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Abstract: In this paper geometric process is used for the analysis of accelerated life testing under constant stress 
for the Generalized Exponential Distribution using complete data. By assuming that approach the lifetimes of units 
under increasing stress levels form a geometric process, the maximum likelihood estimation approached is used 
for the estimation of parameters. In order to get the  asymptotic  variance  of  the  ML  estimators,  the  Fisher  
information  matrix  is  constructed.  The  asymptotic  interval estimates  of  the  parameters  are  then  obtained  
by using this asymptotic variance. In the last, a simulation study  is performed to illustrate the statistical properties 
of the parameters and the confidence intervals. 
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——————————      —————————— 
 

1. Introduction 

In modern era due to the development in design of 
products and manufacture in life cycles, the failures 
cannot be induced early at specified use conditions. 
Accelerated life testing is used to get early failures. 
It provides the details of testing items that is failure 
data (time) on the life distribution of materials or 
products. The test items are put under higher stress 
than normal usage condition. The model is fitted 
and extrapolated to estimate the life distribution 
under normal usage condition after getting the 
information by testing them at accelerated 
condition. This method is appropriate to test items 
of high reliability.  
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The method is quicker and less costly than testing 
product at normal condition which is practically 
very difficult because of their long life. 

Usually there are three types of stress loadings in 
accelerated life testing: constant stress, step stress 
and progressive stress (or linearly increasing 
stress). In constant stress test, each unit runs at 
prespecified constant stress levels which does not 
vary with time. This means that every unit is 
subjected to only one stress level untill the item 
fails or the test is stopped for any reason. Generally 
most products or items are assumed to operate at a 
constant stress when they are being used under 
normal conditions. 

    A lot of literature is available on constant stress 
accelerated life testing, for example, Ahmad et al. 
[1], Islam and Ahmad [2], Ahmad and Islam [4], 
Ahmad et al.[5] and Ahmad [6].Yang [7] proposed 
an optimal design of 4-level constant stress ALT 
plans considering different censoring times. 
Wilkins and Johns [8] considered constant stress 
accelerated life test based on Weibull distribution 
with constant shape and a log linear link between 
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scale and the stress factor which is terminated by a 
Type-II censoring  at one of the stress levels. 

    The geometric process concept was first 
introduced by Lam [9] in accelerated life testing in 
repair replacement problem. Lam [10] studied the 
geometric process model for a multistate system 
and concluded a replacement policy to minimize 
the long run average cost per unit time. After that a 
lot of work have been done and the available 
literature showing that a GP model is a good and 
simple model for analysis of data with a single 
trend or multiple trends, for example, Lam and 
Zhang[11], Lam[12] and Zhang[13]. 

Huang [14] did the analysis for exponential 
distribution with complete and censored data by 
using GP model. Zhou et al. [15] extended the GP 
model for the progressive type I hybrid censored 
Rayleigh failure data in ALT. Kamal et al. [16] 
analyzed constant stress accelerated life testing for 
Pareto distribution with complete samples by using 
geometric process model. Sadia Anwar et al.[17] 
used the mathematical model of accelerated life 
testing for Marshal-Olkin extended exponential 
distribution in geometric process, then extended her 
work in [18] for type I censored data.  

     The present study deals with the constant stress 
accelerated life testing for generalized Exponential 
distribution using geometric process with complete 
data. Estimates of parameters are obtained by 
maximum likelihood estimation technique and 
confidence intervals for parameters are obtained by 
using the asymptotic properties. Lastly, statistical 
properties of estimates and confidence intervals are 
examined through a simulation study. 

2. The Model 

2.1. The Geometric Process 

     A geometric process describes a stochastic 
process{ },...2,1, =nX n  , where there exists a 

real valued 0>λ  such that 
{ },...2,1,1 =− nX n

nλ  forms a renewal process. It 

can be shown that if { },...2,1, =nX n  is a GP and 

the probability density function of 1X  is )(xf
with mean µ  and variance 2σ  then the 

probability density function of nX will be 

)( 11 xf nn −− λλ  with ( ) 1−= nnXE
λ
µ

and

( ) ( )12

2

var −= nnX
λ
σ

. Thusλ , µ  and 2σ are three 

important parameters of GP. 

2.2. The Generalized Exponential Distribution  

     The probability density function (pdf) of a 
generalized exponential distribution is given by 
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Where ,0>α  is the shape parameter and ,0>β  

is the scale parameter of the distribution. GE 
distribution with the shape parameter α and the 
scale parameter β  will be denoted by ),( βαGE . 

),1( βGE  represents the exponential distribution 
with the scale parameter β . 

   It is observed that the two-parameter generalized 
exponential distribution can be used quite 
electively in analyzing many lifetime data, 
particularly in place of two-parameter gamma and 
two-parameter Weibull distributions [3]. 
Depending on the shape parameter, it can have an 
increasing and decreasing failure rates. The 
cumulative distribution function (cdf) of 
generalized exponential distribution is 
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The survival function of the generalized 
exponential distribution takes the following form 
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The failure rate or hazard rate is given by 
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  The shape of the hazard function depends only on 
shape parameter α. It can be observed that the 
generalized exponential distribution has a log-
concave density for α > 1 and it is log-convex for α 
≤ 1. Therefore for the fixed value of scale 
parameter β , the generalized exponential 
distribution has an increasing hazard function for α 
> 1 and it has a decreasing hazard function for α < 
1. For α = 1, it has constant hazard function. The 
hazard function of the generalized exponential 
distribution behaves exactly the same way as the 
hazard functions of the gamma distribution, which 
is quite different from the hazard function of the 
Weibull distribution [4]. 
 

2.3. Assumptions and test procedure  

1. Suppose that we conduct an accelerated life test 
with s increasing stress levels. Under each stress 
level, a random sample of n identical items is 
placed and start to operate at the same time. Let 

,kix  ni ,...,2,1=   sk ,...,2,1= be the observed 
failure time of ith test item under kth stress level. 
The failed item will be removed from the test and 
test would be continued till all the test items get 
failed (complete data). 
2. The product life follows generalized exponential 
distribution denoted by ),( βαGE  at any stress. 
3. The scale parameter is a log-linear function of 
stress. That is, kk bSa +=)log(β  , where a and 
b are unknown parameters depending on the nature 
of the product and the test method. 
4. Let random variables SXXXX ,...,,, 210  , 
denote the lifetimes under each stress level, where 

0X  denotes item’s lifetime under the design stress 
at which items will operate ordinarily and sequence 

},...2,1,{ skX k =  forms a geometric process 

with ratio .0>λ  
  The assumptions above discussed are very 
common in ALT literature except the last one, i.e. 
assumption 4. It is the assumption of geometric 
process which is better than the usual one  without 
increasing the complexity in calculations. The 
assumption 4 can be shown by the following 
theorem assuming that there is a log linear 
relationship between a life and stress (assumption 
3). 
 

Theorem: If the stress level in an ALT is 
increasing with a constant difference then under 
each stress level the life times of items forms a GP. 
That is, If kk SS −+1 is constant for

1,...,2,1 −= sk , then { }skX k ,...,2,1, =  forms 
a GP. 
 
Proof: From assumption (3), we get 
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This shows that the increased stress levels form an 
arithmetic sequence with a constant difference S∆ . 
Now the above equation can be written as 
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And the cdf is 

   𝐹𝑋𝑘(𝑥) = (1− 𝑒
−𝑥𝜆𝑘
𝛽 )𝛼                      (3) 

 

Eq.(2) implies that 

                                              

( ) ( )xfxf k
X

k
X k

λλ
0

=                              (4)  

   Now, from the definition of GP and from 
expression (4) it is clear that, if density functions of

0X  is ( )xf X 0
, then the pdf of kX will be given 

by ( )xf k
X

k λλ
0

, sk ,...,2,1= . Therefore, it is 

clear that lifetimes under a sequence of 
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arithmetically increasing stress levels form a GP 
with ratioλ . 

The expression (2) shows that if lifetimes of items  
under a sequence of increasing stress level form a 
geometric process with ratio λ  and if the life 
distribution at design stress level is generalized 
exponential with characteristic β , then the life 

distribution at thk stress level will also be 
generalized exponential with characteristic life 

.
β
λk

 

3. Maximum Likelihood Estimation 

Maximum likelihood estimation (MLE) is one of 
the most widely used methods among all estimation 
methods. It can be applied to any probability 
distribution while other methods are somewhat 
restricted. MLE implementation in ALT is 
mathematically more complex and, generally, 
closed form estimates of parameters do not exist. 
Therefore, numerical techniques such as Newton 
Raphson method is used to compute them. The 
likelihood function for constant stress ALT for 
complete case generalized exponential failure data 
using GP for s stress levels is given by: 
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The log-likelihood function corresponding to above 
can be rewritten as; 
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The MLEs of βα , and λ are obtained by solving 

the normal equations 0,0 =
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Where, 

             
β
λ xk

eZ
−

=  
Equations (7), (8) and (9) are used to find the 
estimate of α, β and λ 

 
4. Fisher Information Matrix & 
Asymptotic Confidence Interval 
 
The asymptotic Fisher Information matrix is given 
by:    
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The elements of Fisher Information matrix can be 
obtained by putting a minus sign before double and 
partial derivatives of the parameters, which are 
given as follows; 
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Now the variance-covariance matrix can be written 
as 
 
 

                   =∑     

⎣
⎢
⎢
⎢
⎢
⎡

−

− 𝝏𝟐𝒍
𝝏𝜶𝟐

− 𝝏𝟐𝒍
𝝏𝜶𝝏𝜷

− 𝝏𝟐𝒍
𝝏𝜶𝝏𝝀

𝝏𝟐𝒍
𝝏𝜷𝝏𝜶

− 𝝏𝟐𝒍
𝝏𝜷𝟐

− 𝝏𝟐𝒍
𝝏𝜷𝝏𝝀

− 𝝏𝟐𝒍
𝝏𝝀𝝏𝜶

− 𝝏𝟐𝒍
𝝏𝝀𝝏𝜷

− 𝝏𝟐𝒍

𝝏𝝀𝟐 ⎦
⎥
⎥
⎥
⎥
⎤
−𝟏

 

 
The asymptotic confidence interval for  βα ,  
and λ  are given by following expressions: 
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5.  Simulation Study: 
Simulation of data is the initial task for studying 
different properties of parameters. It is an attempt 
to model an assumed condition to study the 
behaviour of function. 
To perform the simulation study, first a random 
sample is generated from Uniform distribution by 
using R software.  
Now we use inverse cdf method to transform eq(3) 
in terms of u and get the expression of xki, 
k=1,2,...,s and i=1,2,...,n. 

                         xki = −𝛽.
log�1−𝑢

1
𝛼�

𝜆𝑘
        , 𝑘 =

1,2, … , 𝑠  𝑖 = 1,2, … ,𝑛   
     

• 1000 random samples of size 20,40,60,80 
and 100 have been obtained from the 
generalized exponential distribution. 

• The values of parameters and numbers of 
the stress levels are chosen to be α=1.2, 
β=2.8, λ=1.1 and s=4 or 6. 

• By using optim() function, we obtain ML 
estimates, the mean squared error(MSE), 
relative absolute bias(RAB), relative 
error(RE) and lower and upper bound of 
95% and 99% confidence intervals for 
different sample sizes. 

The results obtained in the above simulation 
study are summarized in Table1 &  2.  
 

6. Conclusion: 
In this study, geometric process is introduced for 
the analysis of accelerated life testing under 
constant stress when the life data are from a 
Generalized exponential model. It is better choice 
for life testing  because of its simplicity in nature. 
The Mean, SE, MSE, RAB and RE of the 
parameters are obtained . Based on the asymptotic 
normality, the 95% and 99% confidence intervals 
of the parameters are also obtained.   
  The results in Table 1 and Table 2 show 
that the estimated values of α, β and λ are very 
close to true (or initial) values with very small SE 
and MSE. As sample size increases, the value of 
SE and MSE decreases and the confidence interval 
become narrower.  
 For the Table 2, the maximum likelihood 
estimators have good statistical properties than the 
Table 1 for all sample sizes. 
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Table 1: Simulation results of Generalised exp using GP at α=1.2, β=2.8, λ=1.1 and s=4 
 
Sample Estimates 

 
Mean SE √MSE RABias RE Lower 

BOund 
Upper 
Bound 

 
 
20 

α 1.0772 0.1990 0.1923 0.1022 0.1602 0.6870 
0.5636 

1.4674 
1.5908 

β 3.0781 0.3191 0.0950 0.0993 0.0339 2.4526 
2.2547 

3.7036 
3.9015 

λ 1.0500 0.1034 0.0999 0.0908 0.0864 0.7971 
0.7329 

1.2028 
1.2670 

 
 
40 

α 1.1675 0.1200 0.1159 0.02707 0.0966 0.9322 
0.8578 

1.4027 
1.4771 

β 3.0397 0.2565 0.0614 0.0856 0.0219 2.5369 
2.3779 

3.5424 
3.7015 

λ 0.9952 0.1035 0.1000 0.0909 0.0558 0.7970 
0.7329 

1.2028 
1.2670 

 
 
60 

α  1.2113 0.1201 0.1160 0.0094 0.0967 0.9758 
0.9014 

1.4467 
1.5212 

β 3.0038 0.2417 0.0545 0.0728 0.0194 2.5299 
2.3800 

3.4777 
3.6276 

λ 1.0000 0.1034 0.0999 0.0908 0.0495 0.7971 
0.7330 

1.2028 
1.2670 

 
 
80 

α 1.1826 0.0805 0.0777 0.0144 0.0648 1.0248 
0.9749 

1.3404 
1.3904 

β 3.0491 0.2645 0.0653 0.0889 0.0233 2.5306 
2.3666 

3.5676 
3.7316 

λ 0.9924 0.1035 0.1000 0.0909 0.0593 0.7970 
0.7328 

1.2029 
1.2671 

 
100 

α 1.1579 0.0867 0.0838 0.0350 0.0698 0.9878 
0.9340 

1.3280 
1.3818 

β 3.0515 0.2661 0.0661 0.0898 0.0236 2.5299 
2.3649 

3.5731 
3.7381 

λ 1.0041 0.1035 0.0999 0.0909 0.0600 0.7971 
0.7329 

1.2028 
1.2670 

 
 
 
 
Table 2: Simulation results of Generalised exp using GP at α=1.2, β=2.8, λ=1.1 and s=6 
 
Sample Estimates 

 
Mean SE √MSE RABias RE Lower 

BOund 
Upper 
Bound 

 
 
20 

α 1.2838 0.1409 0.1361 0.0698 0.1134 1.0076 
0.9202 

1.5601 
1.6474 

β 2.9798 0.2183 0.0444 0.0642 0.0158 2.5518 
2.4165 

3.4077 
3.5431 

λ 0.9950 0.1035 0.1000 0.0909 0.0404 0.7970 
0.7328 

1.2029 
1.2671 

 
 
40 

α 1.1598 0.1451 0.1402 0.0334 0.1168 0.8753 
0.7853 

1.4442 
1.5342 

β 3.0598 0.2899 0.0784 0.0928 0.0280 2.4916 
2.3118 

3.6281 
3.8079 

λ 1.0489 0.1035 0.1000 0.0909 0.0713 0.7971 
0.7329 

1.2028 
1.2670 

 
 
60 

α 1.2019 0.0968 0.0935 0.0015 0.0779 1.0120 
0.9519 

1.3917 
1.4517 

β 3.0650 0.2777 0.0719 0.0946 0.0257 2.5207 
2.3485 

3.6092 
3.7814 

λ 0.9923 0.1035 0.1000 0.0909 0.0654 0.7970 1.2028 
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0.7329 1.2670 
 
 
80 

α 1.1868 0.0892 0.0861 0.0110 0.0718 1.0119 
0.9566 

1.3616 
1.4169 

β 3.0600 0.2708 0.0684 0.0928 0.0244 2.5291 
2.3612 

3.5909 
3.7588 

λ 0.9973 0.1035 0.1000 0.0909 0.0622 0.7970 
0.7328 

1.2029 
1.2671 

 
 
100 

α 1.1977 0.0812 0.0785 0.0019 0.0654 1.0384 
0.9880 

1.3570 
1.4073 

β 3.0587 0.2718 0.0689 0.0923 0.0246 2.5260 
2.3574 

3.5914 
3.7600 

λ 1.0500 0.1035 0.1 0.0909 0.0626 0.7971 
0.7329 

1.2028 
1.2670 
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