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Ensuring a spare quantum traffic 
Nikolay Raychev 

 
Abstract - In this report is examined an algorithm for ensuring a spare quantum traffic, which requires the exchange of only one pair of 
qubits in order to be reached to a solution of the problem related to ensuring a spare traffic.  Here we show two different approaches of the 
unitary dynamics that can enable the directional control, enhancement, and suppression of quantum transport. This opens new prospects 
for more efficient methods to transport a quantum information. 

Index Terms— boolen function, circuit, composition, encoding, gate, quantum.   

——————————      —————————— 

1 INTRODUCTION                                                                     
The theory of the complex networks is used in a number of 

abstract researches on the quantum information [31, 32]. In this 
research is addressed the theory of the complex networks in 
order to determine whether the development and use of the 
optimization procedures will lead to an improvement in the 
transport through the quantum flows in large and randomly 
generated quantum networks. The understanding of the quan-
tum transport is of key importance for the development of more 
solid communication networks, more efficient transfer of energy, 
as well as improved devices for information processing. 

 
While the majority of the known quantum algorithms focus on 

the encoding of  two classical bits into one quantum bit and its 
subsequent sharing, in this algorithm is used a shared qubit, 
which is used for the encoding of two classical bits. The useful-
ness of this technique allows for securing a spare quantum traffic 
in case of problems with the quantum channel. 

 

2    QUANTUM LOGARITHM ENSURING A SPARE TRAFFIC 
In this report is offered a simple quantum circuit, which allows to 
be increased the reliability of the quantum channel, as well as to 
be reduced its latency and could in principle be used to create 
larger logical circuits and future realizations of transport means, 
in order to be stored 

Figure 1: Circuit for provision of a spare quantum traffic 

 and processed information.  Fig. 1 presents one example for the 
proposed quantum circuit. 

 
The change of the system state, as well as the operations, which 
are applied, from left  to right are examined in the time. Initially 

the system is into a full zero-state. The left side A still has not 
initialized its qubit and the superposition has not yet been creat-
ed. Algebraically represented, using a KET notation, the initial 
state is: 
| 0⟩ | 0⟩ | 0⟩ = | 000⟩ 
From this state is created a superposition, from which the left 
side A will encode its qubit, and when it receives it, the right side 
B - will decode it. 
 
Creating a Superposition 
 The first thing that needs to be done is the sharing of a pair of 
qubits. Two qubits must be placed in a superposition, in which 
both values are zeros or units. This is done by applying the 
Hadamard operator on one of the qubits, and CNOT on the oth-
er.  
 
The Hadamard operator (H) creates from the state |0⟩ a super-
position |0⟩  |1⟩, and from the state |1⟩ a superposition |0⟩- 
|1⟩.  The proposed algorithm uses the second and third bit to 
create a pair, thus the Hadamard operator is applied to the se-
cond position. Its value is |0⟩,  therefore the resultant superposi-
tion is:  

 
|0⟩  |1⟩: → |0⟩ (|0⟩  |1⟩) |0⟩ = |000⟩  |010⟩ 

 
It is possible by a supplement the multiplication to be spread 
vectorally, which is useful for presenting the state in more con-
venient ways to work. At this stage is applied a CNOT operator, 
an inversion of the third bit in all parts of the superposition, 
where the second bit is set: → |000⟩  |011⟩ = |0⟩ (|00⟩  |11⟩) 
The superposition is allready created.  A and B have by one 
paired qubit, then it is proceeded to the stage of encoding. 
 
Encoding 
A initializes the first bit in superposition: α | 0⟩  β | 1⟩. Then the 
state of the entire system is changed to:  

 
→ (α|0⟩  β|1⟩) (|00⟩ |11⟩)  
= α|000⟩α|011⟩β|100⟩β|111⟩ 

 
To encode its qubit, A applies a CNOT operator on its half of the 
pair. Thus the second bit is inverted in the parts of the superpo-
sition, where the first bit is already set:  
→α|000⟩α|011⟩β|110⟩β|101⟩  
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After the CNOT operator, A applies on its bit also the Hadamard 
operator (bit # 1). As a consequence of the rule: 0 -> 0  1 and 1 -> 
0-1, the operation changes the state:  

 
→ α (| 000⟩  | 100⟩)  α (| 011⟩  | 111⟩)  β (| 010⟩- | 110⟩)  β (| 

001⟩-|101⟩) 

= α | 000⟩  α | 100⟩  α | 011⟩  α | 111⟩  β | 010⟩-β | 110⟩  β | 

001⟩-β | 101⟩ 

With this the process of encoding ends, and it can be proceeded 
to decoding. 
 
Decoding 
The receiving side B decodes the received qubit from the classi-
cal bits, which it receives. A CNOT operator is applied on the 
second bit from its part of the superposition, and conditional Z-
rotation is applied on the basis of the first bit. The CNOT opera-
tor inverts the third bit of a superposition, when the second bit is 
set, which leads to a state:  

 
→ α | 000⟩  α | 100⟩  α | 010⟩  α | 110⟩  β | 011⟩-β | 111⟩  β | 
001⟩-β | 101⟩ 
 
Then the Z operator is applied, conditionally from the first to the 
third bit. The Z operator makes the phase |1⟩ negative, thus 
each time when the first and the third bit are set, is multiplied by 
-1: 

 
→ α | 000⟩  α | 100⟩  α | 010⟩  α | 110⟩  β | 011⟩  β | 111⟩  β | 

001⟩  β | 101⟩ 

 

Then everything is factored again: 

= α | 000⟩  β | 001⟩  α | 100⟩  β | 101⟩  α | 010⟩  β | 011⟩  α | 

110⟩  β | 111⟩ 

=(|00⟩| 10⟩  | 01⟩  | 11⟩) (α | 0⟩  β | 1⟩) 

= (| 0⟩  | 1⟩) (| 0⟩  | 1⟩) (α | 0⟩  β | 1⟩) 

 
The expression for the third qubit in fact represents the state, 
which the side A has sent. This qubit is received by the B side, 
using only one classical channel, thanks to the paired in advance 
qubits. The described algorithm similarly could be used also 
upon pairing of a large number of qubits. All of these applica-
tions are hypothetical. More precisely, they all rely on the possi-
bility for storing the state of the qubits for long periods of time. It 
is not yet known a hardware solution that can provide this. The 
algorithm also could be used to be increased the reliability of the 
quantum channel, as well as to be reduced its latency by just 
sending a constant flow of paired qubits. 

 
Applications 
What makes the proposed quantum circuit useful is its ability to 
improve the characteristics of the quantum channels by storing a 
quantum traffic. 

 
The proposed quantum circuit can be used to be increased the 
reliability of the quantum channel. The quantum circuit allows to 
be used the available bandwidth to be shared paired qubits, and 
then these shared pairs, can be used to maintain the quantum 
communication during the interruption of the connection. The 
proposed quantum circuit allows to be converted a quantum 
channel with high-latency, which only works in one way and with 
frequent interruptions, into a bidirectional quantum channel 
with low latency, which works even if there is an interruption.   
 
3. Usage of swaps instead of the consuming 
Bell Pairs 

If the pre-shared pairs of qubits instead of being used directly 
are processed on the go, then it will be obtained a doubling of the 
information flow of classical information in one of the directions 
by sending the quantum information in the opposite direction. 

If we use quantum circuit, who’s upper and lower part are divid-
ed by a harmonious area of alternating swap operators all data, 
entered at the beginning will be exchanged downwards until the 
lower limit of the circuit is reached. On the other hand, the data, 
which are entered in the lower part of the circuit are exchanged 
upwards, until the upper limit is reached: 

 
Figure 2: Diagram of the transitions 

On figure 2 can be seen the movements backwards and forward 
of two values, the transitions pass upwards and downwards, 
between the outer limits of the circuit.  This allows the upper 
zone to communicate with the lower part. The circuit with the 
swap operators is used as a quantum channel, on which can be 
sent unidirectionally a classical information. Conditionally can be 
accepted that the sender is the upper part of the circuit, and the 
receiver is the zone above the circuit.  

The simplest way for sending the classical information can be 
realized as the submitter shifts its communication line to 1 in 
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order to send data, while the receiver periodically reads the 
message and reset the line.  The sent bits gradually swap from 
the lower to the upper limit, where they are read. 

 

Figure 3: Measurement 

On figure 3 can be seen that the classical bit a determines 
whether the lower conductor should switch from 1 to 0 in the 
second time stage.  Then the swap operators move the data up-
wards to the upper line. There the data are read from the receiv-
er. The receiver also resets the line to avoid further interference 
with the next sent bits. In the proposed model the return path of 
the information is  used to generate paired qubits, which can 
then be used for superdense encoding. 

In order to be formalized the logic of the circuit, is defined a 
complex oracle operator which encapsulates the logic of the most 
of the operations carried out by the receiver: 

 

Figure 4: Oracle operator 

The operator from Fig.4 consumes a certain entropy for initiali-
zation of two zero qubits and entangles them in a paired couple, 
swaps the paired couple for the input paired couple of qubits, 

then through superdense - decoding extracts the classical infor-
mation which is stored in the Bell pair.  

Important in this case is that each paired couple of qubits at the 
end are matched again together. If the data are not in the desig-
nated order or are excluded from one of the sides due to a loss 
of one part at the traffic to the sender and vice versa, and 
are matched with wrong corresponding part, the message is 
considered as inaccurate. In order to be preserved the compli-
ance of the data: The swap operator is positioned above the re-
ceiver! So the signals from the paired couple will be redi-
rected forward, will reach to the other side, the operations with 
them will be carried out, and at the same time will be re-
turned backwards to  the middle of the circuit, because  a field 
with the same number of swap operators is used. 

 

Figure 5: Superdense encoding 
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On Fig.5 it can be seen that the generated at the second step Bell 
pair is the one which is used for sending the classical bits a and b. 
The diagram contains two quantum channels between the send-
er and receiver. The one of the quantum channels is used only for 
delay of the queue: 

 

Figure 6: Two quantum channels 

The proposed on Fig.6 components of the quantum circuit, could 
be interpreted as hardware components.  

For the practical realization of the proposed circuit the hardware 
components will have to be able to perform subsequently a 
measurement of entangled photons, to retain  the photons in a 
coherent state for tens of milliseconds, to carry out a circulation 
with them, to be measured with a great precision the time of 
reading the data.  

 

 
 

 
 

 
 

Figure 7: Full diagram 

3 CONCLUSION 
The quantum logarithm for securing a spare traffic uses pre-
shared pairs entangled qubits in order to send quantum infor-
mation on a classical channel.  The proposed circuit can be used 
to improve the reliability and the latency of the quantum chan-
nel, when a stable classical channel is available.  

Through the use of swap operators instead of Bell pairs the clas-
sical capacity can be doubled in one of the directions, on a bidi-
rectional quantum channel with the help of another direction. 
Unfortunately the same technique does not work with a quantum 
circuit, which uses a teleportation. 

The proposed in this research two different approaches give a 
possibility for significant improvement of the control in the engi-
neering of the quantum transport. The fact that, through these 
simple quantum logic circuits can be optimized and control the 
transport adds an additional optimism for the authenticity of this 
approach. 
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