International Journal of Scientific & Engineering Research, Volume 5, Issue 6, June-2014

ISSN 2229-5518

EFFICIENT GUI DEVELOPMENT USING WINDOWS PRESENTATION
FOUNDATION FRAMEWORK AND MODEL-VIEW-VIEWMODEL PATTERN

IMrs. Sangita Oswal, 2Mr. Siddhesh D. Kushte

1Professor, Department of MCA, V.E.S. Institute of Technology, Mumbai, India, sangita.oswal@ves.ac.in
2 Student of MCA, V.E.S. Institute of Technology, Mumbai, India, siddhkushte@gmail.com

Abstract

Abstract- The paper focuses on flexible GUI development for trade events viewer. Here we focus on tool for trading system
developed using WPF (Windows Presentation Foundation) and MVVM (Model-View-ViewModel) pattern. MVVM
architecture is an indirect successor of MVC pattern and it successfully overcome on flaws of latter technique by removing
dependency between model and controller by synchronizing View with ViewModel. In Financial Industry, various
applications require flexible GUI because market value of financial products continuously changes. This paper explains use
of WPF and MVVM pattern in Ul development of financial application.

Index Terms- flexible GUI development, MVVM, WPF, trade

1. INTRODUCTION

Financial industry comprises complex networks of
organizations, which primarily deal with management of
money and create conditions for investors and corporations
to flourish in the market. The growth of other sectors is
closely dependent on this industry as it is a prime source of
liquidity and thereby ensures the overall prosperity and
economic stability. This multi-trillion dollar services
industry comprises companies varying a great deal in size
and their offering as well. The industry grouping is widely
branched out to include companies providing varied
services, preventing a simple categorization of this industry

[1].

Financial industry derives new financial products for the
management of money. Financial industry has a need for
various applications due to various financial products. These
applications require flexible GUI because market value of
financial products continuously changes. In this paper | am
going to talk about such needs for a software change by
utilizing Windows Presentation Foundation (WPF) and
Model-View-ViewModel (MVVM) design pattern to
provide our customers with GUI of their choice while
ensuring there is a minimum impact to the rest of the code
base. This paper is organized as follows: first domain
knowledge about the industry. Next several approaches how
GUI is usually made are presented in Background, followed
by a brief description about what WPF and MVVVM are.

2. DOMAIN KNOWLEDGE OF PROJECT

Financial industry comprises of following segments:
1. Consumer Finance segment
2. Capital Markets segment

3. Diversified Financial Services segment

2.1 CAPITAL MARKETS

A capital market is one of the segments in financial industry.
Establishments in this segment undertake activities,
including trading, brokerage, strategic advisory, portfolio
management, asset management and investment advice.
They primarily work as intermediaries, either to provide or
manage capital, thereby satisfying financial goals of
institutions and individuals.

Companies operating under the segment can broadly be

classified into three distinct categories:

e The first set includes investment banking and brokerage
companies that provide services, such as underwriting of
bond and stocks to raise capital, trading and broking of
stocks, bonds, derivatives and commodities, as well as
companies engaged in strategic advisory services.

e The second set comprises asset management firms,
including companies that professionally manage large
pools of money from individuals and institutions with an
aim to satisfy a common investment goal.

e The third set includes companies classified as
diversified capital markets, which provide more than
two services and drive a majority of their revenues
collectively from both of them with no significant
proportion coming from only one service.

2.2 TRADE

Trade is a basic economic concept that involves multiple
parties participating in the voluntary negotiation and then
the exchange of one’s goods and services for desired goods
and services that someone else possesses. In financial
markets, trading also can mean performing a transaction that
involves the selling and purchasing of a security.

IJSER © 2014
http://www.ijser.org

1669

International Journal of Scientific & Engineering Research, Volume 5, Issue 6, June-2014

ISSN 2229-5518

3. BACKGROUND

This section will explain some design patterns that are used
to create GUI applications. Those patterns are still valid and
widely used in application development, but WPF and
MVVM design pattern provide a step forward which is
going to described after this section and is the purpose of
this paper.

3.1 MODEL-VIEW-CONTROLLER (MVC) PATTERN

Model View Controller (MVC) model began as a
framework developed by Trygve Reenskaug [2] for the
Smalltalk platform in the late 1970s. The working of MVC
pattern was first described in [3]. In MVC pattern, a Model
is used to represent data or business logic that the rest of the
application requires. Model knows how to store, load,
handle and transform data based on the inputs it gets. Model
notifies Views through a Controller when any change of the
data occurs so Views can update themselves accordingly.
View is a component in the pattern that is used to display
data to the actual user and had elements that allow user
interaction such as buttons, textboxes, trees, etc.

/ MVC Pattern \

Fig. 1: MVC pattern

3.2 MODEL-VIEW-PRESENTER (MVP) PATTERN

Model View Presenter (MVP) developed in 1990s in
Taligent Software Company. The working of MVP pattern
was described in [4], which is similar to MVC pattern called
MVP Passive View. In MVP pattern, Presenter receives
events from the GUI, triggers and update to the Model.
Model notifies the View about its change which is
accomplished via data binding for .NET development [5].
View can be a WinForms application, which is a regular
desktop application, or a web page, where Presenter has
logic and data. View needs to display data properly. Result
is that developers can greatly reuse their code and develop
the application easily for 2 display mediums, and it also
provides for automated testing of model and logic behind
the View.

View responsibility is to show the data provided by
presenter, and purpose of the presenter is to reach to model,
retrieve the needed data, performs required processing and
returns the Ul prepared data to the view.

Presenter

e The view interacts
with the model for
simple data binding

e The view is updated
by the presenter and
through data binding

Fig. 2: MVP pattern
4. WPF AND MVVM PATTERN
4.1 WPF

Windows Presentation Foundation (WPF) is a new graphical
subsystem for rendering and displaying of Microsoft
Windows applications [6]. It builds upon DirectX for
drawing and rendering content which gives developers and
designers lots of tools to create graphically pleasing user
interfaces. WPF introduces a common programming model
and clearly separates presentation from logic. WPF provides
graphics services (2D, 3D and vector graphics) which are
rendered on the graphics card GPU leaving minimal impact
to the CPU. WPF provide powerful data binding
mechanism, media services, layout engine so that the
application can be easily resized and/or displayed on various
screen sizes. It does not use fixed point GUI widget placing
as was the case before WPF, templates that are used to
redefine how a GUI element looks (control template) or how
data should be displayed (data template), animations, better
text services, and so on. Thus, WPF is an extensive library
full of features fir creating very expressive GUI’s and is
used in .NET development environment. Creation of GUI in
WPF is done using XAML [7], which is XML-like
declarative language, where GUI is created using XAML
declarations and code logic behind GUI elements is created
using one of the .NET languages such as C# and VB.
Sample XAML snippet given below

<Button Width="100" Height="100">
<TextBox Width="75">edit me</TextBox>
</Button> [8]

WPF however does not force a developer to use XAML and
all GUI can be created from code if one chooses to do so.
However with XAML application designers can contribute to
the software development lifecycle where their GUI design
can be seamlessly and immediately used in the actual
application, developers do not need to develop a GUI per
design as it was customary prior to WPF. Thus, software can
be developed in parallel — designers develop GUI while

IJSER © 2014
http://www.ijser.org

1670

International Journal of Scientific & Engineering Research, Volume 5, Issue 6, June-2014 1671

ISSN 2229-5518

developers create code behind such as business logic and
data management modules.

4.2 MODEL-VIEW-VIEWMODEL (MVVM) PATTERN

Model-View-ViewModel (MVVM) [9] pattern was
developed at Microsoft by John Gossman as a variation of
the MVP pattern to leverage benefits and features of WPF
for application development. Model contains the data and
does not know about the View or the ViewModel.
ViewModel is an abstraction of the View, and contains all of
its data and state. ViewModel does not have a reference to
the View class, but a data binding is used where ViewModel
is a data context of the View and View is bound to
properties ViewModel has. If some ViewModel property
changes, View receive a new value and if View issues some
command, ViewModel executes the command. Binding as
described is accomplished using dependency property in
WPF and is deeply embedded inside WPF library and
XAML.

Notifications

Data Binding

Commands

Business

b Presentation Logic
ul agic Logic
(Code Behind) . and Data

Fig. 3: MVVM pattern
5. FLEXIBLE GUI IN TRADING APPLICATION

Trade events viewer generates tree structure based on
various operations performed on block trade. Various
operations performed on trade are:

1. Split

A corporate action in which a company divides its existing
trade into sub accounts. Although the number of shares
remains the same compared to pre-split amounts, because
the split did not add any real value.

2. Assignment

An assignment of trade is a term that is used to describe a
situation in which one of the parties involved in a trade
decides to assign that trade to a party that was not part of the
original deal.

3. Novation

A novation is a transaction in which a ‘transferor’ transfers
to a ‘transferee’, with the consent of the ‘remaining party’,
all of its rights and obligations under the contract in respect
to the novated amount. The effect of the agreement is that
for the ‘novated amount” (i.e. all or part of the outstanding
notional amount), the old transaction between the transferor
and the remaining party is terminated, and a new transaction
is executed between the remaining party and the transferee
with economic terms identical to those of the old
transaction.

4. Unwind

To close out a position that has offsetting investments or the
correction of an error. Unwinds occur when, for example, a
broker mistakenly sells part of a position when an investor

wanted to add to it. The broker would have to unwind the
transaction by selling the erroneously purchased stock and
buying the proper stock.

Trader can perform any above operation at any point of
time. Trade Event Viewer shows sequence of operation
performed in tree - like structure.

\
A4 v \ 2
Assign 2] [Assign 1] Assign 2

A4 v
Unwind StepOut
Fig. 4: General tree scenario

The sequence of trade operation in not pre-defined.
Therefore, structure of tree varies for every trade.

5.1 NEED FOR FLEXIBLE GUI

During trade life cycle, Trader can perform any operation on
trade. Hence, the structure of trade event tree changes for
different trade and after trade operation performed on it.
Thus, it is essential that application is flexible enough to
accommodate those changes while not affecting other
software code parts to prevent introducing the bugs as a
side-effect of the changes.

5.2 WPF AND MVVM SOLUTION FOR FLEXIBLE GUI
MVVM pattern greatly decouple GUI from the rest of the
code to a far greater extent than it was possible using
MVC/MVP pattern for GUI development. In Trade Events
Viewer, | design all GUI components in XAML and
declarative nature of XAML speeds up GUI design process.
Using WPF and XAML to define a GUI we can experiment
easily and change/redefine the GUI quicker. Using XAML,
we can define complex GUI components. Following code
shows complex structure TreeView component

<TreeView ltemsSource="{Binding TreeRoot.ChildNodes}">
<HierarchicalDataTemplate DataType="{x:Type Model:Node}"
ItemsSource="{Binding ChildNodes}">

<StackPanel>

<TextBlock Text="{Binding Ticketld}" DataContext="{Binding}"
Horizontal Alignment="Center"/>

<ListView ItemsSource="{Binding EventTypes}"/>
</StackPanel>

</HierarchicalDataTemplate>

<[TreeView>

E.g. 1: Sample code for customized TreeView

In the above code, | added TextBlock and ListView
component in TreeView. To design such a GUI is difficult in
other languages. Using XAML, we can create such a
complex code easily.

IJSER © 2014
http://www.ijser.org

International Journal of Scientific & Engineering Research, Volume 5, Issue 6, June-2014

ISSN 2229-5518

MVVM pattern greatly improved productivity and drastically
reduced side-effect errors when a modification had to be
done. With MVVM pattern we were able to produce self
contained modules consisting of Model and ViewModel
parts for a certain object in our system. ViewModel exposes
properties and command objects a GUI (a View in the
MVVM pattern) can display or act upon. GUI changes or
modification do not require any changes of the ViewModel
that has logic.

View can have code behind, normally written in C# or VB.
WPF reduces code behind coding by using features like data
binding, command binding etc. One of the key principles for
designing controls in WPF is separation of Ul from the actual
control implementation. We write control implementation as
property in ViewModel, which helps to reduce code behind
coding. In above code, Text property of TextBlock
component bind with Ticketld property of ViewModel. This
will reduce code behind code. WPF provides a simple and
powerful way to auto-update data between the business
model and the user interface. This mechanism is called Data
Binding. Everytime when the data of your business model
changes, it automatically reflects the updates to the user
interface and vice versa. The source of a data binding can be
a normal .NET property or a DependencyProperty. The

target property of the binding must be a
DependencyProperty.
Binding Target Binding Source

DependencyObject Binding Object
OneWay
Dependency TwoWa
J

Property

Fig. 5: Data Biding

5.3 SAMPLE APPLICATION

This section briefly describes Trade Events Viewer
application using MVVM pattern. Ul of application would
look like in Fig. 6. A main window shows tree structure
which describes various events performed on trade in
hierarchical manner.

R

ABC123 =
AllocatedBlock
New

ABC123.1 ABC123.2
Split Assignment
ABC123.1.1 ABC123.1.2
pl Split
Allocation
ABC123.1.2.1 ABC123.1.2.2 ABC123.1.23
Split Split Split

ABC123.1

ABC123.2 Assignment 30 ku
ABC123 AllocatedBlock 180 i
ABC123 New 180 kushtesi
ABC123.1.1 Split 180 | kushtesi
ABC123.1.1 Allocation 180 kushtesi
ABC123.1.2 Split 180 kushtesi
ABC123.1.2.1 Split 180 kushtesi
ABC123.1.2.2 Split 180 kushtesi

ABC123.1.2.3 Split 180 | kushtesi

Fig. 6: Application Screenshot

Following. MVVM pattern, Main window has its
corresponding ViewModel that has a property list of
TreeViewModel.

CONCLUSION

In this paper an application of new framework of WPF and
MVVM has been presented that is more suitable to the
needs and requirements of Trading applications that have to
be reliable but also flexible to accommodate customer
changes, specific requirements and future changes.
Traditional MVC/MVP patterns provide a degree of
separation between logic and GUI code, but WPF and
MVVM take this a step further. WPF and MVVVM separate
design part of application from business logic (or
development). So designer can work on view and developer
on business logic using ViewModel independently. Utilizing
these technologies proven to be greatly beneficial in our
organization in terms of increased component reusability,
fast response time to customer change requests, reduced
side-effects of such changes helping in maintenance of
software and shared code base library and parallel
development of GUI and code.

REFERENCES

[1] John W. Molka Ill, “Financial Services Industry — Subprime
and Credit crisis weighs heavy 2008 Edition”

Available:https://www.advisen.com/downloads/advisenlndust
ryReportDivFinConsFinCapMrkt.pdf

[2] G Trygve M. H. Reenskaug, “MVC XEROX PARC 1978-79”
Available:http://heim.ifi.uio.no/~trygver/themes/mvc/mvc-
index.html

[3] Steve Burbeck, “Applications Programming in Smalltalk-
80™: How to use Model-View-Controller (MVC)”, March 4,
1997.
Available:http://st-www.cs.illinois.edu/users/smarch/st-
docs/mvc.html

[4] Mike Potel, “MVP: Model-View-Presenter The Taligent
Programming Model for C++ and Java”. Taligent Inc, 1996.
Available: http://www.wildcrest.com/Potel/Portfolio/mvp.pdf

[5] Microsoft Corp., “Model View Presenter Pattern”.
Available:http://msdn.microsoft.com/en-
us/library/cc304760.aspx

[6] Microsoft Corp., “Introducing Windows Presentation
Foundation”.
Available: http://msdn.microsoft.com/en-
us/library/aa663364.aspx

[71 Microsoft Corp., “XAML Overview”.
Available: http://msdn.microsoft.com/en-
us/library/ms752059.aspx

[8] Chris Sells & lan Griffiths, “Programming WPF, second
edition”. O’Reilly publications, 2007, pp 17

[9] Arlen Feldman, Maxx Daymon, “WPF in Action with Visual
Studio 2008”. Manning Publications Co, 2009, pp 283-285

IJSER © 2014
http://www.ijser.org

1672

