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Abstract— A study of involuntary micturition (urine flow) in a slowly varying urethral diameter precipitated by an intense urge to urinate have been 

considered. The urethra have been assumed to be cylindrical in shape; and elastic since its made up of muscles. Even though the urethra is elastic, the 
pressure causing voiding is not enough to stretch the urethral walls. Thus no movement of the urethral walls during voiding implies the velocity profile is 
in axial direction with distance along the urethra called the axial distance. Consequently, the Navier-Stokes equation which describes the axial motion 
was solved to obtain an expression for velocity and pressure along the urethra assuming there is no abnormality in the Lower Urinary Tract (LUT) and 
that the urine is already stored in the bladder. Asymptotic limit to determine the expression for urethral axial velocity close to the end of micturition 
process was also considered. 
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1. Introduction 

 

The Lower Urinary Tract (LUT) is the only part of the body 
that is influenced by both voluntary and involuntary nervous 
system. It is made up of urinary bladder, the external 
sphincter and the urethra. In fact, It is a non-linear multi 
variable dynamic system variant in time and subject to 
internal alterations (convolutions, dysfunctions and infections) 
and external alterations (coughing, cold, fear, etc) [1]. 
The bladder could be seen as a spherical hollow sac made up 
of muscles. It collects and stores urine from the ureters. When 
simulated, it contracts and evacuate the urine stored in the 
bladder through the urethra. [2] observed that the bladder 
walls consist mostly of one smooth muscle, the detrusor and 
that the mechanical properties of the whole bladder are 
assumed to be those of the detrusor. Further reading on 
modelling bladder and its properties, see [3], [4]. 
Micturition is the process by which urine is expelled from the 
body. [5] described investigations into micturition as both 
obstructive and inconvenient due to the need for simultaneous 
knowledge of detrusor pressure and flow rate. They further 
observed that the detrusor pressure are normally taken to be 
the difference between the pressure inside the bladder and the 
abdominal pressure. 
Results from [6], [7], [8] pointed out that the sphincter is not 
modelled separately but subsumed as part of the urethra. The 
reason could be attributed to the fact that the sphincter which 
is responsible for relaxing and constricting the urethra is also 
made up of contractile sheath of muscles around the urethra. 
Moreover, in the so-called VBN model proposed by [9], the 
changing cross sectional area and elastic properties of the 

urethra were considered and a simple sphincter control region 
included. 
The urethra is a tube-like structure through which urine is 
expelled out of the body from the bladder during micturition. 
[10] proposed a model where the urethra was consider as a 

generally tubular lining enclosed in the so-called sheath of 
muscles known as pelvic floor. 
The LUT nervous system cannot be left out since it controls 
storage/filling of the bladder and emptying/voiding 
processes. [8] gave a detailed treatise on LUT nervous control 
system. 
An interesting observation from [3] revealed that in idealised 
voiding, urine is expelled by detrusor contraction while the 
contribution from gravity and abdominal straining ignored. 
Furthermore, as the effective abdominal pressure is only a 
weak contribution to the flow rate for the identification of the 
detrusor contractile strength, the contribution of abdominal 
straining has to be eliminated. 
For our purpose, we consider a situation where there is no 
abnormality in LUT, assuming that the urine is already stored 
in the bladder so that neglecting the contribution from gravity 
and abdominal straining, we study the mechanism of 
involuntary micturiction precipitated by an intense urge to 
urinate with the behaviour of the urethra considered as a 
cylindrical tube during voiding so that we determine the 
bladder pressure and velocity along the urethra during the 
micturition process. 
 

2. Model Formulation 

 
In formulating this model, we put the following into 
consideration: 
The urethra is assumed cylindrical in shape though not a 
perfect cylinder because it is made up of several natural 
constrictions. Interestingly, it is elastic (stretchable) since it is 
made up of several muscles. 
Even though the urethra is elastic, the pressure causing 
voiding is not enough to stretch the urethral walls implies no 
slip condition assumed. In other words, there is no movement 
of urethral walls during voiding. The consequence is that at 
any given instant, the pressure and velocity profile only vary 
along the direction of flow and not across the urethral walls. 
With the foregoing in mind, we make use of the Navier-Stokes 
equations to describe the axial motion of urine along the 
urethra. 
Now, consider the Navier-Stokes equation in polar cylindrical 
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coordinates as follows: 

continuity  equation :   

( )( ) ( )1 1
= 0r z

VrV V

t r r r z

θρρ ρρ

θ

∂∂ ∂∂
+ + +

∂ ∂ ∂ ∂
             (2.1) 

 

r - :component   

2

( )r r r
r z

V V VV V V
V V

t r r z r

θ θ θρ
θ

∂∂ ∂ ∂
+ + + −

∂ ∂ ∂ ∂
 

2 2

2 2 2 2

( )1
= ( ( )

1 2
)

r

r r
r

rVP

r r r r

VV V
g

r z r

θ

µ

ρ
θ θ

∂∂ ∂
− +

∂ ∂ ∂

∂∂ ∂
+ + − +

∂ ∂ ∂

              (2.2) 

 

θ - :component   

( )
r r z

V V V V V V
V V V

t r r r z

θ θ θ θ θ θρ
θ

∂ ∂ ∂ ∂ ∂
+ + + +

∂ ∂ ∂ ∂ ∂
 

 
2 2

2 2 2 2

( )1 1
= ( ( )

1 2
)r

rVP

r r r r

V VV
g

r r

θ

θ θ
θ

µ
θ

ρ
θ θ θ

∂∂ ∂
− +

∂ ∂ ∂

∂ ∂∂
+ + + +

∂ ∂ ∂

             (2.3) 

 

z - :component   

 ( )z z z z
r z

VV V V V
V V

t r r z

θρ
θ

∂ ∂ ∂ ∂
+ + +

∂ ∂ ∂ ∂
 

 
2 2

2 2 2

( )1
= ( ( )

1
)

z

z z
z

rVP

z r r r

V V
g

r z

µ

ρ
θ

∂∂ ∂
− +

∂ ∂ ∂

∂ ∂
+ + +

∂ ∂

              (2.4) 

 
 Model Assumptions 
1.0 Urine flow assumed incompressible. i.e. density of urine, 
ρ  is assumed constant. 

2.0 The effects of gravity and abdominal straining would be 
neglected since in conformity with [3], urine is expelled by 
detrusor contraction with the contribution from gravity and 
abdominal straining ignored in an idealised voiding. i.e. 

= = = 0r zg g gθ  

3.0 No slip condition assumed since no movement across the 
walls of urethra. 
4.0 Assume the pressure causing voiding is not enough to 
stretch the urethral wall. In other words the urine flow 
through the urethra is only in the axial direction since no 

movement of the urethral walls. i.e. = = 0
r

V Vθ  and 0
z

V ≠ . 

5.0 Urine flow is assumed unsteady since the axial velocity 
and pressure describing the flow at a give instant vary along 
the direction of flow. 
6.0 Lastly, we shall assume there is no abnormality in the 

lower urinary tract and the urine is already stored in the 
bladder. 
To formulate our governing equations, we impose model 
assumptions 1.0 - 5.0 on (2.1)-(2.4) to get: 

continuity  equation :   
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A quick note from (2.5)-(2.7) is that bladder pressure is 

independent of θ  and r  and the axial velocity is 

independent of z  from the continuity condition. Note that by 

axis symmetry, = 0z
V

θ

∂
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 i.e. zV  is independent of θ . Hence,   
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 (2.9)-(2.10) gives the governing equations that describe the 
axial motion of urine through the urethra in the axial 
direction. (2.9) justifies no slip condition assumed.  

 
3. Mathematical Analysis 

    
3.1   Nondimensionalisation 

 
To solve (2.10), we nondimensionalise by introducing the 
following scaling where bars denote the dimensional variables 

as before. Let 
0

V  and 
0

R be the characteristic velocity and 

characteristic length respectively. Then  
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Differentiating (3.1) gives   
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Substitute (3.2)-(3.3) into (2.10) to get 
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Multiply (3.4) by 0
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Let 0 0=
V R

Re
ρ

µ
 where Re  is the Reynolds number. Then 

(3.5) becomes 
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(3.6) gives the nondimensionalised form of the governing 
equation (2.10). 

 
3.2 Method of Solution 

 
 Consider solutions to (3.6) of the form 
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 α  should be chosen such that the anticipated solution does 

not become unbounded over time. i.e. grow infinitely since 
voiding at intense urge occurs over a very short period. 
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Substituting (3.9) into (3.6) gives 
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Rearrange (3.10) to get   
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Now we separate variables since the RHS and LHS of (3.11) 
are respectively functions of r  and z  alone so that (3.11) 
becomes   
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 where B is a constant of integration. 
From (3.13) we have that   
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3.21 Complementary Solution to (3.15) 

Consider   
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Let r R≡ , X v≡  and observe that (3.16) is a Bessel 

differential equation with solution of the form   
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Since we require velocity to be finite, we demand that the 

solution be finite so that 2
= 0α . i.e.   
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3.22 Particular solution to (3.15) 

A critical look at (3.15) revealed that the particular solution is 
given by   
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Substituting (3.21)-(3.24) into (3.15) gives  
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 which clearly justifies that (3.20) is a solution to (3.15). 
Now, substitute (3.14) and (3.20) into (3.7)-(3.8) accordingly to 
obtain  
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(3.27)-(3.28) gives the expressions for velocity along the 
urethra and bladder pressure respectively. It is noteworthy 
that the above derivation have been based on the dominance 
of dynamical effects at intense urge. In other words, we would 

anticpate that 1.Re≫  
 
Relationship between bladder pressure and velocity along the 
urethra:   
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α
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An interesting observation from (3.27) would be to investigate 

(3.15) as 0Re → . In other words, we would anticipate the 

dominance of viscous effects close to the end of the micturition 
process since naturally, velocity along the urethra tends to 
decrease. i.e. becomes smaller and smaller. This we hope to 
see in a sequel.  
   

3.23 Asymptotic Analysis 
Here we investigate extensively the behaviour of (3.15) as 

2
0k →  since we would anticipate that the Reynold number 

is negligible, 1Re≪ . Invariably, we seek the asymptotic 

limit as 0Re →  since relative to the bladder pressure at 

intense urge, we would anticipate the dominance of viscous 
effects close to the end of micturition process as velocity gets 
smaller and smaller. 
Pose:   
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Differentiating (3.30) and substituting into (3.15), we obtain a 

leading order coefficient 
2 0

( ) :k    

 

2

0 0

2

1
=

d v dv
C

dr r dr
+              (3.31) 

Equivalently, we have   
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Integrating (3.32) gives   
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Hence, for 1Re≪ , the expression for velocity along the 

urethra is given by   
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(3.35) gives an asymptotic approximation to the urethral axial 
velocity close to the end of the micturition process where 
viscous effect is dominant. 
 

4. Discussion of Results 

 

Here we present a detailed discussion of our results aimed at 
answering our objective of determining the profiles of axial 
velocity along the urethra and pressure from the bladder. 
Consequently, we would also determine the relationship 
between the axial velocity and pressure during the micturition 
process. 
Notice from Fig. 1 that at intense urge, the velocity along the 
urethra decreases exponentially over time. This could be 
attributed to the bladder pressure which also decreases 
(decays) exponentially over time as can be seen in Fig. 2. 

 
Fig. 1:  urethral axial velocity versus time. 

 

 
Fig. 2:  shows bladder pressure versus time. 

   
The relationship between velocity and pressure at intense urge 
have been found to be proportional to each other. In other 
words, as the bladder pressure decreases, the velocity along 
the urethra also decreases over time. This is immediate from 
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Fig. 3. 
 

 
Fig. 3:  relationship between bladder pressure and axial 

velocity. 
   
Comparison between the radial distance and velocity along 
the urethra have been shown in Fig. 4. Therein, we see that the 
urine flow oscillates along the radial direction as urine flows 
down the urethra as a result of urethral constrictions. It’s 
glaring the presence of rapid oscillations at the beginning of 
the micturition process which further justifies the dominance 
of dynamical effects. Also, we would anticipate that this could 
be as a result of anatomical differences between the urethral 
sphincter and prostatic urethra but is seen to become less 
erratic as the urine flows down the urethra into a region called 
membranous urethra. 
 

 
Fig. 4:  radial direction versus axial velocity 

 

 
Fig. 5: Asymptotic approximation to axial velocity versus 
time 
   
The asymptotic approximation to axial urethral velocity have 
been shown to decrease over time as in Fig. 5. This is expected 
since from Fig. 5, as the bladder pressure becomes zero i.e 

when the bladder have been emptied, the urethral sphincter 
closes, so that over time, the axial velocity at the upper part of 
the urethra becomes zero. Notice that the flow now moves 
down the urethra with a negative velocity, which of course 
gets smaller and smaller down the urethra with increasing 
regions of zero velocity at the upper part of the urethra. Thus 
further justifies the dominance of viscous effects close to the 
end of the micturition process. 
      

5. Conclusions 

 
A mathematical model describing the behaviour of bladder 
pressure and axial velocity at intense urge during voiding 
under an ideal condition have been presented with the 
assumption that there is no abnormality in the lower urinary 
tract (LUT). 
In formulating the model, Navier-Stokes equation was used 
since the urethra is assumed to be cylindrical in shape. Urine 
was also assumed to have been stored in the bladder so the 
there is no bladder filling during the micturition process with 
the effects of gravity and abdominal straining neglected in 
conformity with [3]. Additionally, no slip condition was also 
assumed since there is no movement of urethral walls during 
voiding. 
The governing equations were nondimensionalised and 
solved to obtaining expressions for bladder pressure, urethral 
axial velocity with their relationship considered. Interesting 
features of the method of solutions were the separation of 
variables, recognition of presence of Bessel’s equations and the 
assumption that velocity is required to be finite. 
The solutions to our model were analysed using MATLAB 

with suitable choice of values for arbitrary constants - = 4A , 

= 3B  and = 6α  and dimensionless parameters - = 10z , 

= 100Re , = 4R  used to describe the effects of dominance 

of dynamic effects in the early stage of the micturition process. 
The dominance of viscous effects characterised by low velocity 

were described with values of ,A R  as before, = 0.03D − , 

= 0.001Re  and = 2.112α − . It’s pertinent to note that the 

values of Re  were chosen to reflect the dominance of 

dynamical/viscous effects at various stages of the micturition 
process. 
Our model have been seen to have plausibly described the 
micturition process since in reality, at intense urge, the 
bladder pressure and velocity along the urethra decrease over 
time. Our model is not only in concordance with realism, it 
went further to inform that the profiles of bladder pressure 
and velocity decay exponentially over time at the initial stage 
of micturition and decreases with negative velocity when the 
bladder pressure becomes zero i.e. bladder becomes emptied. 
Further research could be to investigate a problem for the 
bladder pressure enough to stretch the urethral walls. 
Additionally, we suspect that the behaviour of the asymptotic 
urethral axial velocity may not have been clearly depicted in 
the current model since it probably tends to smear out the 
possible associated discontinuities at the end of the 
micturition process. It’s noteworthy that this phenomenon 
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could vary in individuals who would patiently may not want 
to shake off/wipe their urinary organ close to the end of the 
micturition process. One may also wish to consider the effects 
of abdominal pressure as against [3]. 
A possible limitation to the model is the difficulty in 
determining exact values of the parameters and arbitrary 
constants which could vary in individuals. it is almost 
impossible to ascertain if our model is unisex.  
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