Laplace 

transform then followed by method of separation of variables 
with solution posed analogously to the solution of steady 
state. It was later transformed back to time space using 
Laplace inverse transform. 
The unsteady state solution informed that concentration in the 
channel attains steady state in one time unit. Discontinuities 
associated with the membrane were also seen in the solution. 
A key note is that in the absence of the Heaviside function, the 
unsteady state solution assumes the steady state solution. 
The eigenvalues were found to be in a transcendental equation 

and were preferably obtained using MATLAB’s fsolve  with 

tolerance set to 
610

. The solution obtained revealed that the 

eigenvalues n n   correction ( ) . It was also justified 

asymptotically that ~n n   and can be shown using 

MATLAB that n ’s were only a good approximation of 

eigenvalues for 
31010n  . 

Various plots of the steady state solutions were shown ranging 

from 2 3D D . They all gave useful insights on the 

behaviour of the blood concentration as it flows down the 
concentration gradient and along the axial direction. It was 
worthy of note that the blood concentration moves in layers 
having its maximum close to the base of the membrane thus 
suggesting that different molecules of blood travel at different 
convection and diffusion rates. Consequently, for optimal 
performance there is need for increased large surface area to 
effectively capture and allow for diffusion of regimes of 
interest. Additionally, this maximum concentration was 
attributed to the fact that the waste molecules were being 
pulled closer by the dialysate concentration on the other side 
of the channel. 
We also anticipated that at certain time on the flow regime, the 
waste concentration out of the channel would probably be 
zero and observed that it took quite some time initially for the 
membrane to completely absorb the waste before attaining 
steady state. 
It was also shown that at no time in the flow regime the 
concentration on the membrane was zero. This insight begs for 
the question:  
 

(Q1) How much waste is allowed on the membrane over time?  
 

This question motivated the quest to determining the 
efficiency of our model since for a fixed inlet concentration, 
knowledge of the outlet concentration at the end of the 
channel will help inform of the quantity of waste that have 
diffused out. 
The efficiency of the device was investigated by varying the 

parameters b  and b  as we saw that the only sensible 

choice of values for b  were those in Table 2 while b  could 

be allowed to grow as large as sensibly possible in other to 

achieve 100%  efficiency with total waste clearance. 

One prominent observation made was the analytic and 
numerical solution did not coincide thus begs for the 
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fundamental question:  
 

(Q2) Why the large disparity between the analytic and 
numerical solution?  
  

To have a feel of (Q2), we were prompted to calculate RPE 
between them. It was pertinent to note that for a fixed 

= 3.2b , RPE ’fluctuates’ as one could not emphatically 

conclude whether an increase or decrease in values of b  

would lead to an increase or decrease in RPE which further 
gave a formidable backbone to our assertion on the choices of 

b  and b  for optimal haemodialyser performance.  

Q1 and Q2 remains an open question though we have made 
the following suggestions: 
  Large RPEs associated with the model could be attributed 
to the error in eigenvalues. 
  MATLAB’s pdepe have converged and looked stable but 
further insight could be obtained by investigating the problem 
using other numerical scheme. 
  A detailed modeling of the membrane since the norm from 
the analytic solution were seen to be very small compared to 
the numerical solutions. 
 
 Possible limitations of our model 

  Less attention on the membrane and the dialysate. Dwelt 
mainly on what was happening in the blood domain. 
  No attention was paid on other components of the 
haemodialysis set up as shown in Fig. 1. In particular how 
pressure controls could be used to control flow rates which in 
turn controls the velocity field. 
  Did not consider different flow rates for different molecules 
of blood. It generally assumed that all waste molecules in 
blood have the same diffusion and convection rates. 
  Suitable for a known fixed inlet concentration. 
 
A brief review of [4], [5] showed that hollow (cylindrical) fiber 
membranes were commonly used. Particular attempts were 
made by [4] to model the velocities and pressure of blood and 
dialysate in the dialyser as well as the concentration of blood 
cells using a single hollow fiber and dialysate flowing outside 
it. They found out that varying the pressure in the dialysate 
moved the location at which the maximum blood 
concentration was archived, and that the maximum blood 
concentration was directly proportional to the product of the 
blood cell Peclet number and permeability of the membrane. It 
is worthy of note that the blood plasma and the dialysate were 
assumed to be Stokes flow while the pressure gradient varied 
only in the axial direction with concentration considered as a 
continuous scalar field. 
Though our model correctly models the efficiency of our 
device, it however came with great price of high relative 
percentage error. It’s worth extending our model to problems 
for pressure and velocities of blood and dialysate; and 
comparing with results in [4] to determine the suitability of a 
hollow cylindrical membrane and rectangular membrane with 

regards to efficiency. 
 

Appendix A . Steady State 
 

Consider the decoupled system (3.13), (3.14) and 
(3.16). Assume that blood flow is steady. Then the decoupled 
system becomes:   

 

2

0 0

2
= b

C C

x y


 

 
              (A.1) 

 

ICs:   

 0= 0: =1x C                (A.2) 

 

BCs:   

 0 0
0= 0 : = ; =1: = 0b

C C
y C y

y x


 

 
      (A.3) 

 To find the analytic solution of (A.1), we adopt method of 
separation of variables. 
Define:   

 0( , ) = ( ) ( )C x y X x Y y               (A.4) 

Differentiating (A.4) w.r.t. ,x y  and substituting accordingly 
into (A.1) gives   

 
1

=
b

X Y

X Y

 
               (A.5) 

 Observe that both sides of (A.5) must be equal to a negative 

constant, say, 
2  in other for the solution to satisfy (A.1)-

(A.3) without being identically zero. Hence   

 
21

= =
b

X Y

X Y




 
                    (A.6) 

 i.e.   

             
2 2= 0; = 0bX X Y Y                 (A.7) 

 On solving (A.7), we get   

 

2

1 2 2

2

0

( ) = ; ( ) = ( );

( , ) = ( ) ( )

x
b

x
b

X x Ae Y y A cos y B sin y

C x y e Acos y Bsin y

 

 

 

 









     (A.8) 

 Applying (A.3a) to (A.8c) gives   
 

 ( ) ( ) = ( ) ( )bA sin y B cos y Acos y Bsin y        

                 (A.9) 
 At = 0y , (A.9) gives   

 = bB

A k


             (A.10) 

 Also, on imposing (A.3b) on (A.8c):   

 ( ) ( )A sin y B cos y                (A.11) 

 At = 1y , (A.11) simplifies to   

 ( ) = ; . . = ( )
B

tan i e B Atan
A

            (A.12) 

 Substitute (A.10) into (A.12):   
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 ( ) = btan





                           (A.13) 

Observe from the foregoing that (A.8c) is just a solution to 
(A.1). Thus the fundamental solution to (A.1) is   

 
2

0

=0

( , ) = ( ) ( )
x

b n
n n n n

n

C x y A cos y B sin y e
 

 



      (A.14) 

 Impose (A.12) on (A.14):   
 

 
2

0

=0

( , ) = ( ) ( ) ( )
x

b n
n n n n

n

C x y A cos y tan sin y e
 

  



  

               (A.15) 
 Also from (A.2), at = 0x , (A.15) gives the relation   

 0

=0

( , ) ( ) ( ) ( ) = 1n n n n

n

C x y A cos y tan sin y  


    (A.16) 

 Recall: 
( )

( ) =
( )

n
n

n

sin
tan

cos





 and 

 (1 ) ( ) ( ) ( ) ( )n n n n ncos y cos cos y sin sin y       . 

Substituting them into (A.15)-(A.16) gives   

 

 

=0

2

0

=0

(1 )
= 1;

(1 )
( , ) =

n

n n

xn b n
n

n n

cos y

cos

cos y
C x y A e

cos

 














 
 
 

 
 
 





(A.17) 

 

Orthogonality of Functions: 

To find an expression for nA  we use the orthogonality of 

{ ( ), = 0,1,2,...}ncos y n  in the sense that 

 

 

1

0

1

0

( ) ( )

( ) ( ) , 0

= .

1
2 (2 )

4

n m

n m

m m

m

cos y cos y dy

cos y cos y dy m n m n

sin m n

 

 

 



   



  




  

since for m n :  

 

 

1 1
2

0 0

1

0

( ) ( ) ( )

1
= 1 (2 )

2

n m m

m

cos y cos y dy cos y dy

cos y dy

  







 


 

  
1

0

(2 )1 1
= = 2 (2 )

2 2 4

m
m m

m m

sin y
y sin


 

 

 
  

 
               (A.18) 
 such that:  

 

1

0

1

0

4 ( )
= ( )

2 (2 )

4 ( ) 1
= [ ( )]

2 (2 )

m m
m m

m m

m m
m

m m m

cos
A cos y dy

sin

cos
sin y

sin

 


 

 


  



 
 

 


 

 
4 ( ) 2 (2 )

= =
2 (2 ) 2 (2 )

m m m m

m m m m m

cos sin sin

sin sin

   

    

   
   

    
               (A.19) 

The eigenvalues 
1

( , ( ))
2

m n n   , 0,1,2,...,n   were 

obtained numerically using MATLAB’s fsolve  with initial 

guess 0 / 4 : : 401 / 4pi   . 

Next we justify that ( ) ~n n correction n      as 

.n  Substitute n n     into = b
n

n

tan





 to obtain   

 ( ) btan n
n


 

 
 


             (A.20) 

 Trigonometry identity: 
( ) ( )

( ) =
1 ( ) ( )

tan a tan b
tan a b

tan a tan b





. 

Clearly, (A.20) becomes 
( ) ( )

( ) =
1 ( ) ( )

tan n tan
tan n

tan n tan

 
 

 





. 

Since ( )tan n  is small relative to ( )tan  , (A.20) reduces to   

 ( ) btan
n




 



            (A.21) 

 Pose: 0 1 2~ ...      .  

Use the fact that ( )tan    and 
1 2(1 ) 1 ...y y y       

to obtain that 
2 3

0 1 2 2 3
... (1 ...)

( ) ( )

b

n n n n

   
  

   
       

.  
i.e.   

 0 1 22 3
, , ,...

( ) ( )

b b b

n n n

  
  

  
             (A.22) 

As n , 0  . In other words, as n  keeps increasing 
the value of   becomes relatively small justifying our claim. 
 

Appendix B  Unsteady State 
 

Again, consider the decoupled system (3.13), (3.14) and (3.16). 
To illustrate the transient behaviour of the decoupled system, 

we define the Laplace transform of 0 ( , , )C x y t  as   

 0
0

( , ; ) = ( , , )stc x y s e C x y t dt




               (B.1) 

 Taking Laplace transform of the decoupled system gives   
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2

0 0
0 0 2

{ } ( , ,0) { } = { }b

C C
s C C x y

x y


 
 

 
L L L              (B.2) 

 IC: 
1

= 0 : =x c
s

;    

BCs: = 0 : = , = 1: = 0b

c c
y c y

y y


 

 
. 

Apply (3.14a) to (B.2) to get 
2

0 0
0 2

{ } { } = { }b

C C
s C

x y


 


 
L L L . By (B.1), we have   

 

2

0 0

2
{ } = { }b

C C
sc

x y


 


 
L L               (B.3) 

 From definition of Laplace transform (B.3) becomes   

 

2

0 0

20 0
=st st

b

C C
sc e dt e dt

x y


 
  


                (B.4) 

 Assume we can interchange integration and differentiation so 
that (B.4) is written as   
 

2

0 020 0
( , , ) = ( , , )st st

bsc e C x y t dt e C x y t dt
x y


 

  

  

                  (B.5) 
 

Using (B.1), (B.5) gives:   

 

2

2
= b

c c
sc

x y


 

 

               (B.6) 

 Multipy both sides of (B.6) by 
sxe  to get   

 

2

2

( ) ( )
=

sx sx

b

e c e c

x y


 

 
               (B.7) 

 set ( , ) = ( , ; )sxv x y e c x y s . Then   

 

2

2
= b

v v

x y


 

 
                (B.8) 

Next, we derive IC and BCs as follows: 
IC:   

 
.0 1 1

= 0 : = =xx v e
s s

               (B.9) 

BCs:   

 

= 0 : = = =

= 1: = = 0

sx sx sx

b b

sx

v c
y e e e v v

y y

v c
y e

y y

  

 

 

 

   (B.10) 

 

Observe that the system (B.8)-(B.10) is analogous to steady 
state decoupled system. Thus, the general solution to (B.8) is 

given by 
  2

=0

(1 )
( , ) =

( )

xn b n
n

n n

cos y
v x y A e

cos

 




 

 
 

  so that   

  2

=0

(1 )
( , ; ) = ( )

xnsx b n
n

n n

cos y
c x y s e A s e

cos

 






 
 
 

     (B.11) 

 Impose (B.9) on (B.11) to obtain 

 

=0

(1 ) 1
( ) =

( )

n

n

n n

cos y
A s

cos s





  
 
 

 . Next we transform back to 

time space using Laplace inverse transform. i.e.   
 

  2
1

0

=0

(1 )1 ˆ( , , ) = { } ,

1 ˆ( ) = .

xnsx b n
n

n n

n n

cos y
C x y t e A e

s cos

A s A
s

 




 

 
 
 

L

  (B.12) 

 

 

1 1

=0

=0

(1 )1 1ˆ{ } = { } = 1
( )

(1 )ˆ = 1
( )

n

n

n n

n

n

n n

cos y
A

s cos s

cos y
A

cos










 



 
 
 

 
  

 





L L

           (B.13) 

 (B.12) gives 
  2

=0

(1 )ˆ( )
( )

xn b n
n

n n

cos y
u t x A e

cos

 




 

  
 

  where 

( )u t x  is a step function. 

      
 

Appendix C  Efficiency 

 

 Here we derive the equation for the efficiency of our 
model in terms of inlet and outlet blood concentrations. This is 
an important tool in analysing the quantity of waste removed 
by diffusion. 

 

1 1

0 0=0 =0=0 =0

1 1

=0 =0

= ( , ) = ( , )

= 1. = 1

in x xy z
A

y z

C C x y dA C x y dydz

dydz

  

 

  (C.1) 

 
1 1

0 =1 0 =1
=0 =0

= ( , ) | = ( , ) |out x x
y z

A

C C x y dA C x y dydz    

 

 

 

21 1

=0 =0
=0

=1

21

=0
=0

(1 )

( )

(1 )
=

( )

xn b n
n

y z
n n x

n b n
n

y
n n

cos y
A e dydz

cos

cos y
A e dy

cos

 

 















 
  

 

 
 
 

 



 

 

 

 

2 1

=0
=0

1
2

=0 0

(1 )
=

( )

(1 )
= =

( )

nb n
n

y
n n

nb n
n

n n n

cos y
A e dy

cos

sin y
A e

cos

 

 







 







 
 
 

 
 
 

 


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2 2

2
=0 =0

2

2
=0

( )
=

2 (2 )
=

2 (2 )

n bb n b n
n n

n nn n

m bb n

n m m n

tan
A e A e

sin
e

sin

   

 

 

 

 

  

 
 


 

 
 

 



            (C.2) 

 

Efficiency 100%in out

in

C C

C


  . 

 
TABLE 4: Illustrates sensitivity of efficiency with respect to 

changes in b , 7b  fixed and 1.inC    

 
 
 
 
TABLE 5: Illustrates sensitivity of efficiency with respect to 

changes in  b , 3.2b  fixed and 1.inC   

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

TABLE 6:  Relative error in % between the analytic solution 

and numerical solution with varying b  values, 7b  fixed. 
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TABLE 7:  Relative error in % between the analytic solution 

and numerical solution with varying b , 3.2b  fixed. 
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