
International Journal of Scientific & Engineering Research, Volume 5, Issue 1, January-2014 252
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

An Introduction to Genetic Algorithms:
A survey A practical Issues

Ahmed A. EL- Sawy1, 2, Mohamed A. Hussein1, EL-Sayed M. Zaki1, A. A. Mousa1, 3

P

1
P Department of Basic Engineering Sciences, Faculty of Engineering, Menoufia University, Shibin El-Kom, Egypt.

P

2
PDepartment of Mathematics, Faculty of Science, Qassim University, Saudi Arabia.
P

3
PDepartment of Mathematics, Faculty of sciences, Taif University, Saudi Arabia.

Abstract— The Genetic Algorithm (GA) is a relatively simple heuristic algorithm that can be implemented in a straightforward manner. It can be applied
to a wide variety of problems including unconstrained and constrained optimization problems, nonlinear programming, stochastic programming, and
combinatorial optimization problems. It is widely used in several fields such as management decision making, data processing ...Information and Finan-
cial Engineering. Because of their population approach, they have also been extended to solve other search and optimization problems efficiently, in-
cluding multimodal, multiobjective. In this paper, a brief description of a simple GA, GAs vs. traditional methods and GAs to handle constrained optimiza-
tion problems are described. Also, GAs for multiobjective optimization MOP is proposed. Thereafter, GAs applications are presented. The intended audi-
ence of this paper is those who wish to know the main concepts of GAs and how to apply it to different optimization problems. Also, to familiarize readers
to the algorithm proceeding.
Index Terms— Genetic algorithms; constrained Optimization; Multiobjective optimization.

1 INTRODUCTION
 Genetic Algorithms (GAs) are apart of the evolutionary
algorithms, which is a rapidly growing areas of artificial intel-
ligence [1]. GAs are inspired by Darwin's theory of biological
evolution. By mimicking this process, genetic algorithm are
able to "evolve" solutions to real world problems. Holland [2]
was the first person to put computational evolution on a firm
theoretical footing. GAs are optimization algorithms based on
the concepts of biological evolution and genetics. In this algo-
rithm, the design variables are represented as genes on a
chromosome. GAs feature a group of candidate individuals
(which is called population) on the response surface. Through
environmental selection and the genetic operators, mutation
and recombination, chromosomes with better fitness are
found. Natural selection guarantees that best chromosomes
with better fitness will survive in the future populations. Us-
ing the recombination operator the GA combines genes from
two parent chromosomes to form children (new chromo-
somes) that have a high probability of having better fitness
than their parents. On the other hand, mutation allows new
areas of the response surface to be explored. GAs offer a gen-
eration improvement in the fitness of the chromosomes and
after many generations will create chromosomes containing
the optimized variable settings [3],[4],[5],[6],[7].
 Genetic algorithm was invented by "John Holland" in the
1960s and it was later developed by Holland and his students
and colleagues at the University of Michigan in 1960s and
1970s. Holland's 1975 book" Adaptation in Natural and Artifi-
cial Systems"[2],[7] presented the genetic algorithms as an ab-
straction of biological evolution and gave a theoretical
framework for adaptation under the genetic algorithms. Hol-
land's original goal was not to design an algorithm to solve
specific problems, but rather to formally study the phenome-
non of adaptation as it occurs in nature and to develop ways
in which the mechanisms of natural adaptation might be im-

ported to computer systems [7],[8].
2. THE BASIC GENETIC ALGORITHMS
 The basic or simple GA comprises four important steps [5]:
Step 1: The initial candidate population of chromosomes is
created either randomly or by perturbing an input chromo-
some. Indeed, how the initialization step is done is not critical
as long as the initial population spans a wide range of design
variable settings. Thus, if you have explicit knowledge about
the system being optimized that information can be included
in the initial population [7]. In the binary representation, every
chromosome is a string of bits, 0 or 1. The length of the string
depends on the required precision (number of decimal places).
Suppose that each variable xi can take values from the domain

[,]i i iD a b R= ⊆ : suppose Q decimal places for the varia-
bles values is desirable. It is clear to achieve such precision
each domain DRiR should be cut into ().10Q

i ib a− equal size
ranges. Let mi be the smallest integer such that
().10 2 1imQ

i ib a− ≤ − .Then a representation (Fig.1) having
each variable xi coded as a binary string of length mi addi-
tionally, the following formula interprets each such string:

(1001.......001).2
2 1

b ai ix a decimal mi i i
−

= +
−

. (1)

Fig. 1: An example of binary and floating-point representations

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 1, January-2014 253
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

Step 2: Evaluation, the fitness is computed this step,. The goal
of the fitness function is to numerically encode the perfor-
mance of the chromosome. For real-world applications of op-
timization methods such as evolutionary algorithms the choice
of the fitness function is the most critical step [7].
Step 3: In this step, the chromosomes with the largest fitness
scores are placed one or more times into a mating pool subset
in a semi-random fashion. Chromosomes with low fitness are
removed from the population. There are several methods for
performing selection. One of the most common methods rou-
lette wheel selection where every chromosome has its place
big accordingly to its fitness function, this can be simulated by
following algorithm (Fig. 2).

1.[SUM] Calculate sum of all chromosomes fitness ()if in

population ,
1

pop size

i
i

F f
−

=

= ∑ .

2. [COMPUTE] Compute probability of selection for each in-

dividual i as, i
i

f
p

F
= .

3. [Loop] Go through the population from i=1 to pop-size (N).
 [COMPUTE] Compute cumulative probability for
each i as,

1

i
i jj

Q p
=

= ∑

 [SELECT] Generate random number from []0,1r∈ ,

 [DECISION] When 1i i iQ r Q− ≤ ≤ select chromo-
some i .

Fig .2: Roulette Wheel Algorithms

Step 4: Exploration, consists of the crossover and mutation
operators. Two chromosomes (i.e., parents) from the mating
pool subset are randomly selected to be mated. The probabil-
ity that these parents are recombined (mated) is a user-
controlled option and is usually set to a high value. If the par-
ents are allowed to mate, a crossover operator is employed to
exchange genes between the two parents to produce two off-
spring. If they are not allowed to mate, the parents are copied
into the next generation unchanged. The two most common
recombination operators are the one-point and two-point
crossover methods. In the one-point method, a crossover point
is selected along the chromosome and the genes up to that
point are swapped between the two parents. However, in the
two-point method, two crossover points are selected and the
genes between the two points are swapped. The children then
replace the parents in the next generation. A third recombina-
tion operator, which has become quite popular, recently, is the
uniform crossover method. In this crossover method, recom-
bination is applied to the individual genes in the chromosome.
If crossover is performed, the genes between the parents are
swapped and if no crossover is performed the genes are left
intact. This crossover method has a higher probability of pro-
ducing children which are much different than their parents
so the probability of recombination is usually set to a low val-
ue. The probability that a mutation will occur is another user-
controlled option and is usually set to a low value so that good

chromosomes are not destroyed. A mutation simply changes
the value for a particular gene. After the exploration step, the
population is full of newly created chromosomes (children)
and steps two through four are repeated. This process contin-
ues for a fixed number of generations [7]. Figure 3 shows a
flowchart of the working of a GA.

Fig. 3: Main Flowchart Of SGA

3. GENETIC ALGORITHMS VS TRADITIONAL METHODS

Traditional methods [9],[10],[11],[12]

Calculus-based methods: The main disadvantages of cal-

culus-based search are, firstly, a tendency for the search to get
trapped on local maxima even a though a better solution may
exist , all moves from local maxima seem to decrease the fit-
ness of the solution, secondly the application of such searches
depends on the existence of derivatives.

Dynamic programming: This optimization technique
builds towards a solution by first solving a small part of the
whole problem, and then gradually incrementing the size in a
series of stages until the whole problem is solved, This is a
method for solving multistage control problems, but can only
use where the number of state and stages are small, and there
is no interaction between stages.

Random search: This is a brute force approach to difficult
functions, also called an enumerated search. Points in the
search space are selected randomly this is a very unintelligent
strategy [4],[5].

Gradient methods: Such methods are generally referred to
as hill-climbing, and perform well on functions with only one
peak. However, on functions with many peaks, the first peak
found will be climbed, whether is it the highest peak or not.
Finally four difference that separate GAs from conventional
optimization techniques are concluded [4],[5],[13].

1- Direct manipulation of a coding. GAs manipulates deci-
sion or control variable representations at a string level to ex-
ploit similarities among high- performance strings. Other
methods usually deal with functions and their control varia-
bles directly [14].

2- Search form a population, not a single point. In this
way GAs find safety in numbers. By maintaining a population
of well adapted sample points, the probability of reaching a
false peak is reduced. The search starts from a population of

Step1: Initialization

Step2: Evaluation

Step3: Selection

Step4: GA Operators

Termintion

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 1, January-2014 254
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

many points, rather than starting from just one point. This
parallelism means that the search will not become trapped on
a local maxima especially if a measure of diversity maintenance
is incorporated into the algorithm, for then one candidate may
become trapped on a local maxima, but the need of maintain
diversity in the search population means that other candidates
will therefore avoid that particular area of the search space.

3- Search via sampling, a blind search. GAs achieves much
of their breadth by ignoring information except that concern-
ing payoff. Other methods rely heavily on such information
and in problems where the necessary information is not avail-
able or difficult to obtain, these other techniques break down
[14].

4- Search using stochastic, not deterministic rules. The
transition rules used by genetic algorithms are probabilistic,
not deterministic.

Finally, the advantages and disadvantages of using GAs are
concluded as follows [7]:

 They require no gradient information about the re-
sponse surface

 Discontinuities present on the response surface have
little effect on overall optimization performance

 They are resistant to trapped in local optima
 They perform very well for large scale optimization

problems
 Can be employed for a wide variety of optimization

problems
Disadvantages to using genetic algorithms
 Have trouble finding the exact global optima.
 Require large number of response (fitness) function

evaluations
 GAs configuration is not straightforward

4- WHY DO GAS WORK?

The heuristic search of a GAs is based upon Holland's
schema theorem. The mathematics of this theorem were de-
veloped using the binary representation [5],[7]. A brief non-
mathematical introduction of the schema will be given assum-
ing a binary coding. A schema S is defined as a template for
describing a subset of chromosomes with similar partitions.
The template consists of multiple 0's, 1's, and don't care sym-
bols (*), this character is simply a notational device used to
signify that either a 1 or 0 will match that pattern. Given an
example, consider a schema such as, *0000. This schema
matches two chromosomes, 10000 and 00000. The template is a
powerful way of describing similarities among patterns in the
chromosomes. According to Holland, the order of a schema
o(s) is equal to the number of fixed positions (i.e., non-meta-
characters) and the defining length of a schema δ(s) is the
distance between the first and the last fixed string positions.
Thus, the schema #00#0 is an order 3 schema (o(s) = 3) and
has defining length of (δ=5-2=3). Holland derived an expres-
sion that predicts the number of copies a particular schema, s,
w=3ould have in the next generation after undergoing exploi-
tation, recombination and mutation. This expression is shown
below

()
(, 1) (,). (,) / ()[1 . ().]

1

s
s t s t eval s t F t p o s pc mm

δ
ζ ζ+ ≥ − −

−
 (2)

where s is a particular schema, t is the generation,
(, 1)s tζ + is the number of times a particular schema is ex-

pected in the next generation, (,)s tζ is the number of times
the schema is in the current generation, (,)eval s t is the aver-
age fitness of all chromosomes that contain schema s, ()F t is
the average fitness for all chromosomes, Pc is the probability
of crossover occurring, and Pm is the mutation probability.
The primary conclusion that can be drawn from inspection of
this equation is that as the ratio of (,)eval s t to ()F t becomes
larger, the number of the times s is expected in the next gener-
ation increases. Thus, particularly good schemata will propa-
gate in future generations. Two more points need to be made
concerning Holland's schema theorem. Although both muta-
tion and recombination destroy existing schemata, they are
necessary for building better ones. The degree to which they
are destroyed is dependent upon the order (o(s)) and the
length (δ(s)) of the schemata. Thus, schemata that are short,
low-order, and have above average fitness are preferred and
are termed "building blocks". This definition leads to the
building block principle of GAs which states that there is a
high probability that short, low-order, average fitness schema-
ta will combine through recombination to form higher order,
above average fitness schemata.

5. AN EXAMPLE OF APPLYING GENETIC ALGORITHMS

Here we present a simple example of applying genetic algo-
rithm, which taken from [6].

2 2 2Z= [30 (2 3) (18 32 12 48 36 27)]*
2 2 2[1 (1) (19 14 3 14 6 3)]

 . .
 - 2.0 2.0, - 2.0 2.0

Min

x y x x y xy y

x y xy x x xy y
s t

x y

+ − − + + − +

+ + + − + − + +

≤ ≤ ≤ ≤

5.1 Representation

First, decision variables must be encode into binary strings.

Here 16 bits (Suppose that 4 decimal places for the variables
values is desirable) are used to represent a variable. The map-
ping from a binary string to a real number for a variable x or y
is computed from equation 1 as follows:

4.0 4.0
2.0 , y 2.016 162 1 2 1

x x y′ ′= − + ⋅ = − + ⋅
− −

Here x′ and y′ represent the decimal value of the sub-
string for decision variable x and y respectively.

5.2 Initial Population
In each generation the population size is set as 20. Initial

population is randomly generated as follows:

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 1, January-2014 255
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

1

2

3

[11100110110011000110101110000010] [1.606256, 0.320165] F=2907.700817; EVAL=700242.428
[11000000001100011011110001010101] [1.003037,0.942733] F=1470.604014; EVAL=701679.525
[110

v
v
v

= = −
= =
=

4

5

00001010000101011010100011000] [1.019699,0.829633] F=998.466596; EVAL=702151.663
[01001000111100011001110110001100] [.860273,0.461707] F=9680.870631; EVAL=693469.258
[001100110

v
v

=
= = −
=

6

7

11111100101110110001010] [1.195422, 0.538430] F=1439.880786; EVAL=701710.248
[01000110111110000000011110011000] [.891096, 1.881346] F=11273.574224; EVAL=691876.555
[011010000001111010000

v
v

= − −
= = − −
=

8

9

11001111010] [.373144,.101228] F=951.091206; EVAL=702199.038
[00010110000101111010111111110000] [1.654841,.749065] F=8068.650332; EVAL=695081.479
[10110111110111111010110000

v
v

= −
= = −
=

10

11

111111] [.873030,0.691386] F=982.663173; EVAL=702167.466
[00000000010111111100110101111111] [1.1994202,1.210925] F=45585.613158; EVAL=657564.516
[1001100110101010000011101101010

v
v

=
= = −
=

12

13

0] [.41038, 1.768307] F=8488.275825; EVAL=694661.853
[00111000000010011111101010110010] [1.124437,1.917174] F=703150.129106; EVAL=0.000
[01110111110010101111101101101011] [0.12826

v
v

= −
= = −
= = −

14

15

7,1.928466] F=234882.112971; EVAL=468268.016
[00010110110111110010001011111110] [1.642634, 1.453239] F=14013.064752; EVAL=689137.064
[10001101001001001110011110001110] [0.205356,1.613443]

v
v

= = − −
= =

16

17

 F=84257.482260; EVAL=618892.647
[10010100011101110010000111001000] [0.319799, 1.472160] F=730.102530; EVAL=702420.027
[11110010010010111010011101000010] [1.785885,0.618090]

v
v

= = −
= =

18

19

F=890.983919; EVAL=702259.145
[11011001111111110101110001000111] [1.406241, .558145] F=5332.051371; EVAL=697818.078
[00000110101010100001101111110001] [1.895872, 1.563409] F=21833

v
v

= = −
= = − −

20

.496910; EVAL=681316.632
[11011101010010010100001101000110] [1.457633, .948836] F=26032.543455; EVAL=677117.586v = = −

5.3 Evaluation
 The first step after creating a generation is to calculate the

fitness value (F) of each member in the population by calculat-
ing the objective function for each individual. The process of
evaluating the fitness of a chromosome consists of the follow-
ing three steps:

1. Convert the chromosome’s genotype to its phenotype.
This means converting the binary string into corresponding
real values as in equation 1.

2. Evaluate the objective function, which we refer as the fit-
ness value (F)

3. Convert the value of objective function into fitness. Here,
in order to make fitness values positive,(the positive values
needed for Roulette Wheel Algorithm) the fitness of each
chromosome (EVAL) equals the maximization of the objective
function minus the objective function evaluated for each
chromosome in the population. The objective function values
F and the fitness values EVAL of above chromosomes (the
first population) are depicted before. It is clear that in the first
generation chromosome V16 is the best one
(EVAL=702420.027) and that chromosome V12 is the poorest
one (EVAL=0.000)

5.4 Create a new population
 After evaluation, a new population should be created from

the current generation. Here the three operators (Elitism,
Crossover, and Mutation) are used.

5.4.1 Elitism
The two chromosomes (strings) with best fitness are al-

lowed to survive and produce offspring in the next generation.
For example, in first population, chromosome V16 and V17 are
allowed to live in the second generation.

5.4.2 Selection and Crossover

The cumulative probability is used to decide which chro-
mosomes will be selected to crossover. The cumulative proba-
bility is calculated as in figure 2.

1 1 2 2 3 3

4 4 5 5 6 6

7 7

0.054 Q 0.054 P 0.054 Q 0.109 P 0.055 Q 0.163
0.054 Q 0.217 P 0.054 Q 0.272 P 0.054 Q 0.325
0.055 Q 0.38

P
P
P

= = = = = =
= = = = = =
= = 8 8 9 9

10 10 11 11 12 12

13 13 14

0 P 0.054 Q 0.434 P 0.055 Q 0.488
0.014 Q 0.539 P 0.054 Q 0.593 P 000 Q 0.593
0.036 Q 0.630 P 0.0

P
P

= = = =
= = = = = =
= = = 14 15 15

16 16 17 17 18 18

19 19 20 20

54 Q 0.683 P .048 Q 0.731
0.055 Q .786 P 0.055 Q 0.840 P 0.054 Q 0.895
0.053 Q 0.947 P 0.053 Q 1.

P
P

= = =
= = = = = =
= = = = 00

The crossover used here is one-cut-point method, which ran-
domly selects one cut-point and exchanges the right parts of
two parents to generate offspring with 1cP = .

1. Generate a random number r from the range [0,1];
2. If 1Q r Qi ii ≤ ≤− select the ith chromosome Vi to be par-

ent one.
3. Repeat step 1 and 2 to reproduce another parent.
4. Generate a random number r from the range [0,1]. If r is

less than the probability of crossover (the probability of
crossover as 1.0), the crossover will undergoes, the cut-
point is selected behind the gene which place is nearest
integers greater than or equal to r×(length-1).

5. Repeat step 1 to step 4 altogether nine times to finish the
whole crossover.

The creation of 18 offspring plus 2 chromosomes obtained
using elitism strategy keeps the population the same in each
generation in this case 20.

5.4.3 Mutation
Mutation [5] is performed after crossover. Mutation alters

one or more genes with a probability equal to the mutation
rate. (In the example, the mutation rate is set to 0.02pm =)
1. Generate a sequence of random numbers rRkR (k=1,.....,640)
(Here, the numbers of bits in the whole population is
20×(16+16)=640).

2. If ri is 1, change the ith bit in the whole population from 1
to 0 or from 0 to 1.

3. The chromosomes reproduced are not subject to muta-
tion, so after mutation, they should be restored. A new popu-
lation is created as a result of completing one iteration of the
genetic algorithm. The procedure can be repeated as many
times as desired. In this example, the test run is terminated
after 50 generations.

The best value of the objective function in each generation
is reported by [6] as follows:

Generation 1: f (0.319799, -1.472160)=730.102530
Generation 2: f (0.406165, -0.558145)=162.226980
………………………………………………..
Generation 49: f (-0.005158, -0.999924)=3.006779
Generation 50: f (-0.005158, -0.999924)=3.006779
By using GAs in [6] they finally guarantee that GAs con-

verge to the optimal solution after 50 generation

6- CONSTRAINED OPTIMIZATION USING GAS.
The above discussion of optimization problems avoid de-

tailed consideration of constrains. On the other hand, many

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 1, January-2014 256
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

real-world optimization problems involve inequality and/or
equality constraints are thus posed as constrained optimiza-
tion problems. In trying to optimize constrained optimization
problems using genetic algorithms (GAs) or classical optimiza-
tion methods, penalty function methods have been the most
popular approach. However, since the penalty function ap-
proach is generic and applicable to any type of constraint,
their performance is not always satisfactory. Thus, several
methods for handling unfeasible solutions have emerged re-
cently. General form of the nonlinear programming problem
(NLPP) can be defined as follows [15]:

NLPP:
 Max ()f x
Subject to:

{ | () 0, 1, 2, ..., and () 0 1, ..., }

{ | () (), 1, 2,, }

nx R g x i k h x j k mi j
nx R l x x u x i ni i i

= ∈ ≤ = = = +

= ∈ ≤ ≤ =

F

S

 (3)

Where x ∈ ⊆F S . The set nR⊆S defines the search space
and the set ⊆F Sdefines a feasible part of the search space.
Usually, the search space Sis defined as n-dimensional rec-
tangle in nR (domains of variables defined as lower and up-
per bounds): () (), 1left i x right i i ni≤ ≤ ≤ ≤ Whereas the feasi-
ble set F is defined by the search space S and an additional
set of constraints:

() 0, 1, 2, ..., and () 0 1, ...,g x i k h x j k mi j≤ = = = +

One of the major components of any evolutionary system is
the evaluation function. Evaluation functions are used for as-
sign a quality measure for individuals in a population. Where-
as evolutionary computation techniques assume the existence
of an (efficient) evaluation function for feasible individuals,
there is no uniform methodology for handling (i.e., evaluating
) unfeasible ones. The simplest approach, incorporated by
evaluation strategies and the version of evolutionary pro-
gramming (for numerical optimization problems), is to reject
unfeasible solutions. But several other methods for handling
unfeasible individuals have emerged recently.

6.1 Methods Based on Penalty Functions [15],[16],[17]

 The penalty function method is widely used in the mathe-

matical Programming literature. It essentially adds to the ob-
jective function some terms which punish a solution that is not
feasible.

the above NLPP (3) can be transformed into an uncon-
strained optimization problem. The objective function of the
unconstrained optimization problem, which will be used as
the fitness function in the associated genetic algorithm de-
signed to solve the initial constrained problem, has the follow-
ing format:

{ (),
()

() (),
f x if x

eval x
f x penalty x otherwise

∈
=

+
F (4)

where penalty(x) is zero, if no violation occurs, and is positive,
otherwise. Usually, the penalty function is based on the dis-

tance of the solution form the feasible region F , or on the ef-
fort to "repair" the solution, i.e., to force it into F . The former
case is the most popular one; in many methods a set of func-
tions (1)jf j m≤ ≤ is used to construct the penalty, where the
function ()jf x measures the violation of the j-th constraint in
the following way:

 {0, ()} 1
()

() 1

max g x if j kj
f xj h x if k j mj

≤ ≤
=

+ ≤ ≤

 (5)

How the penalty function is designed and applied to unfeasi-
ble solutions may differ in important details across problems.

6.1.1 Static Penalty Function

 The static penalty function assumes that for every con-
straint we establish a family of intervals which determine an
appropriate penalty coefficient ijR . It works as follows: (1) for
each constraint, create several (l) levels of violation (these lev-
els measure the degree of violation, e.g., slightly or heavily);
(2) for each level of violation and for each constraint, create a
penalty coefficient (1, 2,..., , 1, 2,...,)ijR i l j m= = ; higher degree
of violation requires heavier punishment (i.e., larger ijR). The
evaluation function has the following structure:

2() () ()
1

m
eval x f x R f xij jj

= + ∑
=

 (6)

Where the ()jf x are as defined above and m is the number of
constraints in the problem the central issue in this method is
the determination of the relative magnitudes of the coefficients
{ |1 ,1 }.ijR i l j m≤ ≤ ≤ ≤
The weakness of the method is in the number of parameters.
For m constraints the method requires m(2l+1) parameters in
total: m parameters to establish number of intervals for each
constraint, l parameters for each constraint, defining the
boundaries of the intervals (levels of violation), and l parame-
ters for each constraint representing the penalty coefficient

ijR .
6.1.2 Dynamic Penalty Function

 Dynamic penalty function method differs from the previ-
ous one in that it punishes "harder" as the number of genera-
tions increases. The implementation of this method is through
the following evaluation function such that individuals are
evaluated (at the iteration t) by the following formula:

() () (*) ()
1

m
eval x f x C t f xjj

βa= + ∑
=

 (7)

 Where , and C a β is a constant. A reasonable choice
for these parameters is 0.5, 2C a β= = =
 i.e.,

2 2() () (0.5) ()
1

m
eval x f x t f xjj

= + ∑
=

 (8)

The method requires much smaller number of parameters
than the first method. Also, instead of defining several levels
of violation, the pressure on unfeasible solutions is increased
due to the (*)C t a component of the penalty term: towards the
end of the process (for high values of the generation number
t), this component assumes large values.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 1, January-2014 257
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

6.1.3 Rejection of Unfeasible Individuals
This "death penalty functions" method is a popular option

in many evolutionary techniques like evolutionary strategies
or evolutionary programming, this method rejects all unfeasi-
ble solutions in the population. Thus, under this method, if in
some current population unfeasible solutions result after the
GA operators are applied; these are simply eliminated and
replaced by randomly drawn new solutions.

 6.2 Behavioral Memory Method [16],[18]
 The idea of this technique is to satisfy sequentially (one to

one) the constraints imposed on the problem. Once a certain
percentage of the population (defined by the flip threshold)
satisfies the first constraint, an attempt to satisfy the second
constraint (while still satisfying the first) will be made. Notice
that in its last step of the algorithm, death penalty was used,
because unfeasible individual are completely eliminated from
the population.

6.3 Repair Methods [16],[18]
 Repair algorithms enjoy a particular popularity in the evo-

lutionary computation community. GENOCOP III [16] is
based on the idea of repairing unfeasible solutions, and its
algorithm needs at least one feasible point to enter the evolu-
tion process. In this algorithm any unfeasible point must be
repaired to become feasible one. The weakness in this algo-
rithm is locating such a reference point especially when the
problem have small F

S for the purpose of initialization. So
the major difference between constraint and unconstraint op-
timization is the evaluation function , that is, how to handle
unfeasible solution thus the flowchart of SGA are still as it for
constrained optimization but step2 will be modified to handle
both feasible and unfeasible solutions.

7- MULTIOBJECTIVE OPTIMIZATION
 In a multiobjective optimization problem MOP, there are
more than one objective functions, which are to be optimized
simultaneously. Traditionally, the practice is to convert multi-
ple objectives into one objective function (usually a weighted
average of the objective is used) and then to treat the problem
as a single objective optimization problem. Unfortunately this
techniques is subjective to the user, with the optima solution
being dependent on the chosen weight vector. In fact, the solu-
tions of the multiobjective optimization problem can be
thought as a collection of optimal solutions obtained by solv-
ing different single objective functions formed using different
weight vectors. these solutions are known as Pareto optimal
solutions[19]. Therefore, the optimization goal for an MOP
may be reformulated in a more general fashion based on three
objectives:
• The distance of the resulting nondominated front to the

Pareto-optimal front should be minimized.
• A good (in most cases uniform) distribution of the solutions

found is desirable.
• The spread of the obtained nondominated front should be

maximized, i.e., for each objective a wide range of values
should be covered by the nondominated solutions.

The subject of here is the question of how these subgoals can
be attained in evolutionary multiobjective search. After the
basic terminology, fundamental ideas of MOEAs are intro-
duced in the following section, where in particular the differ-
ences between evolutionary single-objective and multiobjec-
tive optimization are worked out. Then, a brief summary of
three salient evolutionary approaches to multiobjective opti-
mization is presented.

7.1 Basic Definitions and Concept

 Here we introduce some of the basic terminology used in
the field of evolutionary Algorithms for Multiobjective Opti-
mization.
Local Pareto-optimal Set: If for every member x in a set p ,
there exist no solution y satisfying y x ε

∞
− ≤ , where ε is a

small positive number (in principle, y is obtained by perturb-
ing x in a small neighborhood), which dominates any mem-
ber in the set p , then the solutions belonging to the set p
constitute a local Pareto-optimal set.
Global Pareto-optimal Set: If there exists no solution in the
search space which dominates any member in the set p , then
the solutions belonging to the set p , constitute a global Pareto-
optimal set.
A solution (1)x is said to dominate the other solution (2)x , if
both the following conditions are true [20] :
1. The solution (1)x is no worse (say the operator denotes
worse and denotes better) than (2)x in all objectives, or

(1) (2)() ()j jf x f x for all 1,.....,j q= objectives.
2. The solution (1)x is strictly better than (2)x in at least one
objective, or (1) (2)() ()j jf x f x for at least one {1,....., }j q∈
Genetic drift one of the problems of genetic algorithms for
solving multimodal function is that the finite population will
eventually converge to only one optimum, due to stochastic
errors in the selection process. This phenomena is known as
genetic drift.
A niche is a group of individuals which have similar fitness.
Normally in multiobjective and multimodal optimization, a
technique called sharing is used to reduce the fitness of those
individuals who are in the same niche, in order to prevent the
population to converge to a single solution, so that stable sub-
populations can be formed, each one corresponding to a dif-
ferent objective or peak (in a multimodal optimization prob-
lem) of the function.
Fitness sharing [4] is the technique used to maintain popula-
tion diversity, which is the most frequently used technique,
aims at promoting the formulation and maintenance of stable
subpopulations (niches). It is based on the idea that individu-
als in a particular niche have to share the available resources.
The more individuals are located in the neighborhood of a certain
individual, the more its fitness value is degraded. The neighbor-
hood is defined in terms of a distance measure d(i, j) and spec-
ified by the so-called niche radius shares . Mathematically, the
shared fitness F(i) of an individual i is equal to its old fitness

()F i′ divided by its niche count im :

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 1, January-2014 258
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

() ()() _
((,))

1

F i F iF i pop sizemi sh d i j
j

′ ′
= =

∑
=

An individual’s niche count is the sum of sharing function
(sh) values between itself and the individuals in the popula-
tion. A commonly-used sharing function is

(,)1 (,)((,))

0

d i j if d i j sharesh d i j
share

otherwise

a

s
s

 − <=

Where a is a constant and shares is the niche radius, fixed by
the user at some estimate of the minimal separation desired or
expected between individuals. Furthermore, depending on
how the distance function d(i , j) is defined, one distinguishes
two types of sharing:

 1. Fitness sharing in solution space (,)d i j i j= −
() ()

(,) ,
1

i jp x xp pd i j u lp x xp p

−
= ∑

= −

 where p is the number of variables
2. fitness sharing in objective space

(,) () ()d i j f i f j= −

() ()
(,) ,max min1

i jq f fk kd i j
k f fk k

−
= ∑

= −

where q is the number of objectives

where . denotes an appropriate distance metric. Cur-
rently, most MOEAs implement fitness sharing, e.g.,
(Hajela and Lin 1992[21]; Fonseca and Fleming 1993[22];
Srinivas and Deb 1994[23]).

7.2 Overview of Evolutionary Techniques
 Three of the most salient MOEAs have been chosen for the
comparative studies. A brief summary of their main features
and their differences is given in the following. For a thorough
discussion of different evolutionary approaches to multiobjec-
tive optimization, the interested reader is referred to
[2],[6],[9],[18],[24].

 1-Schaffer's Vector Evaluated Genetic Algorithm (VEGA)
 Being aware of the potential GAs have in multiobjective
optimization, Schaffer1985 [25] proposed an extension of the
simple GA (SGA) to accommodate vector_valued fitness
measures, which he called the Vector Evaluated Genetic Algo-
rithm (VEGA)The selection step was modified so that, at each
generation, a number of subpopulations was generated by
performing proportional selection according to each objective
function in turn. Thus, for a problem with q objectives, q sub-
populations of size (N/q) each would be generated, assuming a
population size of N. These would then be shuffled together to
obtain a new population of size N as in figure 4, in order for

the algorithm to proceed with the application of crossover and
mutation in the usual way

(Fitness assignment and selection in VEGA)
INPUT: pt (population)
Output: p′ (mating pool)
Step 1: Set i = 1 and mating pool p φ′ =
Step 2: For j = 1, . . . , N/q do select individual i
from pt according to a given scheme and copy
it to the mating pool: { }p p i′ ′= + .
Step 3: Set i = i + 1.
Step 4: If i ≤ k then go to Step 2 else stop.

Fig. 4: Fitness assignment and selection in VEGA

This mechanism is graphically depicted in Figure (5a)
where the best individuals in each dimension are chosen for
reproduction. Afterwards, the mating pool is shuffled and
crossover and mutation are performed as usual. Schaffer im-
plemented this method in combination with fitness propor-
tionate selection.

2-Srinivas and Deb’s non-dominated sorting genetic algo-
rithm (NSGA)
 Using the concept of sharing functions, Srinivas and
Deb[26] have implemented Goldberg’s idea most directly. The
idea behind NSGA is that a ranking selection method is used
to emphasize current non-dominated points and sharing func-
tion method is used to maintain diversity in the population.
The NSGA procedure will be described in somewhat more
details.
 NSGA varies from a simple genetic algorithm only in the
way the selection operator in used. The crossover and muta-
tion operators remain as usual. Before the selection is per-
formed, two procedures are performed serially. First, the pop-
ulation is ranked on the basis of an individual’s non-
domination level and then sharing function method is used to
assign fitness to each individual. We describe both these
mechanisms in the following subsections
.
Classifying a population according to non-domination

Consider a set of N population members, each having q
(>1) objective function values. The following procedure in fig-
ure 5 can be used to find the non-dominated set of solutions:

All these non-dominated solutions are assumed to con-
stitute the first non-dominated front in the population. In or-
der to find the solutions belonging to the second level of non-
domination, we temporarily disregard the solutions of the first
level of non-domination and follow the above procedure. The
resulting non-dominated solutions are the solutions of the
second level of non-domination. This procedure is continued
till all solutions are classified into a level of non-domination. It
is important to realize that the number of different non-
domination levels could vary between one to N. Figure 7b
shows how the procedure can be used to identify five different
levels of non-domination.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 1, January-2014 259
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

Step 0: Begin with i=1.
Step 1: For all j=1,….,N and j i≠ ,compare solutions

()ix and ()jx for domination using two condi-
tions for all q objectives.

Step 2: If for any j, ()ix is dominated by ()jx ,mark
()ix as ‘dominated’.

Step 3: If all solutions (that is, when i=N is reached) in
the set are considered, Go to Step 4, else incre-
ment i by one and Go to Step 1.

Step 4: All solutions that are not marked ‘dominated’
are non-dominated solutions.

Fig. 5: Classifying a population according to non-domination

Fitness assignment
In NSGA, fitness is assigned to each individual according to

its non-domination level. An individual in a higher level gets low-
er fitness .This done in order to maintain pressure for choosing
solutions from the lower levels of non-domination. Since solu-
tions in lower levels of non-domination are better, a selection
mechanism that selects individuals with higher fitness pro-
vides a search direction towards the Pareto-optimal region.

First, all solutions in the first non-dominated front 1n are
assigned a fitness equal to the population size (N). This be-
comes the maximum fitness that any solution can have in any
population. Based on the sharing strategy, if a solution has
many neighboring solutions in the same front, its dummy fit-
ness is reduced by a factor and a shared fitness is computed.
The factor depends on the number and proximity of neighbor-
ing solutions. Once all solutions in the first front are assigned
their shared fitness values if ′ for all 11,...,i n= , the smallest
shared fitness value is determined min

1f of all if ′ in the first
non-domination level. Thereafter, the individuals in the se-
cond non-domination level are all assigned a dummy fitness
equal to a number smaller than the smallest shared fitness of
the previous front min

2 1 1f f ε= − where 1ε is a small positive
number. This makes sure that no solution in the second front
has a shared fitness better than that of any solution in the first
front. This maintains a pressure for the solutions to lead to-
wards the Pareto-optimal region. The sharing method is again
used among the individuals of second front and shared fitness
of each individual is found. This procedure is continued till all
individuals are assigned a shared fitness.

3-Fonseca and Fleming’s Multiobjective Genetic Algo-

rithm (FFGA)
 Fonseca and Fleming (1993)[22] proposed a Pareto-based
ranking procedure (here the acronym FFGA is used), where
an individual’s rank equals the number of solutions encoded
in the population by which its corresponding decision vector
is dominated as depicted in figure 7c For example, an individ-
ual ix at generation t ,which is dominated by t

ip individuals in
the current generation. Its current position in the individuals

rank can be given by:
()(,) 1 trank x t pi i= +

All non-dominated individuals are assigned rank 1,
while dominated ones are penalized according to the popula-
tion density of the corresponding region of the trade-off sur-
face.
Fitness assignment is performed in the following way:
1. Sort population according to rank.
2. Assign fitness to individuals by interpolating from the best

(rank1) to the worst (rank *n N≤) according to some func-
tion, usually linear, but not necessarily

3. Average the fitness of individual with the same rank, so that
all of them will be sampled at the same rate. This proce-
dure keeps the global population fitness constant while
maintaining appropriate selective pressure, as defined by
the function used. The algorithm of Fitness Assignment in
FFGA are shown in figure 6

(Fitness Assignment in FFGA)
INPUT: tp (population)
Output: F (fitness value)
Step 1: For each individual i calculate its rank.
Step 2: sort population according to rank.
Step 3: Assign fitness to individuals by interpolating

from the best (rank1) to the worst (rank *n N≤) accord-
ing to some function.

Step 4: Average the fitness of individual with the
same rank, so that all of them will be sampled at the
same rate.

Fig. 6: Fitness Assignment in FFGA

 They use a niche formulation method to distribute the popu-
lation over the Pareto-optimal region, but instead of perform-
ing sharing on the parameter values, they have used sharing
on objective function values. Fonseca and Flemming [5]gave a
simple estimation of shares in the objective function space by
solving the (q-1)-order polynomial equation

() ()1 1 1 0

q q
M m M mi i i ishareq i iN share

share

s
s

s

Π − + − Π −
− = =− =

Where q is the dimension of the objective vector , and Mi and

mi are maximum values of each objective, respectively. This
maintains diversity in the objective function values but may
not maintain diversity in the parameter set, which is an im-
portant issue for the decision maker.

So the major difference between MOP and single objective
optimization is the selection process , that is, how to parent to
construct mating pool thus the flowchart of SGA are still as it
for single optimization but STEP 3 will be changed such as the
previous three methods or any other methods for handling
MOP.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 1, January-2014 260
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

 (a) VEGA

(a) VEGA

(b) NSGA

(c) FFGA

Fig. 7: Illustration of three selection mechanisms in objective space

8-APLICATIONS OF GENETIC ALGORITHMS
Since the Genetic Algorithm can be used to solve both un-

constrained and constrained problems it is merely a way to
obtaining a solution in a standard optimization problem. Thus
it can be used to solve classic optimization problems such as
maximizing volume while minimization the amount of mate-
rial required to produce a container. By applying the Genetic
Algorithm to linear, nonlinear programming problems and
multiobjective, it is possible to solve typical problems such as
the diet problem (choosing the cheapest diet from a set of
foods that must meet certain nutritional requirements). An-
other area where Genetic Algorithms can be applied is combi-

natorial optimization problems including several common
computer science problems such as the knapsack, traveling
salesman, and job scheduling problems. In the following sec-
tion several common applications where the Genetic Algo-
rithm can be applied.

Reliability Optimization: The reliability of a system can be
defined as the probability that the system has operated suc-
cessfully over a specified interval of time under stated condi-
tions. Many systems play a critical role in various
operations and if they are down then the consequences can be
pretty severe. Measures of reliability for systems such as
communication switches is desired in order to access current
reliability and also determine areas where reliability can be
improved. Optimization in this field often involves in finding
the best way to allocate redundant components to systems.
Components are assigned probabilities to effectively gauge
their reliability [27],[28],[29].

Job-Shop Scheduling: Imagine there is a sequence of ma-
chines that each performs a small task in a production line.
These machines are labeled from 1 to m. For a single job to be
completed work must be done first with machine 1, then ma-
chine 2, etc., all the way to machine m. There are a total of n
jobs to be done and each job requires a certain amount of time
on each machine (note that the amount of time required on
one machine may vary from one job to another). A machine
can only work on one job at any given time and once a ma-
chine starts work it cannot be interrupted until it has complet-
ed its task. The objective is to find the ideal schedule so that
the total time to complete all n jobs is minimized
[30],[31],[32],[33].

Transportation: The transportation Problem involves ship-
ping a single commodity from suppliers to consumers to sat-
isfy demand via the minimum cost. Assume that the supply
equals the demand. There are m suppliers and n consumers.
The cost of shipping one unit from a single supplier to each
consumer is known. The problem is to find the best allocation
of the commodity at the suppliers so that the demand can be
satisfied and the lowest costs are incurred
[34],[35],[36],[37],[38],[39].

Machine learning: GAs has been used for many machine
learning tasks, including classification and prediction tasks,
such as prediction of weather and protein structure. GAs have
been used to evolve some particular aspects of machine learn-
ing systems, such as weights of neural networks, rules for
learning classifier systems or symbolic production systems
and sensors for robots[40],[41],[42].

Economics : GAs have been used to model processes of in-
novation, the development of bidding strategies , and the
emergence of economic market[43],[44],[45].

Electrical Power Systems
Optimal power flow OPF is one of the main functions of

power generation operation and control in electrical power
systems. It determines the optimal setting of generating units.
It is therefore of great importance to solve this problem as
quickly and accurately as possible [46],[47].
9-CONCLUSION
 The Genetic Algorithm is a relatively simple algorithm that
can be implemented in a straightforward manner. It can be

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 1, January-2014 261
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

applied to a wide variety of problems including unconstrained
and constrained optimization problems, nonlinear program-
ming, stochastic programming, and combinatorial optimiza-
tion problems with single or multiple objectives. An ad-
vantage of the Genetic Algorithm is that it works well during
global optimization especially with poorly behaved objective
functions such as those that are discontinuous or with many
local minima. It also performs adequately with computational-
ly hard problems. Finally it can be believed that GAs may
hopefully be a new effective approach for solving complex
real applications.

REFERENCES
[1] Goldberg, D. E. ," Genetic Algorithms in Search, Optimization and Machine

Learning". Addison Wesley Publishing company ,(1989).
[2] Holland, J.H., " Adaptation Natural and artificial systems". The University of

Michigan press, AnnArbor,USA,1975.
[3] Deb, K , "An introduction to genetic algorithms", Sadhana, vol. 24, parts 4&5,

August & October, pp 93-315,(1999).
[4] Gen, M. and Cheng, R., "Genetic Algorithms and Engineering Optimization".

John Wily & Sons New York, (2000).
[5] Michalewicz, Z., "Genetic Algorithms + Data Structures = Evolution Pro-

grams." Springer-Verlag, 3rd Edition, (1996).
[6] Yingsong Zheng , Sumio Kiyooka , Genetic Algorithm Applications, Assign-

ment #2 for Dr. Z. Dong ,Nov. 5, 1999,
http://chawalit.siit.tu.ac.th/lib/exe/fetch.php?media=dissertations:ga_app.
pdf.

[7] Ronald E. Shaffer , Practical Guide to genetic algorithm,
http://www.dracica.sk/ diplom/lit/practga.html, Dec. 2013

[8] Deb, K. "Multi-objective optimization using evolutionary algorithms" NY,
USA: Wiley (2001).

[9] Bazaraa M. S.," Nonlinear Programming Theory and Algorithms" New York ,
John Willy &Sons, (1979).

[10] Rao, S. S., "Optimization Theory And Application". Wiley Eastern Limited.
New Delhi, (1991).

[11] Taha ,H. A., " Operation Reasearch : An Introduction" , 6th Ed , Collier Mac-
millan , London UK.(1992).

[12] Miettinen K. "Non-linear multiobjective optimization" Dordrecht: Kluwer
Academic Publisher (2002).

[13] Gen, M. and Cheng, R., "Genetic Algorithms &Engineering design". John
Wily & Sons New York, (1997).

[14] Kesheng Wang ,Intelligent Condition Monitoring and Diagnosis Systems: A
Computational intelligence approach, IOS press, Netherlands,2003.

[15] Michalewicz, Z. and Schoenauer," Evolutionary Algorithms for Constrained
Parameter Optimization Problems". Evolutionary computation 4(1)1-
32,(1996).

[16] Michalewicz, Z., "A Survey of Constraint Handling Techniques In Evolution-
ary Computation Methods". Proceeding of the 4th Annual Conference on
Evolutionary Programming, pp135-155, MIT Press, Cambridge , MA, (1995).

[17] Michalewicz, Z. and G. Nazhiyath. " Genocop III : A co-evolutionary algo-
rithm for numerical optimization problems with non linear constraints". In D.
B. Fogel (Ed.), Proceedings of the second IEEE International Conference on
Evolutionary Computation, PP. 647-651. IEEE Press,(1995).

[18] Coello C., " Treating Constraints as Objectives for Single-Objective Evolution-
ary Optimization. Engineering Optimization", 32(3):275-308, (2000).

[19] Hiams, Y.Y, And Chankong, V.," Multiobjective Decision Making ",NEW
YORK : NorthHolland,(1986).

[20] Steuer, R. E.," Multiple criteria optimization: Theory, computation, and appli-
cation". New York: Wiley,(1986).

[21] Hajela, P. and Lin, C.Y. " Genetic search strategies in multicriterion optimal
design" . Structural Optimization 4, 99–107,(1992).

[22] Fonseca C. M. And Fleming, P.J, "Genetic Algorithms For Multiobjective
Optimization : Formulation, Discussion, And Generalization" . Proceeding Of
The Fifth International Conference On Genetic Algorithms. Pp 416-423, (1993).

[23] Srinivas, N. And Deb , K. , " Multiobjective Optimization Using Nondominat-
ed Sorting In Genetic Algorithms " Evolutionary Computation ,2(3): 221-
248,(1994).

[24] Zitzler, E., Deb, K., Thiele, L., Comparison of multiobjective evolutionary
algorithms: Empirical results. Evolutionary Computation, 8(2): 173-195 (2000).

[25] Schaffer, J. D.," Multiple objective optimization with vector evaluated genetic
algorithms". Proceedings of the First International Conference on Genetic Al-
gorithms, 93–100,(1985).

[26] Srinivas, N. And Deb , K. , " Multiobjective Optimization Using Nondominat-
ed Sorting In Genetic Algorithms " Evolutionary Computation ,2(3): 221-
248,(1994).

[27] Nikhil Gupta, Anil Swarnkar, K.R. Niazi , Distribution network reconfigura-
tion for power quality and reliability improvement using Genetic Algorithms
, International Journal of Electrical Power & Energy Systems, Volume 54, Jan-
uary 2014,Pages 664-671.

[28] Vijay Rathod, Om Prakash Yadav, Ajay Rathore, Rakesh Jain ,Optimizing
reliability-based robust design model using multi-objective genetic algorithm ,
Computers & Industrial Engineering, Volume 66, Issue 2, October 2013, Pages
301-310.

[29] Laxminarayan Sahoo, Asoke Kumar Bhunia, Parmad Kumar Kapur , Genetic
algorithm based multi-objective reliability optimization in interval environ-
ment ,Computers & Industrial Engineering, Volume 62, Issue 1, February
2012, Pages 152-160.

[30] Deming Lei , Co-evolutionary genetic algorithm for fuzzy flexible job shop
scheduling, Applied Soft Computing, Volume 12, Issue 8, August 2012, Pages
2237-2245.

[31] Ren Qing-dao-er-ji, Yuping Wang, Xiaoli Wang , Inventory based two-
objective job shop scheduling model and its hybrid genetic algorithm, Ap-
plied Soft Computing, Volume 13, Issue 3, March 2013, Pages 1400-1406.

[32] James C. Chen, Cheng-Chun Wu, Chia-Wen Chen, Kou-Huang Chen , Flexi-
ble job shop scheduling with parallel machines using Genetic Algorithm and
Grouping Genetic Algorithm, Expert Systems with Applications, Volume 39,
Issue 11, 1 September 2012, Pages 10016-10021.

[33] Wannaporn Teekeng, Arit Thammano , Modified Genetic Algorithm for
Flexible Job-Shop Scheduling Problems, Procedia Computer Science, Volume
12, 2012, Pages 122-128.

[34] M.M. Lotfi, R. Tavakkoli-Moghaddam , A genetic algorithm using priority-
based encoding with new operators for fixed charge transportation problems ,
Applied Soft Computing, Volume 13, Issue 5, May 2013, Pages 2711-2726.

[35] Fanrong Xie, Renan Jia, Nonlinear fixed charge transportation problem by
minimum cost flow-basedgenetic algorithm, Computers & Industrial Engi-
neering, Volume 63, Issue 4, December 2012, Pages 763-778.

[36] J. Behnamian, S.M.T. Fatemi Ghomi, F. Jolai, O. Amirtaheri , Minimizing
makespan on a three-machine flowshop batch scheduling problem with-
transportation using genetic algorithm , Applied Soft Computing, Volume 12,
Issue 2, February 2012, Pages 768-777.

[37] A.A. Mousa “ I-GA: Improved Genetic Algorithm for Multiobjective Trans-
portation Problem”, 18th international conference on computer theory and
applications, ICCTA 2008,11-13October 2008, pp 169-176, Alexandria , Egypt.

[38] A.A. Mousa, (2010) 'Using genetic algorithm and TOPSIS technique for multi-
objective transportation problem: a hybrid approach', International Journal of

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 1, January-2014 262
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

Computer Mathematics, 87: 13, 3017 -3029, First published on: 29 June 2010
(iFirst).

[39] A. A. Mousa, hamdy M. Geneedy and Adel Y. elmekawy, efficient evolution-
ary algorithm for solving multiobjective transportation problem, Journal of
Natural Sciences and Mathematics, Qassim University, Vol. 4, No 1, pp 79-96,
June 2010.

[40] Xiao-Wei Xue, Min Yao, Zhaohui Wu, Jianhua Yang , Genetic Ensemble of
Extreme Learning Machine, Neurocomputing, In Press, Accepted Manu-
script, Available online 16 November 2013.

[41] Jiadong Yang, Hua Xu, Peifa Jia , Effective search for genetic-based machine
learning systems via estimation of distribution algorithms and embedded fea-
ture reduction techniques ,Neurocomputing, Volume 113, 3 August 2013,
Pages 105-121.

[42] Hongming Yang, Jun Yi, Junhua Zhao, ZhaoYang Dong ,Extreme learning
machine based genetic algorithm and its application in power system eco-
nomic dispatch Neurocomputing, Volume 102, 15 February 2013, Pages 154-
162.

[43] QiSen Cai, Defu Zhang, Bo Wu, Stehpen C.H. Leung , A Novel Stock Fore-
casting Model based on Fuzzy Time Series and GeneticAlgorithm , Procedia
Computer Science, Volume 18, 2013, Pages 1155-1162.

[44] He Ni, Yongqiao Wang , Stock index tracking by Pareto efficient genetic algo-
rithm, Applied Soft Computing, Volume 13, Issue 12, December 2013, Pages
4519-4535.

[45] Janko Straßburg, Christian Gonzàlez-Martel, Vassil Alexandrov, Parallel
genetic algorithms for stock market trading rules Procedia Computer Science,
Volume 9, 2012, Pages 1306-1313.

[46] M.S.Osman , M.A.Abo-Sinna , and A.A. Mousa " A Solution to the Optimal
Power Flow Using Genetic Algorithm "Journal of Applied Mathematics &
Computation (AMC) vol 155, No. 2, 6 August (2004) pp 391-405. (Top 25
Hottest Articles, July. to Sept. 2005), from M. Sc. Dissertation.

[47] Osman M.S., M.A.Abo-Sinna, and A.A. Mousa "Epsilon-Dominance based
Multiobjective Genetic Algorithm for Economic Emission Load Dispatch Op-
timization Problem, Electric Power Systems Research 79 (2009) 1561–1567.

IJSER

http://www.ijser.org/

	1 Introduction
	5.1 Representation
	5.2 Initial Population
	5.3 Evaluation
	5.4 Create a new population
	6.1 Methods Based on Penalty Functions [15],[16],[17]
	6.2 Behavioral Memory Method [16],[18]
	6.3 Repair Methods [16],[18]
	7.1 Basic Definitions and Concept
	7.2 Overview of Evolutionary Techniques

	References

