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Abstract. In this paper, the mixed convection unsteady oscillatory MHD flow of a second grade fluid through a 
porous channel with heat generation is studied. It is assumed that the walls of the channel are porous so that 
injection/suction may take place. Using the flow assumptions the basic equations are reduced to ordinary 
differential equations which are solved analytically by perturbation technique. Flow and heat transfer results for 
a range of values of the pertinent parameters have been reported. 
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1. INTRODUCTION 
 

Heat transfer analysis in natural and mixed convection in vertical channels occurs in many industrial applications. 
It becomes a subject of many researches both numerically and analytically. Most of the interest in this subject is due 
to its applications in the design of cooling systems for electronic devices and in the field of solar energy collection. 
Some related articles on this area are [1],[2],[3],[4],[5],[6], and [7]. 

 In the above quoted referee of natural and mixed convection flow in vertical channels are based on the 
hypothesis that the fluids are Newtonian. Besides of the fundamental and technological importance, theoretical 
studies of natural and mixed convection flows of non-Newtonian fluids in channels and tubes are of great important 
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in most of the technological applications. Related papers on flow and heat transfer of non-Newtonian fluids in 
channels and tubes are [8],[9],[10],[11],[12],[13] and [7]. 

 In the present paper we consider heat transfer of an electrically conducting second grade fluid in porous 
channels maintained at different temperatures in the presence of heat sources. Effects of pertinent parameters, such 
as the second grade parameter, the suction/injection parameter, the Grashof number, the Reynolds number, the 
Peclet number, the radiation parameter, Hartman number and the porous medium shape factor on velocity and 
temperature profiles are shown graphically and discussed. 

The organisation of the paper is as follows. In section 2, the governing equations for the MHD flow with heat 
transfer of a second graded grade fluid are shown. In section 3, the solutions of the problem are developed. Section 
4, graphical result and discussion. Finally, conclusions are drawn. 

 
2. PROBLEM FORMULATION 

 
Consider an electrically conducting viscoelastic fluid of second grade under the influence of an externally applied 

magnetic field and radiative heat transfer between two porous infinite horizontal and parallel plane walls. The 
distance between the walls, i.e. the channel width, is L . A coordinate system is chosen such that the −x  axis is 
taken along the centre of the channel, and the −y  axis is orthogonal to the channel walls, and the origin of the axes 
is such that the position of the channel walls is 0=y   and ,Ly =  respectively. The wall at  0=y  is given uniform 
temperature 0T  , while the wall at  Ly =  is subjected to a uniform temperature 1T   where .01 TT >  The fluid velocity 
vector ( )vu,=V  is assumed to be parallel to the −x  axis, so that the component u  of the velocity vector does not 
vanish but the transpiration cross-flow velocity 0V  remains constant, where 00 <V  is the injection velocity and  

00 >V  is the suction velocity. 
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where u is the fluid velocity, 0V  is the injection/suction velocity, T  is the fluid temperature distribution, p  is the 

pressure, 
ρ
αα 1=  is the second grade parameter, ν is the kinematic viscosity, ρ  is the fluid density, eσ  is the fluid 

electrical conductivity, ( )00 HB eµ= is the electromagnetic induction, eµ  is the magnetic permeability, 0H  is the 
intensity of the magnetic field, g  is the gravitational force, Tβ  is the coefficient of volume expansion due to 
temperature,  φ  is the porosity, K  is the permeability of the porous medium, pC  is the specific heat at constant 
pressure, k  is the thermal conductivity and 0Q is the volumetric rate of heat generation/absorption. 

The heat generation term in this problem is assumed to be the type given by Foraboschi and Federico (1964).  

( ).00 TTQQ −=         (4) 

where 00 >Q  is the heat generation and 00 <Q  is the heat absorption. 

Following Cogley et al. (1968), it is assumed that the fluid is optically thin with a relative low density and the 
radiative heat flux is given by 
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where α  is the mean radiation absorption coefficient. 

We introduce the following set of non-dimensional quantities: 
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where 0U  is the flow mean velocity. 

Using Eq. (6), we can transform Eqs. (1) and (2) into the following non-dimensional form (dropping the * notation) 
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with the boundary conditions 
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where Re  is the Reynolds number, H is the Hartmann number, γ  is the non-dimensional suction/injection velocity, 

β  is the non-dimensional second grade parameter, 
aD

s 1
=  is the porous medium shape factor parameter, Gr  is 

the Grashof number, Pe  is the Peclet number,  N  is the radiation parameter and  Q  is the heat source/sink 
parameter. 

 It must be noted that when 0=β  (Newtonian fluid) and 0=Q  (non source of heat generation), Eqs. (7) and (8) 
are identical to those found  by Ahmer et al. ( )2010 . 
   

 
3. SOLUTION METHODOLOGIES 

 
a. Flow assumptions 

 
Consider the solutions of Eqs. (7) and (8) for purely oscillatory flow in the form: 

( ) ( ) ,, 0
tieyutyu ω=        (10) 

( ) ( ) ,, 0
tieyty ωθθ =        (11) 

.tie
x
P ωλ=
∂
∂

−         (12) 

where λ  is a real constant, ω is the frequency of the oscillation and 1−=i   is the imaginary constant. 
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Using the flow assumptions Eqs. ( ) ( )1210 − , Eqs. ( ) ( )97 −  becomes 
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where QPeiNm −+= ω2
1  and ( )222

2 Re siHsm βω +++=  . 

It is appear from Eqs. (13) and (14) that the energy Eq. (14) is uncouple from momentum Eq.  (13). Therefore, 
we could obtain first the solution for fluid temperature ( )y0θ  by fixing Eq. (13) then deploying it in Eq. (13) the 
solution for fluid velocity ( )yu0  can be obtained. 

Solving Eq. (14) using the boundary conditions (15), we obtain 
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Using the assumption given by Eq. (11), the solution Eq. (16) becomes 

( ) ( ) .1
21

21 





 −

−
= ydyd

dd
ti ee

ee
ey ωθ       (17) 

where  
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Substituting Eq. (16) into Eq. (13), we obtain 
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b. Perturbation technique 
 
To solve Eq. (18) subject to the boundary conditions (15), we employ the regular perturbation and expand the 

function ( )yu0  in terms of parameter ( ),1≤ββ that is  

( ) ( ) ( ).1,00,00 yuyuyu β+=       (19) 

Substituting Eq. (19) into Eq. (18) and collecting the coefficient of equal powers of β  we arrived at the following 
problems 
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The solutions of the Eqs. (20) and (21) are respectively given by 
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where ,3d 4d , 1A  and 2A  are constant defined by 
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and 
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where ,1B  ,2B  ,3B 5B  and 6B  are constant defined by 
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Therefore, the required solution is 
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Using the assumption given by Eq. (10), the solution Eq. (33) becomes 
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4. RESULT AND DISCUSSIONS 
 

In this section, the variations of fluid velocity and temperature distribution due to oscillatory nature of the flow are 
presented graphically and discussed over various immerging flow parameters. The temperature distribution given 
by Eq. (17) are displayed in Figs. 1-4 while the velocity field given by Eq. (34) are displayed in Fig. 5-7  versus the 
boundary layer coordinate .y  In all these figures, we consider only  the real part of the velocity and temperature 
fields. 

Figure 1 shows the temperature distribution across the channel with no heat source/sink. These results are 
identical to those found by Ahmer et al. ( )2010 . The velocity profiles when the heat source/sink was considered are 
shown in Figure. 2 and 3. As can be seen, the heat source has the clear effect of increasing the temperature 
distribution across the channel, but the thermal radiation weakens the strengh of the temperature distribution. When 
heat sink presented in Figure 3, we should expect the reverse effect since the energy transmitted to the fluid by the 
wall is sucked away. Figure 4 illustrates the influence of Peclet number ( )Pe  on fluid temperature for both injection 
and suction. It is noticed from Fig. 4 that fluid temperature θ  decreases on increasing  Pe  in the boundary layer 
region for injection while increases for suction case. Since Pe   signifies the relative importance of advection to 
diffusion. This implies that thermal diffusion tends to increase fluid temperature for suction case while decrease for 
injection case. 

The effects of injection/suction on the second grade fluid motion are shown in Figure 5. This diagram is plotted 
for different values of the second grade parameter .β   It is noted that the influence of the parameter β  on the fluid 
motion depends on injection/suction velocity. Also we can compare the velocity of second grade fluid with velocity 
corresponding to Newtonian fluid  ( ).0=β  For injection case, the Newtonian fluid with transpiration flows faster than 
second grade fluid with transpiration. For suction case the second grade fluid is faster near the Newtonian fluid 
across the channel. Figure 6 shows the effect of the Reynold's number  Re  and Grashoff number number Gr  on 
the fluid velocity. It is observed that velocity decreases on increasing the Reynolds's number while increases by 

IJSER

http://www.ijser.org/


 
International Journal of Scientific & Engineering Research, Volume 4, Issue 9, September 2013                                                                                         
ISSN 2229-5518 

 

IJSER © 2013 
http://www.ijser.org 

 

increasing the Grashoff number. The effect of Grashof number Gr  is quite opposite to that of Re . Fig. 7 shows the 
effect of the Hartmann number H and porous medium shape factor s  on the velocity field. The effect of Hartmann 
number is quite similar to that of porous medium shape factor.  

 

 

 

 

 

 
( )2=N  

 

 
( )0=N  

 
Figure 1 Temperature profile in the case of suction when  0=Q  
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( )2=N  

 

 
( )0=N  

 
Figure 2 Temperature profile in the case of suction when  1=Q (heat generation) 
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( )2=N  

 

 
( )0=N  

 
Figure 3 Temperature profile in the case of suction when  1−=Q (heat sink) 
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(Injection) 

 

 
(Suction) 

 
Figure 4 Temperature profile for various values of Peclet number ( )Pe   
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(Injection) 

 

 
(Suction) 

 
Figure 5 Velocity profile for various second grade parameter β  
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Figure 6 Velocity profile for various of Reynold's number  ( )Re  and Grashoff number ( )Gr  
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Figure 7 Velocity profile for various values of Hartmann number  ( )H   and porous medium shape factor 

parameter ( )s    

 
 

5. CONCLUSION 
 

Analytical solutions for the fluid velocity and the temperature distribution have been found for the heat transfer 
flows of a second grade fluid in a porous channel with heat generation. It is observed that the injection causes an 
increase in the velocity across the channel, but  it reduces the heat transfer phenomenon across the channel. The 
effects of injection velocity are totally reversed to the suction effects. The thermal radiation, Reynold’s number, 
heat generation and Peclet number are found to reduce the injection effects.  
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