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Abstract: The first step to analyze and understand plant growth and development is to understand the 
environmental factors that can modulate it. The rhizoshere soil is a rich environment of interaction between plants 
and soil organisms that may enhance its growth and production. Plant’s roots, mycorrhiza, and bacteria are three 
elements of rhizoshere soil interaction. Plant’s root exudates encourage mycorrhiza to colonize with the root 
system internally or externally.  The roots secretions, provide some nutrients, and are considered as recognition 
signals to host mycorrhiza in species- specific manner, whereas mycorrhiza secretes other compounds to attract 
bacteria.  Bacteria produce several compounds that increase mycorrhiza production and formation which benefit 
the plants indirectly by mediating mycorrhiza exudates and directly by changing soil characteristics. The bacteria 
that help mycorrhiza are called mycorrhiza helper bacteria (MHB). The interaction between mycorrhiza, bacteria, 
and plant’s roots creates symbioses that influence rhizoshere soil. The changes induced by chemical fertilizer are 
harmful to the environment and soil microflora, despite the benefit for plant production. Changing soil 
characteristics such as pH, water, and elements availability, through the use of mycorrhiza and bacteria, 
combination as biofertilizer is an environmentally safe approach.  Using biofertilizer designed to specific plant 
growth, can improve plant production and tolerance especially in poor or contaminated soil.  
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——————————      —————————— 
1. INTRODUCTION 

Rhizoshere is the layer of soil surrounding the plant’s roots, where most of microorganisms’ 

interactions occur.  The rhizoshere is considered as the hot spot for soil where major 

interactions occur.  The rhizoshere interaction is controlled by three elements: plant roots, 

mycorrhiza, and bacteria are (Fig.1).  The plant’s roots secrete organic compound as a result 

of photosynthesis and other plant processes [1] that attract mycorrhiza and bacteria, and 

change the rhizosphere community and dynamics. The active components of rhizoshere, 

mycorrhiza, and bacteria have been used in several studies, solely or in combination to 

increase plants production or tolerance [2-5]. 

Mycorrhiza is a fungus known to colonize and form spores within a plant’s roots, either by 

intracellular association as arbscular mycorrhiza (AM) or endomycorrhiza or extracellular 
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association as ectomycorrhiza (Fig.2).  Studies have indicated that the interaction between 

plants and mycorrhiza, caused by chemical compounds produced, either by the plants or the 

mycorrhiza and mediated by bacteria [6, 7]. The mycorrhizal symbiosis within plants roots 

affects the microorganisms’ population in the rhizoshere which, cause changes in the soil 

characters such as pH, nutrients availability, and water stable soil aggregates [3]. The 

rhizoshere changes, due to microorganisms’ interaction, affect a plant’s health and further 

development.  Mycorrhiza colonization is plant species dependant [8] while bacteria diversity 

in rhizoshere is mycorrhiza dependant [9]. 

Mycorrhiza can increase or decrease bacteria existence and diversity in rhizosphere [3, 9]. 

Moreover, mycorrhiza changes elemental, heavy metals availability, and may increase it or 

block it from the plants [10].  Similar finding in another study, indicated that the 

endomycorrhiza G. intraradices.  showed tolerance to heavy metals  Cd, Pb, and Zn [11]. 

These findings encouraged the use of mycorrhiza in phtyoremediation to increase plant’s 

tolerance to heavy metals contaminated soil [12,13]. In many studies, the use of mycorrhiza 

or bacteria inoculums was limited to previous relation of the inoculums to site, species, or 

plant’s natural habitats.   Whereas literature showed that microorganism inoculums used from 

different sources that are not related to the plant host or site may produce significant growth 

promoting results [14-16].  

Selection of the best inoculums combination of mycorrhiza and bacteria need extensive 

studies to lead us to efficient use of natural resources such as biofertilizer. The increase in 

plant tolerance, biomass production, and phytoremediation in contaminated soil could be 

useful for the production of transgenic plant. The goal of this review is to concentrate on the 

current knowledge of mycorrhiza and bacteria interaction role in changing rhizoshere and 

enhance plants growth.  
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Figure 1: Rhizoshere soil and interaction components [64]. 

 

 

Figure 2: Interaction and existence of organisms in the rhizoshere region; bacteria, 

endomycorrhiza and ectomycorrhiza [65] 
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2. HOW DO MYCORRHIZA-PLANTS AND BACTERIA INTERACTIONS 

CHANGES THE RHIZOSHERE? 

2.1. Mycorrhiza  

Mycorrhiza produces active organic acids and chelators which may act as phosphate 

transporters to deliver inorganic phosphate to the plants [17] and to maintain mycorrhiza 

development [18]. Moreover, mycorrhiza activate nitrogen plant transporter [19-21] and 

increased Zn-uptake in wheat [66]. Carbon is transferred from the host plant to mycorrhiza in 

general [21], while in some cases; carbon is transferred from the mycorrhiza to the plant host 

[22]. The nature of interaction between plants and mycorrhiza starts by root chemical 

exudates. Some chemical compounds produced by the plant, such as polysaccharide and 

glycoprotein fibrils known to facilitate mycorrhiza surface attachment to the plant. Other 

compounds such as phytohormones, phenolic compounds, enzymes, and lectin, play an 

essential role in plant’s-mycorrhiza recognition [23].  

 

2.2 Mycorrhiza helper bacteria  

Another factor reported by Duponnois and Garbaye [24] is mycorrhiza helper bacteria MHB, 

where some bacteria mediate or increase mycorrhiza colonization in the plant’s root system 

or detoxify mycorrhizal accumulated metabolites [2, 54-58]. The MHB can colonize 

externally on hyphae surface or internally in cytoplasm as endobacteria [8].   The most 

studied MHB are: Pseudomonas fluorescens BBc6R8 and Bacillus which reported to enhance 

mycorrhiza formation [24-26].  Some of MHB influence mycorrhiza only by altering its 

structure [33] or enhance its formation [23-25, 27, 59, 60] or provide carbon source to 

mycorrhiza in form of  malic and citric [2, 24]. Carbon source provided by the MHB has a 

major role in mycorrhiza bacteria signaling and interaction which then increases the 

mycorrhiza establishment and production [13].  
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The bacteria mycorrhiza interaction seems to be mutual and species-specific. In study of 

Schreiner et al. [3] Glomus etunicatum soils had the highest gram positive and gram negative 

populations, while Glomus mosseae soils had the lowest counts of gram negative bacteria 

(Pseudomonas populations). This finding was confirmed later by Vesterg˚ard, et al., [9] who 

reported that bacteria diversity is affected by AM composition. In a study conducted by 

Rajesh Kannan et al., [13] they found a significant increase of fatty acids such as butyric 

acid, capric acid, undecanoic acid, lauric acid, tridecanoic acid, myristic acid, cis-10-

pentadecanoic acid, behenic acid, arachidonic acid, trichosanoic acid, lignoceric acid, cis [11, 

14] eicosadienoic acid, eicosapentaenoic acid, nervonic acid, and docosahexanenoic acid, 

where associated, when MHB combined with AM in three species of bacteria Azotobacter ,   

Rhizobium  and  Pseudomonas.  

 

 The effect of ectomycorrhiza on a plant’s elements uptake is mediated by MHB, where 

ectomycoorhiza produce hydroxamate siderophore which increase elements availability 

mediated by MHB siderphore which disturb poor nutrient soil to increase uptake by plants 

[28, 29, 61]. Other MHB influence both plants and mycorrhiza [8] as phosphate solubilizing 

bacteria [30, 63].  MHB reported to increase plant’s nutrient uptake for some elements as P, 

Cu, Zn and Fe [31]. The nutrient availability may be induced by bacteria as Pseudomonas 

fluorescens siderophores compounds that change soil pH [32]. The highest alkaline 

phosphatase activity found to be associated with Azotobacter, Pseudomonas and Rhizobium 

when combined with AM, which is essential enzyme to solubilize phosphorous in soil [13]. 

The rhizospheric bacteria activities include production of auxin (indole-3-acetic acid) by 

some bacteria that increase root growth [23] and enhance mycorrhizal- plants association [6, 

33].  In addition, bacterial enzymes such as endoglucanase, cellobiose hydrolase, 
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pectatelyase, and xylanase, that facilitate fungal penetration to the roots [23] by degrading 

root cell wall [34]. 

 

Another group of bacteria, which live in the root zone, play a key role in rhizosphere 

processes [21] and benefit plants as associative N2-fixing bacteria [35, 36], plant growth-

promoting rhizobacteria [37] antagonists of plant pathogens [38- 40,63] and increase plant 

drought tolerance [13].   

 

3. USING DIFFERENT RHIZOSHERE COMBINATION TO INCREASE PLANTS 

GROWTH AND TOLERANCE  

In many studies, the use of different mycorrhiza and bacteria in combination or alone, has 

showed significant results in a plant’s biomass and nutrient uptake, in poor soil [12, 36, 41, 

54-58]. The use of mycorrhiza solely reported to increase plant biomass, shoot, and root 

length, water use efficiency for Allium sativum L. under drought stress conditions [42].  In 

addition, shoot biomass and phosphorus uptake increased in Eucalyptus coccifera Hook. 

seedlings growing in P-deficient soil when treated with mycorrhiza [43].  

Calliandra (Calliandra calothyrsus) seedlings showed significant increase in growth, height, 

and shoot biomass, when seeds were inoculated with mycorrhiza [41]. Another study showed 

significant increase in barley (Hordeum Vulgares L.) shoot height,  shoot and root biomass 

when treated with mycorrhiza. The gene expression in the same experiment was also 

triggered by a significant increase was reported in calcium de-pendent protein kinases 

(CDPKs), phosphoenol pyrovate carboxylases (PEPCs), and proline-5 carboxylate synthetase 

(P-5CS) in barley plants [44]. Moreover, more than 500 mycorrhiza-associated transcripts 

discovered in mycorrhiza colonized roots of tomato plants, including putative zinc, iron, 

aquaporin, and carbohydrate transporters, as well as mycorrhizal-associated alternative gene 
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splicing [45]. Some ectomycorrhiza was reported to tolerate heavy metals as Cu, Cd, and Zn 

[46] which extend their capability in soil remediation [10]. 

Sisaphaithong et al. [47] reported that mycorrhiza induces a significant increase in phosphate 

transporter genes expression, in the root of sorghum, barley, and wheat. Mycorrhiza affect 

plant’s stomatal conductance, which increase photosynthetic rates [48]. Several studies 

reported a significant increase in photosynthesis, and P-efficiency use in plants treated with 

mycorrhiza [49-51].  

Some gram positive bacteria, such as Paenibacillus sp., strain B2 stimulate mycorrhiza 

colonization, and has antagonistic activity towards soilborne fungal pathogens [52,62]. 

Jäderlund et al. [5] reported that the interaction between bacteria and arbscular mycorrhiza is 

very specific, while Pseudomonas fluorescens and G. intraradices combination increased the 

winter wheat (Triticum aestivum cultivar Tarso) shoot’s dry weight but, decrease mycorrhiza 

roots colonization.  The combination between   Paenibacillus brasilensis and G. intraradices 

caused a decrease in shoot’s dry weight but, significant increase in root’s mycorrhiza 

colonization. Whereas, G. mosseae colonization increase significantly weather combines with 

Pseudomonas fluorescens or Paenibacillus brasilensis. In addition G. mosseae inhibit root 

disease symptoms induced by M. nivale fungus [5]. Increase in plant’s biomass and 

development reported when using mycorrhiza and bacteria combination. The use of K. 

pneunoniae bacteria and Glomus deserticola mycorrhiza increased the sea oat’s (Uniola 

paniculata L) shoots and root’s dry weight, phosphorous concentration and enhance its 

growth in beach sand [36].  In another study, Glomus mosseae increased soybean (Glycine 

max (L.) Merr.) pod dry weights and pod/stem and root/stem ratios but, decrease root lengths, 

while  Glomus etunicatum increased stem height, dry weights, and nodes [3]. Rajesh Kannan 

et al., [13] found that using combination of Pseudomonas and AM or Rhizobium and AM 

increased maize shoots and roots weight and length.  
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Using bacteria treatment solely for plant treatment, showed growth promoting results, thus 

called, growth promoting bacteria. In a study, Azotobacter chroococcum and Azospirillum 

lipoferum increased plant biomass and seed yield in ajowan (Carum copticum) [53]. Sorghum 

plants (S. bicolor) growing in Cd contaminated soil, showed significant increase in shoot and 

total biomass, when treated with fluorescent pseudomonad. In the same study fluorescent 

pseudomonad decrease Cd soil toxicity and increase sorghum tolerance and AM colonisation 

[12]. 

 

3.1 Mycorrhiza symbiosis at the molecular level 

The ability of mycorrhiza to promote plants nutrients uptake as phosphate is associated with 

genes expression, the genes are known to induce phosphate transporter proteins. Studies have 

identified two genes GvPT and GiPT that are expressed in mycorrhiza [67, 68] encoded five 

phosphate transporters StPT3, StPT4, ORYsa; Pht1;11 and MtPT4[69-71] which are involved 

in transferring phosphate form mycorrhiza mycelium to plants root. The symbioses 

establishment require at least seven genes known as SYM genes [72] some of the genes are 

nodulation specific as LjNFR1 / LjNFR5 [73]. Moreover, some genes as MtDMI1 and 

MtDMI2 are involved in calcium influx [74, 75]. Although mycorrhiza involved in triggering 

plants gene expression and singling pathway through SYM genes associated with 

colonization [72] more studies needed to understand how the symbiosis promote plants 

growth and elements uptake.  

 

 
4. CONCLUSION 
  
Studying rhizoshere different component plant roots, mycorrhiza, and bacteria is essential to 

get a better understanding of the nature of interaction. Roots exudates changes soil characters 

and facilitate mycorrhiza plants recognition and association. The mycorrhiza associates 
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externally or internally with plant’s roots in species specific manners. The association 

between plants and mycorrhiza, affect bacteria diversity and population. Bacteria activities 

exist in rhizoshere promote mycorrhiza or plants, or even both of them. Mycorrhiza and 

bacteria combination increase the plant’s productivity and tolerance, and reduce pathogenic 

organisms existence in soil. The combination of mycorrhiza and bacteria can be used as 

biofertilizer in poor soil to increase the plant’s survival and element uptake or in 

contaminated soil to increase plants tolerance to heavy metals. Using mycorrhiza and bacteria 

as a biofertilizer is a cheap and environment friendly method to increase a plant’s 

productivity in regular soil.  Studying the changes at a molecular level with mycorrhiza and 

bacteria combination that are known to promote plant production may help to produce 

transgenic plants, with the ability to cope with different environmental stress factors. More 

studies needed on gene expression associated with plants, mycorrhiza and growth promoting 

bacteria to understand symbiotic interaction and enable transgenic plants approach.  
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