
International Journal of Scientific & Engineering Research Volume 3, Issue 5, May-2012 1
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

Dependency Injection for loose coupling of
Objects
Dr.Soly Mathew Biju

Abstract- Object oriented software may involve a number of objects that are closely coupled, making it very cumbersome for efficient software testing
due to dependencies. Managing and keeping track of lifetimes of various objects becomes a difficult task. Dependency Injection is a design pattern that

introduces dependency at interface levels .Configuration information of the objects wired together is maintained separately and this information can be
changes at runtime. Dependency Injection technique helps in designing software with loosely coupled objects thus provides a better object oriented
design.

Index Terms- Dependency injection, interface, implements, dependencies, factory method, Spring, Guice, accidental complexity, Service Oriented
Architecture, Test Driven Development.

—————————— ——————————

1. INTRODUCTION

Object-oriented design and development is becoming

very popular in today`s software development

environment [16].Creating a complex object oriented

application will involve creating a number of objects that

are tightly coupled. There could be high level of

dependencies between objects thus making it difficult to

design reusable components as one of the guidelines to

design a reusable component is loose coupling among

objects. Dependencies between object could also makes

it very difficult to design unit tests. Coupling is

transitive in nature object A depends on Object B and if

object B depends on object C then object A also depends

on object C [11].Any change to object C will affect both

object B and A.

Component composition used in currently available

component modules apply either direct or indirect

message passing as connection schemes which lead to

tight coupling [12].

Loose coupling between these objects would take away

the entire dependency web that exists between these

objects giving a clearer and maintainable code that could

be easily tested.

Loosely coupled objects could be easily unit tested.

Software testing is a comprehensive set of activities

conducted with the intent to finding errors in

software[15].Test cases generation and methods are one

of the most challenging processes during software

testing phase[14].

In test driven and software component based

development which is gaining a lot of popularity, the

focus is on developing reusable and testable objects

hence objects and its dependencies must be loosely

coupled.

Dependency Injection is a simple pattern offers a design

with loose coupling among objects[4].This allows objects

to complete their roles in the model and abstracts away

queries regarding instantiation or lifecycles of other

objects dependent of them(their dependencies). DI

allows objects to be injected from outside without

relying on the classes to create these objects. Software

maintenance consumes about 70% of the software life

cycle. Software maintainability could be improved by

reducing coupling among modules used in the

application. Software coupling has been linked to

maintainability [9].Recent studies have shown a trend

towards lower coupling numbers in projects with a

dependency injection count of 10% or more was

observed [8].

2. INTERFACES

In object oriented development wiring of various

objects, maintaining their dependencies and managing

their lifetime are very important.

A java interface type declares a set of methods and their

signatures. An interface is used to specify required

operations [2]. Classes can now implement this interface

and has the freedom to provide the actual

implementation code for the methods of the interface.

Different classes may implement these methods in

different ways. By coupling an object to an interface

instead of a specific implementation, you have the

freedom of using any implementation with minimal

change and risk [3].

International Journal of Scientific & Engineering Research Volume 3, Issue 5, May-2012 2
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

2.1 An Example

The promotion interface in example1 defines an

interface having a method increase_salary .The interface

does not specify how the method has to be

implemented. It only specifies that it provides a service.

It is up to the class that implements the interface to

determine the actual code based on some company

policies.

public interface promotion{

public double increase_salary();

}

Example 1.Interface promotion

Example 2 shows class manager which implements the

interface promotion. The class manager implements the

interface promotion .It provides the definition for the

method increase_salary which returns the new salary.

public class manager implements promotion {

public double increase_salary(double basic salary)

{

return basic salary*(10/100);

}

}

Eaample 2. Class manager implements promotion

Example3 shows the consumer class , class

SpecialContractor that uses the method increase_salary

implemented in the manager class to calculate the bonus

to be given to the contractor.

public class SpecialContractor()

 {

 private double salary;

 private final promotion promote;

 public SpecialContractor()

 { promote= new manager();

 }

 public double bonus()

 {

 return

 promote.increase_salary(salary);

 }

 }

Example 3. Class SpecialContractor

The UML diagram depicting the interface dependency of

the code given example1,example 2 and example3 is

shown in figure1.

The problem with example 3 is that in the constructor of

the class SpecialContractor , an object of class manage is

created. This binds the SpecialContractor to the concrete

implementation of the class manager. The class

SpecialContractor is not easily unit testable or reusable

as the actual service may have other external

dependencies.

Figure 1 UML diagram showing the interface

dependency

3. USING FACTORY PATTERN

Another solution to the problem in example 3 is to use

factory pattern to obtain instances of the class manager

that implements the service promotion. Gamma et al [4]

in their book describe purpose of Abstract Factory

pattern as

“To construct and instantiate a set of related objects

without specifying their concrete objects.”

public class SpecialContractor()

 {

 private double salary;

 private final promotion promote;

 protected SpecialContractor()

 {

 promote=ServiceFactory.create();

International Journal of Scientific & Engineering Research Volume 3, Issue 5, May-2012 3
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

 }

 public double bonus()

 {

 return promote.increase_salary(salary);

 }

 }

Example 4. Using factory method

Factories facilitates for a software application to put

together various objects and its components without

showing the dependencies between these components.

The client can then call the factory methods to create

instances of the classes without having to configure or

create an instance of the class. Factory patterns may not

always be the best because all the dependencies of the

class must be known to the factory at compile time.

Introducing a static factory method solves the problem

of depending on a concrete implementation class but

makes the code difficult to maintain and less flexible.

The disadvantage of using the factory pattern in such a

situation is that for all concrete classes separate factory

classes have to design causing a lot of boiler plate codes

within the main application structure. All the consumers

currently instantiating the class using the new operator

must be changed to call the factory method.

This will eventually read to accidental complexity in

addition to the existing cyclomatic and essential

complexity of the code. Accidental complexity relates to

problems that we create on our own and can be fixed —

for example, the details of writing and optimizing

Assembly code or the delays caused by batch

processing. Essential complexity is caused by the

problem to be solved, and nothing can remove it [7].

Factory classes have to be designed as Singleton classes

which have a certain level of complexity and lifecycle

management problems.

4. DEPENDENCY INJECTION

Dependency Injection provides solution to all these

problems. It refers to a process of providing an external

dependency to a software component. It also aids in

design by interface and facilitates Test Driven

Development(TDD). Test-driven design (TDD), is an

evolutionary approach to development which combines

test-first development where you write a test before you

write just enough production code to fulfil that test and

refactoring (Brooks 2003).TDD is primarily a design

technique with a side effect of ensuring that your source

code is thoroughly unit tested[10].

Dependency injection containers take care of object

construction, injection and life cycle management of all

the objects and all its dependencies[5] .Some of the

lightweight DI container available in the market today

are Spring, Guice, HiveMind. Spring and Guice is the

most popularly used DI containers.

 Spring lets you define separate configuration

files which are very similar to deployment files used in

java servelets. Below is an example of a deployment file

used in servelets.

An example a web.xml file is given below

<web-app version="2.4"

xmlns="http://java.sun.com/xml/ns/j2ee"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance"

xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee

http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd">

<servlet>

<servlet-name>IntroServlet</servlet-name><servlet-

class> javaservlet.example1.IntroServlet </servlet-class>

</servlet>

<servlet-mapping>

<servlet-name>WelcomeServlet</servlet-name>

<url-pattern>/WelcomeServlet</url-pattern>

</servlet-mapping>

</web-app>

Example 5 Web.xml file

The web.xml file in the example provides the servlet

name and the servlet mapping and the url details.

DI container is a separate file which is responsible for

initializing instances of the classes wherever required at

runtime. Any change made to the this file does not

require any recompilation of the main source code ; the

changes are incorporated dynamically at runtime.

In case of example SpecialContractor class, the DI

container will inject a concrete instance of promotion

hence example4 could be modified as given below

public class SpecialContractor

{

 private double salary;

International Journal of Scientific & Engineering Research Volume 3, Issue 5, May-2012 4
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

 private final promotion promote;

 protected SpecialContractor(promotion promote)

 { this.promote=promote;

//instance of promotion is injected by DI

 }

 public double bonus()

 { return promote.increase_salary(salary);

 }

 }

Example 6. Class SpecialContractor using DI

In Example 6, the factory method has been changed to

use the Spring BeanFactory API to create the bean.

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE beans PUBLIC

 "-//SPRING//DTD BEAN//EN"

 "http://www.springframework.org/dtd/spring-

beans.dtd">

<beans>

 <bean id="contractor" class=

 "org.elj.SpecialContractor ">

 <constructor-arg><ref bean=

 "managers"/></constructor-arg>

 </bean>

 <bean id="managers" class="org.elj.Manager"/>

</beans>

Example 7. Spring beans.xml configuration file.

Setter functions could also be used as injectors instead of

using constructors as injector. It is advantageous to use

setter as injectors as compared to using constructors as

injectors as they are simple and the name describes the

function and the parameter it requires. Moreover, Setters

are inherited unlike constructors which are not

implicitly inherited.

However it is a design level decision to select the

appropriate injectors. But in applications that require

immutable objects it is preferable to use constructor

injection [3].

5. USING GUICE

There are a number of dependency containers available

in the industry today. We have seen examples of spring.

Another very popular DI containers is Guice. Google

Guice [6] uses java5 annotation to provide the same

injection service. For example considered above the class

SpecialContractor that will now have the constructor

annotated with @inject in order to request injection from

the Guice engine:

public class SpecialContractor

{

 private double salary;

 private @Inject promotion promote;

 protected SpecialContractor(promotion promote)

 { this.promote=promote;

//instance of promotion is injected by DI

 }

 public double bonus()

 { return promote.increase_salary(salary);

 }}

Example 8. Class SpecialContractor using Guice

The @Inject annotation indicates where –to-inject.

Guice provides a Module that specifies what-to-

inject.The module for the class in example7 is as follows

public class AppModule implements Module

{ public void configure(Binder binder)

 {

Binder.bind(promotion.class).to(manager.class)

 .in(scopes.SINGLETON);

}

}

Example 9. Guice Module, another DI container

Efficient and flexible solution based on Service Oriented

Architecture has been proposed for various services like

sending services to Web Phone [13].In a service Oriented

Architecture (SOA) adopting layered approaches, all

dependencies between the service layer, business logic

and data access layer can be injected using DI.

6. CONCLUSION

The paper can be concluded by highlighting the benefits

of using DI in Object oriented technology.

The configuration information regarding the

implementation classes can be changed at runtime.

Dynamic runtime changes can be implemented at the

architectural level using the DI approach.

Evolution and extensibility: All systems evolve over

time, and similarly this can be represented by switching

components and changing wiring This can easily be

applied through DI. Different objects can be wired using

the deployment file.

DI helps in reducing the amount of boilerplates and the

resulting code is more maintainable.

Behaviour driven design for components

Components communicate via interfaces hence it is

International Journal of Scientific & Engineering Research Volume 3, Issue 5, May-2012 5
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

possible to model the protocol of a component (and

interfaces) using an extended sequence diagram or using

a simple textual language.

With DI dependency can be restricted to the interface

level and have mock independent classes which can be

injected using a DI container thus making unit testing

easier

DI facilitates better Object Oriented Design and aids in

the reusable component based development.

DI helps in making the modules simpler and unit testing

easier.

REFERENCES
[1] Brooks,2003. The Mythical Man-Month: Essays

 on Software Engineering, Anniversary Edition

 (2nd Edition) Addison-Wesley.

[2] H.Cay, Bi g Java., John Wiley & sons

 ,Inc.Hoboken,, USA.

[3] W. Jeremy 2006, ”Dependency injection and

 testable objects”, Dr.Dobbs.

 http://www.drdobbs.com/tools/185300375

[4]Gamma,E.,Helm,R., Vlissides ,R.J,1995. Design

 Patterns, Addison-Wesley.

[5] G. Debasish, 2008. “Dependency Injection- A

 pattern for loosely coupled collaboration of

 Objects”, Computer society of India

 Communications ,31-34.

[6] User Guide, 1995: http://code.google.com/p/google-

 guice.

[7] Reference manual, 2010:
http://static.springframework.org/spring/docs/2.5.x/refer

ence/index.html

[8] R.Ekaterina, J.David , 2007. Effects of

 dependency injection on maintainability,

 Proceedings of the 11th IASTED International

 Conference on Software Engineering and

 Applications, pg 7-12

[9] P. Denys, M. Andrian , The

 Conceptual Coupling Metrics for Object-

 Oriented Systems, Proceedings of the 22nd

 IEEE International Conference on Software

 Maintenance, 2006, pg 469 - 478

[10] A. David , ,2003.”Test-driven development: A

 practical guide”, Prentice Hall.

[11] R. James, Blaha ,1991. Object Oriented

 Modeling and design, Prentice Hall.

[12] Sanatnama, H., A.A.A. Ghani, N.K. Yap and

 M.H. Selamat, 2008. Mediator connector for

 composition of loosely coupled software

 components. J. Applied Sci., 8: 3139-3147.

[13] Wang, S. and L. Jun, 2011. A framework-based

content-orientated services delivery technology for 3G

network. Inform. Technol. J., 10: 779-788.

[14] osindrdecha, N. and J. Daengdej, 2010. A test case

generation process and technique. J. Software Eng., 4:

265-287.

[15] Roongruangsuwan, S. and J. Daengdej, 2010. A test

case prioritization method with practical weight factors.

J. Software Eng., 4: 193-214.

[16] Parthasarathy, S. and N. Anbazhagan, 2006. Analyzing the

software quality metrics for object oriented technology. Inform.

Technol. J., 5: 1053-1057.

http://code.google.com/p/google-
http://static.springframework.org/spring/docs/2.5.x/reference/index.html
http://static.springframework.org/spring/docs/2.5.x/reference/index.html

