
International Journal of Scientific & Engineering Research Volume 2, Issue 5, May-2011 1
ISSN 2229-5518

IJSER © 2011
http://www.ijser.org

Handwritten Character Recognition using
Neural Network

Chirag I Patel, Ripal Patel, Palak Patel

Abstract— Objective is this paper is recognize the characters in a given scanned documents and study the effects of changing
the Models of ANN.Today Neural Networks are mostly used for Pattern Recognition task. The paper describes the behaviors of
different Models of Neural Network used in OCR. OCR is widespread use of Neural Network. We have considered parameters
like number of Hidden Layer, size of Hidden Layer and epochs. We have used Multilayer Feed Forward network with Back
propagation. In Preprocessing we have applied some basic algorithms for segmentation of characters, normalizing of characters
and De-skewing. We have used different Models of Neural Network and applied the test set on each to find the accuracy of the
respective Neural Network.

Index Terms— Optical Character Recognition, Artificial Nueral Network, Backpropogation Network, Skew Detection.

—————————— ——————————

1 INTRODUCTION
uch software’s are useful when we want to convert
our Hard copies into soft copies. Such software’s re-
duces almost 80% of the conversion work while still

some verification is always required.
 Optical character recognition, usually abbreviated to

OCR, involves computer software designed to translate
images of typewritten text (usually captured by a scan-
ner) into machine-editable text, or to translate pictures of
characters into a standard encoding scheme representing
them in (ASCII or Unicode). OCR began as a field of re-
search in artificial intelligence and machine vision.
Though academic research in the field continues, the fo-
cus on OCR has shifted to implementation of proven
techniques [4].

2 ARTIFICIAL NUERAL NETWORK
Pattern recognition is extremely difficult to automate.
Animals recognize various objects and make sense out of
large amount of visual information, apparently requiring
very little effort. Simulating the task performed by ani-
mals to recognize to the extent allowed by physical limi-
tations will be enormously profitable for the system. This
necessitates study and simulation of Artificial Neural
Network. In Neural Network, each node perform some
simple computation and each connection conveys a signal
from one node to another labeled by a number called the
“connection strength” or weight indicating the extent to

Fig. 1 A simple Neuron

which signal is amplified or diminished by the connec-
tion.

Different choices for weight results in different functions
are being evaluated by the network. If in a given network
whose weight are initial random and given that we know
the task to be accomplished by the network , a learning
algorithm must be used to determine the values of the
 weight that will achieve the desired task. Learning Algo-
rithm qualifies the computing system to be called Artifi-
cial Neural Network. The node function was predeter-
mined to apply specific function on inputs imposing a
fundamental limitation on the capabilities of the network.
 Typical pattern recognition systems are designed using
two pass. The first pass is a feature extractor that finds
features within the data which are specific to the task be-
ing solved (e.g. finding bars of pixels within an image for
character recognition). The second pass is the classifier,
which is more general purpose and can be trained using a
neural network and sample data sets. Clearly, the feature
extractor typically requires the most design effort, since it
usually must be hand-crafted based on what the applica-

S

————————————————

Chirag I Patel has been completed his M.Tech in Computer Science engi-
neering in Nirma Institute of Technology, Ahmedabad, India, PH-91-
9979541227. E-mail: chirag453@gmail.com
Ripal Patel has been completed her M.E in Electronics & C ommunication
engineering in Dharmsinh Desai Institute of Technology, Nadiad, India,
PH-91-9998389428.E-mail: ripalpatel315@gmail.com
Palak Patel is persuing her M.E in Electronics & C ommunication engi-
neering in G.H.Patel College of Enginnering & Technology, Vallabh Vi-
dyanagar, India, PH-91-9998389428.E-mail: ipalakec@yahoo.com

http://www.ijser.org/
mailto:chirag453@gmail.com
mailto:ripalpatel315@gmail.com
mailto:ipalakec@yahoo.com

International Journal of Scientific & Engineering Research Volume 2, Issue 5, May-2011 2
ISSN 2229-5518

IJSER © 2011
http://www.ijser.org

tion is trying to achieve.

One of the main contributions of neural networks to pat-
tern recognition has been to provide an alternative to this
design: properly designed multi-layer networks can learn
complex mappings in high-dimensional spaces without
requiring complicated hand-crafted feature extractors.
Thus, rather than building complex feature detection al-
gorithms, this paper focuses on implementing a standard
backpropagation neural network. It also encapsulates the
Preprocessing that is required for effective.

2.1 Backpropogation
Backpropagation was created by generalizing the Wi-
drow-Hoff learning rule to multiple-layer networks and
nonlinear differentiable transfer functions. Input vectors
and the corresponding target vectors are used to train a
network until it can approximate a function, associate
input vectors with specific output vectors, or classify in-
put vectors in an appropriate way as defined by you.
Networks with biases, a sigmoid layer, and a linear out-
put layer are capable of approximating any function with
a finite number of discontinuities.

3 ANALYSIS
By analyzing the OCR we have found some parameter
which affects the accuracy of OCR system [1][5]. The pa-
rameters listed in these papers are skewing, slanting,
thickening, cursive handwriting, joint characters. If all
these parameters are taken care in the preprocessing
phase then overall accuracy of the Neural Network
would increase.

4 DESIGN AND IMPLEMENTATION

 Initially we are making the Algorithm of Character Ex-
traction. We are using MATLAB as tool for implementing
the algorithm. Then we design neural network, we need
to have a Neural Network that would give the optimum
results [2]. There is no specific way of finding the correct
model of Neural Network. It could only be found by trial
and error method. Take different models of Neural Net-
work, train it and note the output accuracy.
There are basically two main phases in our Paper:
Preprocessing and Character Recognition .

In first phase we have are preprocessing the given
scanned document for separating the Characters from it
and normalizing each characters. Initially we specify an
input image file, which is opened for reading and prepro-
cessing. The image would be in RGB format (usually) so
we convert it into binary format. To do this, it converts
the input image to grayscale format (if it is not already an
intensity image), and then uses threshold to convert this
grayscale image to binary i.e all the pixels above certain
threshold as 1 and below it as 0.

Firstly we needed a method to extract a given character
from the document. For this purpose we modified the
graphics 8-way connected algorithm (which we call as
EdgeDetection).

5 PREPROCESSING
5.1 Character Extraction Algorithm

1. Create a TraverseList :- List of pixels which have
been already traversed. This list is initially emp-
ty.

2. Scan row Pixel-by-Pixel.
3. Whenever we get a black pixel check whether the

pixel is already in the traverse list, if it is simply
ignore and move on else apply Edgedetection
Algorithm.

4. Add the List of Pixels returned by Edgedetection
Algorithm to TraverseList.

5. Continue the steps 2 - 5 for all rows

5.2 Edge Detection Algorithm
The Edge Detection Algorithm has a list called traverse

list. It is the list of pixel already traversed by the algo-
rithm.

EdgeDetection(x,y,TraverseList);
1) Add the current pixel to TraverseList. The cur-

rent position of pixel is (x,y).
2) NewTraverseList= TraverseList + current posi-

tion (x,y).

If pixel at (x-1,y-1) then
Check if it is not in TraverseList.
Edgedetection(x-1,y-1,NewTraverseList);
endif

If pixel at (x-1,y) then
Check if it is not in TraverseList.
Edgedetection(x-1,y,NewTraverseList);
endif

If pixel at (x-1,y) then
Check if it is not in TraverseList.
Edgedetection(x-1,y+1,NewTraverseList);
endif

If pixel at (x,y-1) then
Check if it is not in TraverseList.
Edgedetection(x,y-1,NewTraverseList);
Endif

If pixel at (x,y+1) then
Check if it is not in TraverseList.
Edgedetection(x,y+1,NewTraverseList);
endif

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 2, Issue 5, May-2011 3
ISSN 2229-5518

IJSER © 2011
http://www.ijser.org

If pixel at (x+1,y-1) then
Check if it is not in TraverseList.
Edgedetection(x+1,y-1,NewTraverseList);
endif

If pixel at (x+1,y) then
Check if it is not in TraverseList.
Edgedetection(x+1,y,NewTraverseList);
endif

If pixel at (x+1,y+1) then
Check if it is not in TraverseList.
Edgedetection(x+1,y+1,NewTraverseList);
endif

3) return;

The EdgeDetection algorithm terminates when it has
covered all the pixels of the character as every pixel’s po-
sition would be in TraverseList so any further call to Ed-
geDetection is prevented.

Fig 4(a) shows the traversing each scan lines.

4(b) shows the respective calls made to the all 8-
neighbouring pixels.
The Edge detection is called when we hit a pixel (i.e. en-
counter a pixel with value 1). As per the algorithm the
current position is entered in TraverseList and recursive
calls are made to all 8 - neighboring pixels. Before the
calls are made it is ensured that the corresponding neigh-
boring pixels is having value 1 and is not already encoun-

tered before i.e. it should not be in the TraverseList.
5.3 Normalizing

Now as we have extracted the character we need to
normalize the size of the characters. There are large varia-
tions in the sizes of each Character hence we need a me-
thod to normalize the size.
We have found a simple method to implement the nor-
malizing. To understand this method considers an exam-
ple that we have extracted a character of size 7 X 8. We
want to convert it to size of 10 X 10. So we make a matrix
of 70 X 80 by duplicating rows and columns. Now we
divide this 70 X 80 into sub Matrix of 7 X 8. We extract
each sub matrix and calculate the no. of ones in that sub
matrix. If the no. of one’s is greater than half the size of
sub matrix we assign 1 to corresponding position in nor-
malized matrix. Hence the output would be a 10 X 10 ma-
trix.

Fig 5(a) shows original representation of the character.

Fig 5(b) shows the Normalized Character representation
after Normalizing.
The Fig 5(a) is shows a representation of character of 12 X
12 size. Using the above algorithm it is converted into a
character of 8 X 8 as shown in the Fig 5(b).

5.4 Skew Detection
The Characters are often found to be skewed. This

would impose problems on the efficient character recog-
nition [3]. So to correct the effect of this skewedness we
need counter rotate the image by an angle .
We use a very simple but effective technique for Skew
Correction. We use “Line Fitting” i.e. Linear Regression to
find the angle . Consider the Skewed character as a
graph i.e. all the pixels that have value 1 are considered to
be data points. Then we perform linear regression using
the equation Y = M*X +C. Using the formulas for regres-

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 2, Issue 5, May-2011 4
ISSN 2229-5518

IJSER © 2011
http://www.ijser.org

sion we calculate M= (n xiyi - xi yi) / (n xi2-(xi)2).
This angle is equivalent to the skewed angle so by rotat-
ing the image by opposite of this angle will remove the
skew ness. This is a very crude way of removing skew
ness there are other highly efficient ways of removing
skew ness. But for Characters that have very low Skew
angles this gets the thing done.

The Characters are often found to be skewed. This
would impose problems on the efficient character recog-
nition. So to correct the effect of this skewed ness we
need counter rotate the image by an angle .

.We use a very simple but effective technique for Skew
Correction. We use “Line Fitting” i.e. Linear Regression to
find the angle . Consider the Skewed character as a
graph i.e. all the pixels that have value 1 are considered to
be data points. Then we perform linear regression using
the equation Y = M*X +C. Using the formulas for regres-
sion we calculate M= (n xiyi - xi yi) / (n xi2-(xi)2).
This angle is equivalent to the skewed angle so by rotat-
ing the image by opposite of this angle will remove the
skew ness. This is a very crude way of removing skew
ness there are other highly efficient ways of removing
skew ness. But for Characters that have very low Skew
angles this gets the thing done.

Fig
6(a)

Skew
ed

Im-
age Fig 6(b) Corrected Image.

6 NUERAL NETWORK DESIGN

For training and simulating purposes we have scanned
certain documents. We have 2 types of documents train
documents and test documents. The train documents are
the images of the documents which we want to use for
training. Similarly test documents are the images of docu-
ments which we want to use for test. According to the cha-
racters in the documents we train the neural network and
apply the test documents.
We have different Models of Neural Network. Hence we
record certain parameters like training time, accuracy etc.
to find the effectiveness of the Neural Network.
We have selected an image size of 10 X 10 as an input to the
Neural Network. Hence we have taken a neural network
that has 100 inputs. We are performing the test on only
Capital characters so the outputs of the Neural Networks

are 26. The no. of nodes of input layer are 100 and the no.
of node of output layer are 26. The no. of hidden layer and
the size of hidden layer vary.

 Fig 7. The general Model of ANN used.

Fig 8.
Ttrai
ning
au-

tomated character extraction

Fig 9 recognition

Fig 10 Training – User defined Character Extraction.

7 TEST AND RESULTS ANALYSIS
7.1 Test
This section shows some implementation results. The

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 2, Issue 5, May-2011 5
ISSN 2229-5518

IJSER © 2011
http://www.ijser.org

training variables involved in the tests were: the number
of cycles, the size of the hidden layer, and the number of
hidden layer. The dataset consisted of A-Z typed charac-
ters of different size and type. Thus the input layer con-
sisted of 100 neurons, and the output layer 26 neurons
(one for each character). Ideally, we’d like our training
and testing data to consist of thousands of samples, but
this not feasible since this data was created from scratch.

Table 1. Model 1
 Epochs

Number of
Hidden Layer

 Configuration
(No. of nodes in HL)

Accuracy
(%)

300 1 26 20

600 1 26 65

1000 1 26 82

300 1 52 25

600 1 52 69

1000 1 52 88

300 1 78 27

600 1 78 71

1000 1 78 91

 Table 2. Model 2

Table 3. Model 3

Table 4. Model 4

Epochs Number of
Hidden
Layer

Configuration
(No. of nodes

in HL)

Accuracy
(%)

300 3 26-52-26 31

600 3 26-52-26 65

1000 3 26-52-26 82

300 3 26-52-78 29

600 3 26-52-78 74

1000 3 26-52-78 92

300 3 78-26-78 27

600 3 78-26-78 71

1000 3 78-26-78 91

Table 5. Model 5

 Epochs
Number of

Hidden Layer
 Configuration
(No. of nodes in HL)

Accuracy
(%)

300 2 26-52 23

600 2 26-52 67

1000 2 26-52 81

300 2 52-78 40

600 2 52-78 78

1000 2 52-78 96

300 2 26-78 27

600 2 26-78 77

1000 2 26-78 89

Epochs Number of
Hidden
Layer

 Configuration
(No. of nodes in

HL)

 Accuracy
(%)

300 3 26-52-26 31

600 3 26-52-26 65

1000 3 26-52-26 82

300 3 26-52-78 29

600 3 26-52-78 74

1000 3 26-52-78 92

300 3 78-26-78 27

600 3 78-26-78 71

1000 3 78-26-78 91

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 2, Issue 5, May-2011 6
ISSN 2229-5518

IJSER © 2011
http://www.ijser.org

Epochs Number of
Hidden
Layer

Configuration
(No. of nodes

in HL)

Accuracy
(%)

300 4 26-52-78-104 35

600 4 26-52-78-104 79

1000 4 26-52-78-104 96

300 4 26-52-78-26 30

600 4 26-52-78-26 61

1000 4 26-52-78-26 86

300 4 78-26-52-104 43

600 4 78-26-52-104 82

1000 4 78-26-52-104 98

300 4 78-26-78-52 31

600 4 78-26-78-52 88

1000 4 78-26-78-52 94

Table 6. Model 6

Epochs Number of
Hidden
Layer

Configuration
(No. of nodes

in HL)

Accuracy
(%)

300 4 26-52-78-104 35

600 4 26-52-78-104 79

1000 4 26-52-78-104 96

300 4 26-52-78-26 30

600 4 26-52-78-26 61

1000 4 26-52-78-26 86

300 4 78-26-52-104 43

600 4 78-26-52-104 82

1000 4 78-26-52-104 98

300 4 78-26-78-52 31

600 4 78-26-78-52 88

1000 4 78-26-78-52 94

We have used sigmoid transfer function in all the layers.
We have used same dataset for training all the different
Models while testing character set was changed.

7.2 Result Analysis
From the results, the following observations are made:

•A small number of nodes in the hidden layer (eg. 26)
lower the accuracy.
•A large number of neurons in the hidden layer help in
increasing the accuracy; however there is probably some
upper limit to this which is dependent on the data being
used. Additionally, high neuron counts in the hidden
layers increase training time significantly.
•As number of hidden layer increases the accuracy in-
creases initially and then saturates at certain rate proba-
bly due to the data used in training.
•Mostly Accuracy is increased by increasing the number
of cycles.
•Accuracy could also be increased by increasing the
training set.

7.3 Additional Formatting and Style Resources
Additional information on formatting and style issues can be
obtained in the IJSER Style Guide, which is posted online at:
http://www.ijser.org/. Click on the appropriate topic under the
Special Sections link.

8 CONCLUSION
The backpropagation neural network discussed and im-
plemented in this paper can also be used for almost any
general image recognition applications such as face detec-
tion and fingerprint detection. The implementation of the
fully connected backpropagation network gave reasona-
ble results toward recognizing characters.

 The most notable is the fact that it cannot handle major
variations in translation, rotation, or scale. While a few
pre-processing steps can be implemented in order to ac-
count for these variances, as we did. In general they are
difficult to solve completely.

REFERENCES

[1] S. Basavaraj Patil, N. V. Subbareddy ‘Neural network based
system for script identification in Indian documents’ in Sadha-
na Vol. 27, Part 1, February 2002, pp. 83–97.

[2] T. V. Ashwin, P. S. Sastry ’A font and size-independent OCR
system for printed Kannada documents using support vector
machines’ in Sadhana Vol. 27, Part 1, February 2002, pp. 35–58.

[3] Kavallieratou, E.; Fakotakis, N.; Kokkinakis, G.,’ New algo-
rithms for skewing correction and slant removal on word-level
[OCR]’ in Proceedings of ICECS '99.

[4] Simmon Tanner, “Deciding whether Optical Character Recogni-
tion is Feasible”.

[5] Matthew Ziegler, “Handwritten Numeral Recognition via
Neural Networks with Novel Preprocessing Schemes”.

http://www.ijser.org/
http://www.ijser.org/.

