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Abstract— The Genetic Algorithm (GA) is a relatively simple heuristic algorithm that can be implemented in a straightforward manner. It can be applied 
to a wide variety of problems including unconstrained and constrained optimization problems, nonlinear programming, stochastic programming, and 
combinatorial optimization problems. It is widely used in several fields such as management decision making, data processing ...Information and Finan-
cial Engineering.  Because of their population approach, they have also been extended to solve other search and optimization problems efficiently, in-
cluding multimodal, multiobjective. In this paper, a brief description of a simple GA, GAs vs. traditional methods and GAs to handle constrained optimiza-
tion problems are described. Also, GAs for multiobjective optimization MOP is proposed. Thereafter, GAs applications are presented. The intended audi-
ence of this paper is those who wish to know the main concepts of GAs and how to apply it to different optimization problems. Also, to familiarize readers 
to the algorithm proceeding. 
Index Terms— Genetic algorithms; constrained Optimization; Multiobjective optimization.   

1 INTRODUCTION                                                                     
      Genetic Algorithms (GAs) are apart of the evolutionary 
algorithms, which is a rapidly growing areas of artificial intel-
ligence [1]. GAs are inspired by Darwin's theory of biological 
evolution. By mimicking this process, genetic algorithm are 
able to "evolve" solutions to real world problems.  Holland [2] 
was the first person to put computational evolution on a firm 
theoretical footing. GAs are optimization algorithms based on 
the concepts of biological evolution and genetics. In this algo-
rithm, the design variables are represented as genes on a 
chromosome. GAs feature a group of candidate individuals 
(which is called population) on the response surface. Through 
environmental selection and the genetic operators, mutation 
and recombination, chromosomes with better fitness are 
found. Natural selection guarantees that best chromosomes 
with better fitness will survive in the future populations. Us-
ing the recombination operator the GA combines genes from 
two parent chromosomes to form children (new chromo-
somes) that have a high probability of having better fitness 
than their parents. On the other hand, mutation allows new 
areas of the response surface to be explored. GAs offer a gen-
eration improvement in the fitness of the chromosomes and 
after many generations will create chromosomes containing 
the optimized variable settings [3],[4],[5],[6],[7]. 
     Genetic algorithm was invented by "John Holland" in the 
1960s and it was later developed by Holland and his students 
and colleagues at the University of Michigan in 1960s and 
1970s. Holland's 1975 book" Adaptation in Natural and Artifi-
cial Systems"[2],[7] presented the genetic algorithms as an ab-
straction of biological evolution and gave a theoretical  
framework for adaptation under the genetic algorithms. Hol-
land's original goal was not to design an algorithm to solve 
specific problems, but rather to formally study the phenome-
non of adaptation as it occurs in nature and to develop ways 
in which the mechanisms of natural adaptation might be im-

ported to computer systems [7],[8]. 
2. THE BASIC GENETIC ALGORITHMS 
     The basic or simple GA comprises four important steps [5]: 
Step 1: The initial candidate population of chromosomes is 
created either randomly or by perturbing an input chromo-
some. Indeed, how the initialization step is done is not critical 
as long as the initial population spans a wide range of design 
variable settings. Thus, if you have explicit knowledge about 
the system being optimized that information can be included 
in the initial population [7]. In the binary representation, every 
chromosome is a string of bits, 0 or 1. The length of the string 
depends on the required precision (number of decimal places). 
Suppose that each variable xi can take values from the domain 

[ , ]i i iD a b R= ⊆ : suppose Q decimal places for the varia-
bles values is desirable. It is clear to achieve such precision 
each domain DRiR should be cut into ( ).10Q

i ib a− equal size 
ranges. Let mi be the smallest integer such that 
( ).10 2 1imQ

i ib a− ≤ − .Then a representation (Fig.1) having 
each variable xi coded as a binary string of length mi addi-
tionally, the following formula interprets each such string:  

(1001.......001 ).2
2 1

b ai ix a decimal mi i i
−

= +
−

.          (1) 

 
Fig. 1:  An example of binary and floating-point representations 
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Step 2: Evaluation, the fitness is computed this step,. The goal 
of the fitness function is to numerically encode the perfor-
mance of the chromosome. For real-world applications of op-
timization methods such as evolutionary algorithms the choice 
of the fitness function is the most critical step [7]. 
Step 3: In this step, the chromosomes with the largest fitness 
scores are placed one or more times into a mating pool subset 
in a semi-random fashion. Chromosomes with low fitness are 
removed from the population. There are several methods for 
performing selection. One of the most common methods rou-
lette wheel selection where every chromosome has its place 
big accordingly to its fitness function, this can be simulated by 
following algorithm (Fig. 2). 

 
1.[SUM] Calculate sum of all chromosomes fitness ( )if  in 

population , 
1

pop size

i
i

F f
−

=

= ∑ . 

2. [COMPUTE] Compute probability of selection for each in-

dividual i  as,  i
i

f
p

F
= . 

3. [Loop] Go through the population from i=1 to pop-size (N). 
 [COMPUTE] Compute cumulative probability for 
each  i as,  

1

i
i jj

Q p
=

= ∑   

 [SELECT] Generate random number from [ ]0,1r∈ , 

 [DECISION] When 1i i iQ r Q− ≤ ≤  select chromo-
some i . 

Fig .2: Roulette Wheel Algorithms 
 
Step 4: Exploration, consists of the crossover and mutation 
operators. Two chromosomes (i.e., parents) from the mating 
pool subset are randomly selected to be mated. The probabil-
ity that these parents are recombined (mated) is a user-
controlled option and is usually set to a high value. If the par-
ents are allowed to mate, a crossover operator is employed to 
exchange genes between the two parents to produce two off-
spring. If they are not allowed to mate, the parents are copied 
into the next generation unchanged. The two most common 
recombination operators are the one-point and two-point 
crossover methods. In the one-point method, a crossover point 
is selected along the chromosome and the genes up to that 
point are swapped between the two parents. However, in the 
two-point method, two crossover points are selected and the 
genes between the two points are swapped. The children then 
replace the parents in the next generation. A third recombina-
tion operator, which has become quite popular, recently, is the 
uniform crossover method. In this crossover method, recom-
bination is applied to the individual genes in the chromosome. 
If crossover is performed, the genes between the parents are 
swapped and if no crossover is performed the genes are left 
intact. This crossover method has a higher probability of pro-
ducing children which are much different than their parents 
so the probability of recombination is usually set to a low val-
ue. The probability that a mutation will occur is another user-
controlled option and is usually set to a low value so that good 

chromosomes are not destroyed. A mutation simply changes 
the value for a particular gene.  After the exploration step, the 
population is full of newly created chromosomes (children) 
and steps two through four are repeated. This process contin-
ues for a fixed number of generations [7]. Figure 3 shows a 
flowchart of the working of a GA. 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 3: Main Flowchart Of SGA 
 

3. GENETIC ALGORITHMS VS TRADITIONAL METHODS 
 
Traditional methods [9],[10],[11],[12] 
 
Calculus-based methods:  The main disadvantages of cal-

culus-based search are, firstly, a tendency for the search to get 
trapped on local maxima even a though a better solution may 
exist , all moves from local maxima seem to decrease the fit-
ness of the solution, secondly the application of such searches 
depends on the existence of derivatives. 

Dynamic programming: This optimization technique 
builds towards a solution by first solving a small part of the 
whole problem, and then gradually incrementing the size in a 
series of stages until the whole problem is solved, This is a 
method for solving multistage control problems, but can only 
use where the number of state and stages are small, and there 
is no interaction between stages. 

Random search: This is a brute force approach to difficult 
functions, also called an enumerated search. Points in the 
search space are selected randomly this is a very unintelligent 
strategy [4],[5]. 

Gradient methods:  Such methods are generally referred to 
as hill-climbing, and perform well on functions with only one 
peak. However, on functions with many peaks, the first peak 
found will be climbed, whether is it the highest peak or not. 
Finally four difference that separate GAs from conventional 
optimization techniques are concluded [4],[5],[13]. 

1- Direct manipulation of a coding. GAs manipulates deci-
sion or control variable representations at a string level to ex-
ploit similarities among high- performance strings. Other 
methods usually deal with functions and their control varia-
bles directly [14]. 

2- Search form a population, not a single point. In this 
way GAs find safety in numbers. By maintaining a population 
of well adapted sample points, the probability of reaching a 
false peak is reduced. The search starts from a population of 

Step1: Initialization 

Step2: Evaluation 

Step3: Selection 

Step4: GA Operators 

Termintion 
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many points, rather than starting from just one point. This 
parallelism means that the search will not become trapped on 
a local maxima especially if a measure of diversity maintenance 
is incorporated into the algorithm, for then one candidate may 
become trapped on a local maxima, but the need of maintain 
diversity in the search population means that other candidates 
will therefore avoid that particular area of the search space. 

3- Search via sampling, a blind search. GAs achieves much 
of their breadth by ignoring information except that concern-
ing payoff. Other methods rely heavily on such information 
and in problems where the necessary information is not avail-
able or difficult to obtain, these other techniques break down 
[14]. 

4- Search using stochastic, not deterministic rules. The 
transition rules used by genetic algorithms are probabilistic, 
not deterministic.  

Finally, the advantages and disadvantages of using GAs are 
concluded as follows [7]: 

 They require no gradient information about the re-
sponse surface  

 Discontinuities present on the response surface have 
little effect on overall optimization performance  

 They are resistant to trapped in local optima  
 They perform very well for large scale optimization 

problems  
 Can be employed for a wide variety of optimization 

problems  
Disadvantages to using genetic algorithms 
 Have trouble finding the exact global optima.  
 Require large number of response (fitness) function 

evaluations  
 GAs configuration is not straightforward  

 
4- WHY DO GAS WORK? 

The heuristic search of a GAs is based upon Holland's 
schema theorem. The mathematics of this theorem were de-
veloped using the binary representation [5],[7]. A brief non-
mathematical introduction of the schema will be given assum-
ing a binary coding.  A schema S is defined as a template for 
describing a subset of chromosomes with similar partitions. 
The template consists of multiple 0's, 1's, and don't care sym-
bols (*), this character is simply a notational device used to 
signify that either a 1 or 0 will match that pattern. Given an 
example, consider a schema such as, *0000. This schema 
matches two chromosomes, 10000 and 00000. The template is a 
powerful way of describing similarities among patterns in the 
chromosomes. According to Holland, the order of a schema 
o(s) is equal to the number of fixed positions (i.e., non-meta-
characters) and the defining length of a schema  δ(s) is the 
distance between the first and the last fixed string positions. 
Thus, the schema #00#0 is an order 3 schema (o(s) = 3) and 
has defining length of (δ=5-2=3). Holland derived an expres-
sion that predicts the number of copies a particular schema, s, 
w=3ould have in the next generation after undergoing exploi-
tation, recombination and mutation. This expression is shown 
below  

( )
( , 1) ( , ). ( , ) / ( )[1 . ( ). ]

1

s
s t s t eval s t F t p o s pc mm

δ
ζ ζ+ ≥ − −

−
     (2) 

where s is a particular schema, t is the generation, 
( , 1)s tζ + is the number of times a particular schema is ex-

pected in the next generation, ( , )s tζ is the number of times 
the schema is in the current generation, ( , )eval s t is the aver-
age fitness of all chromosomes that contain schema s, ( )F t  is 
the average fitness for all chromosomes, Pc is the probability 
of crossover occurring, and Pm is the mutation probability. 
The primary conclusion that can be drawn from inspection of 
this equation is that as the ratio of ( , )eval s t  to ( )F t becomes 
larger, the number of the times s is expected in the next gener-
ation increases. Thus, particularly good schemata will propa-
gate in future generations.  Two more points need to be made 
concerning Holland's schema theorem. Although both muta-
tion and recombination destroy existing schemata, they are 
necessary for building better ones. The degree to which they 
are destroyed is dependent upon the order (o(s)) and the 
length (δ(s)) of the schemata. Thus, schemata that are  short, 
low-order, and have above average fitness are preferred and 
are termed "building blocks". This definition leads to the 
building block principle of GAs which states that there is a 
high probability that short, low-order, average fitness schema-
ta will combine through recombination to form higher order, 
above average fitness schemata.  

 
5. AN EXAMPLE OF APPLYING GENETIC ALGORITHMS 

 
Here we present a simple example of applying genetic algo-
rithm, which taken from [6]. 

2 2 2Z= [30 (2 3 ) (18 32 12 48 36 27 )]*
2 2 2[1 ( 1) (19 14 3 14 6 3 )]

        . .   
                             - 2.0 2.0,    - 2.0 2.0

Min

x y x x y xy y

x y xy x x xy y
s t

x y

+ − − + + − +

+ + + − + − + +

≤ ≤ ≤ ≤

 

5.1 Representation 
 
First, decision variables must be encode into binary strings. 

Here 16 bits (Suppose that 4 decimal places for the variables 
values is desirable) are used to represent a variable. The map-
ping from a binary string to a real number for a variable x or y 
is computed from equation 1 as follows: 

4.0 4.0
2.0 ,       y 2.016 162 1 2 1

x x y′ ′= − + ⋅ = − + ⋅
− −

 

Here x′  and y′  represent the decimal value of the sub-
string for decision variable x and y respectively. 

5.2 Initial Population 
In each generation the population size is set as 20. Initial 

population is randomly generated as follows: 
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1

2

3

[11100110110011000110101110000010] [1.606256, 0.320165]     F=2907.700817;    EVAL=700242.428
[11000000001100011011110001010101] [1.003037,0.942733]       F=1470.604014;    EVAL=701679.525
[110

v
v
v

= = −
= =
=

4

5

00001010000101011010100011000] [1.019699,0.829633]       F=998.466596;      EVAL=702151.663
[01001000111100011001110110001100] [ .860273,0.461707]      F=9680.870631;    EVAL=693469.258
[001100110

v
v

=
= = −
=

6

7

11111100101110110001010] [ 1.195422, 0.538430]  F=1439.880786;    EVAL=701710.248
[01000110111110000000011110011000] [ .891096, 1.881346]    F=11273.574224;  EVAL=691876.555
[011010000001111010000

v
v

= − −
= = − −
=

8

9

11001111010] [ .373144,.101228]        F=951.091206;      EVAL=702199.038
[00010110000101111010111111110000] [ 1.654841,.749065]       F=8068.650332;    EVAL=695081.479
[10110111110111111010110000

v
v

= −
= = −
=

10

11

111111] [.873030,0.691386]         F=982.663173;      EVAL=702167.466
[00000000010111111100110101111111] [ 1.1994202,1.210925]   F=45585.613158;  EVAL=657564.516
[1001100110101010000011101101010

v
v

=
= = −
=

12

13

0] [.41038, 1.768307]        F=8488.275825;    EVAL=694661.853
[00111000000010011111101010110010] [ 1.124437,1.917174]    F=703150.129106; EVAL=0.000
[01110111110010101111101101101011] [ 0.12826

v
v

= −
= = −
= = −

14

15

7,1.928466]    F=234882.112971;  EVAL=468268.016
[00010110110111110010001011111110] [ 1.642634, 1.453239] F=14013.064752;   EVAL=689137.064
[10001101001001001110011110001110] [0.205356,1.613443]

v
v

= = − −
= =

16

17

      F=84257.482260;   EVAL=618892.647
[10010100011101110010000111001000] [0.319799, 1.472160]   F=730.102530;       EVAL=702420.027
[11110010010010111010011101000010] [1.785885,0.618090]      

v
v

= = −
= =

18

19

F=890.983919;      EVAL=702259.145
[11011001111111110101110001000111] [1.406241, .558145]       F=5332.051371;   EVAL=697818.078
[00000110101010100001101111110001] [ 1.895872, 1.563409]  F=21833

v
v

= = −
= = − −

20

.496910; EVAL=681316.632
[11011101010010010100001101000110] [1.457633, .948836]      F=26032.543455; EVAL=677117.586v = = −

 

5.3 Evaluation 
 The first step after creating a generation is to calculate the 

fitness value (F) of each member in the population by calculat-
ing the objective function for each individual. The process of 
evaluating the fitness of a chromosome consists of the follow-
ing three steps: 

1. Convert the chromosome’s genotype to its phenotype. 
This means converting the binary string into corresponding 
real values as in equation 1. 

2. Evaluate the objective function, which we refer as the fit-
ness value (F) 

3. Convert the value of objective function into fitness. Here, 
in order to make fitness values positive,(the positive values 
needed for Roulette Wheel Algorithm) the fitness of each 
chromosome (EVAL) equals the maximization of the objective 
function minus the objective function evaluated for each 
chromosome in the population. The objective function values 
F and the fitness values EVAL of above chromosomes (the 
first population) are depicted before. It is clear that in the first 
generation chromosome V16 is the best one 
( EVAL=702420.027 ) and that chromosome V12 is the poorest 
one ( EVAL=0.000 ) 

5.4 Create a new population 
 After evaluation, a new population should be created from 

the current generation. Here the three operators (Elitism, 
Crossover, and Mutation) are used. 
 

5.4.1 Elitism 
The two chromosomes (strings) with best fitness are al-

lowed to survive and produce offspring in the next generation. 
For example, in first population, chromosome V16 and V17 are 
allowed to live in the second generation. 

 
5.4.2 Selection and Crossover 

The cumulative probability is used to decide which chro-
mosomes will be selected to crossover. The cumulative proba-
bility is calculated as in figure 2. 

 
1 1 2 2 3 3

4 4 5 5 6 6

7 7

0.054         Q 0.054          P 0.054      Q 0.109           P 0.055    Q 0.163
0.054         Q 0.217          P 0.054      Q 0.272           P 0.054    Q 0.325
0.055         Q 0.38

P
P
P

= = = = = =
= = = = = =
= = 8 8 9 9

10 10 11 11 12 12

13 13 14

0          P 0.054      Q 0.434           P 0.055    Q 0.488
0.014         Q 0.539          P 0.054      Q 0.593           P 000    Q 0.593
0.036         Q 0.630          P 0.0

P
P

= = = =
= = = = = =
= = = 14 15 15

16 16 17 17 18 18

19 19 20 20

54      Q 0.683           P .048    Q 0.731
0.055         Q .786          P 0.055      Q 0.840           P 0.054    Q 0.895
0.053         Q 0.947          P 0.053      Q 1.

P
P

= = =
= = = = = =
= = = = 00           

 

The crossover used here is one-cut-point method, which ran-
domly selects one cut-point and exchanges the right parts of 
two parents to generate offspring with 1cP = . 

1. Generate a random number r from the range [0,1]; 
2. If 1Q r Qi ii ≤ ≤−  select the ith chromosome Vi to be par-

ent one. 
3. Repeat step 1 and 2 to reproduce another parent. 
4. Generate a random number r from the range [0,1]. If r is 

less than the probability of crossover (the probability of 
crossover as 1.0), the crossover will undergoes, the cut-
point is selected behind the gene which place is nearest 
integers greater than or equal to r×(length-1). 

5. Repeat step 1 to step 4 altogether nine times to finish the 
whole crossover. 

The creation of 18 offspring plus 2 chromosomes obtained 
using elitism strategy keeps the population the same in each 
generation in this case 20. 

 
5.4.3 Mutation  
Mutation [5] is performed after crossover. Mutation alters 

one or more genes with a probability equal to the mutation 
rate. (In the example, the mutation rate is set to 0.02pm = )  
1. Generate a sequence of random numbers rRkR (k=1,.....,640) 
(Here, the numbers of bits in the whole population is 
20×(16+16)=640). 

2. If ri is 1, change the ith bit in the whole population from 1 
to 0 or from 0 to 1. 

3. The chromosomes reproduced are not subject to muta-
tion, so after mutation, they should be restored. A new popu-
lation is created as a result of completing one iteration of the 
genetic algorithm. The procedure can be repeated as many 
times as desired. In this example, the test run is terminated 
after 50 generations. 

The best value of the objective function in each generation 
is reported by [6] as follows: 

Generation 1: f (0.319799, -1.472160)=730.102530 
Generation 2: f (0.406165, -0.558145)=162.226980 
……………………………………………….. 
Generation 49: f (-0.005158, -0.999924)=3.006779 
Generation 50: f (-0.005158, -0.999924)=3.006779 
By using GAs in [6] they finally guarantee that GAs con-

verge to the optimal solution after 50 generation  
 

6- CONSTRAINED OPTIMIZATION USING GAS. 
The above discussion of optimization problems avoid de-

tailed consideration of constrains. On the other hand, many 
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real-world optimization problems involve inequality and/or 
equality constraints are thus posed as constrained optimiza-
tion problems. In trying to optimize constrained optimization 
problems using genetic algorithms (GAs) or classical optimiza-
tion methods, penalty function methods have been the most 
popular approach. However, since the penalty function ap-
proach is generic and applicable to any type of constraint, 
their performance is not always satisfactory. Thus, several 
methods for handling unfeasible solutions have emerged re-
cently.  General form of the nonlinear programming problem 
(NLPP) can be defined as follows [15]:  

NLPP:  
 Max          ( )f x  
Subject to: 
 

{ | ( ) 0,  1, 2, ...,  and  ( ) 0 1, ..., }

{ | ( ) ( ), 1, 2, ...., }

nx R g x i k h x j k mi j
nx R l x x u x i ni i i

= ∈ ≤ = = = +

= ∈ ≤ ≤ =

F

S
       

  

 (3)                                     

 
Where x ∈ ⊆F S . The set nR⊆S defines the search space 
and the set ⊆F Sdefines a feasible part of the search space. 
Usually, the search space Sis defined as n-dimensional rec-
tangle in nR  (domains of variables defined as lower and up-
per bounds): ( ) ( ),  1left i x right i i ni≤ ≤ ≤ ≤ Whereas the feasi-
ble set F  is defined by the search space S and an additional 
set of constraints: 

( ) 0,  1, 2, ...,  and  ( ) 0 1, ...,g x i k h x j k mi j≤ = = = +  

One of the major components of any evolutionary system is 
the evaluation function. Evaluation functions are used for as-
sign a quality measure for individuals in a population. Where-
as evolutionary computation techniques assume the existence 
of an (efficient) evaluation function for feasible individuals, 
there is no uniform methodology for handling ( i.e., evaluating 
) unfeasible ones. The simplest approach, incorporated by 
evaluation strategies and the version of evolutionary pro-
gramming (for numerical optimization problems), is to reject 
unfeasible solutions. But several other methods for handling 
unfeasible individuals have emerged recently.  
 

6.1 Methods Based on Penalty Functions [15],[16],[17] 
 
 The penalty function method is widely used in the mathe-

matical Programming literature. It essentially adds to the ob-
jective function some terms which punish a solution that is not 
feasible.  

the above NLPP (3) can be transformed into an uncon-
strained optimization problem. The objective function of the 
unconstrained optimization problem, which will be used as 
the fitness function in the associated genetic algorithm de-
signed to solve the initial constrained problem, has the follow-
ing format: 

{ ( ),
( )

( ) ( ),
f x if x

eval x
f x penalty x otherwise

∈
=

+
F                       (4) 

                 
where penalty(x) is zero, if no violation occurs, and is positive, 
otherwise. Usually, the penalty function is based on the dis-

tance of the solution form the feasible region F , or on the ef-
fort to "repair" the solution, i.e., to force it into F . The former 
case is the most popular one; in many methods a set of func-
tions (1 )jf j m≤ ≤  is used to construct the penalty, where the 
function ( )jf x  measures the violation of the j-th constraint in 
the following way: 

 {0, ( )}  1
( )

( ) 1

max g x if j kj
f xj h x if k j mj

≤ ≤
=

+ ≤ ≤





                  (5)                  

How the penalty function is designed and applied to unfeasi-
ble solutions may differ in important details across problems. 

 
6.1.1 Static Penalty Function 

     The static penalty function assumes that for every con-
straint we establish a family of intervals which determine an 
appropriate penalty coefficient ijR . It works as follows: (1) for 
each constraint, create several (l) levels of violation (these lev-
els measure the degree of violation, e.g., slightly or heavily); 
(2) for each level of violation and for each constraint, create a 
penalty coefficient ( 1, 2,..., ,  1, 2,..., )ijR i l j m= = ; higher degree 
of violation requires heavier punishment (i.e., larger ijR  ). The 
evaluation function has the following structure: 
 

2( ) ( ) ( )
1

m
eval x f x R f xij jj

= + ∑
=

                               (6) 

Where the ( )jf x are as defined above and m is the number of 
constraints in the problem the central issue in this method is 
the determination of the relative magnitudes of the coefficients 
{ |1 ,1 }.ijR i l j m≤ ≤ ≤ ≤  
The weakness of the method is in the number of parameters. 
For m constraints the method requires m(2l+1) parameters in 
total: m parameters to establish number of intervals for each 
constraint, l parameters for each constraint, defining the 
boundaries of the intervals (levels of violation), and l parame-
ters for each constraint representing the penalty coefficient 

ijR . 
6.1.2 Dynamic Penalty Function 

     Dynamic penalty function method differs from the previ-
ous one in that it punishes "harder" as the number of genera-
tions increases. The implementation of this method is through 
the following evaluation function such that individuals are 
evaluated (at the iteration t) by the following formula: 
 

( ) ( ) ( * ) ( )
1

m
eval x f x C t f xjj

βa= + ∑
=

                      (7) 

    Where ,  and C a β  is a constant. A reasonable choice 
for these parameters is 0.5, 2C a β= = =  
 i.e., 

2 2( ) ( ) (0.5 ) ( )
1

m
eval x f x t f xjj

= + ∑
=

                        (8) 

The method requires much smaller number of parameters 
than the first method. Also, instead of defining several levels 
of violation, the pressure on unfeasible solutions is increased 
due to the ( * )C t a component of the penalty term: towards the 
end of the process (for high values of the generation number 
t), this component assumes large values. 
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6.1.3 Rejection of Unfeasible Individuals 
This "death penalty functions" method is a popular option 

in many evolutionary techniques like evolutionary strategies 
or evolutionary programming, this method rejects all unfeasi-
ble solutions in the population. Thus, under this method, if in 
some current population unfeasible solutions result after the 
GA operators are applied; these are simply eliminated and 
replaced by randomly drawn new solutions.   

 6.2 Behavioral Memory Method [16],[18] 
   The idea of this technique is to satisfy sequentially (one to 

one) the constraints imposed on the problem. Once a certain 
percentage of the population (defined by the flip threshold) 
satisfies the first constraint, an attempt to satisfy the second 
constraint (while still satisfying the first) will be made. Notice 
that in its last step of the algorithm, death penalty was used, 
because unfeasible individual are completely eliminated from 
the population. 

6.3 Repair Methods [16],[18] 
  Repair algorithms enjoy a particular popularity in the evo-

lutionary computation community. GENOCOP III [16] is 
based on the idea of repairing unfeasible solutions, and its 
algorithm needs at least one feasible point to enter the evolu-
tion process. In this algorithm any unfeasible point must be 
repaired to become feasible one. The weakness in this algo-
rithm is locating such a reference point especially when the 
problem have small F

S  for the purpose of initialization. So 
the major difference between constraint and unconstraint op-
timization is the evaluation function , that is, how to handle 
unfeasible solution thus the flowchart of SGA are still as it for 
constrained optimization but step2 will be modified to handle 
both feasible and unfeasible solutions. 

                     
7- MULTIOBJECTIVE OPTIMIZATION 
     In a multiobjective optimization problem MOP, there are 
more than one objective functions, which are to be optimized 
simultaneously. Traditionally, the practice is to convert multi-
ple objectives into one objective function (usually a weighted 
average of the objective is used) and then to treat the problem 
as a single objective optimization problem. Unfortunately this 
techniques is subjective to the user, with the optima solution 
being dependent on the chosen weight vector. In fact, the solu-
tions of the multiobjective optimization problem can be 
thought as a collection of optimal solutions obtained by solv-
ing different single objective functions formed using different 
weight vectors. these solutions are known as Pareto optimal 
solutions[19]. Therefore, the optimization goal for an MOP 
may be reformulated in a more general fashion based on three 
objectives: 
• The distance of the resulting nondominated front to the 

Pareto-optimal front should be minimized. 
• A good (in most cases uniform) distribution of the solutions 

found is desirable. 
• The spread of the obtained nondominated front should be 

maximized, i.e., for each objective a wide range of values 
should be covered by the nondominated solutions. 

 

The subject of here is the question of how these subgoals can 
be attained in evolutionary multiobjective search. After the 
basic terminology, fundamental ideas of MOEAs are intro-
duced in the following section, where in particular the differ-
ences between evolutionary single-objective and multiobjec-
tive optimization are worked out. Then, a brief summary of 
three salient evolutionary approaches to multiobjective opti-
mization is presented. 

7.1 Basic Definitions and Concept 
 
     Here we introduce some of the basic terminology used in 
the field of evolutionary Algorithms for Multiobjective Opti-
mization. 
Local Pareto-optimal Set:  If for every member x  in a set p , 
there exist no solution y satisfying y x ε

∞
− ≤ , where ε  is a 

small positive number (in principle, y  is obtained by perturb-
ing x  in a small neighborhood), which dominates any mem-
ber in the set p , then the solutions belonging to the set p  
constitute a local Pareto-optimal set. 
Global Pareto-optimal Set: If there exists no solution in the 
search space which dominates any member in the set p , then 
the solutions belonging to the set p , constitute a global Pareto-
optimal set. 
A solution (1)x is said to dominate the other solution (2)x , if 
both the following conditions are true [20] : 
1. The solution (1)x is no worse (say the operator   denotes 
worse and   denotes better) than (2)x  in all objectives, or 

(1) (2)( ) ( )j jf x f x for all 1,.....,j q= objectives. 
2. The solution (1)x is strictly better than (2)x in at least one 
objective, or (1) (2)( ) ( )j jf x f x for at least one {1,....., }j q∈  
Genetic drift  one of the problems of genetic algorithms for 
solving multimodal  function is that the finite population will 
eventually converge to only one optimum, due to stochastic 
errors in the selection process. This phenomena is known as 
genetic drift. 
A niche is a group of individuals which have similar fitness. 
Normally in multiobjective and multimodal optimization, a 
technique called sharing is used to reduce the fitness of those 
individuals who are in the same niche, in order to prevent the 
population to converge to a single solution, so that stable sub-
populations can be formed, each one corresponding to a dif-
ferent objective or peak (in a multimodal optimization prob-
lem) of the function. 
Fitness sharing [4] is the technique used to maintain popula-
tion diversity, which is the most frequently used technique, 
aims at promoting the formulation and maintenance of stable 
subpopulations (niches). It is based on the idea that individu-
als in a particular niche have to share the available resources. 
The more individuals are located in the neighborhood of a certain 
individual, the more its fitness value is degraded. The neighbor-
hood is defined in terms of a distance measure d(i, j) and spec-
ified by the so-called niche radius shares . Mathematically, the 
shared fitness F(i) of  an individual i  is equal to its old fitness 

( )F i′  divided by its niche count im : 
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( ) ( )( ) _
( ( , ))

1

F i F iF i pop sizemi sh d i j
j

′ ′
= =

∑
=

 

An individual’s niche count is the sum of sharing function 
( sh ) values between itself and the individuals in the popula-
tion. A commonly-used sharing function is 

( , )1 ( , )( ( , ))

0

d i j if d i j sharesh d i j
share

otherwise

a

s
s

  
  − <=    


 

Where a is a constant and shares is the niche radius, fixed by 
the user at some estimate of the minimal separation desired or 
expected between individuals. Furthermore, depending on 
how the distance function d(i , j ) is defined, one distinguishes 
two types of sharing: 
 

 1. Fitness sharing in solution space ( , )d i j i j= −  
( ) ( )

( , ) ,
1

i jp x xp pd i j u lp x xp p

−
= ∑

= −

 
 
 
 

  

                  where p is the number of variables 
2. fitness sharing in objective space 

( , ) ( ) ( )d i j f i f j= −  

( ) ( )
( , ) ,max min1

i jq f fk kd i j
k f fk k

−
= ∑

= −

 
 
 
 

 

where q is the number of objectives 

where  .  denotes an appropriate distance metric. Cur-
rently, most MOEAs implement fitness sharing, e.g., 
(Hajela and Lin 1992[21]; Fonseca and Fleming 1993[22]; 
Srinivas and Deb 1994[23]). 

7.2 Overview of Evolutionary Techniques 
       Three of the most salient MOEAs have been chosen for the 
comparative studies. A brief summary of their main features 
and their differences is given in the following. For a thorough 
discussion of different evolutionary approaches to multiobjec-
tive optimization, the interested reader is referred to 
[2],[6],[9],[18],[24]. 
 
   1-Schaffer's Vector Evaluated Genetic Algorithm (VEGA) 
       Being aware of the potential GAs have in multiobjective 
optimization, Schaffer1985 [25] proposed an extension of the 
simple GA (SGA) to accommodate vector_valued fitness 
measures, which he called the Vector Evaluated Genetic Algo-
rithm (VEGA )The selection step was modified so that, at each 
generation, a number of subpopulations was generated by 
performing proportional selection according to each objective 
function in turn. Thus, for a problem with q objectives, q sub-
populations of size (N/q) each would be generated, assuming a 
population size of N. These would then be shuffled together to 
obtain a new population of size N as in figure 4, in order for 

the algorithm to proceed with the application of crossover and 
mutation in the usual way 
 

( Fitness assignment and selection in VEGA ) 
INPUT: pt   ( population ) 
Output: p′  (mating pool) 
Step 1: Set i = 1 and mating pool p φ′ =  
Step 2: For j = 1, . . . , N/q do select individual i 
from pt  according to a given scheme and copy 
it to the mating pool: { }p p i′ ′= + . 
Step 3: Set i = i + 1. 
Step 4: If i ≤ k then go to Step 2 else stop. 

Fig. 4: Fitness assignment and selection in VEGA 
 

This mechanism is graphically depicted in Figure (5a) 
where the best individuals in each dimension are chosen for 
reproduction. Afterwards, the mating pool is shuffled and 
crossover and mutation are performed as usual. Schaffer im-
plemented this method in combination with fitness propor-
tionate selection. 

2-Srinivas and Deb’s non-dominated sorting genetic algo-
rithm (NSGA) 
        Using the concept of sharing functions, Srinivas and 
Deb[26]  have implemented Goldberg’s idea most directly. The 
idea behind NSGA is that a ranking selection method is used 
to emphasize current non-dominated points and sharing func-
tion method is used to maintain diversity in the population. 
The NSGA procedure will be described in somewhat more 
details. 
     NSGA varies from a simple genetic algorithm only in the 
way the selection operator in used. The crossover and muta-
tion operators remain as usual. Before the selection is per-
formed, two procedures are performed serially. First, the pop-
ulation is ranked on the basis of an individual’s non-
domination level and then sharing function method is used to 
assign fitness to each individual. We describe both these 
mechanisms in the following subsections 
. 
Classifying a population according to non-domination 

Consider a set of N population members, each having q 
(>1) objective function values. The following procedure in fig-
ure 5 can be used to find the non-dominated set of solutions: 

All these non-dominated solutions are assumed to con-
stitute the first non-dominated front in the population. In or-
der to find the solutions belonging to the second level of non-
domination, we temporarily disregard the solutions of the first 
level of non-domination and follow the above procedure. The 
resulting non-dominated solutions are the solutions of the 
second level of non-domination. This procedure is continued 
till all solutions are classified into a level of non-domination. It 
is important to realize that the number of different non-
domination levels could vary between one to N. Figure 7b 
shows how the procedure can be used to identify five different 
levels of non-domination. 
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Step 0: Begin with i=1. 
Step 1: For all j=1,….,N  and j i≠ ,compare solutions 

( )ix and ( )jx  for domination using two condi-
tions for all q objectives. 

Step 2: If for any j, ( )ix is dominated by ( )jx ,mark 
( )ix as ‘dominated’. 

Step 3: If all solutions (that is, when i=N  is reached) in 
the set are considered,  Go to Step 4, else incre-
ment i by one and Go to Step 1. 

Step 4: All solutions that are not marked ‘dominated’ 
are non-dominated solutions. 

 
Fig. 5: Classifying a population according to non-domination 

 
Fitness assignment 
In NSGA, fitness is assigned to each individual according to 

its non-domination level. An individual in a higher level gets low-
er fitness .This done in order to maintain pressure for choosing 
solutions from the lower levels of non-domination. Since solu-
tions in lower levels of non-domination are better, a selection 
mechanism that selects individuals with higher fitness pro-
vides a search direction towards the Pareto-optimal region. 

First, all solutions in the first non-dominated front 1n are 
assigned a fitness equal to the population size (N). This be-
comes the maximum fitness that any solution can have in any 
population. Based on the sharing strategy, if a solution has 
many neighboring solutions in the same front, its dummy fit-
ness is reduced by a factor and a shared fitness is computed. 
The factor depends on the number and proximity of neighbor-
ing solutions. Once all solutions in the first front are assigned 
their shared fitness values if ′ for all 11,...,i n= , the smallest 
shared fitness value is determined min

1f of all if ′ in the first 
non-domination level. Thereafter, the individuals in the se-
cond non-domination level are all assigned a dummy   fitness 
equal to a number smaller than the smallest shared fitness of 
the previous front min

2 1 1f f ε= − where 1ε is a small positive 
number. This makes sure that no solution in the second front 
has a shared fitness better than that of any solution in the first 
front. This maintains a pressure for the solutions to lead to-
wards the Pareto-optimal region. The sharing method is again 
used among the individuals of second front and shared fitness 
of each individual is found. This procedure is continued till all 
individuals are assigned a shared fitness.  

 
3-Fonseca and Fleming’s Multiobjective Genetic Algo-

rithm (FFGA) 
        Fonseca and Fleming (1993)[22] proposed a Pareto-based 
ranking procedure (here the acronym FFGA is used), where 
an individual’s rank equals the number of solutions encoded 
in the population by which its corresponding decision vector 
is dominated as depicted in figure 7c For example, an individ-
ual ix at generation t ,which is dominated by t

ip individuals in 
the current generation. Its current position in the individuals 

rank can be given by: 
( )( , ) 1 trank x t pi i= +  

All non-dominated individuals are assigned rank 1, 
while dominated ones are penalized according to the popula-
tion density of the corresponding region of the trade-off sur-
face. 
Fitness assignment is performed in the following way: 
1. Sort population according to rank. 
2. Assign fitness to individuals by interpolating from the best 

(rank1) to the worst (rank *n N≤ ) according to some func-
tion, usually linear, but not necessarily 

3. Average the fitness of individual with the same rank, so that 
all of them will be sampled at the same rate. This proce-
dure keeps the global population fitness constant while 
maintaining appropriate selective pressure, as defined by 
the function used. The algorithm of Fitness Assignment in 
FFGA are shown in figure 6 

 
(Fitness Assignment in FFGA) 
INPUT: tp   ( population ) 
Output:  F (fitness value) 
Step 1: For each individual i  calculate its rank. 
Step 2: sort population according to rank. 
Step 3: Assign fitness to individuals by interpolating 

from the best (rank1) to the worst (rank *n N≤ ) accord-
ing to some function. 

Step 4: Average the fitness of individual with the 
same rank, so that all of them will be sampled at the 
same rate. 

 
Fig. 6: Fitness Assignment in FFGA 

 
   They use a niche formulation method to distribute the popu-
lation over the Pareto-optimal region, but instead of perform-
ing sharing on the parameter values, they have used sharing 
on objective function values. Fonseca and Flemming [5]gave a 
simple estimation of shares in the objective function space by 
solving the (q-1)-order polynomial equation   
 

( ) ( )1 1 1 0

q q
M m M mi i i ishareq i iN share

share

s
s

s

Π − + − Π −
− = =− =  

Where q is the dimension of the objective vector , and Mi and 

mi are maximum values of each objective, respectively. This 
maintains diversity in the objective function values but may 
not maintain diversity in the parameter set, which is an im-
portant issue for the decision maker.  
 

So the major difference between MOP and single objective 
optimization is the selection process , that is, how to parent to 
construct mating pool thus the flowchart of SGA are still as it 
for single optimization but STEP 3 will be changed such as the 
previous three methods or any other methods for handling 
MOP. 
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 (a) VEGA 

(a) VEGA 

 

 
(b) NSGA 

 
(c) FFGA 

 
Fig. 7: Illustration of three selection mechanisms in objective space 
 

8-APLICATIONS OF GENETIC ALGORITHMS  
Since the Genetic Algorithm can be used to solve both un-

constrained and constrained problems it is merely a way to 
obtaining a solution in a standard optimization problem. Thus 
it can be used to solve classic optimization problems such as 
maximizing volume while minimization the amount of mate-
rial required to produce a container.  By applying the Genetic 
Algorithm to linear, nonlinear programming problems and 
multiobjective, it is possible to solve typical problems such as 
the diet problem (choosing the cheapest diet from a set of 
foods that must meet certain nutritional requirements). An-
other area where Genetic Algorithms can be applied is combi-

natorial optimization problems including several common 
computer science problems such as the knapsack, traveling 
salesman, and job scheduling problems. In the following sec-
tion several common applications where the Genetic Algo-
rithm can be applied.  

Reliability Optimization: The reliability of a system can be 
defined as the probability that the system has operated suc-
cessfully over a specified interval of time under stated condi-
tions. Many systems play a critical role in various 
operations and if they are down then the consequences can be 
pretty severe. Measures of reliability for systems such as 
communication switches is desired in order to access current 
reliability and also determine areas where reliability can be 
improved. Optimization in this field often involves in finding 
the best way to allocate redundant components to systems. 
Components are assigned probabilities to effectively gauge 
their reliability [27],[28],[29]. 

Job-Shop Scheduling: Imagine there is a sequence of ma-
chines that each performs a small task in a production line. 
These machines are labeled from 1 to m. For a single job to be 
completed work must be done first with machine 1, then ma-
chine 2, etc., all the way to machine m. There are a total of n 
jobs to be done and each job requires a certain amount of time 
on each machine (note that the amount of time required on 
one machine may vary from one job to another). A machine 
can only work on one job at any given time and once a ma-
chine starts work it cannot be interrupted until it has complet-
ed its task. The objective is to find the ideal schedule so that 
the total time to complete all n jobs is minimized 
[30],[31],[32],[33]. 

Transportation: The transportation Problem involves ship-
ping a single commodity from  suppliers to consumers to sat-
isfy demand via the minimum cost. Assume that the supply 
equals the demand. There are m suppliers and n consumers. 
The cost of shipping one unit from a single supplier to each 
consumer is known. The problem is to find the best allocation 
of the commodity at the suppliers so that the demand can be 
satisfied and the lowest costs are incurred 
[34],[35],[36],[37],[38],[39]. 

Machine learning: GAs has been used for many machine 
learning tasks, including classification and prediction tasks, 
such as prediction of weather and protein structure. GAs have 
been used to evolve some particular aspects of machine learn-
ing systems, such as weights of neural networks, rules for 
learning classifier systems or symbolic production systems 
and sensors for robots[40],[41],[42]. 

Economics : GAs have been used to model processes of in-
novation, the development of bidding strategies , and the 
emergence of economic market[43],[44],[45]. 

Electrical Power Systems 
Optimal power flow OPF is one of the main functions of 

power generation operation and control in electrical power 
systems. It determines the optimal setting of generating units. 
It is therefore of great importance to solve this problem as 
quickly and accurately as possible [46],[47].  
9-CONCLUSION  
    The Genetic Algorithm is a relatively simple algorithm that 
can be implemented in a straightforward manner. It can be 
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applied to a wide variety of problems including unconstrained 
and constrained optimization problems, nonlinear program-
ming, stochastic programming, and combinatorial optimiza-
tion problems with single or multiple objectives. An ad-
vantage of the Genetic Algorithm is that it works well during 
global optimization especially with poorly behaved objective 
functions such as those that are discontinuous or with many 
local minima. It also performs adequately with computational-
ly hard problems. Finally it can be believed that GAs may 
hopefully be a new effective approach for solving complex 
real applications. 
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